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Abstract

The masses of the charged fermion and the mixing angles among quarks are observed
to be strongly hierarchical, while analogous parameters in the neutrino sector appear to
be structure-less or anarchical. We develop a class of unified models based on SU(5)

symmetry that explains these differing features probabilistically. With the aid of three
input parameters that are hierarchical, and with the assumption that all the Yukawa
couplings are uncorrelated random variables described by Gaussian distributions, we show
by Monte Carlo simulations that the observed features of the entire fermion spectrum
can be nicely reproduced. We extend our analysis to an SU(5)-based flavor U(1) model
making use of the Froggatt-Nielsen mechanism where the order one Yukawa couplings are
modeled as random variables, which also shows good agreement with observations.
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1 Introduction

Although the Standard Model (SM) of particle physics has been highly successful, it does
not address some of the observed phenomena. For example, neutrinos in the SM are strictly
massless. Non-zero masses for the neutrinos have been firmly established through oscillations
experiments conducted with atmospheric [1], solar [2], accelerator [3] and reactor [4] neutrinos,
requiring modification of the minimal model. An aesthetic shortcoming of the SM, arising
from the enormous freedom available in the Yukawa Lagrangian, is that it provides very little
insight into the masses and mixings of quarks and leptons. This shortcoming is often dubbed
as the “flavor puzzle” and many extensions of the SM are constructed to address this issue. The
purpose of this paper is to interpret the apparently diverse set of flavor parameters – quark
masses, quark mixing angles, charged fermion masses, neutrino masses and leptonic mixing
angles – in a unified fashion probabilistically.

The observed masses in the charged fermion sector show a hierarchical structure, with the
strongest hierarchy seen in the up-type quark sector, and a somewhat milder hierarchy seen in
the down-type quark and charged lepton sectors. These mass parameters, at the momentum
scale µ = MZ, are approximately given by (in units of mt = 1):

mu ∼ 7.5× 10−6; mc ∼ 3.6× 10−3; mt ∼ 1;

md ∼ 1.6× 10−5; ms ∼ 3× 10−4; mb ∼ 1.6× 10−2;

me ∼ 3× 10−6; mµ ∼ 6× 10−4; mτ ∼ 1× 10−2.

(1.1)

In contrast, the two neutrino squared-mass differences measured in oscillation experiments yield
values given by [5]

∆m2
sol ∼ 7.5× 10−5 eV2 and ∆m2

atm ∼ 2.5× 10−3 eV2. (1.2)

Adopting a normal ordering of the mass spectrum with m1 < m2 � m3 with mi being the
neutrino masses, these values would indicate a mild or almost no hierarchy with m2/m3 ∼ 1/5,
quite different from the hierarchy seen in the other sectors (Cf: Eq. (1.1)). Additionally, the
inter-generational mixing angles in the quark sector are found to be small, while the leptonic
mixing angles are measured to be large:

θCKM
12 ∼ 13◦; θCKM

23 ∼ 2.4◦; θCKM
13 ∼ 0.2◦;

θPMNS
12 ∼ 34◦; θPMNS

23 ∼ 38◦; θPMNS
13 ∼ 9◦.

(1.3)

Understanding these patterns observed in the fermion spectrum is a fundamental unresolved
problem in particle physics. Various attempts have been made to explain the hierarchy in
the charged fermion masses and mixings, adopting highly regulated mass matrices supported
by flavor symmetries (for a review see Ref. [6]). On the other hand, random structure-less
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matrices may be better suited to explain the non-hierarchical mass spectrum and the large
mixing angles observed in the neutrino sector [7]. The use of such random matrices to explain
neutrino mixing angles has been termed “anarchy hypothesis”. A probability measure should
be specified for these random matrices such that the matrix elements remain random after
a basis transformation. For random unitary matrices this is achieved uniquely by the Haar
measure [8]. Such matrices have been shown to be successful in explaining the observed large
mixing angles in the neutrino sector [7–14]. When basis independence of the random matrix is
combined with the requirement that each entry of the matrix has a distribution independent
of other entries, the measure gets determined uniquely to be Gaussian [15–18]. Anarchical
neutrino mixing angles as well as mass ratios have been analyzed with the Gaussian measure
in Ref. [18].

In this paper we unify the anarchy hypothesis in the neutrino sector with the hierarchy
observed in the quark and charged lepton sectors [19], [20], [21], [8] and analyze the resulting
models from a probabilistic perspective. Such a unification is achieved in the framework of
SU(5) grand unified theories, which treat quarks and leptons on similar footing. For concrete-
ness we adopt a supersymmetric framework, which admits a one step symmetry breaking of
SU(5) down to the MSSM. These models have at most three parameters which are hierar-
chical and determined from a fit to data. They also contain five complex Yukawa coupling
matrices which are taken to be structure-less or anarchical. Elements of these Yukawa cou-
pling matrices are treated as uncorrelated random variables obeying Gaussian distributions.
We perform Monte Carlo simulations of this framework and compare theoretical expectations
with experimental data, which show good agreement.

Our main analysis is focused on the Yukawa coupling structure obtained in SUSY SU(5)

unified theories where the three families of 10i fermions mix with vector-like fermions belonging
to 10α+10α representations that have GUT scale masses [19]. A variant of this model using the
Froggatt-Nielsen mechanism [22], where the three families of 10i fermions are distinguished by
a flavor U(1) symmetry while the three families of 5i are universal, is also analyzed allowing for
effective non-renormalizable operators [8]. This class of models is a special case of the general
class, with only two hierarchical input parameters. A second variant, also using a similar U(1)

flavor symmetry, which now distinguishes the first family 51 from the 52,3 fields is also analyzed,
with a single hierarchy parameter as input [23, 24]. Good fit to the entire fermion spectrum is
obtained in all cases with the Yukawa couplings taking on uncorrelated Gaussian distributions.

It should be noted that ways to understand the neutrino mass anarchy along with charged
fermion mass hierarchy has been explored in extra dimensional models with some success [25–
28]. These models have not yet been subject to a detailed Monte Carlo analysis for testing
quantitatively the goodness of the fit. The (renormalizable) models we discuss here share some
common qualitative features with these extra dimensional models.
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We also develop a constrained Monte Carlo simulation method to evaluate the figure of
merit of the uncorrelated Gaussian distributions adopted for the random variables. In this
method we calculate a specific projection of the probability density distribution of the original
random parameters onto a surface that corresponds to random parameters that satisfy the ex-
perimental constraints. The figure of merit that is optimized in this simulation is the distortion
of the distributions of the random parameters with respect to their original (unconstrained)
distributions. This constrained Monte Carlo result can be thought of as a multi-dimensional
analog of the Kolmogorov-Smirnov statistical test for a single variable. Our analysis shows
that the distortions from the original Gaussian distributions are not much, suggesting a good
quality fit.

While the class of models studied here cannot be tested in their precise predictions, they
may become strongly favored or disfavored once we know more about the neutrino mass and
mixing parameters. With an anarchical structure the CP-violating parameter sin δ in the
neutrino sector is found to be peaked at maximal values (±1), although variations from these
peak values are not excluded. The probability distribution of the neutrino mass ratio m1/m2

is peaked around 0.3, with the probability of measuring it below 1/100 found to be about 4%.
This paper is organized as follows. In Sec. 2 we present our unified SUSY SU(5) model

which allows for the mixing of the three families of 10i with vector-like fermions in the 10α+10α

representations. Here we also present special cases of this general framework making use of
flavor U(1) symmetries. In Sec. 3 we present the results of our Monte Carlo simulations for
the fermion mass and mixing parameters for the main model as well as for its variants. In Sec.
4 we develop a new constrained Monte Carlo method to evaluate the goodness of the fits and
compare the distortions of these new distributions from the original Gaussian distributions. In
Sec. 5 we conclude. Two Appendices contain further details of our analysis. In Appendix A we
present the distributions of the various flavor observables for the special cases with flavor U(1)

symmetries with either two or one parameter(s). In Appendix B we present the distributions
of the flavor observables obtained from our constrained Monte Carlo simulation for the main
model.

2 Unifying Anarchy with Hierarchy in SU(5)

As noted in the introduction, grand unified theories based on SU(5) allow for a unified de-
scription of anarchy in the neutrino sector and hierarchy in the quark sector. We work in the
context of SUSY SU(5). The GUT symmetry breaks spontaneously down to the MSSM at an
energy scale of 2 × 1016 GeV. The effective low energy theory is the MSSM. Our focus is the
Yukawa couplings of the quarks and leptons in these theories. At the MSSM level, the Yukawa
coupling matrices for the up quarks, down quarks, charged leptons, Dirac neutrinos and the
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right-handed Majorana neutrinos derived from these models will take the form [19]:

YU = HTY 0
UH, (2.4)

YD = ε4 Y
0
DH, (2.5)

YL = ε4 H
TY 0

L , (2.6)

YN = Y 0
N , (2.7)

YR = Y 0
R. (2.8)

Here the superpotential couplings are written as (f ci (Yf )ijfj)Hf with Hu and Hd denoting the
two Higgs fields of MSSM. The fermion mass matrices obtained from Eqs. (2.4)-(2.8) have the
form

MU = YUvu, MD = YDvd, ML = YLvd, and MN = YNvu, MR = YRvR (2.9)

with vu and vd being the VEVs of Hu and Hd. We have assumed the right-handed Majorana
neutrino masses arise through the vacuum expectation value (VEV) vR of a SM singlet field.
In SU(5) unified theories, bare Majorana masses for the gauge singlet right-handed neutrinos
may be written down. If such bare masses are adopted, the scale vR should be treated as an
overall scale in the Majorana mass matrix. The light neutrino mass matrix, obtained via the
seesaw mechanism [29], has the form:

Mν =
(
Y T
N Y

−1
R YN

) v2u
vR

. (2.10)

An explicit derivation of the Yukawa matrices of Eqs. (2.4)-(2.8) based on SU(5) will be given
in the next subsection. Here we note their salient features which enable the unification of
hierarchy and anarchy.

