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Light-by-light scattering sumrules based on general field theory principles relate cross-sections
with different helicities. In this paper the simplest sumrule is tested for the I = 0 and 2 channels
for “real” photon-photon collisions. Important contributions come from the long-lived pseudoscalar
mesons and from di-meson intermediate states. The latest Amplitude Analysis of γγ → ππ,KK
allows this contribution to be evaluated. However, we find that other multi-meson contributions up
to 2.5 GeV are required to satisfy the sumrules. While data on three and four pion cross-sections
exist, there is no information about their isospin and helicity decomposition. Nevertheless, we show
the measured cross-sections are sufficiently large to ensure the sumrules for the helicity differences
are likely fulfilled.
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I. INTRODUCTION

There is keen interest in improving our understanding
of light-by-light scattering as an essential ingredient of
calculations of hadronic contributions to the anomalous
magnetic moment of the muon in preparation for planned
experiments at Fermilab [1] and J-PARC [2]. An essential
component of this are tests of the theoretical framework
by the scattering of essentially real photons, as an anchor
for modeling scattering with photons of virtuality up to
2 GeV2 that control the multi-loop structure of hadronic
light-by-light scattering. Models of γ∗γ∗ scattering in dif-
ferent polarization states are expected to be constrained
by sumruies deduced by Pascalutsa and Vanderhaeghen
(PV) [3] from general field theoretic considerations. The
γ∗γ sumrules have been tested with new Belle data [4]
and recently used to calculate the hadronic contribution
to muon’s anomalous magnetic moment [5].
Here we discuss what we currently know from the de-

tailed analysis of all available data on two real photon
interactions about the simplest of these sumrules. For
physical photons, the PV sumrules relate integrals of the
total polarized and unpolarized cross sections to the low-
energy structure of light-by-light scattering. The sim-
plest states that the helicity-two and helicity-zero cross-
sections contribute equally [3] so that the weighted inte-
gral from threshold sth:

∫ ∞

sth

ds
σ2 − σ0

s
= 0 , (1)
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where the subscripts label the total helicity (λ) of the
colliding photons. Subsequently, we denote the difference
[σ2(s) − σ0(s)] by ∆σ(s). This sumrule should be true
for the sum of all hadronic intermediate states of definite
isospin, i.e I = 0, 1, and 2. Thus, the first contributions
to include in Eq. (1) are from single particle intermediate
states that appear in γγ → γγ scattering, namely the π0

in the I = 1 channel, and η, η′ in I = 0. Their contribu-
tion to the helicity-zero cross-section is well-known and
included in Table 1, with uncertainties given by the decay
rates from the PDG Review of Particle Properties [6].

All the remaining contributions come from intermedi-
ate states that are multi-hadron channels, e.g ππ, 3π, 4π
and so on, with kaons and protons replacing pions as the
energy increases. Some of these cross-sections have signif-
icant resonant contributions, for instance the neutral ten-
sor mesons with the f2(1270) dominating the ππ channel,
the a2(1320) in 3π and the f ′

2(1525) in the KK channel.
Their contributions have been estimated in Ref. [7], in
the approximation that these resonances are narrow and
only couple to photons with helicity-two. While these
may seem plausible “guesses”, it turns out in fact that
they provide a rather poor description of the contribution
of these spin two intermediate states.

This fact highlights why using published data on two
or more particle production, it is not possible directly to
evaluate the sumrule of Eq. (1).

• First the observed cross-sections cover only part of
the angular range of the final state particles. When
these are just two particles, this is typically limited
to | cos θ∗| ≤ 0.6 for charged particles and ≤ 0.8 for
neutral, while the sumrule requires cross-sections
integrated over the full angular range (θ∗ is the
scattering angle in the γγ center-of-mass frame).
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• Secondly, measurements of all possible charged
states are required to separate out the isospin com-
ponents, even when there are just two final state
particles.

