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Abstract

Any possible Lorentz violation in the hadron sector must be tied to Lorentz violation
at the underlying quark level. The relationships between the theories at these two levels
are studied using chiral perturbation theory. Starting from a two-flavor quark theory that
includes dimension-four Lorentz-violation operators, the effective Lagrangians are derived
for both pions and nucleons, with novel terms appearing in both sectors. Since the Lorentz
violation coefficients for nucleons and pions are all related to a single set of underlying quark
coefficients, one can compare the sensitivity of different types of experiments. Our analysis
shows that atomic physics experiments currently provide constraints on the quark param-
eters that are stronger by about ten orders of magnitude than astrophysical experiments
with relativistic pions. Alternatively, it is possible to place approximate bounds on pion
Lorentz violation using only proton and neutron observations. Under the assumption that
the Lorentz-violating operators considered here are the only ones contributing to the rele-
vant observables and taking the currently unknown hadronic low energy constants to be of
natural size, the resulting estimated bounds on four pion parameters are at the 10−23 level,
representing improvements of ten orders of magnitude.
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1 Introduction

Over the last twenty years, there has been a tremendous surge of interest in the possibility
that the fundamental Lorentz and CPT symmetries might actually be violated in nature.
Although no such symmetry violations have yet been discovered experimentally, they might
be part of a fundamental theory of quantum gravity. In fact, if a violation of Lorentz
symmetry is ever discovered, it will be proof of new fundamental physics beyond the standard
model and general relativity, and the discovery will provide important information about the
nature of the new physics.

It has been recognized for a long time that these factors make precise tests of Lorentz
symmetry very important. More recently, however, interest in Lorentz symmetry violation
has grown because of the development of an effective field theory, known as the standard
model extension (SME), that can be used to describe all forms of Lorentz violation that
may exist in a quantum field theory built around the standard model fields [1, 2]. The SME
is quite general, and even the minimal SME (mSME)—which is restricted to contain only
gauge invariant, superficially renormalizable operators in its action—includes many more
forms of Lorentz violation than previous studies had ever looked at. The ability of the SME
to parameterize such a wide array of Lorentz-violating phenomena has led to a tremendous
expansion in experimental tests of Lorentz symmetry—in practically all sectors of the theory.
An up-to-date summary of the results of these tests may be found in [3].

However, understanding of the SME is still far from complete. The SME is formulated as
a relativistic field theory, in terms of the fundamental quark, lepton, gauge, and Higgs fields
of the standard model, and the relationships between the parameters in the fundamental
SME Lagrangian and experimental observables can be complicated. The most important
outstanding issue in this area arises from the fact that at low energies, the standard model’s
strongly interacting degrees of freedom are composite hadrons. There are many extremely
precise constraints on effective Lorentz violation coefficients for protons and neutrons, as
well as weaker constraints for other hadrons. However, it has not been possible to translate
these constraints into bounds on the more basic parameters appearing in the SME action.

Using chiral perturbation theory (χPT) [4, 5, 6] (also see Ref. [7] for a pedagogical
introduction), we shall examine the relationships between quark- and hadron-level param-
eterizations of Lorentz violation. Another recent χPT analysis [8] has looked at a quite
different set of Lorentz-violating terms from the ones we shall be considering, although it
also deals with a number of general issues that should be important for all χPT analyses
of Lorentz violation. It provides treatments of quantum corrections, hadronic couplings to
external fields, and Lorentz-violating interparticle potentials.

In section 2, we introduce Lorentz violation for the fundamental quark fields. Then, in
section 3, we construct the χPT action in two-flavor QCD for both pions and nucleons, at
leading order (LO) in each sector. This will reveal which Lorentz-violating parameters in the
quark sector contribute to particular operators built out of the hadron fields. We shall find
that even at the lowest chiral orders, there are expected to be terms in the hadronic theory
that have previously not been studied. Using the relationships we have uncovered between
the actions in different sectors, we shall look at how bounds on the Lorentz-violating behavior
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of one type of hadron may be used to place constraints on different phenomena involving
entirely different species of particles in section 4. Finally, section 5 summarizes our main
results and the outlook for future work.

2 Lorentz Violation at the Quark Level

The basic idea behind the SME is to look at an effective field theory containing operators
constructed out of the standard model fields, but which does not respect Lorentz symmetry.
The novel operators can have arbitrary free Lorentz indices. These indices are contracted
with tensor-valued coefficients, which serve as preferred vector or tensor backgrounds in
spacetime. Otherwise identical experiments done in different reference frames may yield
different outcomes because of these background tensors. The vector and tensor backgrounds
may be constrained by comparing the results of experiments with the apparatus in differ-
ent orientations relative to the fixed stars, or experimental setups moving with different
velocities.

There are now many strong constraints on the Lorentz-violating parameters of the mSME,
coming from experiments in atomic, nuclear, and astroparticle physics. Any local, stable field
theory that violates CPT symmetry also violates Lorentz invariance [9]. So the SME is also
the unique well-behaved effective field theory governing CPT violation, and the mSME is
also used for parameterizing constraints on CPT violation. In most (but not all) cases,
Lorentz-violating operators with odd numbers of free Lorentz indices are CPT odd, while
those with even number of indices are CPT even. In this paper, we shall only be considering
CPT-even operators with two free Lorentz indices.