The matrix H in Eqs. (2.4)-(2.6) is Hermitian, which may be chosen to be diagonal, real
and positive:

H = diag(ε1, ε2, ε3). (2.11)

Here ε1 � ε2 � ε3 ∼ 1 are input parameters of the model which take hierarchical values [19].
ε3 = 1 can be chosen by redefining other parameters of the model. These parameters arise in
the model by virtue of mixing between the three chiral 10i-plets of fermions with vector-like
10α + 10α of fermions with GUT scale masses. Y 0

f in Eqs. (2.4)-(2.8) are the “bare” Yukawa
coupling matrices – coupling matrices in the absence of mixing with the vector-like 10α + 10α

fermions – which will be assumed to have no specific structure. SU(5) invariance implies that
the same H multiplies all the bare Yukawa coupling matrices in Eqs. (2.4)-(2.6). Note that H
appears on the right of Y 0

D, while it appears on the left of Y 0
L . This occurs in SU(5) since the dc

field – the SU(2)L singlet down-type anti-quark – is unified with the left-handed lepton doublet
in a 5 representation. As a consequence, the left-handed lepton mixing angles will be of order
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unity, simultaneously with order one mixing in the right-handed down quark sector (which
are unobservable). Note also that the mass matrices for down quarks and charged leptons
are “lopsided” [19, 30–33]. Furthermore, H appears on both sides of Y 0

U in Eq. (2.4) (while it
appears only on one side of Y 0

D and Y 0
E in Eqs. (2.5)-(2.6)), which is due to the presence of u and

uc fields in the same 10-plet of SU(5). As a result, the mass hierarchy in the up-quark sector
would be stronger compared to the hierarchy in the down-quark and charged lepton sectors:

md : ms : mb ∼ ε1 : ε2 : 1 (2.12)

me : mµ : mτ ∼ ε1 : ε2 : 1 (2.13)

mu : mc : mt ∼ ε21 : ε22 : 1 (2.14)

Such a pattern is consistent with observations.
As for the mixing angles, Eqs. (2.4)-(2.8) will lead to

V CKM
ij ∼ εi

εj
, i < j;

V lepton
ij ∼ 1, i < j.

(2.15)

That is, small quark mixings are realized along with large leptonic mixings in these models.
The parameter ε4 in Eqs. (2.5)-(2.6) is a third hierarchy parameter, corresponding to an

overall suppression of YD and YL compared to YU , which has its origin in the mixing of Higgs
doublets at the GUT scale. (In certain minimal models such mixings may be absent, in which
case ε4 = 1. We have investigated this scenario and found that the goodness of the fit to data
is poor.) Since there is no hierarchy parameter in YN and YR in Eqs. (2.7)-(2.8), the light
neutrino masses do not exhibit any hierarchy in this construction, see Eq. (2.10)).

The form of the Yukawa matrices given in Eqs. (2.4)-(2.8) may also be obtained in other
ways in the context of SU(5) unification. It has been suggested that these forms may follow if
the 10-plet fermions are composite, while the 5-plet fermions are elementary [20]. Alternatively,
if there is a flavor symmetry that distinguishes the three families of 10-plets, with the 5-plets
being indistinguishable by this symmetry [8], the forms of Eqs. (2.4)-(2.8) may follow with the
restriction that ε1 ' ε22. A flavor-dependent U(1) symmetry that distinguishes 51 from 52,3 can
lead to yet another constrained model, which may have only a single hierarchy parameter [23,24].
We shall analyze these special cases as well.

2.1 Anarchy and hierarchy via mixing with vector-like fermions

In this subsection we provide an explicit construction of the fermion Yukawa matrices of Eqs.
(2.4)-(2.8) based on SU(5) symmetry. The setup that we present here is quite general, we will
discuss some of its special cases in subsequent subsections. The construction involves mixing
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of the chiral families in the 10i representations of SU(5) with vector-like 10α + 10α fermions
which have GUT scale masses. Such mixings provide the needed hierarchy factors to explain
the charged fermion masses and quark mixing angles. All the Yukawa couplings of the model
will be assumed to be structure-less or anarchical. This applies to the Yukawa couplings in
the quark sector, charged lepton sector, and the neutrino sector universally. Thus, in the spirit
of anarchy, these Yukawa coupling matrix elements will all be taken as uncorrelated random
variables with Gaussian distributions.

The three families of fermions belong to the 10i + 5i multiplets of SU(5) (i = 1 − 3 is the
generation index). Quarks and leptons are unified in these multiplets as 10i = {eci , uci , Qi} and
5i = {Li, dci}, where Qi = (ui di)

T and Li = (νi ei)
T . To generate small neutrino masses via

the seesaw mechanism three SU(5) singlet fermions 1i (νci ) are introduced. If only a 5H + 5H

Higgs pair is involved in the Yukawa couplings as usually assumed in minimal SUSY SU(5), the
relation ML = MT

D will result among the down-type quark and charged lepton mass matrices,
which is unacceptable. To correct for this at the renormalizable level, we extend the Higgs
sector by introducing a 45H + 45H pair [34]. Then the Yukawa superpotential is given by
(assuming the usual R-parity)

WY = 10iY
5
ij10j5H + 10iY

45
ij 10j45H + 5iY

5
ij10j5H + 5iY

45
ij 10j45H

+ 5iY
1
ij1j5H +

1

2
(MR)ij1i1j, (2.16)

where Y 5, Y 45 and Y 1 are general complex matrices, while Y 5 and Y 45 are complex symmetric
and antisymmetric matrices. These “bare” Yukawa coupling matrix elements (as well as the
Majorana mass terms MR for the right-handed neutrinos, up to an overall scale) will all be
taken to be random variables obeying Gaussian distributions.

The model also contains a set of vector-like fermions belonging to 10α+10α representations,
where α = 1, 2, ..n where n is the number of copies used. The choice of n = 3 is natural, in
which case there would be 3 pairs of such fields. The superpotential now admits additional
mass terms given by

WY ⊃ mαj10α10j +Mαβ10α10β, (2.17)

where the first term represents the mixing of the ordinary fermions with the vector-like fermions
and the second term generates bare masses for these vector-like fermions. Other possible gauge
invariant couplings are assumed to be absent due to additional symmetries. An example of
such a symmetry is a Z2 × Z2 with the vector-like fermions 10α being odd under the first Z2,
and the rest of the fields being even. This choice will prevent unwanted terms of the type
10α10β24H and 10α10i24H , involving the SU(5) breaking Higgs field 24H . Such a Z2 is broken
by the terms in Eq. (2.17), but only softly. Under the second Z2, both 10α and 10α fields are
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odd, while the remaining fields are even. This Z2, which is also broken softly by the first term
in Eq. (2.17), will prevent mixed Yukawa coupling of the type 10i10α5H . (This second Z2 is
optional, since the presence of mixed Yukawa couplings of the type 10i10α5H do not have any
effect on our analysis.)

In Eq. (2.17) the mass terms m and M are SM singlets, and will be assumed to be of order
the GUT scale. The presence of these terms in the Yukawa Lagrangian modifies the structure
of the mass matrices of the SM fermions. From Eq. (2.17), the heavy states are found to be
10Hα ∝ mαi10i + Mαβ10β, with the light states 10Li being orthogonal to the 10Hα states. This
system can be inverted to express 10i and 10α in terms of 10L,H states: 10i = (H 10L+H ′ 10H)i

with

H = (I +mM−1M−1†m†)−
1
2 . (2.18)

Substituting this form of 10i in Eq. (2.16), one can write down the light quark and light lepton
mass matrices as [19]:

MU = HTM0
UH, (2.19)

MD = M0
DH, (2.20)

ML = HTM0
L, (2.21)

MN = M0
N , (2.22)

MR = M0
R, (2.23)

where MU,D are the up-type and down-type quark mass matrices, ML is the charged lepton
mass matrix, MN is the Dirac type neutrino mass matrix and MR is the right-handed neutrino
Majorana mass matrix. In writing these mass matrices we have defined [35]

M0
U = 〈5H〉Y 5 + 〈45H〉Y 45, (2.24)

M0
D = 〈5H〉Y 5 + 〈45H〉Y 45, (2.25)

M0
L = 〈5H〉Y 5T − 3〈45H〉Y 45T , (2.26)

M0
N = 〈5H〉 Y 1, (2.27)

M0
R = vR Y

0
R. (2.28)

Note that all matrices in Eqs. (2.24)-(2.27) are general complex, while M0
R in Eq. (2.28) is

complex symmetric. (M0
U has symmetric contributions from 〈5H〉 as well as antisymmetric

contributions from 〈45H〉, with the sum being neither symmetric nor antisymmetric.)
The Hermitian matrix H in Eq. (2.18) can be written as H = U †diag{ε1, ε2, ε3}U , with U

being a unitary matrix and εi’s being real and positive (i = 1, 2, 3). Substituting this form of
H in Eqs. (2.19)-(2.21) and redefining the quark and lepton fields, one can absorb the unitary
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matrix U into the non-hierarchical matrices M0
U,D,L without affecting the numerical results.

