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Standard QCD resummation techniques provide precise predictions for the spectrum and the
cumulant of a given observable. The integrated spectrum and the cumulant differ by higher-order
terms which, however, can be numerically significant. In this paper we propose a method, which
we call the σ-improved scheme, to resolve this issue. It consists of two steps: (i) include higher-
order terms in the spectrum to improve the agreement with the cumulant central value, and (ii)
employ profile scales that encode correlations between different points to give robust uncertainty
estimates for the integrated spectrum. We provide a generic algorithm for determining such profile
scales, and show the application to the thrust distribution in e+e− collisions at NLL′+NLO and
NNLL′+NNLO.

I. INTRODUCTION

Quantum chromodynamics (QCD) is essential for un-
derstanding data from collider experiments. Countless
measurements at the Large Hadron Collider (LHC), from
Higgs coupling measurements to new physics searches,
rely on precision QCD predictions. The success of these
programs has been enabled through remarkable advances
in the community’s ability to calculate cross sections with
a level of precision that keeps pace with constantly im-
proving experimental measurements. This will continue
to be the case for the remainder of the LHC program and
for future colliders.

This paper focuses on predictions for observables in
QCD that require resummation of large logarithms. Such
observables are standard at collider experiments, from
event and jet shape observables to classical observables
like qT , the transverse momentum of the vector boson in
Drell-Yan production. The most precise calculations of
these observables match resummed and fixed order re-
sults to obtain an accurate prediction across the entire
range of the observable. However, there is a common in-
consistency in resummed predictions, one which we ad-
dress in this work.

Resummed calculations for a generic observable τ make
two predictions: the spectrum dσ/dτ (cross section dif-
ferential in τ), and the cumulant Σ(τ) (cross section inte-
grated over τ). Using standard resummation techniques,
these predictions differ by higher-order terms (see, e.g.,
Ref. [1]), ∫ τ

0

dτ ′
dσ

dτ ′
= Σ(τ) + higher order , (1)

which can be numerically significant. An equivalent form
of the inconsistency is that the derivative of the cumulant
is inconsistent with the spectrum: dσ/dτ = dΣ(τ)/dτ +
higher order.

Each prediction is internally consistent and valid: the
spectrum accurately predicts the value of the differen-
tial cross section and its uncertainties point-by-point in
τ , while the cumulant accurately predicts the integrated

cross section and its uncertainties. However, standard
resummation methods do not accurately model the long-
range correlations in the spectrum, and when the spec-
trum is integrated this leads to the inconsistency with
the cumulant. Taking τ →∞ in Eq. (1), a simple state-
ment is that the integral of the spectrum does not give
the correct inclusive cross section and its uncertainties
at the relevant fixed order accuracy. On the other hand,
while these quantities are correctly predicted by the cu-
mulant, it is a poor model of the short-range uncertainty
correlations, and so its derivative fails to accurately pre-
dict the point-by-point uncertainties in the spectrum. We
will resolve this basic problem, making the spectrum and
cumulant predictions consistent.

The inconsistency in Eq. (1) arises from the fact that
the renormalization and factorization scales are chosen
(by necessity) to be τ -dependent. We will show that a
simple constraint on these τ -dependent scales will render
the spectrum and cumulant consistent, allowing the spec-
trum to correctly predict the inclusive cross section and
its uncertainties. We will provide a generic algorithm,
which we call Bolzano’s algorithm, to choose scales that
satisfy this constraint.

The layout of this paper is as follows. In Sec. II, we
discuss the spectrum and cumulant predictions and the
source of the inconsistency in Eq. (1) in detail. In Sec. III,
we present a technique to make the spectrum and cumu-
lant consistent, and in Sec. IV we implement the solu-
tion for the example of the thrust distribution in e+e−

collisions. We conclude in Sec. V and describe a specific
implementation of the algorithm in Appendix A.