We are also restricting our attention to the quark sector of the mSME, so the possible
Lorentz-violating operators will be built out of quark field bilinears. These are the fundamen-
tal operators of the effective field theory. However, it is conventional when studying hadronic
systems to consider similar Lorentz-violating operators for the composite quanta—protons,
neutrons, pions, and such. Perhaps the most important basic question that remains about
the structure of the SME is the problem of relating the operators at the hadron level to
quark-level operators and thus translating constraints resulting from experiments performed
on real hadrons to bounds on the underlying quark parameters. We will use χPT to begin
addressing this question.

Of course, there could also be Lorentz violation in the gluon sector of the mSME. There
are operators in the pure SU(3)c gauge sector with the same symmetries as the coefficients
we shall be considering in this paper. They could contribute to some of the same hadronic
coefficients as the quark coefficients listed below. So these gauge-sector parameters may be
an important object of future study.

Moreover, there are also additional quark operators, besides those considered in this
paper. We shall be looking solely at operators with mass dimension 4. These operators,
because their Lorentz structures are similar to the structure of the conventional kinetic term
for Dirac fermions, give rise to a rather complicated set of phenomena. Mixing between the
conventional kinetic term and the dimension-4 Lorentz violation can give rise to a number of
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effects (such as thresholds for new processes at high energies) that may have no analogues in
models with other kinds of Lorentz-violating operators. Since Lorentz-violating operators of
mass dimension 3 are expected to give rise to a somewhat different array of physical effects,
we will not be considering the dimension-3 terms in this paper.

This leaves the portion of the SME Lagrange density relevant to our present work, given
by [2]

LCPT-even
quark = i(cQ)µνABQ̄Aγ

µDνQB + i(cU)µνABŪAγ
µDνUB + i(cD)µνABD̄Aγ

µDνDB. (1)

The covariant derivatives contain the standard model gauge fields, and in curved spacetime
the derivatives must be taken as linear combinations of derivative operators acting to the
right and left. The left- and right-handed quark multiplets are denoted by

QA =

[

uA
dA

]

L

UA = [uA]R DA = [dA]R , (2)

and A,B = 1, 2, 3 label the quark generations. The Lorentz-violating terms generally include
mixing between quarks of different generations; the cµνAB are not generally diagonal in either
the quark flavor basis or the mass basis. However, we may neglect this complication in two-
flavor QCD, which includes only a single generation of quarks.4

The cµν parameters in eq. (1) are dimensionless coupling coefficients that are Hermitian
in the quark generation space spanned by A and B, while µ and ν are spacetime indices.
Restricting the Lagrange density of eq. (1) to up (u) and down (d) quarks, we may rewrite
it as5

LCPT-even
light quarks = iQ̄LCLµνγ

µDνQL + iQ̄RCRµνγ
µDνQR, (3)

where now QL/R = [uL/R, dL/R]
T and the couplings are collected in the matrices

Cµν
L/R =

[

cµνuL/R
0

0 cµνdL/R

]

. (4)

Note that this formalism allows for there to be different cµν coefficients for the left-handed
u and d quarks. Physically, the SU(2)L gauge invariance of the mSME requires there to be
special relationships between the coefficients for the left-chiral fermion species. If there were
truly only two flavors of quarks, then the coefficients for the two left-chiral species would be
identical. However, because the weak interaction mixes the u and d quarks with strange and
heavier quarks, the actual relationships are more complicated and involve both the Cµν

L and
similar structures for higher generations.

In this work, we shall not enforce any SU(2)L constraints on the left-handed coefficients.
Moreover, the separate coefficients for left- and right-handed chiral fermions are not typically

4Here we assume to start with the two-flavor version of eq. (1). Another approach would be to diagonalize
the quark mass matrix before taking the two-flavor limit, which would introduce mixing of the cµν of different
flavors.

5For a more complete analysis, one should explicitly integrate out the heavy degrees of freedom via the
renormalization group.
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what are observed in experiments with baryons. Experimental constraints are typically
placed on the combinations cµν = 1

2
(cµνL + cµνR ) and dµν = 1

2
(cµνL − cµνR ). It may also be

convenient to split the coefficients into isosinglet and isotriplet pieces. These are 1Cµν
L/R =

1
2
Tr(Cµν

L/R) and
3Cµν

L/R = Cµν
L/R − 1

1Cµν
L/R (where 1 is the identity in flavor space).

This work will concentrate on the portions of these Lorentz-violating two-index tensors
that are symmetric in their Lorentz indices. In the chiral limit, where the fermions are
massless, the corresponding antisymmetric combinations have physical effects only at second
order in the Lorentz violation. This is a consequence of the fact that field redefinitions such
as Q′

L = [1 − (i/2)(Cµν
L − Cνµ

L )σµν ]QL can actually eliminate the antisymmetric terms from
the massless Lagrange density at first order [10]. However, the separate redefinitions of the
left- and right-handed fields cannot be used to eliminate the antisymmetric coefficients when
Cµν

L 6= Cµν
R and the chiral symmetry is also broken by quark masses, which mix the two

helicities. Applying the field redefinitions in the massive theory will generate new Lorentz-
violating terms of mass dimension 3, which are proportional to the quark masses. These
terms could have physical effects; however, we shall not consider them in this analysis, for
the simple reason that many of the most precise experimental analyses of baryon and meson
Lorentz symmetry are not sensitive to the antisymmetric terms. We will thus assume Cµν

L/R

to be symmetric in much of what follows, although we shall occasionally comment on the
potential effects of the antisymmetric terms.