Thus, we choose H = diag{ε1, ε2, ε3}. A hierarchy ε1 � ε2 � ε3 ∼ 1 can be generated within
the model by arranging for unequal mixings between the 10i and 10α for different families. For
example, for the third family, we may takeM3 � m3 (ignoring generation mixing for simplicity
of explaining) while for the second and first families we may take M2 � m2 and M1 ≪ m1,
see Eq. (2.18) [19]. We shall set ε3 = 1, since this parameter is of order one, and redefining
other parameters of the theory enables this choice. Consequently, we will choose

H = diag{ε1, ε2, 1} (2.29)

for our analysis.
The MSSM up-type Higgs doublet Hu that remains light to low energies is a linear combi-

nation of up-type doublets from the 5H , 45H and other possible up-type Higgs doublets present
in the SU(5) model. Similarly the light MSSM field Hd is a linear combination of down-type
Higgs doublets from 5H , 45H and other possible down-type Higgs doublets in the model. An
example of such additional up-type and down-type Higgs doublets is a pair of 5′H + 5

′
H fields

with no Yukawa couplings to the fermions. We then have

Hu = αu h
u
5 + βu h

u
45 +

∑
i

γui h
′u
i (2.30)

Hd = αd h
d
5 + βd h

d
45 +

∑
i

γdi h
′d
i (2.31)

with |αu|2 + |βu|2 +
∑

i |γui |2 = 1 = |αd|2 + |βd|2 +
∑

i |γdi |2. Here hu5 = (1, 2, 1
2
) ⊂ 5H , hu45 =

(1, 2, 1
2
) ⊂ 45H , hd5 = (1, 2,−1

2
) ⊂ 5H and hd

45
= (1, 2,−1

2
) ⊂ 45H , where the quantum numbers

under the SM gauge symmetry are indicated. The fields h′ui and h′di are (1, 2, 1
2
) and (1, 2,−1

2
)

fields from additional Higgs multiplets, such as 5′H + 5
′
H pairs. All fields orthogonal to Hu and

Hd remain superheavy. The VEVs of the doublet components of the various fields are related
to the VEVs vu and vd of the MSSM fields Hu and Hd as

v5 = α∗uvu, v45 = β∗uvu, (2.32)

v5 = α∗dvd, v45 = β∗dvu. (2.33)

Substituting these relations, one can rewrite the effective mass matrices Eqs. (2.19)-(2.23) for
the fermions as:

MU = vu H
TY 0

UH ≡ vu YU , (2.34)

MD = vd ε4 Y
0
DH ≡ vd YD, (2.35)

ML = vd ε4 H
TY 0

L ≡ vd YL, (2.36)

MN = vu Y
0
N ≡ vu YN , (2.37)

MR = vR Y
0
R ≡ vR YR. (2.38)
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Here Y 0
U , Y

0
D etc are the bare Yukawa coupling matrices derived from Eqs. (2.24)-(2.27), using

the definitions given in Eq. (2.33):

Y 0
U = α∗u Y

5 + β∗u Y
45, (2.39)

Y 0
D = α∗d Y

5 + β∗d Y
45, (2.40)

Y 0
L = α∗d Y

5T − 3β∗d Y
45T , (2.41)

Y 0
N = α∗u Y

1 . (2.42)

Thus, we see that the effective Yukawa coupling matrices of the quarks and leptons with the
MSSM Higgs fields as given in Eqs. (2.4)-(2.8) are generated. The bare Yukawa couplings
Y 0
U,D,L,N,R in these equations will be treated as random variables obeying Gaussian distributions

in our numerical analysis. The parameter ε4 appearing in Eqs. (2.35)-(2.36) arises from the
Higgs doublet mixing expressed in terms of (αu,d, βu,d). To realize values of ε4 in the range
ε4 = (0.04−0.1) as our fits would prefer, it is sufficient to take αd and βd somewhat smaller than
one. Unitarity of the Higgs mixing matrix is maintained due to the presence of additional Higgs
doublets such as 5′H+5

′
H in the model. The model also has tan β = vu/vd as an input parameter.

A relation between the tan β = vu/vd and ε4 can be obtained from Eqs. (2.34)-(2.35):

ε4 '
mb

mt

tan β
(Y 0

U )33

|(
−→
d0)3|

(2.43)

where we have defined (
−→
d0)3 = {(Y 0

D)13, (Y
0
D)23, (Y

0
D)33}. Note that to set ε3 = 1 which we have

adopted, we redefine ε4 in Eqs.(2.35)-(2.36), and also redefine vu in Eq. (2.34).
Since the masses of the vector-like fermions are of the order of GUT scale, any effect of these

particles at low energies will be suppressed by a factor of 1/MGUT , except for the dimension
four fermion mass operators as discussed in the text. Hence their presence does not change
the phenomenology of the MSSM or the Higgs boson mass. Even though the super-heavy
vector-like fermions decouple, they may leave imprints on the SUSY flavor structure at low
energies. However, SUSY models with large superpartner masses or gauge-mediated SUSY
breaking models can potentially suppress any such flavor violating effects.

As noted previously, there are other ways of generating the Yukawa structure shown in
Eqs. (2.4)-(2.8) by assuming U(1) flavor symmetry that distinguishes the three families of
10i [8], and/or the first family of 51 from 52,3 [23, 24], by hypothesizing that the 10i-plets are
composite [20, 36], or postulating extra dimensions [25, 26, 28]. Another interesting class of
models proposed recently in Ref. [37, 38] has a very similar structure for the mass matrices,
which we shall not investigate here. We do analyze the flavor U(1) models as special cases of
the general class of models described here, which are described next.
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2.2 SU(5)-inspired models with U(1) flavor symmetry

In this subsection we briefly describe a class of SU(5)-inspired models with U(1) flavor sym-
metry. Models of this type can explain the hierarchical structure in the fermion masses and
mixings by using the Fraggatt-Nielsen mechanism [22]. Smaller entries in the mass matrices
are induced as higher dimensional operators suppressed by differing inverse powers of a funda-
mental mass scale. Assigning different charges to different families will lead to a hierarchy in
masses and mixings.

The models we study here are inspired by SUSY SU(5) unification – in the sense that the
flavor U(1) charge assignment will be compatible with SU(5) – but we can work just within
the framework of MSSM. We shall use the language of SU(5), however, for simplicity. The
three fermion families are assigned to 10i + 5i, and we include three families of SM singlet 1i

(νci ) fields for the seesaw mechanism. In order to reproduce the observed hierarchical structure
in fermion masses, we make specific U(1) charge assignment to the fermion fields as shown in
Table 1. The integer charges q1, q2 and p are left unspecified in the table, two different choices
will be presented below.

Field UA(1) charge

101, 102, 103 2q1, q1, 0
51, 52, 53 q2 + p, p, p
11, 12, 13 q2, 0, 0

Table 1: The flavor U(1) charge assignment of the fermion fields in SU(5) notation. The
Yukawa matrices of Eqs. (2.4)-(2.8) will be induced with the choice q1 = 1, q2 = p = 0.
Yukawa couplings given in Eqs. (2.46)- (2.48) will result with the choice q1 = 2, q2 = 1, p = 0, 1

or 2, corresponding to large, medium and small tan β. These models also contain a flavon field
S with U(1) charge of −1 that acquires a VEV. The Higgs doublets Hu and Hd of MSSM are
neutral under this U(1).

In these models, the U(1) flavor symmetry is broken by a single parameter ε = 〈S〉/M∗,
where 〈S〉 is the VEV of an SU(5) singlet flavon field S with U(1) charge −1 and M∗ > MGUT

is a fundamental scale such as the string scale. The Yukawa superpotential contains higher
dimensional terms suppressed by inverse powers of M∗, with coefficients which are all of order
one. These couplings have the form

WY ⊃ Y u
ijQiu

c
jHu

(
S

M∗

)nuij
+ Y d

ijQid
c
jHd

(
S

M∗

)ndij
+ Y `

ijLie
c
jHd

(
S

M∗

)n`ij
+ Y ν

ijLiν
c
jHu

(
S

M∗

)nνij
+ vRY

R
ij ν

c
i ν

c
j

(
S

M∗

)nνcij
. (2.44)
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Here the integers nuij etc are chosen such that the corresponding Yukawa coupling Y u
ij is charge

neutral. The couplings Y u
ij etc are all taken to be of order unity. Still hierarchical masses and

mixings are induced since the (ij) entry in the mass matrix has a suppression factor εnij .
In our first flavor U(1) model we choose the U(1) charges of Table 1 to be {q1 = 1, q2 =

0, p = 0} [8]. In this case the Yukawa coupling matrices will have the same form as in Eqs.
(2.4)-(2.8). Note that in this model the three families of 5i are neutral under U(1), while the
10i carry differing charges given as (2, 1, 0). Since the U(1) symmetry is broken by a single
parameter, the Hermitian matrix H appearing in Eqs. (2.4)-(2.8) is now given by

H =

ε2 0 0

0 ε 0

0 0 1

 . (2.45)

The only difference from the general model of the previous subsection is that here ε2 ≡ ε

and ε1 = ε2.1 This model will be analyzed separately, with the assumption that the Yukawa
couplings entering Eq. (2.44) are random variables taking Gaussian distributions. The light
neutrino mass matrix retains exactly the same structure-less pattern as before, since the νc

fields as well as the Li fields are all neutral under the U(1). If the model is embedded in SU(5)

minimally, the wrong relation YL = Y T
D would result. This would require the extension of the

scalar sector by a 45H + 45H pair. As before, the parameter ε4 has the same definition as in
Eqs. (2.4)-(2.8), and such models have two hierarchical parameters {ε, ε4}.