• Thirdly, in untagged electron-positron collisions
there is no polarization information about the col-
liding photons, which would automatically separate
the helicity components in the sumrule of Eq. (1).

Consequently, one needs to combine data with other
information. The Amplitude Analyses performed in
Refs. [8–10] address these issues by making use of the un-
derlying S-Matrix principles of analyticity, crossing and
unitarity, combined with the QED low energy theorem
on Compton scattering. Without this technology, a par-
tial wave separation would not be possible. Even then
this is limited to the c.m. energy region below 1.44 GeV,
beyond which multi-pion channels become crucially im-
portant: channels for which we have even more limited
information from experiment, as we discuss in more detail
below. We give the single and two particle contributions
to the PV sumrule, Eq. (1), that can be accurately com-
puted in Section 2. Then in Section 3 we estimate the
contribution of multiparticle channels and in Section 4
give our conclusions.

II. CONTRIBUTIONS TO THE SUMRULES:

SINGLE PARTICLE AND ππ, KK

We begin by considering the contributions to the PV
sumrule, first from single particles in the process γγ →
γγ. By the optical theorem, the cross-section is related to
the imaginary part of the relevant forward helicity ampli-
tudes. Thus the PV sumrule involves the forward f (−)(s)
amplitude, defined in [3], to be proportional to the dif-
ference of the M++++ −M+−+− amplitudes. Then the
contribution of a near stable single particle of mass M

and γγ width Γ
(λ)
γγ in the helicity λ channel is given by

σλ(γγ → γγ; s) = 16π2 (2J + 1)
Γ
(λ)
γγ

M
δ(s−M2) . (2)

The contribution to the PV sumrule for the π0, η, η′ are
readily deduced using this equation with the information
from the PDG Tables [6]. These are listed in Table 1.
When the intermediate state is a resonance, its con-

tribution is included in the sum of multiparticle modes
to which it decays. For instance, the tensor meson, the
f2(1270) contributes through its ππ, KK and 4π chan-
nels. In the same narrow resonance approximation, a
resonance of mass MR contributes to an integral of the
γγ → ππ cross-section with helicity λ as

σλ(γγ → ππ; s) = 8π2 (2J+1)
Γ
(λ)
γγ

MR

BRR→ππ δ(s−M2) ,

(3)

where BR is the branching ratio of the resonance decay,
here to ππ. The difference of a factor of two between
Eq. (2) and Eq. (3) comes about because of differences in
the relation of the unpolarized cross-section to its helicity
components. Thus γγ → γγ cross-section [3] σ = (σ0 +
σ2)/2 is normalized as in Eq. (2), while the unpolarized
γγ → ππ cross-section [10] for each isospin I is ∗ σI =
(σI

0 + σI
2) as normalized in Eq. (3). Since the partial

cross-sections for ππ and KK in our amplitude analysis
have been normalized according to Eq. (3), we scale these
results by a factor two to match the γγ cross-section in
each helicity. Of course, the f2(1270), like the f0(500)
and f0(980), is not well described by a narrow resonance
approximation, so the contributions from our analysis of
experimental data will not coincide with the pure helicity
two approximation in [3, 7]. Nevertheless, for the want of
anything more definite, in the I = 1 3π channel, where
we have no amplitude analysis, we have estimated the
contribution of the a2(1230) in the helicity two Breit-
Wigner approximation and included this in Table 1, with
a suitably expanded error.
At very low ππ masses the magnitude of the cross-

sections (I = 0, 2, λ = 0, 2) is known to be close
(within 30%) to a one pion exchange Born model. Indeed
in this Born approximation the sumrule can be integrated
to infinite energy, and helicity-zero and two components
do indeed contribute equally, as one can readily check
analytically — see the Appendix.
Of course, the Born amplitude contains no strong in-

teraction dynamics that dominates the contribution from
hadronic intermediate states. To do better, one has to
use the results of a partial wave separation of γγ scat-
tering. This is the context for a recent coupled channel
Amplitude Analysis [10] of the high statistics results from
Belle on γγ to two mesons ππ [11, 12] and KK [13] (and
eventually π0η [14]). Only where we have a partial wave
separation can we know the result for the whole angular
range), and even then the upper energy is far below in-
finity required to evaluate Eq. (1). Because of the energy
range of the amplitude analysis, we can only integrate
from ππ, or KK threshold to 2 GeV2, a value we call
Scut.
While our Amplitude Analysis has determined the I =