II. THE RESUMMED SPECTRUM,
CUMULANT, AND THEIR UNCERTAINTIES

Resummed calculations generally operate within one
of two frameworks: soft-collinear effective theory
(SCET) [2–5], or direct QCD (dQCD) (see, e.g., Refs. [6,
7]). Both frameworks provide equivalent predictions,
built by factorizing the cross section in terms of more
universal matrix elements that depend on a restricted
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FIG. 1: Comparison of the cumulant with the integrated resummed spectrum for thrust in e+e− collisions at NLL′+NLO and
at NNLL′+NNLO. The cumulant matches onto the inclusive cross section at large τ , while the standard integrated spectrum
differs in both value and uncertainty. The integrated spectrum with the σ-improved scheme gives a consistent prediction.

set of dynamics and scales [1, 8–10]. The scales at which
the factorization occurs are handles by which uncertain-
ties can be assigned; this process is called scale variation.
There are many schemes to perform scale variation, and
the assessment of uncertainties can be subjective. How-
ever, by comparing different orders of the calculation (e.g.
NLL′+NLO versus NNLL′+NNLO) to get a sense of con-
vergence, one can judge the robustness of an uncertainty
scheme.

One feature common to factorization theorems for re-
summed calculations is that some factorization scales are
naturally observable-dependent. For example, if we have
a resummed cross section for an e+e− dijet event shape
τ , the factorization theorem for the spectrum in SCET
has the form

dσ

dτ
= H(Q,µH)UH(µH , µ0)

[
J(Q, τ, µJ)UJ(µJ , µ0)

]
⊗
[
J(Q, τ, µJ)UJ(µJ , µ0)

]
⊗
[
S(τ, µS)US(µS , µ0)

]
,

(2)

where Q is the center of mass energy, and H, J , and
S are the hard, jet, and soft functions with correspond-
ing evolution factors UH , UJ , and US , and factorization
scales µH , µJ , and µS [11–13]. The evolution factors
sum the large logarithms of the factorization scales to the
arbitrary common scale µ0, and the factorization scales
are chosen to be similar to the “natural” scales in the
functions. In this example, this means that the jet and
soft factorization scales will be τ -dependent; we refer to
them as profile scales (see, e.g., Refs [14–24] for a discus-
sion of profile scales in various contexts). A construction
in dQCD will give the same essential features (see, e.g.,
Refs. [13, 25]).

The spectrum and cumulant predictions for a given ob-
servable each have de facto features guaranteed by their
definitions. For the spectrum, robust matching to fixed
order calculations in the large τ limit (where logarithms

are no longer large) will yield accurate predictions for the
distribution. This feature is nontrivial, as the singular
(which is resummed) and nonsingular (which is typically
not) components of the spectrum have large cancellations
at large τ , and the matching must preserve these cancella-
tions. This is tantamount to the statement that one must
be careful when, and how, the resummation is turned off
at large τ . Additionally, robust uncertainty models will
yield accurate uncertainty estimates point-by-point in τ .

For the cumulant, consistent matching to fixed order
predictions will ensure the following condition is met:

Σ(τ →∞;µi)→ σincl(µ) , (3)

where µi represents the set of factorization scales and µ
is the renormalization scale (or represents the renormal-
ization and factorization scales for hadronic collisions).
That is, the fixed order inclusive cross section is recov-
ered in the large τ (inclusive) limit, which is precisely
where fixed order predictions are robust. This implies
that the cumulant is accurately modeling the long-range
scale uncertainties in the cross section, while the spec-
trum is accurately modeling the short-range scale uncer-
tainties.

These features of the spectrum and cumulant become
inconsistent because of the τ -dependence in the factor-
ization scales (see, e.g., Ref. [1]). Consider the spectrum
and cumulant before scales are chosen: by construction
they obey the relation

∂

∂τ
Σ(τ ;µi) =

dσ

dτ
(µi) . (4)

Because the only τ dependence is through the explicit τ ,
we can convert the partial derivative to a full derivative
without penalty. However, once we choose factorization
scales to be τ -dependent (e.g., µJ and µS), we have

d

dτ
=

∂

∂τ
+

dµJ
dτ

∂

∂µJ
+

dµS
dτ

∂

∂µS
. (5)
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This introduces a difference between the cumulant
derivative and the spectrum:

d

dτ
Σ(τ ;µi)−

dσ

dτ
(µi) =

∑
F=J,S

dµF
dτ

∂

∂µF
Σ(τ ;µi) . (6)

Because the scale dependence cancels through the resum-
mation order achieved, this difference is strictly higher
order. This nonzero difference shows explicitly that the
integral of the spectrum is not equal to the inclusive cross
section; rather it is∫

dτ
dσ

dτ
(µi) = σincl(µ)−

∑
F=J,S

∫
dµF

∂

∂µF
Σ(τ ;µi) .