A second flavor U(1) model is obtained by the choice of U(1) charges in Table 1 as {q1 =

2, q2 = 1, p = 0, 1, or 2} along with the charges of the scalar fields given by {Hu, Hd, S} =

{0, 0,−1}. Here the first family 51 has a shifted charge compared to 52,3. This is the only
difference of this model compared to the first flavor U(1) model just discussed. Such a model
has been studied in Ref. [23, 24], where the Yukawa coupling matrices written in the basis
f ci (Yf )ijfj are shown to take the form:

1Strictly, ε1 = O(1)ε2, but this O(1) coefficient may be absorbed into other O(1) Yukawa couplings, which
is what we shall do.
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YU ∼

ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1

 , YD ∼ εp

ε5 ε3 ε

ε4 ε2 1

ε4 ε2 1

 , (2.46)

YL ∼ εp

ε5 ε4 ε4

ε3 ε2 ε2

ε 1 1

 , YN ∼ εp

ε2 ε ε

ε 1 1

ε 1 1

 , (2.47)

YR ∼

ε2 ε ε

ε 1 1

ε 1 1

 , Yν ∼ ε2p

ε2 ε ε

ε 1 1

ε 1 1

 . (2.48)

Here Yν determines the light neutrino mass matrix via the seesaw relation Mν = Yνv2u/vR.
The integer p is allowed to take three different values, p = 0, 1 or 2, corresponding to large,
medium, and small values of tan β. In Eqs. (2.46)-(2.48), each matrix element has an O(1)

coefficient cfij that is not explicitly shown. These entries are taken to be of order unity. For
our statistical analysis of the model, we shall take these cfij to be random variables obeying
uncorrelated Gaussian distributions. One clearly sees that although the charged fermion mass
matrices here are quite similar to the previously discussed models, the light neutrino mass
matrix is significantly different. Unlike the previous cases, it is no longer given by a matrix
with order unity entries everywhere; rather it has somewhat of a hierarchical structure. In this
model, it is possible to correct the SU(5) relation ML = MT

D via higher dimensional operators
involving the 24H field, and therefore, a parameter analogous to ε4 is not required. As we shall
see, a good fit to all data is obtained in this model with a single hierarchy parameter ε.

3 Statistical Analysis of Flavor Parameters in SU(5)-based
Models

In this section we perform a statistical analysis of the general class of unified theories based on
SU(5). The general model described in Sec. 2.1 contains three hierarchical input parameters
{ε1, ε2, ε4} as well as tan β in the flavor sector. In addition, these models have five complex
Yukawa coupling matrices, see Eqs. (2.4)-(2.8), the elements of which are treated as uncorre-
lated random variables with Gaussian distributions. After a detailed analysis of this general
setup, we repeat the analysis for the two SU(5)-inspired flavor U(1) variants. These variants
have either two set of hierarchical parameters {ε, ε4}, or a single parameter ε.

The primary goal of this section is to investigate how well the theoretical predictions of
this class of models agree with the experimentally observed quantities on average. We perform
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a Monte Carlo simulation and derive the theoretical expectations for these models. We start
with the MSSM Yukawa coupling matrices given in Eqs. (2.4)-(2.8). As noted before, the
matrices Y 0

F in Eqs. (2.4)-(2.8) are random matrices with all elements of order O(1). The
matrices Y 0

F for F = U,D,L,N are of the Dirac-type and in general complex matrices. The
right-handed neutrino Yukawa coupling matrix Y 0

R in Eq. (2.8) is of the Majorana-type which
is complex symmetric. We assume that each of these matrix elements is a random variable in-
dependent of other elements. The probability distributions of the matrix elements are assumed
to be completely independent of the hierarchical model parameters {ε1, ε2, ε4}. Basis indepen-
dence as well as absence of correlation between various matrix elements determine uniquely the
probability measures for these random variables to be Gaussian [16,18]:

dY 0
D =

∏
ij

dY 0
ij e
−|Y 0

ij |2 ,

dY 0
M =

∏
i

dY 0
ii e
−|Y 0

ii |2
∏
i<j

dY 0
ij e
−2|Y 0

ij |2 ,
(3.49)

Here the subscripts D and M represent Dirac-type and Majorana-type respectively. These
measures are defined up to a scale factor e−c, which has been set equal to 1. (When Gaussian
distributions are applied to mass matrices, this scale factor can be used to fix the overall scale
of the VEV, see Ref. [18] for details). From Eq. (3.49), all the elements of a general complex
random matrix are independently generated with Gaussian distribution of variance 0.5 for both
the real and imaginary parts separately. Similarly, for the complex symmetric random matrix,
the real and imaginary parts are generated independently with Gaussian distribution of variance
0.5 and 0.25 for diagonal and off-diagonal entries respectively.

The class of models with Yukawa matrices given in Eqs. (2.4)-(2.8) has three input parame-
ters, εi (i=1,2,4) and 84 random variables (72 in four general complex random matrices and 12
in one random complex symmetric matrix). In this section we present a Monte Carlo analysis
of these models adopting Gaussian measure for the random matrix elements. The parameters
εi are however not random, instead they are fixed by χ2-function minimization. We have seen
previously that these parameters do not enter in the neutrino sector. Thus, in order to fix the
numerical values of these parameters we only include in the χ2-minimization the observables
in the charged fermion sector. The minimization is carried out at the GUT scale with 3 input
parameters to fit 13 observables.

To perform the χ2-minimization at the GUT scale we take the experimentally observed
values of the charged fermion observables at the MZ scale from Ref. [39]. These values are
quoted in Table 2. We use the renormalization group running factors corresponding to MSSM,
ηi = mi(MGUT)/mi(MZ), taken from Ref. [40] for the evolution of the Yukawa couplings from
the MZ scale to the GUT scale. These running factors are listed in Table 3. We perform the
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Yukawa Couplings
and CKM parameters

µ = MZ

yu/10
−6 6.65± 2.25

yc/10
−3 3.60± 0.11

yt 0.9860± 0.00865

yd/10
−5 1.645± 0.165

ys/10
−4 3.125± 0.165

yb/10
−2 1.639± 0.015

ye/10
−6 2.79475± 0.0000155

yµ/10
−4 5.89986± 0.0000185

yτ/10
−2 1.00295± 0.0000905

θCKM12 0.22735± 0.000072

θCKM23 /10−2 4.208± 0.064

θCKM13 /10−3 3.64± 0.13

δCKM 1.208± 0.054

Table 2: Observables in the charged fermion sector at the MZ scale taken from Ref. [39]. For
quantities with asymmetrical error bars, we have symmetrized and presented the experimental
central values with associated 1 σ uncertainties. The fermion masses are given by the relations
mi(MZ) = v ySM

i (MZ), with v = 174 GeV.

Monte Carlo analysis for two values of the parameter tan β, 10 and 50. The Yukawa couplings
at the GUT scale are obtained from the couplings determined at µ = MZ with the help of these
renormalization running factors by using the relations yMSSM

ui
(MGUT) = ySM

ui
(MZ)ηui/ sin β for

up-type quarks and yMSSM
di ,ei

(MGUT) = ySM
di ,ei

(MZ)ηdi ,ei/ cos β for down-type quarks and charged
leptons. We also run the CKM mixing parameters from MZ to the GUT scale using the MSSM
renormalization group equations [41, 42]. The renormalization running factors of the CKM
matrix elements are presented in Table 3. The Yukawa couplings and the CKM mixing param-
eters at the GUT scale are presented in Table 4. For the associated one sigma uncertainties
of these observables at the GUT scale, we take the same percentage uncertainty with respect
to the central value of each quantity as that at the MZ scale. For the charged lepton Yukawa
couplings, a relative uncertainty of 1% is assumed, instead of smaller experimental statistical
errors, in order to take into account the theoretical uncertainties such as SUSY and GUT scale
threshold effects.

With these GUT scale inputs, using the Eqs. (2.4)-(2.8), we perform χ2 minimization by
treating ε1, ε2 and ε4 as parameters and fit the data in the charged fermion sector. Here
nobs = 13 is the number of observables, with 3 parameters to fit them. The elements of the
random matrices pick up random values independently according to Gaussian distribution. For
our analysis the error, pull and χ2-function are defined as follows:
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tanβ 10 50

(ηu, ηc, ηt) (0.385, 0.381, 0.536) (0.377, 0.382, 0.551)
(ηd, ηs, ηb) (0.241, 0.236, 0.273) (0.175, 0.181, 0.211)
(ηe, ηµ, ητ ) (0.583, 0.583, 0.585) (0.423, 0.423, 0.442)

(ηCKMus , ηCKMcb , ηCKMub ) (0.999, 0.890, 0.890) (0.999, 0.826, 0.826)

Table 3: Renormalization group running factors for the masses, ηi = mi(MGUT)/mi(MZ) (taken
from Ref. [40]). These values are obtained with two-loop MSSM renormalization group evolu-
tion with appropriate one-loop matching conditions. In the last row the renormalization group
running factors ηCKMij = Vij(MGUT)/Vij (MZ) of the CKM matrix elements are listed, which are
obtained by evolving the RGEs for these parameters [41,42] from low energy to MGUT.

σi =
√
σ2
i th + σ2

i exp,

Pi =
Oi th − Ei exp

σi
,

χ2 =
∑
i

P 2
i ,

(3.50)

where σi th and σi exp represent the theoretical standard deviation (TSD) and experimental 1σ
uncertainty respectively and Oi th, Ei exp and Pi represent the theoretical mean value (TMV),
experimental central value (ECV) and pull of an observable i.

We find the minimum with χ2/nobs ∼ 1 along with the model parameters shown in Table
5. The best fit values of the observables obtained with these fixed model parameters resulting
from our Monte Carlo optimization are shown in Table 6. In Fig. 1 we plot the histogram
distributions of the observables in the quark and the charged lepton sectors corresponding to
the fixed model parameters given in Table 5 for the case where tan β = 10 (plots for the case
tan β = 50 are similar). In producing these distributions we have taken the sample size to be
104 and chose the bin size (N bins) to be 50.

The blue plots in Fig. 1 show histograms of the theoretical distributions of the up-type
quark Yukawa couplings. Overlaid on these distributions are the experimental values of these
couplings. We find very good agreement between theoretical expectations and observations.
Among all the charged fermions, the eigenvalue spectrum of the up-type quarks shows the
most hierarchical structure which is nicely reproduced. This is not surprising, as the stronger
hierarchy is built into the model, see Eqs. (2.4)-(2.8).

