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Abstract

We present a calculation of the rates for Higgs-boson decays to a vector heavy-quarkonium state

plus a photon, where the heavy quarkonium states are the J/ψ and the Υ(nS) states, with n = 1, 2,

or 3. The calculation is carried out in the light-cone formalism, combined with nonrelativistic QCD

factorization, and is accurate at leading order in m2
Q/m

2
H , where mQ is the heavy-quark mass and

mH is the Higgs-boson mass. The calculation contains corrections through next-to-leading order in

the strong-coupling constant αs and the square of the heavy-quark velocity v, and includes a resum-

mation of logarithms ofm2
H/m

2
Q at next-to-leading logarithmic accuracy. We have developed a new

method, which makes use of Abel summation, accelerated through the use of Padé approximants,

to deal with divergences in the resummed expressions for the quarkonium light-cone distribution

amplitudes. This approach allows us to make definitive calculations of the resummation effects.

Contributions from the order-αs and order-v2 corrections to the light-cone distribution amplitudes

that we obtain with this new method differ substantially from the corresponding contributions

that one obtains from a model light-cone distribution amplitude [M. König and M. Neubert, JHEP

1508, 012 (2015)]. Our results for the real parts of the direct-process amplitudes are considerably

smaller than those from one earlier calculation [G. T. Bodwin, H. S. Chung, J.-H. Ee, J. Lee, and

F. Petriello, Phys. Rev. D 90, 113010 (2014)], reducing the sensitivity to the Higgs-boson-heavy-

quark couplings, and are somewhat smaller than those from another earlier calculation [M. König

and M. Neubert, JHEP 1508, 012 (2015)]. However, our results for the standard-model Higgs-

boson branching fractions are in good agreement with those from an earlier calculation [M. König

and M. Neubert, JHEP 1508, 012 (2015)].

PACS numbers: 12.38.Bx, 14.40.Pq, 14.80.Bn, 12.38.Cy

∗gtb@anl.gov
†chungh@anl.gov
‡chodigi@gmail.com
§jungil@korea.ac.kr

2



I. INTRODUCTION

Several years ago, it was pointed out that Higgs-boson (H) decays into a vector char-

monium state (V ) plus a photon (γ) proceed through two processes [1]. One process is the

“direct process,” in which the Higgs boson decays into a heavy quark-antiquark (QQ̄) pair,

followed by the radiation of a real photon by the Q or Q̄ and the subsequent evolution of

the QQ̄ pair into the quarkonium. The other process is the “indirect process,” in which the

Higgs boson decays via a W -boson loop or a quark loop into a γ and a virtual photon (γ∗),

followed by the decay of the γ∗ into a QQ̄ pair, which evolves into the quarkonium.

The direct amplitude is proportional to the HQQ̄ coupling. However, its standard-model

(SM) value is generally too small to lead to a rate that is measurable at the LHC. In the

case in which the quarkonium is a J/ψ, the SM indirect amplitude is much larger than the

SM direct amplitude and leads to a rate that is potentially measurable in a high-luminosity

LHC [1]. Furthermore, the contribution from interference between the direct and indirect

amplitudes, which is destructive, may also be within the realm of measurement at a high-

luminosity LHC [1] and could lead to a determination of the Hcc̄ coupling. In the cases

in which the quarkonium is an Υ(nS) state, the SM rates are too small to be measured

even at a high-luminosity LHC [1]. However, owing to the destructive interference between

the direct and indirect amplitudes, the rates are very sensitive to deviations of the direct

amplitudes from the SM values [1]. Because the direct and indirect amplitudes for the decays

H → V + γ are comparable in size, these decays can give information about the phases of

the HQQ̄ couplings. They are the only processes that have been identified so far that can

yield that phase information.

The indirect amplitude can be obtained, up to corrections of relative order m2
Q/m

2
H , from

the amplitude for H → γγ [1], which is known in the SM with a precision of a few percent

[2, 3]. Here, mQ is the heavy-quark mass and mH is the Higgs-boson mass.