(7)

This last term can be numerically significant even though
it is higher order, as it accumulates over the entire spec-
trum. Furthermore, the value of this term will generally
vary for different scale variations, implying that the un-
certainty of the integrated spectrum can also be different
from the fixed order value.

In Fig. 1, we compare the cumulant to the inte-
grated spectrum for thrust in e+e− collisions, at both
NLL′+NLO and NNLL′+NNLO [26–28]. The plots illus-
trate the discrepancy between the two predictions: the
integrated spectrum does not match the cumulant in cen-
tral value or uncertainty over most of the range in τ . In
particular, at large τ , the integrated spectrum does not
match the inclusive cross section or its uncertainties.

The uncertainties are estimated through two types of
scale variations: those that probe the size of the loga-
rithms being resummed (resummation variations), and
those that probe the absolute size of the scales, including
the renormalization scale (fixed order variations). Re-
summation variations probe the size of the logarithms of
scale ratios by varying the profile scales. For the case of
thrust, e.g., the logarithms of scale ratios are of the form

ln
µ2
H

µ2
J

, ln
µ2
J

µ2
S

, (8)

and there is a canonical relationship between the scales,
µ2
J = µH µS , that can be used to define the µJ profile in

terms of the µS profile. One may choose the following
resummation scale variations:

• Vary µS by a factor fS(τ) (and its inverse).

• Vary µJ by a factor fJ(τ) and µS by f2J(τ), keeping
the canonical relationship intact.

Additionally, one may choose to vary the profile shapes
to quantify the uncertainty associated with the choice of
profile scales. For the fixed order variations, a standard
procedure is to vary all scales by a common factor of 2 or
1/2. This maintains the size of the logarithms but varies
the renormalization scale dependence in the resummation
as well as the matching.

III. A SPECTRUM WITH INTEGRATED
ACCURACY

In this section we describe the general approach used
in this work to obtain consistent predictions for the spec-
trum and cumulant. As discussed above, these quantities
have complementary advantages and disadvantages, and
our method is a way of capturing the advantages of both.
It consists of two steps:

1. Add higher-order terms to the resummed spectrum
to improve the agreement with the inclusive cross
section.

2. Asses the resummation uncertainty using profile
scales that preserve the integrated value of the spec-
trum.

The first step resolves the numerical difference between
the integrated spectrum and the cumulant, which can be
outside the uncertainties of either prediction (see Fig. 1).
The higher-order terms are also useful to ensure the spec-
trum matches the inclusive cross section for the cen-
tral, up, and down scale variations (each with a different
renormalization scale µ).

The second step allows for resummation variations to
be fully uncorrelated with the uncertainty in the inclusive
cross section, which is governed by fixed order variations.
Note that this is not guaranteed using standard profile
scales (as one can see in Fig. 1, standard profile varia-
tions lead to large uncertainties in the integrated spec-
trum). We have devised an algorithm to generate such
cross section-preserving profile scales, requiring them to
satisfy basic criteria such as monotonicity, smoothness,
and boundedness.

The following subsections describe these two steps in
further detail.

A. Step 1: Higher-Order Terms

We add the following higher-order terms to the stan-
dard resummed spectrum:

δσR(τ ; µ̃i) = κ(τ)
( d

dτ
Σ(τ ; µ̃i)−

dσ

dτ
(µ̃i)

)
, (9)

which restore the inclusive cross section in the spectrum,∫
dτ
[dσ

dτ
(µi) + δσR(τ ; µ̃i)

]
= σincl(µ) . (10)

Above, the µ̃i are special profiles with two features. First,
since the difference between the spectrum and the deriva-
tive of the cumulant is proportional to dµ̃i/dτ , we want
these profiles to have smooth derivatives. Second, they
are designed to turn off the resummation earlier than the
standard profiles. This ensures that the cancellation be-
tween the nonsingular and resummed singular parts of
the matched spectrum are preserved in the tail region of
the distribution.
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The function κ(τ) is a smooth function of τ that goes
to zero at large τ and whose maximum is an O(1) value.
Since κ(τ) enables us to tune the effect of the higher
order terms, we will take them to be such that the inte-
gral of the spectrum exactly matches the inclusive cross
section for all fixed order scale variations (variations of
the matching scale). This ensures that the fixed order
variations preserve the inclusive cross section and its un-
certainties. Of course, tuning the higher order terms to
precisely match the inclusive cross section is not neces-
sary, but it simplifies the latter step of producing profiles
that preserve the inclusive cross section (e.g., it allows
the straightforward identification of the central scale).