Naively constructed Lagrangian terms involving the antisymmetric parts of the Cµν
L/R

tensors would be odd under charge conjugation—depending on such left-right differences
as cµνuL

− cµνuR
. Such C-odd terms cannot exist in the purely hadronic sector; they require

the existence of additional external fields, which we are not considering here. However, the
existence of C-odd bosonic terms that are antisymmetric in Lorentz indices and do explicitly
involve external gauge fields was previously noted in [11]. We suspect that they may be a
ubiquitous feature of Lorentz-violating theories with spin-0 excitations and external fields.
However, very little is understood about these inherently Lorentz-violating terms.

Many of the best experimental bounds on Lorentz violation for nucleons come from
atomic clock experiments involving nuclear magnetic transitions, and these are typically
analyzed using only effective proton and neutron cµν and dµν coefficients. There should
also be additional couplings (analogous to the hadrons’ anomalous magnetic moments in
the usual Lorentz-invariant theory) that appear in the Lorentz-violating effective action for
hadrons interacting with an external electromagnetic field. While we shall not consider the
hadronic sector coupled to external fields in this paper, our χPT methodology may easily be
adapted to study such terms in the future. Yet while these terms would need to be included
to have a complete understanding of χPT effects, they generally produce significantly smaller
corrections to atomic spectra than the terms considered here [12].

3 Lorentz-Violating Hadronic Lagrangian

With the quark-level Lagrange density established, we are in a position to construct the
effective Lagrangian at the hadronic level. This is done by considering all terms allowed by
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the symmetries of the underlying theory [4, 5, 6]. For quantum chromodynamics (QCD),
these symmetries include the discrete operations C, P, and T. In addition, QCD possesses
an accidental chiral symmetry in the limit of vanishing quark masses. Physically, the masses
of the u and d quarks are much smaller than the masses of typical hadrons, which means
that setting mu = md = 0 is a reasonable starting point for the construction of the effective
Lagrangian. Further it is known that the resulting SU(2)L × SU(2)R symmetry is sponta-
neously broken to the diagonal group SU(2)V , and the pions are considered the associated
Goldstone bosons. The corresponding pion fields are collected in the SU(2) matrix [13]

U(x) = exp

[

i
φ(x)

F

]

, (5)

where φ =
∑

φaτa in terms of the SU(2) generators, and F ≈ 92.4MeV is the pion decay
constant in the SU(2) chiral limit. Under chiral transformations U(x) transforms according
to

U(x) → U ′(x) = RU(x)L†, (6)

where (L,R) ∈ SU(2)L × SU(2)R. The mesonic effective Lagrangian in the chiral limit
without the coupling to external fields can then be constructed in terms of U(x) and its
derivatives. At low energies the χPT power counting dictates that derivatives acting on the
pion fields are suppressed, and the effective Lagrangian can be organized in terms of the
number of derivatives. The LO term is given by6

L
LO
π =

F 2

4
Tr(∂µU∂

µU †), (7)

with the trace Tr being taken over flavor space.
In addition to spontaneous symmetry breaking, chiral symmetry is also explicitly broken

by the non-zero quark masses. The mass terms for the light u and d quarks may be written
as

LM = −Q̄RMQL − Q̄LM†QR (8)

with the quark mass matrix M = diag[mu, md]. Under chiral transformations of the right-
and left-handed quark fields, QR → RQR and QL → LQL, the mass term is not invariant.
However, the pattern of symmetry breaking can be matched onto the effective chiral La-
grangian by assuming that the mass matrix transforms as M → RML†. The lowest-order
chirally invariant term that is also even under C and P is then given by7

L
LO
s.b. = Tr(MU † + UM†). (9)

This term contributes at the same chiral order as the term in eq. (7).
Nucleon fields can also be considered. Under chiral transformations the nucleon doublet

Ψ = [p, n]T transforms as [13, 14, 15]

Ψ → K(L,R, U)Ψ . (10)

6We use L to denote Lorentz-conserving and L for Lorentz-violating Lagrange densities.
7The subscript “s.b.” refers to symmetry breaking.
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The SU(2)-valued function K(L,R, U) is defined by

u(x) → u′(x) =
√
RUL† ≡ RuK†(L,R, U) = KuL† , (11)

where [u(x)]2 = U(x). Because K depends on the pion fields through U(x), the covariant
derivative of the nucleon field,

DµΨ = (∂µ + Γµ)Ψ, (12)

contains pion fields in the chiral connection Γµ [16]. Recall that we have neglected the
coupling of the nucleon field to external gauge fields, so the only term in the connection is

Γµ =
1

2
(u†∂µu+ u∂µu

†). (13)

The LO pion-nucleon Lagrange density takes the form

L
LO
πN = Ψ̄

(

i /D −mN +
gA
2
γµγ5uµ

)

Ψ, (14)

where mN is the nucleon mass, and gA the axial vector coupling in the chiral limit. In the
absence of external gauge fields

uµ = i(u†∂µu− u∂µu
†). (15)

In order to construct the effective Lagrangian including Lorentz violation in terms of
hadronic degrees of freedom, we have to match symmetry properties of the quark-level ex-
pression from eq. (3) onto the hadronic level. In particular, under chiral transformations,
QR → RQR, QL → LQL, the Lagrange density of eq. (3) transforms as

LCPT-even
light quarks → iQ̄LL

†CLµνLγ
µDνQL + iQ̄RR

†CRµνRγ
µDνQR. (16)

The matrices Cµν
L/R are constant, and chiral symmetry is broken by the terms in eq. (3).