In Ref. [1], the direct amplitude was computed through next-to-leading order (NLO) in

the strong coupling αs by making use of the result of Shifman and Vysotsky [4]. That result

was derived by making use of light-cone methods [5, 6] that are valid up to corrections of

order m2
Q/m

2
H . In addition, in Ref. [1], logarithms of m2

H/m
2
Q were resummed at leading

logarithmic (LL) accuracy to all orders in αs by making use of the LL resummed expression

for the direct amplitude in Ref. [4].
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The largest single uncertainty in the calculation of Ref. [1] was due to uncalculated

relativistic corrections to the direct amplitude of relative order v2, where v is the velocity

of the Q or Q̄ in the quarkonium rest frame. Those order-v2 corrections were computed

in Ref. [7] in the nonrelativistic QCD (NRQCD) formalism [8] and, also, in the light-cone

formalism [5, 6], so as to make contact with the light-cone calculation of Ref. [4].

Logarithms ofm2
H/m

2
Q can be resummed by evolving the HQQ̄ coupling, which is propor-

tional to mQ(µ), the quarkonium decay constant, and the light-cone distribution amplitude

(LCDA) from the renormalization scale µ = mQ to the renormalization scale µ = mH .

The standard method for carrying out the evolution of the LCDA is to expand the LCDA

in a series of eigenfunctions of the lowest-order evolution kernel. The eigenfunctions are

proportional to Gegenbauer polynomials [9]. In Ref. [7], it was noticed that the eigenfunc-

tion series is not convergent in the case of the order-v2 corrections to the direct amplitude.

Consequently, for the order-v2 correction, logarithms of m2
H/m

2
Q were summed only through

relative order α2
s in Ref. [7].

Resummation of logarithms of m2
H/m

2
Q at next-to-leading-logarithmic (NLL) accuracy

requires a calculation in the light-cone formalism of the order-αs corrections to both the

hard-scattering kernel for the direct process and LCDA. That calculation was accomplished

in Ref. [10] at leading order (LO) in v. (The calculation of the order-αs correction to the

hard-scattering kernel in Ref. [10] was confirmed in Ref. [11].) The calculation of the LCDA

was carried out in the NRQCD framework, and the result was expressed in terms of the

NRQCD nonperturbative long-distance matrix elements (LDMEs) [12].

The actual resummation of logarithms of m2
H/m

2
Q at NLL accuracy was carried out in

Ref. [11], in which it was found that the NLL corrections have a substantial impact on the

numerical results for the rates. In that work, the calculational strategy involved introducing

a model LCDA whose nonzero second moment would take into account the known order-v2

and order-αs corrections to the LCDA at a scale of 1 GeV. This approach avoids the problem

of the lack of convergence of the eigenfunction expansion in a calculation of the order-v2

corrections to the LCDA. However, as we will see, the model wave function does not give a

very accurate accounting of the order-v2 and order-αs corrections to the LCDA, even after

evolution to the scale mH .

In this paper, we present a new method for calculating the evolution of the order-v2

corrections to the LCDA. The method introduces a regulator that defines the generalized

4



functions (distributions) that appear in the initial LCDAs as sequences of ordinary functions.

The regulator method is equivalent to Abel summation of the eigenfunction expansion. In

order to accelerate the convergence of the Abel summation, we introduce Padé approximants

to obtain an approximate analytic continuation in the regulator variable that converges

rapidly as the regulator is removed. We refer to this method that makes use of a combination

of Abel summation and Padé approximants as the “Abel-Padé method.” The Abel-Padé

method gives very accurate results in cases for which analytic results are known for the

LCDAs, even in situations in which the eigenfunction expansion diverges. The Abel-Padé

method solves the general problem of carrying out the scale evolution in a nonrelativistic

expansion of the LCDA for heavy-quarkonium systems, and it should be applicable in other

situations in which series of orthogonal polynomials fail to converge.

The results that we obtain with the Abel-Padé method agree reasonably well with the

perturbative estimates of Ref. [7]. However, the Abel-Padé method gives results that differ

significantly from those that are obtained by making use of the model of Ref. [11]. We use

the Abel-Padé method to obtain a complete calculation of the rates for H → V + γ through

orders αs and v
2 and to all orders in αs through order v2 at NLL accuracy.

The remainder of this paper is organized as follows. In Sec. II, we discuss the light-cone

amplitude for the direct process through orders αs and v2. In Sec. III, we describe the

resummation of logarithms of m2
H/m

2
Q and give resummed expressions for the contributions

to the direct amplitude in terms of sums over eigenfunctions of the LO evolution kernel.