0, 2 ππ, and the I = 0, 1 KK S and Dλ waves up to s ≃ 2
GeV2, all the higher waves are approximated by their
one pion (or kaon) exchange amplitude, BJ≥4. Thus the
amplitudes for each isospin (we suppress the label here)
are

Mλ(s, θ, φ) = S0(s)Y00(θ, φ)δ0λ +Dλ(s)Y2λ(θ, φ)

∗ The physical cross-sections for π+π− and π−π0 are related
to integrals of the sums of the modulus squared of the helic-
ity amplitudes of definite isospin and so involve interferences
of isospin amplitudes. Only the sum of the π+π− and π0π0

cross-sections (where the interference cancels) is simply related
to

∑
I,λ=0,2 σI

λ
.
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contribution to ∆I(4m 2
π , 2GeV2, Z = 1) I = 0 I = 1 I = 2

γγ → π0 [6] (nb) - -190.9±4.0 -

γγ → η, η′ [6] (nb) -497.7±19.3 - -

γγ → a2(1320) [6] (nb) - 135.0±12±25
a -

γγ → ππ (nb) 231.3±31.2 - -82.9±12.2

γγ → KK (nb) 6.2±2.0 0.9±0.2 -

SUM (nb) -260.2±36.7 -55.0±28.0 -82.9±12.2

evaluation of ∆I(4m 2
π ,∞, Z = 1) I = 0 I = 1 I = 2

γγ → π0 [6] (nb) - -190.9±4.0 -

γγ → η, η′ [6] (nb) -497.7±19.3 - -

γγ → a2(1320) [6] (nb) - 135.0±12±25
a -

γγ → ππ (nb) 308.0±41.5 - -44.2±6.1

γγ → KK (nb) 23.7±7.5 18.1±4.9 -

SUM (nb) -166.0±46.4 -37.8±28.4 -44.2±6.1

TABLE I. PV sumrule contributions for intermedate states η, η′, ππ and KK in nanobarns. The upper numbers are for the
integral up to 2 GeV2, while the lower set includes the estimate of the contribution above 2 GeV2. a

a For the I = 1 channel we have included the contribution of the a2(1230) in italics. Unlike the states coupling to ππ, this is not the
result of an Amplitude Analysis, but is estimated in the pure helicity two Breit-Wigner approximation. The first error quoted for a2 is
that from γγ coupling quoted in [6]; the second error is our estimate (from the determination of the “correct” f2(1270) contribution)
of the uncertainty from the approximations made.

+BJ≥4,λ(s, θ, φ) (4)

for
√
s ≤ 1.44 GeV. From these amplitudes we can

deduce the helicity cross-section difference ∆σ(s) =
σ2(s)− σ0(s) that appears in Eq. (1). In Fig. 1 we show
the integrands of the I = 0, 2 PV sumrules for each of
these up to s = 2 GeV2.

The resulting contributions for ππ and KK inter-
mediate states are shown in the top half of Table 1.
That for the KK channel is generally much smaller
than that for ππ. While the Amplitude Analysis deter-
mines the f2(1270) is indeed dominated by its helicity-
two component, it does have a helicity-zero component
of (8.6± 1.7)% and a substantial S-wave cross-section in
the same mass region.