Including the higher-order terms, the spectrum is

dσR
dτ

(µi) =
dσ

dτ
(µi) + δσR(τ ; µ̃i) , (11)

where dσ/dτ is the standard resummed spectrum (with-
out any higher-order terms added). We will call dσR/dτ
the σ-improved spectrum. A similar procedure was
adopted in Ref. [29]. For the thrust example discussed
in Sec. IV, we give the explicit form of µ̃i and κ(τ) in
Appendix A.

B. Step 2: Bolzano’s Algorithm

Finding profile scales µi that give a spectrum whose
integral is the inclusive cross section can be phrased in
terms of solving an integral equation:∫

dτ
dσR
dτ

(µi) = σincl , (12)

where the renormalization scale dependence of the inclu-
sive cross section is implicit. Given the complex depen-
dence of the spectrum on the factorization scales, an ana-
lytic approach is not feasible but we can devise a numeric
algorithm to find profile scales that solve the equation to
within a negligible tolerance. We will discuss the algo-
rithm in terms of finding profile scales µS(τ), but the
same ideas carry through straightforwardly for µJ(τ).

We will identify profile scales obeying the following
constraints:

• µS(τ) is monotonic and smooth.

• µS(τ) has fixed shapes near the endpoints.

• µS(τ) is bounded; µmin
S (τ) < µS(τ) < µmax

S (τ) .

The first condition ensures the smoothness of the spec-
trum but not necessarily its monotonicity, which should
be further checked.

The second condition imposes canonical profile shapes
near the endpoints. In the low τ region, nonperturbative
effects on the resummed distribution can be large and
often determine the profile scales [12, 30–33]. Thus, for
τ < τNP, we fix the profile to a given shape normalized
by the value of the profile at τNP. Similarly, in the large
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FIG. 2: Our method to find solutions to Eq. (12) is based on
determining profiles that give an inclusive cross section less
than (down-type profiles) or greater than (up-type profiles)
the true inclusive cross section, and then identifying for each
pair the combination that solves the equation and is mono-
tonic, smooth, and bounded.

τ region, to preserve the cancellations between singular
and nonsingular terms, we fix the shape of profiles for
τ > τtail. We have the freedom to change the profile
scales in the range τNP < τ < τtail.

The third condition ensures that the profile scales pro-
duce reasonable uncertainty estimates, consistent with
convergence between different orders of resummed per-
turbation theory and the relative size of the singular and
non-singular contributions. In practice, we choose the
boundary functions µmin

S (τ) and µmax
S (τ) to be the stan-

dard minimum and maximum variations from the central
profile, so that the goal is to fill the standard band with
profiles µS(τ) that solve Eq. (12).

Our strategy to generate profile scales satisfying these
constraints is based on the intermediate value theorem
(also known as Bolzano’s theorem), and we will refer to
it as Bolzano’s algorithm. Bolzano’s theorem states that
if a continuous function takes values of opposite sign at
the endpoints of an interval, then there is at least one
point within the interval where the function vanishes:

continuous f : [a, b]→ R, f(a) < 0 < f(b)

⇒ ∃ c ∈ (a, b) such that f(c) = 0 . (13)

Suppose we have two profiles µdS(τ) and µuS(τ) which
give spectra that integrate to values below and above the
inclusive cross section, respectively:∫

dτ
dσR
dτ

(µdS) = σdincl < σincl,∫
dτ

dσR
dτ

(µuS) = σuincl > σincl . (14)

Then, defining

dσ
(d,u)
R (α)

dτ
= α

dσR
dτ

(µuS) + (1− α)
dσR
dτ

(µdS) , (15)
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FIG. 3: Convergence of the thrust σ-improved spectrum in the peak (upper left panel) and transition (upper right panel) regions,
and of the cumulant (lower left panel) and integrated σ-improved spectrum (lower right panel). The slight non-convergence in
the peak region is an artifact of pinching in the resummation scale dependence and exists also in the standard case. In contrast
to the standard case, the integrated σ-improved spectrum exhibits the convergence properties of the cumulant, as expected.

Bolzano’s theorem guarantees that there exists an α0 ∈
[0, 1], in this case

α0 =
σincl − σdincl
σuincl − σdincl

, (16)

such that ∫
dτ

dσ
(d,u)
R (α0)

dτ
= σincl . (17)

The corresponding profile scale is found by inverting the
scale dependence of the spectrum.