For the down-type quark Yukawa couplings, theoretical distributions are shown in green in
Fig. 1. Overlaid on these distributions are the experimental values of these parameters. These
are in good agreement with observations for down-quark and bottom-quark, whereas for the
strange-quark, the theoretical mean value tends to be a little higher than the experimentally
measured value, but it is still within acceptable range. In the eigenvalue spectrum of charged
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Yukawa Couplings and
CKM mixing parameters

tanβ = 10

(at µ = MGUT)
tanβ = 50

(at µ = MGUT)
yu/10

−6 2.57± 0.86 2.51± 0.84

yc/10
−3 1.37± 0.04 1.37± 0.04

yt/10
−1 5.31± 0.04 5.43± 0.04

yd/10
−4 0.39± 0.04 1.44± 0.14

ys/10
−3 0.74± 0.03 2.84± 0.14

yb/10
−2 4.49± 0.04 17.29± 0.15

ye/10
−5 1.63± 0.01 5.91± 0.05

yµ/10
−3 3.45± 0.03 12.49± 0.12

yτ/10
−2 5.89± 0.05 22.21± 0.22

|Vus|/10−2 22.53± 0.07 22.53± 0.07

|Vcb|/10−2 3.74± 0.05 3.47± 0.05

|Vub|/10−3 3.24± 0.11 3.00± 0.10

ηW 0.35± 0.01 0.35± 0.01

Table 4: Input values at MGUT used in our fits. Central values and 1 σ errors are quoted.
For Yukawa couplings, these numbers are found with the help of Tables 2 and 3 and by using
the equations yMSSM

ui
(MGUT) = ySM

ui
(MZ)ηui/ sin β for up-type quarks and yMSSM

di ,ei
(MGUT) =

ySM
di ,ei

(MZ)ηdi ,ei/ cos β for down-type quarks and charged leptons. For the charged lepton Yukawa
couplings, a relative uncertainty of 1% is assumed, instead of smaller experimental statistical
errors, in order to take into account the theoretical uncertainties from threshold effects. For
the CKM mixing parameters, we evolve the quantities from low scale to MGUT by using the
RGEs provided in Ref. [41,42].

leptons, which is shown in pink in Fig. 1, the theoretical mean value for the muon Yukawa
coupling tends to be a little lower than the experimental central value. The reason for these
small discrepancies can be understood from the approximate relations ys

yb
∼ ε2 and yµ

yτ
∼ ε2

present in the model. At the GUT scale one has roughly yb ∼ yτ , which implies within the
model ys ∼ yµ. This is why the histograms of Yukawa couplings for both strange-quark and
muon Yukawa couplings are almost identical with approximately the same theoretical mean
values, but observation dictates, ys ∼ 4yµ at the GUT scale. This small discrepancy, inherent
to these models, is still not major and is within acceptable range.

The probability distributions of the CKM parameters are shown in purple in Fig. 1. Overlaid
on these distributions are the experimental values of these observables. These distributions 2

are also in very good agreement with data. The theoretical distribution for Vus has a mean
value that tends to be somewhat smaller than the experimental value. This feature may be

2Similar distributions for the CKM parameters are obtained in Ref. [43] from a completely different statistical
approach.
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tanβ 10 50

ε1 0.00181±0.00010 0.00169±0.00009
ε2 0.0388±0.00222 0.03659±0.00215
ε4 0.04055±0.00229 0.15716±0.00894

Table 5: Model parameters determined by χ2 minimization for the SU(5)-based GUTs defined
in Eqs. (2.4)-(2.8).

Observables TMV±TSD TMV
ECV pull

tanβ = 10 tanβ = 50 tanβ = 10 tanβ = 50 tanβ = 10 tanβ = 50

yu/10
−6 7.23±7.76 6.39±6.93 2.81 2.54 0.59 0.55

yc/10
−3 2.55±2.53 2.26±2.37 1.85 1.64 0.46 0.37

yt 0.88±0.46 0.89±0.46 1.67 1.63 0.77 0.74
yd/10

−4 0.64±0.33 2.3±1.23 1.61 1.62 0.73 0.73
ys/10

−3 2.10±0.77 7.59±2.79 2.83 2.67 1.75 1.69
yb/10

−1 0.67±0.19 2.61±0.76 1.50 1.51 1.13 1.15
ye/10

−4 0.64±0.34 2.34±1.22 3.96 3.96 1.42 1.42
yµ/10

−3 2.10±0.75 7.63±2.74 0.60 0.61 -1.79 -1.76
yτ/10

−1 0.67±0.19 2.59±0.76 1.14 1.16 0.42 0.48
|Vus|/10−2 8.17±7.80 8.07±7.87 0.36 0.35 -1.83 -1.83
|Vcb|/10−2 6.15±6.37 5.99±6.34 1.64 1.72 0.37 0.39
|Vub|/10−3 3.42±3.67 3.23±3.75 1.05 1.07 0.04 0.06

ηW 0.05±3.13 0.05±2.59 0.14 0.14 -0.09 -0.11

Table 6: χ2 best fit values of the observables for the SU(5)-based GUTs defined in Eqs.
(2.4)-(2.8) with the fixed model parameters given in Table 5. The best fit values shown in
this table correspond to χ2/nobs = 1.13 and 1.12 for tan β = 10 and 50 respectively. Here
TMV=theoretical mean value, TSD=theoretical standard deviation, ECV=experimental cen-
tral value and pull is defined in Eq. (3.50).

understood since the model has Vus ∼ ε1/ε2. It also predicts yd/ys ∼ 0.05 ∼ ε1/ε2, which makes
Vus to peak around 0.05, rather than the observed value of ∼ 0.2. But there is still acceptable
agreement.

We can do a consistency check for the value of tan β used. From Eq. (2.43) we have,
tan β ' ε4 mt/mb

|(
−→
d0)3|

(Y 0
U )33

. Since O(1) random variables are present in this equation, tan β

in these models follows a distribution shown in Fig. 2. Both histograms have a long tail
behaviour with the mean values of the distributions being tan β = 14 and 71.4 respectively.
For histograms with such behaviour, median may be a better measure, which are tan β = 9.4
and 48.3 respectively. We see broad consistency with the input values of tan β used in each
case.
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Since the small parameters εi do not enter into the neutrino sector, in the optimization
process we did not include the neutrino observables. Once the model parameters are fixed as in
Table 5, one can include the neutrino sector in the sampling process and investigate how well the
observed quantities in this sector are reproduced by these models. Since the matrix structure
is the same as the ones considered in earlier works assuming anarchical hypothesis only in the
neutrino sector [7,8], the histogram distributions of the neutrino observables should be similar,
which is what we find. In Figs. 3 and 4 we present plots for the theoretical predictions of
the neutrino observables. The theoretical average values of these observables resulting from the
Monte Carlo analysis are shown in Table 7. The input values for neutrino observables are taken
from Ref. [44] corresponding to the case of normal ordering of the neutrino mass spectrum. We
restrict our analysis to normal ordering, since the random matrix structure for the neutrinos
strongly prefers this over inverted ordering. In our Monte Carlo simulations we found a 95.6%

probability for normal ordering and a 4.4% probability for inverted ordering, which is similar
to the results of Ref. [18]). To ensure normal ordering, we assume m1 ≤ m2 < m3 and we put
the constraint r < 1 (r ≡ ∆m2

sol/∆m
2
atm with ∆m2

sol = m2
2−m2

1 and ∆m2
atm = m2

3−m2
2) in the

sampling procedure.

Observables ECV 1σ exp TMV TSD TMV
EMV pull

∆m2
sol

∆m2
atm

0.031 0.001 0.135 0.186 4.37 0.56

sin2 θ12 0.308 0.017 0.504 0.287 1.63 0.68
sin2 θ23 0.3875 0.0225 0.501 0.290 1.29 0.39
sin2 θ13 0.0241 0.0025 0.334 0.235 13.8 1.31

Table 7: Theoretical sampling results of the SU(5)-based model obtained fromMonte Carlo sim-
ulation in the neutrino sector. Experimental central values with associated one sigma uncertain-
ties are also quoted taken from Ref. [44]. Here TMV=theoretical mean value, TSD=theoretical
standard deviation, ECV=experimental central value and pull is defined in Eq. (3.50). The
theoretical results presented here are for sample size of 104. The best fit values shown in this
table correspond to χ2/nobs = 0.66.

In Fig. 3 we plot the probability density for the neutrino mixing parameters. The area under
the curve in a probability density plot between any two values of the observable represents
the probability of finding the observable within that particular range and the total area is
normalized to unity. From these plots it is clear that for this class of models all the mixing
parameters sin2 2θij in the neutrino sector take preferentially large values. The CP-violating
parameter sin δ is peaked at its maximal values of ±1. Preference of all the mixing parameters
to be large is a consequence of the complete anarchical form of the neutrino mass matrix as
their distributions are uniquely fixed by the invariant Haar measure.
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In Fig. 4 we plot theoretical distributions of log10(∆m
2
sol/∆m

2
atm) and log10(mi/mj). The

upper left plot in Fig. 4 shows that the anarchic structure of the neutrino mass matrix prefers
small values of the ratio of the two mass squared differences, r and the theoretical mean value
is quite close to the experimental central value. The upper right plot reveals that anarchy
predicts mild hierarchy in the neutrino mass spectrum. The lower plots in Fig. 4 exhibits the
probability densities for the two different neutrino mass ratios, m1/m3 and m1/m2. As can be
seen, the ratio m1/m2 peaks around 0.3. Extreme small values of m1 are strongly disfavored in
this model. For example, m1/m2 < 0.01 will be favored only with a 4% probability.