While the spin zero and two waves are distinctly dif-
ferent from the Born approximation, reflecting impor-
tant direct channel dynamics, we know that an infinity
of higher waves must be very close to the Born ampli-
tude for ππ production reflecting the closeness of the t
and u-channel pion poles to the physical region. Thus

for instance at
√
s = 2 GeV, the pion poles are at

cos θ = ±1.01, only just outside the physical region. The
amplitudes M reflect this, Eq. (4). In contrast for KK
production, the kaon poles are much further away, being
at cos θ = ±1.15, again at

√
s = 2 GeV. Thus the Born

approximation is there poorer.
Nevertheless, these considerations provide the motiva-

tion for our estimate of the higher energy contribution
to the PV sumrule. These can be calculated by using
the Born amplitude as a reasonable approximation for
s > 2 GeV2. For the ππ channels, studies with differ-
ent high energy behavior suggest that this is accurate to
about 10%, while for KK to 25%. However, the total
contribution to the PV sumrule from the kaon channel
is much smaller than that of ππ, and so its larger uncer-
tainty matters less. In adding the high energy contribu-
tion, we can profit from the fact that the PV sumrule is
exactly satisfied by the Born amplitude. Consequently

∫ Scut

sth

ds
∆σBorn(s)

s
= −

∫ ∞

Scut

ds
∆σBorn(s)

s
. (5)
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FIG. 1. The contribution of isospin 0 and 2 cross sections to the integrands for the PV sumrule, Eq. (1), for the difference of
helicity two and zero cross-sections, ∆σ. Note the different ordinate scales for these plots.

∫
ds (σ2 − σ0)/s ds of Eq. (1) is, of

course, the same as
∫
dE 2(σ2 − σ0)/E, with E the energy in the center of mass frame. The dashed lines are for ∆σ, the solid

for ∆σ of Eq. (6), i.e. with the Born cross-section difference subtracted. In this latter case the PV sumrule essentially requires
no contribution at higher energies from these channels.

Thus the total integrand for the PV sumrule can be ex-
pressed wholly as an integral from s = sth to Scut =
2 GeV2 of just the S and Dλ partial waves with

∆σ
I
(s) = σI

D2(s)− σI
S(s)− σI

D0(s)

−
[

σI
D2(s)− σI

S(s)− σI
D0(s)

]

Born
. (6)

The components of this integrand are also shown in Fig. 1
as the solid lines. The result of this integral is also given
in Table 1. Our recalculation of I = 0 γγ → η, η′, ππ,
and KK is thus (-166±46) nb, with the systematic er-
ror of 28.0%, and (−44 ± 6) nb with a 14% systematic
uncertainty for I = 2. Clearly these are not zero. Con-
sequently, there must be additional intermediate states
that can make a substantial contribution in the few GeV
region.
Before considering such contributions, it is helpful for

this discussion to define the contributions of two particle
intermediate states to γγ → γγ in terms of differential
cross-sections, where z = cos θ∗, with θ∗ the c.m. scat-

tering angle. Then for each isospin I, we have

ΣI(s1, s2, Z) =

∫ s2

s1

ds

s

∫ Z

−Z

dz

(

d

dz
σI
2 +

d

dz
σI
0

)

.

(7)
This is a quantity that can be deduced from measure-
ments with unpolarized photons. Closer to the PV sum-
rule is the difference, ∆, rather than this sum, Σ. This
we define by

∆I(s1, s2, Z) =

∫ s2

s1

ds

s

∫ Z

−Z

dz

(

d

dz
σI
2 − d

dz
σI
0

)

.

(8)
The multiparticle contributions to these can only be de-
duced after an Amplitude Analysis. The sumrule of
Eq. (1), of course, requires s1 = 4m 2

π , s2 = ∞, Z = 1.
We usefully define the ratio, R,

R(s1, s2; channel) =
∆(s1, s2, Z = 1)

Σ(s1, s2, Zexp)
. (9)
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This provides a scaling factor with which to multiply the
experimental cross-sections, to estimate, their contribu-
tion to the PV sumrule.

III. CONTRIBUTIONS TO THE SUMRULES:

4π, ETC.