Alternatively, one can also use the same concept to
directly solve for profile functions that give a spectrum
with the inclusive cross section. Defining

µ
(d,u)
S (α) = αµuS(τ) + (1− α)µdS(τ) , (18)

α smoothly interpolates between the down-type profile
µdS and up-type profile µuS in Eq. (14), and thus there

exists an α∗ for which∫
dτ

dσR
dτ

(
µ
(d,u)
S (α∗)

)
= σincl . (19)

This approach does not require inverting the spectrum to
find the profile, but it requires solving for α∗ numerically.

Let us give a formulation of Bolzano’s algorithm:

1. Generate a set of smooth profiles that have fixed
shapes near the endpoints.

2. Sort the profiles into down-type and up-type.

3. For each pair of down-type and up-type profiles,
determine the combination whose spectrum inte-
grates to the inclusive cross section.

4. Select the solutions that are correctly bounded and
monotonic.

5. Define a default central profile, if not assumed to
be the standard central profile.
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FIG. 4: Uncertainties of the thrust integrated spectrum from
resummation variations in both the standard and σ-improved
schemes and from fixed order variations.

This is illustrated in Fig. 2. Note that, in the first step,
we include profiles that are slightly non-monotonic or
slightly outside the bounds since they may still lead to
monotonic and bounded solutions. Particular implemen-
tations of the algorithm are discussed in Appendix A.

IV. EXAMPLE: THRUST

In this section we apply the σ-improved scheme to the
resummed thrust distribution in e+e− collisions [26]. We
define thrust as

τ = 1−max
~n

∑
i |~pi · ~n|∑
i |~pi|

, (20)

where ~pi are the three-momenta of the particles in the
event and the maximization over unit three-vectors ~n de-
termines the thrust axis. The limit τ → 0 corresponds
to two collimated back-to-back jets. The distribution of
τ depends on different energy scales such as the collision
center of mass energy Q, the typical jet mass Q

√
τ , and

the typical energy of soft emissions Qτ . As discussed
in Sec. II, logarithms of ratios of these scales appear in
the fixed order prediction of the spectrum and cumulant,
and, near the threshold region τ → 0, these logarithms
become large and have to be resummed.

Figure 1 shows the integrated σ-improved spectrum
at NLL′+NLO and NNLL′+NNLO [27, 28]. The
σ-improved spectrum is consistent with the cumulant:
it integrates to the inclusive cross section and repro-
duces its uncertainty. Convergence is also preserved in
the new scheme as shown in Fig. 3. The upper panels
show the peak and transition regions of the σ-improved
spectrum at NLL′+NLO and NNLL′+NNLO. The lower
panels show a comparison between the NLL′+NLO and
NNLL′+NNLO predictions of the cumulant and of the
integrated σ-improved spectrum. These are the same
curves in Fig. 1 but are reproduced here to emphasize

that the integrated σ-improved spectrum has the conver-
gence properties of the cumulant.

We stress that the point-by-point uncertainties in the
spectrum are equivalent to the standard case since the
profile variations obtained with the Bolzano algorithm
fill the standard fiducial band. However, in contrast to
the standard case, each profile variation obtained with
the Bolzano algorithm preserves the inclusive cross sec-
tion, and thus encodes correlations between uncertainties
at different points of the spectrum. This leads to the sig-
nificant difference in uncertainties between the standard
and σ-improved integrated spectra shown in Fig. 1. We
illustrate this further in Fig. 4 by comparing the uncer-
tainty ∆(τ) of the integrated spectrum from the resum-
mation variations in both schemes as well as from the
fixed order variations.

As expected, the resummation uncertainty in the
σ-improved scheme goes to zero at large τ , leaving only
the fixed order uncertainty. Thus, in the σ-improved
scheme, the resummation uncertainty is fully uncorre-
lated with the inclusive cross section, while the fixed or-
der uncertainty is fully correlated with the inclusive cross
section. This makes it straightforward to build a covari-
ance matrix from uncertainties in different bins of the
observable. For example, in the case of two bins, the
resummation and fixed order uncertainties exactly map
into migration and yield uncertainties defined in Ref. [34]
(see also Refs. [35, 36]), and they are given in Fig. 4 for
the 2-jet bin defined by the interval [0, τ ].