Following the method described above for the quark mass terms in the QCD Lagrangian,
we note that the Lorentz-violating action would be invariant under chiral transformations if
Cµν

L/R transformed as

Cµν
L → LCµν

L L†, Cµν
R → RCµν

R R†. (17)

Because of the cyclic property of the trace, this implies for the isosinglet and isotriplet
components

1Cµν
L → 1Cµν

L , 3Cµν
L → L3Cµν

L L†, (18)
1Cµν

R → 1Cµν
R , 3Cµν

R → R3Cµν
R R†.

Using this transformation behavior to construct a Lagrange density that is invariant under
chiral transformations, the pattern of symmetry breaking in the quark-level action can be
matched onto the hadronic Lagrangian.

With these basic building blocks—and assuming the transformation behavior given by
eq. (17)—we may construct the chirally invariant, Lorentz-violating LO effective Lagrange
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densities for the pure pion sector and for pion-nucleon interactions. Writing down all pos-
sible expressions satisfying the symmetry properties produces some terms that are linearly
dependent. By applying integration by parts and the symmetry properties of the Cµν ten-
sors, the number of terms may be reduced. Moreover, the transformation properties under
parity and charge conjugation will also produce relationships among the various terms. The
Lorentz-violating terms in the quark-level Lagrange density are the only potential sources
of C, P, and T violations in this theory. So at LO, the terms in the pion Lagrange density
need to have the same discrete symmetries as the terms in the underlying quark density that
are multiplied by the same Cµν

L/R coefficients. This forces the coefficients for left- and right-
handed quark fields to enter the pion Lagrange density multiplied by the same numerical
low-energy couplings (LECs), drastically reducing the number of independent terms.

The LO minimal mesonic Lagrange density is given by

LLO
π = β(1)F

2

4

(

1CRµν +
1CLµν

)

Tr[(∂µU)†∂νU ], (19)

where β(1) is a dimensionless LEC. It encodes short-distance physics and cannot be deter-
mined from symmetry arguments. In principle, it could be calculated using nonperturbative
QCD. However, the required calculations are not currently available; the calculations could
be performed using a Lorentz-violating extension of lattice QCD, but this possibility does
not really seem to have been explored so far. The factor of F 2/4 in eq. (19) is present to
mirror the form of the standard pion Lagrange density and is also chosen such that based
on naive dimensional analysis [17] β(1) is expected to be of natural size, i.e. O(1).

Chiral symmetry also allows an analogous term for the isotriplet components 3Cµν
L/R with

an independent LEC,

β(2)F
2

4
Tr[(∂µU)† 3CRµν∂

νU + ∂µU 3CLµν(∂
νU)†]. (20)

However, this term can be shown to vanish for the symmetric part of 3Cµν
L/R. To demonstrate

this, it turns out to be more convenient to use a different parameterization of U(x), given
by

U(x) =
1

F

[

σ(x)1+ i~Π(x) · ~τ
]

, (21)

where σ(x) =

√

F 2 − ~Π2(x). The Lagrange density containing the isotriplet terms is pro-

portional to Tr (∂µUτ3∂νU
†) + Tr (∂µU

†τ3∂νU). However,

Tr (∂µUτ3∂νU
†) =

1

F 2
[∂µσ∂νσTr (τ3) + i∂µΠ

a∂νσTr (τaτ3) (22)

−i∂µσ∂νΠa Tr (τ3τa) + ∂µΠ
a∂νΠ

b Tr (τaτ3τb)
]

.

The first term on the right-hand side of eq. (22) is identically zero, while the remaining terms
yield

Tr (∂µUτ3∂νU
†) =

2i

F 2

[

(∂µΠ
3∂νσ − ∂µσ∂νΠ

3) + (∂µ~Π× ∂ν~Π)
3
]

, (23)
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which vanishes when contracted with a tensor symmetric in its Lorentz indices. So this term
could only contribute if the antisymmetric tensor coefficients were included.

Moreover, in principle there is also second, nearly-identical-looking copy of the Lagrange
density of eq. (19) contracted with the antisymmetric parts of the Cµν

L/R. This term would
be accompanied by an independent LEC. However, this term can be shown to be a total
derivative, so it may be dropped, with only the symmetric part of the Cµν

L/R contributing to
a term of this form.

Expanding U(x) in terms of the pion fields shows that the Lagrange density in eq. (19)
not only contains corrections to the pion propagator, but also induces new multi-pion inter-
actions. The two-pion portion of the Lagrange density is

LLO,2φ
π =

β(1)

4
(cµνuL

+ cµνdL + cµνuR
+ cµνdL)∂µφa∂νφa. (24)

This takes a standard form for Lorentz violation with a spinless field; conventionally, this type
of Lorentz violation is described by a coefficient kµν , as shown below in eq. (28). However, we
shall defer most discussion of the term involving just two pion field operators until section 4,
because such terms lead to the propagator modifications that have been used to constrain
Lorentz violation in the pion sector.