Published data [15] allow the contributions to the in-
tegral, Σ, of the sum of cross-sections, Eq. (7), for γγ →
multi-meson processes [16]-[23], 4π, ππKK, · · · to be
computed. These are listed in Table II. That these are
large means such intermediate states will contribute sig-
nificantly to light-by-light scattering and probably to the
PV sumrules too. The ratio R of Eq. (9) provides a
scaling factor, with which to multiply the experimental
cross-sections, to estimate their contribution to the PV
sumrule. We estimate this scaling factor in two ways.

(i) From our Amplitude Analysis we know the ratio,
RAMP in each charged channel, and also separated
by isospin, but only for s from ππ threshold to
2 GeV2,

(ii) From the ππ Born amplitude integrated over the
defined range of energies s1 ≤ s ≤ s2. An ex-
ample of the calculation involved is set out in the
Appendix.

Assessment (i) typically gives R ≃ 0.65 from s = 1 to
2 GeV2. However, this is in the region where the helicity-
zero component is largest. From 2 to 4 GeV2, which we
need to assess the contribution of the multi-pion data,
this ratio goes above one, as we now discuss. Assessment
(ii) uses the Born approximation. Then the sum and
difference of the differential helicity cross-sections inte-
grated up to cos θ = Z and from threshold sth to energy
squared S with X2 = 1− sth/S are respectively

ΣBorn(sth, S, Z) =
e4

2sth

{ 1

12Z6

[

5− 12Z2 + 9Z4 − (3X2 −X6)Z6
]

ln

(

1 +XZ

1−XZ

)

+
X

6Z5

[

−9Z4 + 12Z2 − 5
]

+
X3

18Z3

[

6Z4 + 12Z2 − 5
]

− X5

6Z

}

, (10)

∆Born(sth, S, Z) =
e4

2sth

{ 1

4Z4
[1−X2Z2]

[

2Z2 − 1−X2Z2
]

ln

(

1 +XZ

1−XZ

)

− X

2Z3
(2Z2 − 1) +

X3

6Z
(2Z2 + 1)

}

. (11)

From Eqs. (10, 11) we can then deduce the ratio R de-
fined in Eq. (9) from the Born amplitude listed in Table 2.
We see that this enhances the expected contribution to
the PV sumrule. This may appear strange given that
the difference of the helicity-two and helicity-zero cross-
sections of Eq. (8) is surely less than the sum of these
cross-sections. The reason this is not the case is because
as the energy increases the sumrule for ∆ is dominated
by the helicity-two contribution and this has the biggest
difference between Z ∼ 0.6 and Z = 1, cf. Eq. (9).
Helicity-zero contributes most to the S-wave and this
is only large at low energies (remember the integral in
Eq. (1) has a factor 1/s in the measure in addition to the
natural decrease in the cross-section at higher energies).
This is seen in the negative contributions in Fig. 1. While
both the integrals defined for the cross-section sum and
difference by Eqs. (7, 8), as with the PV sumrule, Eq.(1),
are dominated by contributions from low energies, their
convergence is not so very fast. Using the Born ampli-
tude as a guide, Eq. (10), Σ(4m 2

π , S, Z = 1) reaches 90%

of its asymptotic value already by
√
S of 1.25 GeV, and

achieves 96% by 2 GeV, but 98% by 3 GeV. The differ-
ence, Eq. (8), or rather the normalized ratio R is 10% at
1.25 GeV, falling to 4% at 2 GeV and below 2% at 3 GeV,
on its way to zero asymptotically. To repeat. this is crit-

ically dependent on covering the whole angular range to
Z = 1.

The region of 2–3 GeV, above the range of our Ampli-
tude Analysis, being so important makes the large multi-
meson cross-sections seen in Table 2 matter for the PV
sumrule, with its required delicate cancellation. The con-
tribution to the sumrule from these multi-pion channels
can be crudely estimated by taking the measured cross-
sections, Σ, multiplying them by the ratioR that we have
listed in Table 2, and scaling by normalization factors and
guesses of the isospin decomposition, i.e. multiplying by
a crude factor of ∼ 1 for I = 0 and ∼ 0.5 for I = 2.
This would suggest that these would readily contribute
the 150–200 nb in the I = 0 channel and 50 nb in the
I = 2 mode. When added to our results in Table 1, these
would make the integral in Eq. (1) consistent with zero,
as expected.