V. CONCLUSIONS

Resummed predictions for cumulants and spectra of
generic QCD observables are often inconsistent. Even
though the difference is formally higher-order, it can be
numerically relevant, and furthermore, uncertainty cor-
relations across the spectrum are not properly included
in standard resummation schemes.

In this paper, we defined the σ-improved scheme, a
two-step procedure that makes cumulants, spectra, and
their uncertainties consistent. In the first step, we pro-
vided a prescription to add higher-order terms that make
the value for the integrated spectrum consistent with the
inclusive cross section. In the second step, we devised
Bolzano’s algorithm to select profile scales that preserve
the inclusive cross section, thus encoding proper uncer-
tainty correlations across the spectrum. We applied the
scheme to the thrust distribution at NLL′+NLO and
NNLL′+NNLO, demonstrating consistent predictions for
the cumulant and the integrated spectrum (Fig. 1), good
convergence properties (Fig. 3), and robust uncertainty
estimation (Fig. 4). As discussed in Sec. IV, in the
σ-improved scheme, resummation and fixed order uncer-
tainties exactly map onto migration and yield uncertain-
ties, and thus a covariance for different bins of an observ-
able can be straightforwardly computed [34].

The σ-improved scheme defines a general strategy
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which can be applied to other observables. For exam-
ple, it would be interesting to consider the Higgs trans-
verse momentum and C−parameter distributions [37–
42]. Furthermore, we have implemented a simple version
of Bolzano’s algorithm; improvements to the computa-
tional efficiency and to the matching of the integrated
spectrum and cumulant (e.g., by matching at additional
intermediate points) can be pursued. In this paper, we
worked with resummation within the SCET framework,
but the same techniques can be applied to resummed
spectra in dQCD.
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Appendix A: Implementation Details

In this appendix we discuss an implementation of the
σ-improved scheme for the thrust distribution.

We first added higher-order terms to the thrust spec-
trum to restore consistency between its integral and the
inclusive cross section, according to Eqs. (9) and (11).
The explicit form of the suppression factor κ(τ) we used
is given by

κ(τ)NLL′ = 0.90625(1− tanh(8τ − 0.56)) , (A1)

κ(τ)NNLL′ = 0.8475(1− tanh(8τ − 0.56)) . (A2)

For the profiles µ̃S,J(τ) in the higher-order terms in
Eq. (9), we used the form

µ̃S(τ) = 0.003 + 0.4985(1 + tanh(10τ − 2)) , (A3)

µ̃J(τ) =
√
Qµ̃S(τ) , (A4)

where Q is the center of mass energy.
We now discuss Bolzano’s algorithm, based on the so-

lution presented in Sec. III B. The goal is to fill a band,
defined by boundary functions µmin

i (τ) and µmax
i (τ), with

profiles whose integrated spectrum is equal (within tol-
erances) to the inclusive cross section. Additionally, we
require that the profiles are monotonic, smooth (at least
C1), and have fixed shapes near the endpoints.

As mentioned in Sec. III B, we will solve Eq. (12) in
the subdomain [τNP,∞), assuming that the contribution
to the total cross section from [0, τNP) is given by the
cumulant. Thus, Eq. (12) is replaced by

σincl = Σ
(
τNP;µi(τNP)

)
+

∫ ∞
τNP

dτ
dσR
dτ

(
µi
)
. (A5)

The shape of profiles in the region τ ≤ τNP is fixed by
the value at τNP as

µi(τ) =
µi(τNP)

µc(τNP)
µc(τ) , 0 ≤ τ < τNP, (A6)

so that the cumulant depends on µi(τNP). Above, µc(τ)
is the default central profile, here taken to be the stan-
dard central profile. In general, Eq. (A5) is no longer
linear in the spectrum, and the solution in Eq. (16) is
invalid. However, if we consider profiles with the same
value at τNP, the boundary term is simply a constant,
and we recover, with appropriate redefinition, the linear
system solved by Eq. (16). The complete set of solutions
that fill the bounding functions can then be obtained by
considering various values of µi(τNP).

The first step is to generate profiles, and it is done by
interpolating a curve through randomly sampled points.
Gridded sampling can also be done, but may be less ef-
ficient given the unknown distribution of solutions and
the high dimensionality required for coverage. To obtain
solutions with the properties listed below Eq. (12), the
generated profiles have the following properties:

1. Fixed shapes near endpoints. In particular, all pro-
files have the same value at τNP.

2. Roughly bounded: µmin
i . µi . µmax

i .