For the moment, we shall concentrate on the forms taken by the pion vertices. Unfor-
tunately, all three-pion vertices vanish when the symmetric parts of the cµνL/R are involved.
The four-pion vertex takes the form

LLO,4φ
π =

β(1)

12F 2
(cµνuL

+ cµνdL + cµνuR
+ cµνdL)(φaφb∂µφa∂νφb − φbφb∂µφa∂νφa). (25)

This term is a straightforward Lorentz-violating generalization of the usual four-pion vertex.
Many Lorentz-violating operators in the SME Lagrange density are structurally similar to
operators found in the usual standard model. For example, the quark kinetic terms from
eq. (3) resemble standard kinetic terms, but instead of the indices on γµ and Dν being
contracted with the metric tensor gµν , they are contracted with the Lorentz-violating back-
grounds. The four-pion vertex can be similarly viewed as a deformation of the standard
model four-pion vertex. Vertices with more pion fields can similarly be derived.

Looking at the pion sector overall, the two-pion term includes a kµν-type term that
modifies the pion propagation. Terms of this type have previously been studied and ex-
perimentally constrained, and we shall discuss the physics of such terms in further detail
in section 4. The Lorentz-violating multi-pion interaction terms are new and have never
been written down before, although the four-pion terms have a relatively straightforward
structure that could probably be guessed at fairly easily.

However, it is an important observation that this vertex involves exactly the same cµνu and
cµνd parameters that appear in the pion propagation Lagrangian. In the Lorentz-violating
effective field theory approach, the Lorentz violation often has to be described using com-
pletely separate and independent coefficients multiplying the various operators. Under-
standing the relationships among these coefficients requires additional information—either
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about the physics underlying the Lorentz violation, or about the symmetry properties of the
low-energy theory. For example, U(1) gauge invariance can ensure that the same Lorentz
violation coefficients appear in the kinetic term for a charged species and in the coupling to
the electromagnetic field. In the pion theory, the chiral symmetry of the underlying physics
provides concrete relationships between Lorentz-violating operators involving different num-
bers of fields. Since the two- and four-pion operators also involve the same LEC β(1), it
would thus be possible to place constraints on purely interactional effects by looking at free
particle propagation phenomena, and vice versa.

There are also relationships between Lorentz-violating behavior in the pure pion sector
and Lorentz violation for baryons—for nucleons, in particular. The minimal LO baryonic
Lagrange density is (recalling that Ψ is the nucleon doublet field)

LLO
πN =

{

α(1)Ψ̄[(u† 3Cµν
R u+ u 3Cµν

L u†)(γνiDµ + γµiDν)]Ψ (26)

+α(2)
(

1Cµν
R + 1Cµν

L

)

Ψ̄(γνiDµ + γµiDν)]Ψ

+α(3)Ψ̄[(u† 3Cµν
R u− u 3Cµν

L u†)(γνγ
5iDµ + γµγ

5iDν)]Ψ

+α(4)
(

1Cµν
R − 1Cµν

L

)

Ψ̄(γνγ
5iDµ + γµγ

5iDν)Ψ
}

,

where the α(n)’s are dimensionless LECs that by naive dimensional analysis are expected to
be O(1).

These four operators exhaust the possibilities at this order. Recall that these operators
were formed by writing down all combinations of nucleon operators that would be chirally
invariant if the Lorentz violation tensors transformed according to eq. (18). This essen-
tially requires that the isotriplet components of the Lorentz violation tensors be sandwiched
between u and u† to give u†Cµν

R u and uCµν
L u†.

There must also be two free Lorentz indices to be contracted with the Cµν
L/R background

tensors; and since we are only considering operators that are symmetric in their Lorentz
indices, it is advantageous to take the Cµν

L/R to be symmetric from the start. This avoids the

presence of terms such as those containing [Dµ, Dν ], although this antisymmetric combination
of two nucleon covariant derivatives is of higher order in the χPT power counting as well [18].
We shall not consider the antisymmetric terms any further, except to note that several
of them are redundant; for example, the antisymmetric generalization of the α(4) term is
equivalent, up to terms of even higher chiral orders, to a 2mN (1Cµν

R −1 Cµν
L ) Ψ̄σµνγ

5Ψ term.
Note that LLO

πN contains operators with the same two kinds of structures in spinor space as
the underlying quark Lagrange density. These are, of course, not the only structures with two
free Lorentz indices that may be constructed out of Dirac matrices and covariant derivatives.
For example, the operator could contain additionalDµDµ or γ

µDµ terms sandwiched between
Ψ̄ and Ψ. However, these terms can be eliminated using the equations of motion. For
example, iγµDµΨ = mNΨ, up to higher-order chiral corrections; so at LO, any term with
an additional γµDµ may be absorbed into one of the terms given in eq. (26). A dictionary
of the possible reductions is given in [18].