Of course, the Born estimates know nothing of
the direct channel dynamics that control γγ →
ρρ, ωπ, ωρ, ωω, · · · . As remarked earlier the Born ap-
proximation gives the right order of magnitude for the
γγ → π+π− cross-section in the low energy region, even
though what is observed experimentally is modified by
substantial corrections from final state interactions, par-
ticularly in the I = 0 channel. This rough agreement is
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Channel Publication E1 (GeV) E2 (GeV) Σ (nb) R(Born)

π+π− (Z = 0.6) [16] 2.4 4.1 0.44 ± 0.01 1.61

K+K− (Z = 0.6) [16] 2.4 4.1 0.39 ± 0.01 1.29

π0π0 (Z = 0.8) [17] 1.44 3.3 8.8 ± 0.2 1.18

π0π0π0 [18] 1.525 2.425 5.8 ± 0.8 1.55

π+π−π0 (non-res.) [19] 0.8 2.1 23.0 ± 1.3 1.39

KsK
±π∓ [20] 1.4 4.2 9.7 ± 1.6

π+π−π+π− [21] 1.1 2.5 215 ± 11 ± 21 1.49

π+π−π+π− [22] 1.0 3.2 153 ± 5 ± 39 1.48

π+π−π0π0 [23] 0.8 3.4 103 ± 4 ± 14 1.42

TABLE II. Integral of channels specified to Eq. (7) from s1 = E 2
1 to s2 = E 2

2 as listed. Note these cross-sections are not
separated for either isospin or helicity. They are the sum of all contributions, except for the 3π denoted by ‘non-res.’ from
which the experimental analysis has removed the a2(1320) contribution. The factor R defined from Eqs. (9-11) is an “estimate”
of the scale, by which the listed cross-sections Σ need to be multipled to give the contribution of each channel and energy region
to the PV sumrule — see text for the discussion.

because the pion poles at t = u = m 2
π are very close to the

s-channel physical region even at low energies. In con-
trast the kaon poles at t = u = m 2

K are far from the phys-
ical region for 4m 2

K < s < 2 GeV2. Consequently, other
t and u-channel exchanges, like the K∗(890) and the
κ/K∗

0 (650) are just as important. This situation is even
more so for the ρ+ρ− production, where estimates from
the one pion exchange Born cross-section are more than
an order of magnitude below the observed cross-sections,
since at threshold when s = 4m 2

ρ and t = u = −m 2
ρ is

very far from t = u = m 2
π . Indeed, long ago Achasov

et al. [24] proposed that the large ρρ cross-section was
dominated by the production of several wide tetraquark
resonances. While this cannot be checked without a par-
tial wave analysis, the proposal indicates the key role of
direct channel dynamics in this crucial mass region for
the data to satisfy the PV sumrule.

IV. CONCLUSION

In this paper we set out the contributions to the PV
sumrule for light-by-light scattering. Single, near stable,
pseudoscalar mesons plus ππ,KK intermediate states up
to 1.44 GeV in γγ cm energy contribute (-166±46) nb,
with a systematic error of 28% in the isoscalar channel
and (-44±6) nb, with a systematic error of 14%, in the
isotensor mode. These calculations are made possible
by the recent Amplitude Analysis [10] in this energy re-
gion of the high statistics π+π−, π0π0,K0

SK
0
S data from

Belle. We show that narrow resonance estimates from the
tensor mesons are not a good approximation. Though
the accurately determined contributions do not saturate
the Pascalutsa-Vanderhaeghen sumrule for isospin zero
or two, we find that it is most likely the four pion in-
termediate state that provides sufficient contribution be-
low 2.5 GeV to give the expected zero result.