3. Roughly monotonic: 0 . dµi

dτ .

4. Smooth and artifact-free.

The first property enforces standard behavior in
the non-perturbative and tail regions, as discussed in
Sec. III B. We require that solutions obtained in the sub-
domain connect smoothly at τNP to the functional form
given in Eq. (A6). In the tail region, imposing strict
boundedness,

µmin
i (τ) ≤ µi(τ) ≤ µmax

i (τ) , τ > τtail, (A7)

is sufficient for obtaining solutions that reduce to unity
since both boundary functions obey µmin,max

i (τ) → 1.
Note that in standard approaches, additional uncertainty
is accounted for by varying the value of τtail. Here, this
uncertainty is effectively accounted for by appropriate
choice of the boundary function µmax

i (τ).
The second property follows from the µ-range of the

chosen sampling regions. Note that profiles that are
slightly unbounded or non-monotonic may still lead to
solution profiles that are bounded and monotonic. For
example, considering profiles outside the boundary func-
tions may be useful for obtaining solutions close to (and
within) the boundaries. On the other hand, profiles that
are too far outside the bounds, or are highly oscillatory,
are unlikely to yield acceptable solutions, and are not
considered.

The third and fourth properties require a careful choice
of the τ -range of sampling regions, and of the interpo-
lation method employed. For example, we may avoid
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highly oscillatory profiles by controlling the number,
range and locations of the sampling regions, or by us-
ing a monotone interpolation method. Similarly, we are
careful to choose sampling and interpolation strategies
that do not lead to profiles that exhibit artifacts such as
kinks, nodes, and gaps.

Steps two through five described at the end of Sec. III B
are straightforward and we will not discuss them further.

In our basic implementation of the algorithm, it takes
O(0.01) seconds on a standard laptop to generate one
profile solution. We also obtain similar efficiencies when
solving directly for the profiles using Eq. (18) and a nu-
merical root-finding method. Note that the efficiency

depends not only on the solver but also on the strategy
for generating initial candidate profiles, and the guide-
lines for step one described above are useful to increase
the yield of solutions with the required properties. Inter-
estingly, there may be small regions within the boundary
functions that are hard to fill with solutions, demanding
precise correlations at small and large τ to yield the right
cross section while maintaining monotonicity. These gaps
can be supplemented by focusing the initial sampling re-
gions, but in practice, the remaining gaps are not large
enough to significantly impact the point-by-point uncer-
tainty estimation.

[1] L. G. Almeida, S. D. Ellis, C. Lee, G. Sterman, I. Sung,
and J. R. Walsh, JHEP 04, 174 (2014), 1401.4460.

[2] C. W. Bauer, S. Fleming, and M. E. Luke, Phys. Rev.
D63, 014006 (2000), hep-ph/0005275.

[3] C. W. Bauer, S. Fleming, D. Pirjol, and I. W. Stewart,
Phys. Rev. D63, 114020 (2001), hep-ph/0011336.

[4] C. W. Bauer and I. W. Stewart, Phys.Lett. B516, 134
(2001), hep-ph/0107001.

[5] C. W. Bauer, D. Pirjol, and I. W. Stewart, Phys. Rev.
D65, 054022 (2002), hep-ph/0109045.

[6] S. Catani, L. Trentadue, G. Turnock, and B. R. Webber,
Nucl. Phys. B407, 3 (1993).

[7] H. Contopanagos, E. Laenen, and G. F. Sterman, Nucl.
Phys. B484, 303 (1997), hep-ph/9604313.

[8] G. Sterman and M. Zeng, JHEP 05, 132 (2014),
1312.5397.

[9] M. Bonvini, S. Forte, M. Ghezzi, and G. Ridolfi, Nucl.
Phys. Proc. Suppl. 241-242, 121 (2013), 1301.4502.

[10] M. Bonvini, S. Forte, M. Ghezzi, and G. Ridolfi, Nucl.
Phys. B861, 337 (2012), 1201.6364.

[11] C. W. Bauer, S. P. Fleming, C. Lee, and G. F. Sterman,
Phys. Rev. D78, 034027 (2008), 0801.4569.

[12] A. Hornig, C. Lee, and G. Ovanesyan, JHEP 05, 122
(2009), 0901.3780.

[13] C. Lee and G. F. Sterman, Phys. Rev. D75, 014022
(2007), hep-ph/0611061.