3.1 Monte Carlo analysis of SU(5)-inspired U(1) flavor models

3.1.1 Models with two parameters {ε, ε4}

In this subsection, we present our Monte Carlo results for the SU(5)-inspired U(1) flavor models
with U(1) charges chosen to be {q1 = 1, q2 = 0, p = 0} as explained in Sec. 2.2. Models of this
type have two parameters, {ε, ε4}. The only modification needed compared to our general setup
is in the charged fermions sector where the matrix H is given by Eq. (2.45). This set of models
has one less parameter compared to the general model. We have performed a fit as before in
this two parameter case and the fitted model parameters are presented in Table 8. From this
Table one finds, ε ∼ λ2, where λ ∼ 0.22. With this fixed parameters, the corresponding best
fit values of the observables are shown in Table 9 and the theoretical distributions of these
quantities are presented in Fig. 8 in Appendix A.1. By comparing the fit results of Tables 6
and 9 one sees that a slightly better fit is obtained for the three parameter case compared to
the analysis done here with one less parameter. In Table 6, all the observables are reproduced
within 2σ error on average, whereas in Table 9, with one less parameter, two of the observables
are in the (2 − 3)σ range for the case of tan β = 10 and for the case of tan β = 50, one of the
observables is little above 2σ error on average. Since the neutrino sector is exactly the same
for all these models belonging to SU(5)-based GUTs, the analysis in the previous subsection
remains unchanged.

tanβ 10 50

ε 0.02855±0.00150 0.03847±0.00215
ε4 0.03909±0.00220 0.14537±0.00826

Table 8: Model parameters determined by χ2 minimization for the SU(5)-inspired U(1) flavor
symmetry models with two parameters.
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Observables TMV±TSD TMV
ECV pull

tanβ = 10 tanβ = 50 tanβ = 10 tanβ = 50 tanβ = 10 tanβ = 50

yu/10
−6 3.49±3.89 4.96±5.55 1.35 1.97 0.23 0.43

yc/10
−3 2.08±2.15 2.50±2.57 1.51 1.82 0.32 0.43

yt 0.88±0.46 0.88±0.46 1.65 1.63 0.76 0.74
yd/10

−4 0.44±0.23 1.92±1.00 1.10 1.32 0.17 0.46
ys/10

−3 1.90±0.69 7.45±2.71 2.56 2.62 1.67 1.69
yb/10

−1 0.67±0.19 2.42±0.71 1.49 1.40 1.11 0.96
ye/10

−4 0.44±0.23 1.90±1.00 2.69 3.21 1.41 1.31
yµ/10

−3 1.90±0.75 7.38±2.71 0.55 0.59 -2.24 -1.87
yτ/10

−1 0.68±0.19 2.42±0.70 1.15 1.09 0.42 0.28
|Vus|/10−2 8.17±7.80 6.81±6.86 0.36 0.30 -2.68 -2.29
|Vcb|/10−2 5.75±5.93 6.19±6.30 1.53 1.78 0.33 0.43
|Vub|/10−3 2.73±3.03 2.81±2.96 0.84 0.93 -0.16 -0.06

ηW 0.006±2.509 0.003±2.30 0.01 0.006 -0.15 -1.13

Table 9: χ2 best fit values of the observables for the SU(5)-inspired U(1) flavor symmetry
models with two parameters. The fixed model parameters are given in Table 8. The best
fit values shown in this table correspond to χ2/nobs = 1.44 and 1.41 for tan β = 10 and 50
respectively.

3.1.2 Monte Carlo analysis of U(1) model with one parameter {ε}

In this subsection we apply a Monte Carlo analysis to the SU(5)-inspired flavor symmetry
model with the U(1)-flavor charge assignment of {q1 = 2, q2 = 1, p = 0, 1, 2} as discussed in
Sec. 2.2. As explained there, the matrix elements in Eqs. (2.46)-(2.48) have order one complex
coefficients cfij. We assume that the coefficients are random complex variables with Gaussian
distribution of variance 0.5 for both real and imaginary parts. For the off-diagonal terms of the
complex symmetric matrix YR the coefficients have variance of 0.25. We generate this unbiased
set of random variables following Gaussian distribution in a manner similar to the one described
earlier. By taking the sample size to be 104, we study the theoretical probability distributions
of the observables in the fermion sector. We carry out the Monte Carlo analysis for three cases
with p = 0, 1, 2 (corresponding to tan β = 55, 25, 5 respectively) and present the values of the
parameter ε that minimizes the χ2 for each case. For these values of tan β the RGE running
factors are not given in Ref. [40] and hence we run the two loop MSSM RGEs [42, 45] from
low scale to the GUT scale 3. We take the low scale central values of the observables from
Table 2 of Ref. [39] at µ = 1 TeV where the observables are converted to the DR scheme, use

3We also performed the running for the cases with tanβ = 10 and 50 and found consistency with Ref. [40]
and hence the values presented in Table 4.
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the SUSY matching formula (without taking into account the threshold corrections) for the
Yukawa couplings and evolve them upto the GUT scale and use these values as inputs (shown
in Table 10) during the optimization. Like before, for the charged leptons, we assume a relative
1% uncertainty in order to take into account the theoretical uncertainties such as SUSY and
GUT scale threshold effects.

Yukawa Couplings and
CKM mixing parameters

tanβ = 5

(at µ = MGUT)
tanβ = 25

(at µ = MGUT)
tanβ = 55

(at µ = MGUT)
yu/10

−6 2.98± 1.00 2.88± 0.96 2.96± 0.99

yc/10
−3 1.45± 0.04 1.4± 0.04 1.44± 0.04

yt/10
−1 5.43± 0.04 5.23± 0.04 5.85± 0.05

yd/10
−4 0.24± 0.02 1.24± 0.12 3.55± 0.36

ys/10
−3 0.48± 0.024 2.47± 0.12 7.04± 0.35

yb/10
−2 2.73± 0.02 14.33± 0.12 49.61± 0.44

ye/10
−4 0.10± 0.001 0.51± 0.005 1.45± 0.01

yµ/10
−2 0.21± 0.002 1.08± 0.01 3.07± 0.03

yτ/10
−1 0.36± 0.003 1.89± 0.01 6.53± 0.06

|Vus|/10−2 22.53± 0.07 22.53± 0.07 22.53± 0.07

|Vcb|/10−2 3.72± 0.05 3.70± 0.05 3.37± 0.05

|Vub|/10−3 3.22± 0.11 3.21± 0.11 2.92± 0.10

ηW 0.35± 0.01 0.35± 0.01 0.35± 0.01

Table 10: Experimental central values with associated 1σ uncertainties at MGUT scale used in
our fits. The low scale central values of the observables are taken from the Table 2 of Ref. [39]
at µ = 1 TeV. For the charged leptons, a relative uncertainty of 1% is assumed in order to
take into account the theoretical uncertainties as for example SUSY threshold and GUT scale
effects.

p 2 1 0

tanβ 5 25 55
ε 0.1956±0.0097 0.1985±0.0105 0.1755±0.0098

Table 11: Model parameters fixed by minimization for the flavor symmetry based models defined
in Eqs. (2.46)-(2.48) by employing Monte Carlo analysis with different values of p.

The numerical values of the model parameter determined by χ2-minimization are presented
in Table 11. These values are similar to the ones computed in Table 2 of Ref. [23]. The best
fit values resulting from the χ2 minimization for the three cases with p = 0, 1, 2 are presented
in Table 12. From this Table one sees that, for this class of models with a single parameter,
the fit to the charged fermion observables is not very different from that of the models with 3
parameters. For Vus, the pull is greater than 2σ, but the rest of the observables are in good
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agreement. The main difference of this model compared to the previous two models is in the
neutrino mixing parameters. In the SU(5)-based GUTs, the set of models where the left-handed
light neutrino Yukawa coupling matrix elements are all ∼ O(1), large values of mixing angles
are preferred for all three mixing parameters sin2 2θij (see Fig. 3). On the other hand, the
present model which is described by the Yukawa matrices given in Eqs. (2.46)-(2.48), O(1)

entries exist only in the 2-3 sector that give rise to large sin2 2θ23. But due to a suppression
factor ε in the 1-3 sector, sin2 2θ13 naturally comes out to be smaller than unity. The probability
density plots of sin2 2θij are shown in Fig. 5, the patterns remain the same for different values
of p for this set of models (Fig. 6) compared to the previous set analyzed before (Fig. 4).
Except for the three mixing parameters, the theoretical distributions of the observables in the
fermion sector remain similar in pattern and are shown in Figs. 9 in Appendix A.2 for the case
of p = 2 (histograms for other values of p’s are similar, and are not shown).

Observables TMV±TSD TMV
ECV pull

tanβ = 5 tanβ = 25 tanβ = 55 tanβ = 5 tanβ = 25 tanβ = 55 tanβ = 5 tanβ = 25 tanβ = 55

yu/10
−6 4.88±5.61 5.42±6.06 2.00±2.26 1.63 1.88 0.67 0.33 0.41 -0.38

yc/10
−3 2.42±2.47 2.59± 2.66 1.62±1.76 1.66 1.84 1.12 0.39 0.44 0.10

yt 0.89±0.46 0.89±0.46 0.88±0.46 1.64 1.70 1.51 0.76 0.79 0.64
yd/10

−5 1.97±1.39 11.0±7.78 30.8±22.6 0.80 0.88 0.86 -0.33 -0.18 -0.20
ys/10

−3 1.37±0.65 7.31±3.49 28.4±13.6 2.83 2.95 4.04 1.36 1.38 1.57
yb/10

−1 0.51±0.18 2.65±0.94 13.4±4.77 1.86 1.85 2.71 1.30 1.29 1.77
ye/10

−5 1.96±1.14 11.10±7.88 31.06±22.69 1.95 2.16 2.13 0.67 0.75 0.72
yµ/10

−3 1.36±0.64 7.24±3.45 28.42±13.85 0.64 0.67 0.92 -1.16 -1.02 -0.16
yτ/10

−1 0.51±0.18 2.66±0.93 13.40±4.75 1.43 1.40 2.05 0.85 0.82 1.44
|Vus|/10−1 0.75±0.72 0.77±0.69 0.61±0.59 0.33 0.34 0.27 -2.05 -2.11 -2.75
|Vcb|/10−1 0.65±0.62 0.66± 0.65 0.53±0.54 1.74 1.79 1.57 0.44 0.45 0.35
|Vub|/10−2 0.31±0.36 0.32±0.36 0.20±0.24 0.98 1.01 0.69 -0.01 0.01 -0.36