While there are data on the cross-sections for
π+π−π+π− and π+π−π0π0 production in the required
energy region, there is insufficient information to do more
than “guestimate” the isospin and helicity decomposi-
tion of these integrated data. All other contributions are
small, at the few nanobarn level. Only four pion produc-
tion delivers the missing 150–200 nb in the I = 0 channel
and 50 nb with I = 2. Speculations of wide tetraquark
states would render this quite natural [24].

Since these sumrules play a key role in constraining the
contribution of light-by-light scattering to (g − 2) of the
muon, we urge experiments at e+e− colliders, such as BE-
SIII@BEPC II and Belle@KEKB, to consider investing in
detailed studies of 4π production from untagged two pho-
ton data. Differential cross-sections for ρ+ρ− and ρ0ρ0

production from threshold to 2.5 GeV, even without he-
licity separation, would be a most useful guide in checking
the expectations in this paper, and so testing the valid-
ity and utility of the simplest Pascalutsa-Vanderhaeghen
sumrule.
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Appendix: Born cross-section integrals

From the one pseudoscalar meson exchange Born am-
plitude, we can estimate from the known cross-section
for the sum of helicities integrated over a limited angu-
lar range, Σ(s1, s2, Z), Eq. (7), what the helicity differ-
ence integrated over the full angular range that enters
the Pascalutsa-Vanderhaeghen sumrule 1 is. Here we set
out part of the calculation. First recall that the helicity
anplitudes, Mλ1λ2 with λ1λ2 = ++ or +− for γγ → ππ
in the center-of-mass frame are related to the differential
cross-sections by

dσλ1λ2

d cos θ∗
=

β

128π 2 s

∫ 2π

0

dφ |Mλ1λ2(s, cos θ
∗, φ)|2 ,

(A.1)

where for a meson of mass m, β =
√

1 = 4m2/s. Note
that in Eqs. (3,4) the total helicity λ = λ1 − λ2. In the
Born approximation, these helicity amplitudes are given
by

M+−(s, θ
∗, φ) = e2

√
16π

β2 sin2 θ∗

1− β2 cos2 θ∗
exp 2iφ

M++(s, θ
∗, φ) = e2

√
16π

1− β2

1− β2 cos2 θ∗
, (A.2)

with e the charge of the pion in units in which ~ = c = 1.

Then on integrating the square of their moduli over φ, we have writing z = cos θ∗

d

dz
σ+− − d

dz
σ++ = e4

β

4s

[

1 − 2(1− β2)

1 − β2 z2

]

. (A.3)

Integrating over z up to value Z gives

σ+−(s, Z) − σ++(s, Z) =
e4

4

β

s

[

Z − (1− β2)

β
ln

(

1 + βZ

1− βZ

)]

. (A.4)

Changing integration variable from s to x ≡ β, and noting ds = x dx s2/(2m2), we have on integrating from x = 0

to x = X =
√

1− 4m2/S

∆Born(sth, S, Z) =

∫ S

4m2

ds

s
[σ+−(s)− σ++(s)] (A.5)

=
e4

8m2

{ [1−X2Z2]

4Z4

[

2Z2 − 1−X2Z2
]

ln

(

1 +XZ

1−XZ

)

− X

2Z3
(2Z2 − 1) +

X3

6Z
(2Z2 + 1)

}

.(A.6)

Similar integration gives the equation for ΣBorn(sth, S, Z) shown in Eq. (10). These are used in the establishing the
estimates for the ratio R, Eq. (9), in the final column of Table 2.
Note that when Z = 1, Eq. (A6) becomes

∆Born(sth, S, Z = 1) =
e4

32m2
(1−X2)

[

(1−X2) log

(

1 +X

1−X

)

− 2X

]

. (A.7)

Of course, when S → ∞ (i.e X → 1), ∆Born → 0, but
only if integrating over the full angular range.
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