[14] Z. Ligeti, I. W. Stewart, and F. J. Tackmann, Phys. Rev.
D78, 114014 (2008), 0807.1926.

[15] R. Abbate, M. Fickinger, A. H. Hoang, V. Mateu,
and I. W. Stewart, Phys. Rev. D83, 074021 (2011),
1006.3080.

[16] C. F. Berger, C. Marcantonini, I. W. Stewart, F. J.
Tackmann, and W. J. Waalewijn, JHEP 04, 092 (2011),
1012.4480.

[17] D. Kang, C. Lee, and I. W. Stewart, Phys. Rev. D88,
054004 (2013), 1303.6952.

[18] S. Gritschacher, A. H. Hoang, I. Jemos, and
P. Pietrulewicz, Phys. Rev. D88, 034021 (2013),
1302.4743.

[19] H.-M. Chang, M. Procura, J. Thaler, and W. J.
Waalewijn, Phys. Rev. D88, 034030 (2013), 1306.6630.

[20] A. Jain, M. Procura, B. Shotwell, and W. J. Waalewijn,
Phys. Rev. D87, 074013 (2013), 1207.4788.

[21] S. Alioli, C. W. Bauer, C. J. Berggren, A. Hornig, F. J.
Tackmann, C. K. Vermilion, J. R. Walsh, and S. Zuberi,

JHEP 09, 120 (2013), 1211.7049.
[22] C. W. Bauer, F. J. Tackmann, J. R. Walsh, and S. Zuberi,

Phys. Rev. D85, 074006 (2012), 1106.6047.
[23] T. T. Jouttenus, I. W. Stewart, F. J. Tackmann, and

W. J. Waalewijn, Phys. Rev. D88, 054031 (2013),
1302.0846.

[24] X. Liu and F. Petriello, Phys. Rev. D87, 094027 (2013),
1303.4405.

[25] C. F. Berger, T. Kucs, and G. F. Sterman, Phys. Rev.
D68, 014012 (2003), hep-ph/0303051.

[26] E. Farhi, Phys. Rev. Lett. 39, 1587 (1977).
[27] S. Fleming, A. H. Hoang, S. Mantry, and I. W. Stewart,

Phys. Rev. D77, 074010 (2008), hep-ph/0703207.
[28] M. D. Schwartz, Phys. Rev. D77, 014026 (2008),

0709.2709.
[29] S. Alioli, C. W. Bauer, C. Berggren, F. J. Tackmann, and

J. R. Walsh, Phys. Rev. D92, 094020 (2015), 1508.01475.
[30] A. H. Hoang and I. W. Stewart, Phys. Lett. B660, 483

(2008), 0709.3519.
[31] G. P. Korchemsky and S. Tafat, JHEP 10, 010 (2000),

hep-ph/0007005.
[32] G. P. Korchemsky and G. F. Sterman, Nucl. Phys. B555,

335 (1999), hep-ph/9902341.
[33] C. F. Berger and G. F. Sterman, JHEP 09, 058 (2003),

hep-ph/0307394.
[34] I. W. Stewart and F. J. Tackmann, Phys. Rev. D85,

034011 (2012), 1107.2117.
[35] I. W. Stewart, F. J. Tackmann, J. R. Walsh, and S. Zu-

beri, Phys. Rev. D89, 054001 (2014), 1307.1808.
[36] S. Gangal and F. J. Tackmann, Phys. Rev. D87, 093008

(2013), 1302.5437.
[37] A. H. Hoang, D. W. Kolodrubetz, V. Mateu, and I. W.

Stewart, Phys. Rev. D91, 094017 (2015), 1411.6633.
[38] A. H. Hoang, D. W. Kolodrubetz, V. Mateu, and I. W.

Stewart, Phys. Rev. D91, 094018 (2015), 1501.04111.
[39] T. Becher, M. Neubert, and D. Wilhelm, JHEP 05, 110

(2013), 1212.2621.
[40] D. de Florian, G. Ferrera, M. Grazzini, and D. Tom-

masini, JHEP 11, 064 (2011), 1109.2109.
[41] J.-Y. Chiu, A. Jain, D. Neill, and I. Z. Rothstein, JHEP

05, 084 (2012), 1202.0814.
[42] D. Neill, I. Z. Rothstein, and V. Vaidya, JHEP 12, 097

(2015), 1503.00005.