There are really eight terms in eq. (26), arranged in pairs. As in the pion case, the
discrete symmetries of the underlying quark theory force there to be specific relationships
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between the operators involving Cµν
L and those with Cµν

R . There is no C violation in the
chiral dynamics, so fermion operators that are even under C must be multiplied by likewise
C-even combinations of Cµν

L/R coefficients; this means symmetric sums of the corresponding
coefficients for right- and left-handed quarks. Conversely, any C violation in the theory must
be generated by C violation in the pattern of Cµν

L/R coefficients. So a C-odd fermion operator
must be multiplied by a difference between right- and left-chiral Lorentz violation coefficients.
The well known transformation properties of Dirac bilinears indicate that the terms involving
γ5 are the ones that are odd under C. This accounts for the extra negative signs in the α(3)

and α(4) terms; while eq. (3) with Cµν
L = Cµν

R is even under C, with Cµν
L = −Cµν

R it is odd.
As in the pion sector, there are two distinct ways that the Lorentz-violating tensors may

enter. They may be traced over the flavor space, outside the Dirac bilinear, or they may be
inserted between the two-flavor baryon spinor Ψ and its adjoint Ψ̄. These two possibilities
give different kinds of contributions to the separate Lorentz violation coefficients for protons
and neutrons. The terms with traces sum over the u and d quark terms uniformly, giving
the same contributions to the baryon Lorentz violation coefficients, regardless of isospin.
However the terms with the Cµν

L/R tensors actually contained within the fermion bilinear give
quite different coefficients for the two nucleon species.

Finally, we point out that, because of the presence of the covariant derivatives in eq. (26),
this nucleon Lagrange density actually contains interaction terms with arbitrary numbers
of pions. These may be expanded directly, although we shall not consider them in further
detail, because they are not presently useful for placing constraints on any Lorentz violation
coefficients.

4 Experimental Constraints

We shall now turn our attention to setting new constraints on the effective Lorentz violation
coefficients in one hadronic sector using experimental observations made in an entirely dif-
ferent sector. The key point is that there are only a limited number of underlying Lorentz
violations for the quarks, which determine the effective coefficients for a much larger number
of meson and baryon types. It is possible to measure or bound some combination of the quark
coefficients using one type of hadron and transfer this information to another kind of parti-
cle entirely. The presence of numerous LECs limits the precision with which we may place
bounds in the second particle sector, but there should still be order of magnitude validity,
assuming the LECs have natural sizes. This will make our χPT results very powerful.

So the forms we have found for the effective Lagrangians in the pion and nucleon sectors
have important physical consequences. We shall first return to the pure pion sector and
look more closely at the propagation terms. Written in terms of the physical fields, the free
two-pion Lagrange density is

LLO
2π =

β(1)

4
(cµνuL

+ cµνdL + cµνuR
+ cµνdL)(∂µπ

+∂νπ
− + ∂µπ

−∂νπ
+ + ∂µπ

0∂νπ
0). (27)

This has the form expected for minimal Lorentz violation involving a spin-0 field. In the
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general Lagrange density

Lspin-0 =
1

2
∂µφa∂µφa +

1

2
kµν∂µφa∂νφa −

m2

2
φaφa, (28)

the tensor kµν modifies the equations of motion—or, equivalently, the energy-momentum
relation for free propagating particles. These propagation modifications can have many
observable physical consequences.

Making very precise laboratory measurements with short-lived particles such as pions
can be very challenging. As a result, most of the best constraints on Lorentz violation
in the pion sector instead come from high-energy astrophysical observations [19, 20, 21].
When particles have modified energy-momentum relations, which do not have the standard
relativistic forms, there may be upper and lower thresholds for various decay and emission
processes. For example, with an appropriate choice of parameters, the decay of photons into
charged particle-antiparticle pairs (such as γ → π++π−) may occur for sufficiently energetic
γ-rays. Observations of TeV γ-rays that have traversed astrophysical distances indicate that
the threshold for this process, if it exists, must be above the energies of the measured photons,
which means that particular combinations of the kµνπ coefficients must be correspondingly
very small. A similar argument exists for another photon energy loss process that is ordinarily
forbidden, γ → γ + π0. Other important processes are π0 → γ + γ, the normal π0 decay
mode, which could become disallowed above a certain energy, or π0 → N + N̄ , which
would instead become the dominant decay mode if it were energetically allowed, because of
the larger pion-nucleon coupling. Typically, astrophysical observations involving observed
quanta at an energy E allow us to have constraints on combinations of kµνπ at the ∼ m2

π/E
2

level. In practice, this means there are bounds at the 10−10–10−13 levels, which are fairly
strong. However, the bounds are on complicated combinations of all the kµνπ coefficients,
which are determined by the sky coordinates of the sources involved. Moreover, there are
much stronger bounds in other sectors, and there are limited possibilities for improving the
direct pion bounds, since major improvements would require observations of substantially
more energetic quanta, which can be few and far between.

According to eqs. (24) and (27) there is a single kµνπ tensor common to all the physical
pion fields. The tensor takes the form

kµνπ =
β(1)

2
(cµνuL

+ cµνuR
+ cµνdL + cµνdR). (29)

That the three pion types share these same LO Lorentz violation coefficients should be no
surprise, since in the chiral limit, the pion wave functions all contain equal mixtures of the
u and d fields, as well as equal right and left helicities. At this point, we might recall that
physical SU(2)L gauge invariance requires that the underlying Lorentz violation coefficients
for left-handed u and d quarks be related. The relationship would be of crucial importance if
we were seeking to relate the results of experiments performed on hadrons to the fundamental
quark coefficients.