ηW 0.04±5.56 0.01±2.49 0.04±2.72 0.11 0.02 0.11 -0.05 -0.13 -0.11
∆m2

sol

∆m2
atm

0.09±0.16 0.10± 0.16 0.09±0.16 3.17 3.27 3.21 0.42 0.43 0.41

sin2θPMNS
12 0.17±0.19 0.17±0.19 0.15±0.18 0.56 0.57 0.50 -0.70 -0.66 -0.84

sin2θPMNS
23 0.47±0.29 0.47±0.29 0.48±0.29 1.22 1.24 1.22 0.31 0.30 0.30

sin2θPMNS
13 0.09±0.12 0.10±0.12 0.08±0.11 3.97 4.14 3.44 0.57 0.58 0.51

Table 12: χ2 best fit values of the observables for the SU(5)-inspired flavor symmetry based
models defined in Eqs. (2.46)-(2.48) with fixed values of the model parameters given in Table
11. The best fit values shown in this table correspond to χ2/nobs = 0.73, 0.74 and 1.05 for
p = 2, 1 and 0 respectively. Here TMV=theoretical mean value, TSD=theoretical standard
deviation, ECV=experimental central value and pull is defined in Eq. (3.50).
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4 A Variant Monte Carlo Analysis of the SU(5)-based
Models

The Monte Carlo analysis of Sec. 3 treats the random variables as unbiased set with Gaus-
sian distribution and investigates the likelihood of these models to procreate the experimental
values. The results presented in the previous section show that, on average, the agreement
of the theoretical mean values with the experimental central values is very good, except for
few observables for which the theoretical mean values do not coincide with the experimental
central values but still the experimental central values lie within the range of values predicted
by the theory. Since we have no control over the random variables, the theoretical standard
deviations of each observables are quite large (as can be seen from columns 4 and 5 of Table
6) and of the same order as the theoretical mean values. In this section, we present a modified
version of the Monte Carlo analysis, where the model parameters, εi are not fixed but rather
treated as constrained random parameters. As before, we start with the set of uncorrelated
random variables having Gaussian distribution and analyze the class of models with Yuwaka
coupling matrices given by Eqs. (2.4)-(2.8). We consider a projection of these distributions
onto a subspace of the original space of random parameters defined by the experimental con-
straints. These constraints create correlations between the random parameters, and therefore
their distributions in the constrained subspace are in general different from the original (un-
constrained) distributions. We optimize the model parameters by minimizing the difference
between the complete set {r} of random parameters describing a given class of models, and
the subset {r∗} of random parameters describing the models that satisfy the experimental con-
straints Oi th = Ei exp, which we call the distortion and denote by D ({r∗}, {r}). The condition
of optimization is then

εbest = argmin
ε

D ({r∗}, {r}) . (4.51)

To implement the optimization procedure, we modify the χ2 minimization approach de-
scribed in the previous sections by introducing an additional step which, starting from initial
set of random parameters {r0}, tries to update the current set of random parameters {r} by
minimizing D = D(O,E) +D ({r}, {r0}), where

D(O,E) =
∑(

Oi th − Ei exp
σi exp

)2

(4.52)

accounts for discrepancy between the model prediction and experiment, and the measure of
distortion is chosen to be

D ({r}, {r0}) =
∑ (Cjk − E [Cjk])

2

E [Cjk]
, (4.53)

where Cjk is the number of occurrences of the binned value of the expected cumulative distri-
bution function (cdf) of random variable rj, and the sum is taken over all cdf bins k and all
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Observables TMV±TSD TMV
ECV pull

yu/10
−6 2.57±0.09 1.00 0.00

yc/10
−3 1.40±0.03 1.02 0.39

yt 0.545±0.053 1.02 0.25
yd/10

−4 0.39±0.04 0.99 -0.05
ys/10

−3 0.75±0.03 1.02 0.28
yb/10

−2 4.49±0.22 0.99 -0.02
ye/10

−5 1.64±0.001 1.00 0.18
yµ/10

−3 3.46±0.002 1.00 0.11
yτ/10

−1 0.589±0.001 0.99 -0.09
|Vus| 0.225±0.0009 0.99 -0.29

|Vcb|/10−2 3.75±0.017 1.00 0.04
|Vub|/10−3 3.24±0.03 0.99 -0.01

ηW 0.35±0.004 1.00 0.00

Table 13: Best fit values of the observables for the SU(5)-based GUTs defined in Eqs. (2.4)-
(2.8) by employing the modified Monte Carlo analysis. Here we have considered the case
with tan β = 10 as input. As explained in the text, this results correspond to minimization
of the function D = D(O,E) + D ({r∗}, {r}). This fit corresponds to D(O,E)/nobs = 0.03.
Here TMV=theoretical mean value, TSD=theoretical standard deviation, ECV=experimental
central value and pull is defined in Eq. (3.50).

elements of all random matrices j in the model. The method we use is an iterative procedure
that alternates the χ2 minimization and {r} optimization steps. The best fit results of this
procedure obtained for the SU(5)-based GUTs defined in Eqs. (2.4)-(2.8) is presented in Table
13. Here we have considered the case with tan β = 10 as input. The models parameters that
are extracted from this procedure are given in Eq. (4.54).

ε1 = 0.00106± 0.00001,

ε2 = 0.08023± 0.00044, (4.54)

ε4 = 0.03294± 0.00024.
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Observables TMV±TSD TMV
ECV pull

∆m2
sol

∆m2
atm

0.031 ± 0.0002 1.0 0.01

sin2 θ12 0.31 ± 0.02 0.99 0.17
sin2 θ23 0.39 ± 0.03 0.99 0.23
sin2 θ13 0.024 ± 0.001 1.0 0.12

Table 14: Best fit values of observables using the modified approach of Monte Carlo analysis in
the neutrino sector for SU(5)-based GUTs defined in Eqs. (2.4)-(2.8). The best fit values shown
in this table correspond to χ2/nobs = 0.1. Here TMV=theoretical mean value, TSD=theoretical
standard deviation, ECV=experimental central value and pull is defined in Eq. (3.50).
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Figure 1: Histogram plots showing the distributions of the observables in the charged fermion
sector. Blue (green, pink and purple) plots are the theoretical distributions of the up-type
quarks (down-type quarks, charged leptons and CKM mixing parameters) according to the
SU(5)-based GUTs with 104 occurrences for the case of tan β = 10 corresponding to the model
parameters given in Table 5. Red (magenta, blue and black) curves represent the corresponding
experimental 1σ uncertainty range. For the charged leptons, a relative uncertainty of 1% is
assumed in order to take into account theoretical uncertainties arising from SUSY and GUT
scale threshold effects. The number of bins (N bins) is chosen to be 50.
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Figure 2: Histograms showing theoretical distributions of tan β given by Eq. (2.43) for the
SU(5)-based GUTs with sample size of 104. Left plot corresponds to the case where tan β =

10 and the right plot for tan β = 50. The number of bins (N bins) is chosen to be 50.

Figure 3: Probability density plots for the neutrino mixing parameters for SU(5)-based GUTs.
The left plot is for the mixing angles, sin2 2θij for (ij) = (12), (23) and (13), and the right
plot is for the CP-violating parameter sin δ. In these probability density plots, the area under
the curve within a certain range represents the probability of finding the quantity within that
particular range. Here TMV=theoretical mean value, TSD=theoretical standard deviation.
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Figure 4: Two histogram plots showing the theoretical distributions of log10(∆m
2
sol/∆m

2
atm)

(upper left) and log10(mij) = log10(mi/mj) (upper right; blue, green and orange histograms
are for log10(m1/m3), log10(m1/m2) and log10(m2/m3) respectively). The black curve in the
upper left plot represents the experimental 1σ uncertainty range. The two bottom plots are the
probability density functions for the neutrino mass ratios mi/mj (blue and green plots are for
m1/m3 andm1/m2). In these probability density plots, the area under the curve within a certain
range represents the probability of finding the quantity within that particular range. These
plots are the results from our Monte Carlo analysis for the anarchical neutrino mass models
with normal mass ordering. Here TMV=theoretical mean value, TSD=theoretical standard
deviation. For the two histogram distributions the number of bins is chosen to be 50 and for
all the plots the sample size is taken to be 104.
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Figure 5: Probability density plots for the neutrino mixing parameters for the SU(5)-inspired
flavor symmetry based models defined in Eqs. (2.46)-(2.48). The upper plots are for the mixing
angles, sin2 2θij and the lower plot is for CP-violating parameter sin δ.

Figure 6: The theoretical distributions and the probability density plots of the observables
in the neutrino sector for the SU(5)-inspired flavor symmetry based models defined in Eqs.
(2.46)-(2.48). The notation is the same as in Fig. 4.
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Figure 7: Probability density plots of the experimentally unmeasured quantities in the neutrino
sector, the sine of the Dirac type phase (upper) and neutrino mass ratios m1/m3 (lower left)
and m1/m2 (lower right) by employing the modified Monte Carlo analysis for SU(5)-based
GUTs defined in Eqs. (2.4)-(2.8).