However, we shall instead focus here on the more concrete problem of relating separate
sets of directly observable Lorentz violation coefficients. The key is that the combination
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cµνp +cµνn of readily measurable baryon parameters depends on the exact same linear combina-
tion of quark parameters as the pion kµνπ . The Lorentz-violating kinetic terms in the effective
Lagrangian for the nucleon sector of the SME are written in terms of four coefficient tensors
cµνp , cµνn , dµνp , and dµνn . These enter the Lagrange density for a species of Dirac fermions as

Lspin− 1

2

= ψ̄ [i(γµ + cνµγν + dνµγ5γν)Dµ −m]ψ. (30)

(Additional dimension-three Lorentz-violating operators have been neglected.) That cµνp , cµνn ,
dµνp , and dµνn number four should be no surprise, since that is also the number of independent
tensors at the quark level, before SU(2)L gauge invariance is imposed.

Most measurements of Lorentz violation involving protons and neutrons are done non-
relativistically, typically using atomic clocks [12, 23, 24, 25, 26, 27]. The results of these
experiments need to be analyzed using a nonrelativistic Hamiltonian formalism. Starting
from eq. (30), the nonrelativistic Hamiltonian may be determined using a relatively straight-
forward Foldy-Wouthuysen transformation [22, 28], which establishes relations between the
experimental observables and the effective hadronic coefficients cµν and dµν . The dependence
of these couplings on the hadronic coefficients α(i) may be read off directly from LLO

πN with
the pions neglected. The cµνp and cµνn coefficients receive contributions from the α(1) and α(2)

terms, while dµνp and dµνn receive contributions from the α(3) and α(4) terms. For example,

cµνp =
1

2

[

α(1) + α(2)
]

(cµνuL
+ cµνuR

) +
1

2

[

−α(1) + α(2)
]

(cµνdL + cµνdR). (31)

One could attempt to use relations such as eq. (31) to place disentangled bounds on the u
and d quark coefficients. However, the presence of the unknown LECs makes it impossible
to do this fully quantitatively. The results would be rather unsurprising order of magnitude
constraints on the quark-level parameters (which are not separately observable anyway).

It would be possible to proceed a bit further using a “quenched” approximation, under
which the only quarks present in a nucleon are the valance quarks. In that case, the u quark
contribution to the proton Lorentz violation should be twice the d contribution, and we may
infer that α(1) = 1

3
α(2). However, ignoring the presence of dynamical quark-antiquark pairs

inside a nucleon is obviously a drastic approximation, and it is not clear how much physical
value the α(1) = 1

3
α(2) result has.

Summing eq. (31) and the analogous formula for neutrons gives an expression that is
directly proportional to (cµνuL

+cµνuR
+cµνdL+c

µν
dR
). Again, this is not particularly surprising. The

resulting coefficients are effectively averaged over both spin and isospin, so they have equal
contributions from all the quark tensors. Since this same combination of quark coefficients
occurs in the pion kµνπ , it is possible to place order of magnitude bounds on the kµνπ by
combining observations made of the proton and neutron.

Bounds on SME parameters are typically expressed in a system of Sun-centered celes-
tial equatorial coordinates, with the Z-axis pointing along rotation axis of the Earth, and
the X-axis pointing to the vernal equinox point on the celestial sphere. The Y -direction
is determined by the right-hand rule, and time in these coordinates is denoted by T . This
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Coefficent Proton Bound Neutron Bound
cQ = cXX + cY Y − 2cZZ 10−21 10−10

c− = cXX − cY Y 10−24 10−28

c(XY ) 10−24 10−29

c(XZ) 10−25 10−28

c(Y Z) 10−25 10−28

c(TX) 10−20 10−5

c(TY ) 10−20 10−5

c(TZ) 10−20 10−5

cTT 10−11 10−11

Table 1: Strengths of existing constraints on Lorentz violation in the proton and neutron
sectors. Symmetrized combinations are denoted c(µν) = cµν + cνµ. The values are taken
from [3], based on results from [12, 23, 24, 25, 26, 27].

coordinate system is well suited for describing the results of many kinds of terrestrial experi-
ments, particularly measurements of spatial anisotropy that rely on the daily rotation of the
Earth. Table 1 shows the best current order of magnitude constraints for the cµνp and cµνn
coefficients, although recent analyses based on more careful nuclear models actually suggest
significant improvements over some of these constraints [29, 30].

It is evident from table 1 that there are much stronger constraints in both the proton
and neutron sectors than for pions for four types of coefficients. Because of the presence of
the same combination (cµνuL

+ cµνuR
+ cµνdL + cµνdR), the ratio of pion parameters to the sum of

proton and nucleon parameters is given by the ratio of pion to nucleon LECs. As discussed
above, while the LECs are currently unknown, they can be estimated to be of O(1) using
naive dimensional analysis. Under this assumption, and setting the pion constraints to
be one order of magnitude weaker than the looser of the contributing proton and neutron
bounds to account for the uncertainty in this assumption, Table 2 quotes new bounds on
four pion parameters. This makes improvements of at least ten orders of magnitude over
direct astrophysical constraints on the same parameters. To achieve better than order of
magnitude accuracy would require nonperturbative QCD calculations of the hadronic LECs,
which are currently not feasible.