The best fit values presented in Table 13 corresponds to D(O,E) = 0.43. In this mod-
ified approach, all the theoretically predicted values of the observables almost coincide with
the experimental measured values. Compared to the approach explained in the previous sec-
tions, theoretical errors are greatly reduced and comparable to the experimental uncertainties.
Histogram distributions of the observables in the charged fermion sector corresponding to this
result are presented in Fig. 10 in Appendix B.1 and the distributions of the restricted set {r∗}
are shown in Figs. 11, 12 and 13 in Appendix B.2 for the matrices Y 0

U , Y 0
D and Y 0

L respectively.
We also employ this approach in the neutrino sector Eq. (2.10) separately, where the model pa-
rameters εi are absent. The results are presents in Table 14 that correspond to D(O,E) = 0.1.
The histogram distributions of the theoretical predictions of these quantities in the neutrino
sector are shown in Fig. 14 in Appendix B.3 and the modified set {r∗} in Figs. 15 and 16 in
Appendix B.4. The sin δ and the two neutrino mass ratios m1/m3 and m1/m2 are shown in
Fig. 7. This variant of the Monte Carlo analysis shows that with the subspace {r∗} which does
not have much deviation from the original landscape r, excellent agreement of the observables
to the experimental measured values can be achieved. One can in principle apply this modified
approach to the special cases of the SU(5)-based GUTs explained in Sec. 2.2 but we do not
include those analysis here.
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5 Conclusion

In this paper we have extended the idea of anarchy from the neutrino sector to the quark and
charged lepton sectors. This is made possible in the context of SU(5) unified theories where
the 10i fermions mix with vector-like 10α + 10α fermions having GUT scale masses. While all
the Yukawa couplings in these models are of order one, these mixings provide three hierarchical
parameters which explain all the hierarchies in the charged fermion masses and quark mixing
angles. The neutrino sector is immune to such mixings, and remain anarchical. We have also
studied special cases of this general SU(5) setup with smaller number of input parameters –
either 2 or 1 – by introducing a flavor U(1) symmetry that distinguishes the three families of
10i fermions.

We have presented detailed quantitative analysis of these models following a probabilis-
tic approach. The Yukawa couplings of the model are assumed to be uncorrelated random
variables obeying Gaussian distributions. Our Monte Carlo analysis shows that the combined
anarchy-hierarchy scenario gives very good fit to all the fermion masses and mixings. We have
also presented a variant Monte Carlo method where the model parameters are not kept fixed
but have certain distributions constrained by the phenomenological considerations. This ap-
proach is proposed to systematically explore the subspace of the original Gaussian landscape
that becomes consistent with all experimental constraints with greater accuracy. A figure of
merit in this approach is the distortion of the distributions compared to the original Gaussian
distributions. The framework is found to provide a good quality fit.

The theoretical distributions of the observables in the charged fermion sector remain roughly
the same for the various models studied here. There is one important difference in the neutrino
mixing parameters in the flavor U(1) model that distinguishes the 51 from 52,3 fields: The
mixing parameter sin θ13 comes out to be somewhat smaller than sin θ23. Anarchy prefers
normal ordering of neutrino mass spectrum with a mild hierarchy in the masses. A comparison
of the two experimentally unmeasured quantities in the neutrino sector, the mass ratio m1/m2

and the CP-violating parameter sin δ predicted by our statistical analysis for the two different
sets of models studied here is presented in Table 15.
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Quantity Structureless Neutrino Matrix Hierarchical Neutrino Matrix

m1/m2

≤0.01 4.24% 20.38%

≤0.1 33.77% 74.57%

≤0.2 56.23% 88.33%

sin δ

[0,0.25] 8.15% 8.9%

(0.25,0.5] 8.79% 9.82%

(0.5,0.75] 9.68% 10.16%

(0.75,1.0] 23.87% 21.18%

Table 15: Comparison of probabilities of the two unmeasured quantities in the neutrino sector
for the SU(5)-based GUTs with different neutrino mass matrix structures. For the quantity
sin δ, these probabilities in the negative side remain roughly the same in the separate domains
as for the positive side. Square bracket represents the end points are included in the set whereas
for the round bracket the end points are not included.

Performance Computing Center at Oklahoma State University (NSF grant no. OCI-1126330).

Appendices
A Distributions of the observables in the charged fermion sector for

the SU(5)-inspired U(1) flavor models

A.1 Models with two parameters

Here we present the theoretical distributions of the observables in the charged fermion sector
for the SU(5)-inspired U(1) flavor symmetry models with the charge assignment {q1 = 1, q2 =

0, p = 0} defined by Eqs. (2.4)-(2.8) and (2.45) and with two parameters {ε, ε4}. These are
shown in in Fig. 8.
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Figure 8: Histograms showing the theoretical distributions of the observables in the charged
fermion sector in the SU(5)-inspired U(1) flavor symmetric models with the charge assignment
{q1 = 1, q2 = 0, p = 0} defined by Eqs. (2.4)-(2.8) and (2.45) (tan β = 10). The color code is
the same as in Fig. 1.

A.2 Models with single parameter

Here we present the theoretical distributions of the observables in the charged fermion sector
for the SU(5)-inspired U(1) flavor symmetry models with the charge assignment {q1 = 2, q2 =
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Figure 9: Histograms showing the theoretical distributions of the observables in the charged
fermion sector according to the SU(5)-inspired U(1) flavor symmetry based models with the
charge assignment {q1 = 2, q2 = 1, p = 2} defined by Eqs. (2.46)-(2.48) (tan β = 5). The color
code is the same as in Fig. 1.

1, p = 2} defined by Eqs. (2.46)-(2.48) and with a single parameter {ε}. The results are shown
in Fig. 9.
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B Distributions of the observables and random entries resulting from
the modified Monte Carlo analysis

B.1 Distributions of the observables resulting from the subset obtained by the
modified Monte Carlo analysis in the charged fermion sector

Here we present the distributions of the observables in Fig. 10 in the charged fermion sector
that resulted from D = D(O,E)+D ({r∗}, {r}) minimization procedure following the modified
Monte Carlo analysis as explained in Sec. 4 for the SU(5)-based GUTs defined in Eqs. (2.4)-
(2.8). The histogram plots of the observables in Fig. 10 show excellent agreement with the
observation. All these quantities are reproduced roughly within their 1σ range even though
the random matrices remain mostly random with only slight distortions. The modified random
entries that predict these distributions of observables are shown in Figs. 11, 12 and 13.
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B.2 Distributions of the projected random entries resulting from the modified
Monte Carlo analysis in the charged fermion sector

Here we present the distributions of the modified random entries in Fig. 11 for up-quark, 12
for down-quark 13 and for charged lepton matrices. Theoretical distributions associated with
these modified random entries are shown in Fig. 10. These are the result of D = D(O,E) +

D ({r∗}, {r}) minimization procedure following the modified Monte Carlo analysis as explained
in Ssec. 4 for the SU(5)-based GUTs defined in Eqs. (2.4)-(2.8). From Figs. 11, 12 and 13
one can see that majority of the random entries of the matrices, even after the minimization
process exhibit Gaussianity and remain similar in distribution as the unbiased set. The (3,3)
element in the up-type quark Yukawa matrix is the only entry that shows somewhat distorted
distribution. This analysis shows that the subspace of the random variables that has excellent
agreement with experimental data is quite broad.
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Figure 10: Histogram distributions of the observables in the charged fermion sector according
to the modified Monte Carlo method for SU(5)-based GUTs defined in Eqs. (2.4)-(2.8) with
tan β = 10. Color code is the same as Fig. 1. Note the change of scales compared to Fig. 1 for
few of the plots (yu×105 → yu×106, ys×102 → ys×103, ye×104 → ye×105, yµ×102 → yµ×103,
|Vcb| → |Vcb| × 102, |Vub| → |Vub| × 103).
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B.3 Distributions of the neutrino observables by applying the modified Monte
Carlo analysis

Here we present the theoretical distributions of the neutrino observables by employing the
modified Monte Carlo analysis for the SU(5)-based GUTs where the neutrino matrix if given
by Eq. (2.10).
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B.4 Distributions of the modified random entries in the neutrino sector by ap-
plying the modified Monte Carlo analysis

Here we present the distributions of the biased random entries in the neutrino sector. These
random entries are the result by employing the modified Monte Carlo analysis. These random
entries produce the theoretical distributions of the neutrino observables that are presented in
Fig. 14. Modified random entries in the Dirac Yukawa coupling matrix are presented in Fig
15 and in Fig. 16 for the entries in the right-handed Yukawa couplings. All these entries get
barely modified from the unbiased pattern.
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Figure 11: Distributions of the O(1) random entries in the matrix Y 0
U from the modified Monte

Carlo analysis that produce the observables in Fig.10 for tan β = 10. The first nine of the plots
are for the real parts and the next nine for imaginary parts of the matrix, Y 0

U . For all these
plots sample size and number of bins are taken to be 104 and 50 respectively.41



Figure 12: Distributions of the O(1) random entries in the matrix Y 0
D from the modified Monte

Carlo analysis that produce the observables in Fig.10 for tan β = 10. The first nine of the plots
are for the real parts and the next nine for imaginary parts of the matrix, Y 0

D. For all these
plots sample size and number of bins are taken to be 104 and 50 respectively.42



Figure 13: Distributions of the O(1) random entries in the matrix Y 0
L from the modified Monte

Carlo analysis that produce the observables in Fig.10 for tan β = 10. The first nine of the plots
are for the real parts and the next nine for imaginary parts of the matrix, Y 0

L . For all these
plots sample size and number of bins are taken to be 104 and 50 respectively.43



Figure 14: Histogram distributions of the observables in the neutrino sector according to the
modified Monte Carlo approach for SU(5)-based GUTs with structure-less neutrino mass ma-
trix. The top histogram plot (dark cyan) shows the theoretical distribution of the quantity
∆m2

sol/∆m
2
atm and the bottom three plots (red) are for the mixing parameters sin2 θij. The

black curves represent the experimental 1σ ranges. The sample size is taken to be 104 and
number of bins is taken to be 50.
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Figure 15: Distributions of the O(1) random entries in the matrix Y 0
N from the modified Monte

Carlo approach that produce the observables in Fig.14.
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Figure 16: Distributions of the O(1) random entries in the matrix Y 0
R from the modified Monte

Carlo approach that produce the observables in Fig.14.
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