In performing this analysis, we have operated according to the principles used in [3] for
determining the maximal sensitivities to various SME coefficients. This involves focusing on
one specific type of coefficient at a time, effectively assuming the effects of other coefficients
are negligible in comparison. Since we have considered only the symmetric quark Cµν

L/R

coefficients, the constraints we have derived for the pion sector might not be as reliable if
Lorentz violation coefficients in other sectors are larger than those for the first-generation
quarks, or if there are large cancellations between terms coming from different sectors. The
most obvious terms we have neglected are the ones coming from the gluon sector. Including
gluon terms, even those with the same symmetries as the Cµν

L/R, would change the relationship
between the pion and nucleon sectors; the meson and baryon coefficients would not need to
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Coefficient Bound
(kπ)− = (kπ)XX − (kπ)Y Y 10−23

(kπ)(XY ) 10−23

(kπ)(XZ) 10−24

(kπ)(Y Z) 10−24

Table 2: New constraints on pion Lorentz violation coming from comparisons to the nucleon
sector.

depend on exactly the same linear combination of underlying SME coefficients. Going beyond
a two-flavor quark model would have a similar impact, since there will also be contributions
to the hadrons’ Lorentz violation coefficients coming from strange quarks and other quanta
that may appear in loop corrections. In spite of these changes, however, the bounds in
table 2 should still be valid as order of magnitude estimates.

Moreover, there is another, perhaps more fundamental, way of thinking about these
results. Measurements of hyperfine transitions in atoms are sensitive to the same underlying
quark and gluon coefficients as observations of high-energy processes involving pions. Based
on our analysis of the data from these types of experiments, the conclusion we may draw
is that atomic physics experiments provide constraints on the quark parameters that are
about ten orders of magnitude stronger than experiments with relativistic pions. According
to eq. (29), the strong constraints on the underlying quark coefficients coming from atomic
experiments correspond to the same levels of precision as those shown for the kπ coefficients
in table 2, or better.

5 Conclusions and Outlook

The ten order of magnitude improvement in pion sector constraints is evidence of how ef-
fective the χPT method can be. We have produced disentangled bounds on four Lorentz
violation coefficients that affect pion propagation, without looking directly at any pions.
These bounds are among our most important results.

However, the effective Lagrange densities we have derived are also quite important. In the
pure pion sector, we have a systematic way of generating multi-pion vertices with definite
relations between them imposed by chiral symmetry. The LO Lagrangian in the nucleon
sector has also been laid out, again showing new terms. In the future, this kind of analysis
may lead to an understanding of Lorentz violation for spin-1 and spin-3

2
composite particles,

which have never really been studied in any detail.
The hadronic terms we have discussed—the kµνπ for pions, and the cµν and dµν for

nucleons—are among the most important coefficients in the SME. These kinds of terms
typically grow in importance with increasing energy, leading to the kind of unconventional
thresholds discussed above. Yet while high-energy tests of Lorentz symmetry, based on the
dynamics of these thresholds, are most sensitive to these forms of Lorentz violation, low
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energy tests are far more sensitive still to these same parameters. Measurements made at
low energies, where χPT is useful, thus provide the tightest constraints on many Lorentz-
violating phenomena at very high energies.

However, there are still many more steps to be taken, and we have necessarily begun
our χPT analysis by considering only a subset of the mSME terms that are likely to affect
hadrons. The most fundamental omission has been that we have not considered any Lorentz
violation in the SU(3)c gauge sector. The strong interaction sector of the SME includes
another set of pure gauge interactions that could make a LO contribution to the two-index
hadronic tensors such as kµνπ or cµνp . [There are also other possible Lorentz-violating terms in
the SU(3)c action which, for symmetry reasons, cannot contribute to the hadron coefficients
we have considered.] A more complete analysis should include the effects of both gauge and
quark Lorentz violation on hadronic fields.

There are also other forms of Lorentz violation (many of which are, additionally, forms of
CPT violation) that may exist for composite hadrons. There are more quark-level operators,
particularly those with mass dimension 3, that will contribute in entirely different ways to
symmetry violations by mesons and baryons. Detailed consideration of these operators will
be another important task for the future.

Moreover, there may also be additional terms describing possible Lorentz-violating in-
teractions between hadrons and external fields. Although we did not consider any external
fields in this paper, it is obvious that there may be new interaction terms that look like
Lorentz-violating deformations of the conventional anomalous magnetic moment interac-
tion. Anomalous moments of baryons are typically large, and they often play a crucial role
in atomic clock experiments. So including their Lorentz-violating analogues will be part of
obtaining a complete understanding of atomic clock tests of isotropy and boost invariance.
Even though the modified moments typically produce further suppressed energy shifts, our
ultimate understanding of how to use χPT to analyze Lorentz-violating theories will certainly
need to include consideration of these questions regarding external fields.

The question of how to relate the underlying quark and gluon coefficients in the mSME to
the coefficients for composite hadrons has been one of the most important remaining puzzles
in Lorentz-violating effective field theory. We have looked at how quark-level operators
translate into pion, proton, and neutron operators, using the apparatus of χPT. This and
other recent work [8] demonstrate the power of the χPT technique. It has enabled us to place
new bounds (improved over previous ones by ten orders of magnitude) on pion-sector Lorentz
violation, without directly studying pions. And yet there is still much more remaining to be
understood about the use of χPT in the context of the SME.
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