Section IV contains a discussion of the problem of the nonconvergence of the eigenfunction

series and a presentation of a solution of the problem, which leads to the Abel-Padé method

for summing the series. In Sec. V, we compare results from the Abel-Padé method with

those that follow from the model LCDA that was proposed in Ref. [11]. In Sec. VI we give

the expressions that we use to compute the direct amplitudes and the indirect amplitudes

and discuss the numerical inputs that we use and the sources of uncertainties. We also

present a novel method to compute uncertainties in the decay rates that allows us to deal

with the highly nonlinear dependences of the decay rates on the input parameters. We give

our numerical results in Sec. VII, and we summarize and discuss our results in Sec. VIII.
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II. LIGHT-CONE AMPLITUDE FOR THE DIRECT PROCESS

In the light-cone approach, the direct amplitude for H → V +γ is given, up to corrections

of relative order m2
Q/m

2
H , by

1

iMLC
dir [H → V + γ] =

i

2
eeQκQmQ(µ)(

√
2GF )

1/2f⊥
V (µ)

(

−ǫ∗V · ǫ∗γ +
ǫ∗V · pγp · ǫ∗γ

pγ · p

)

×
∫ 1

0

dx TH(x, µ)φ
⊥
V (x, µ), (1)

where e is the electric charge, eQ is the fractional charge of the heavy quark Q, κQ is an

adjustable parameter in the HQQ̄ coupling whose SM value is 1, mQ is the mass of Q

in the modified minimal subtraction (MS) scheme, GF is the Fermi constant, f⊥
V is the

decay constant of the vector quarkonium V , ǫV and p are the quarkonium polarization and

momentum, respectively, ǫγ and pγ are the photon polarization and momentum, respectively,

µ is the renormalization scale, and x is the QQ̄ momentum fraction of V , which runs from

0 to 1. φ⊥
V (x, µ) is the vector-quarkonium LCDA, which is defined by

1

2
〈V |Q̄(z)[γµ, γν ][z, 0]Q(0)|0〉 = f⊥

V (µ)(ǫ
∗µ
V p

ν
V − ǫ∗νV p

µ
V )

∫ 1

0

dx eip
−zxφ⊥

V (x, µ) (2)

and has the normalization
∫ 1

0
dx φ⊥

V (x, µ) = 1. The coordinate z lies along the plus light-cone

direction, and the gauge link

[z, 0] = P exp

[

igs

∫ z

0

dxA+
a (x)T

a

]

(3)

makes the nonlocal operator gauge invariant. In Eq. (3), gs =
√
4παs, A

µ
a is the gluon field

with the color index a = 1, 2, ..., N2
c−1, T a is the generator of the fundamental representation

of SU(Nc) color, and the symbol P denotes path ordering. The nonrelativistic expansion of

φ⊥
V (x, µ), through linear orders in αs and v

2, is

φ⊥
V (x, µ) = φ

⊥(0)
V (x, µ) + 〈v2〉V φ⊥(v2)

V (x, µ) +
αs(µ)

4π
φ
⊥(1)
V (x, µ) +O(α2

s, αsv
2, v4), (4)

where the LO contribution is given by

φ
⊥(0)
V (x, µ) = δ(x− 1

2
) (5)

1 See, for example, Ref. [1].
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and δ is the Dirac delta function. 〈v2〉V is proportional to the ratio of the NRQCD LDME

of order v2 to the LDME of order v0:

〈v2〉V =
1

m2
Q

〈V (ǫV )|ψ†(− i
2

↔

∇)2σ · ǫV χ|0〉
〈V (ǫV )|ψ†

σ · ǫV χ|0〉
. (6)

Here, ψ is the two-component (Pauli) spinor field that annihilates a heavy quark, χ† is the

two-component spinor field that annihilates a heavy antiquark, σi is a Pauli matrix, |V (ǫV )〉
denotes the vector quarkonium state in the quarkonium rest frame with spatial polarization

ǫV , andmQ denotes the quark pole mass. The coefficient of the order-v2 contribution, φ
⊥(v2)
V ,

was computed in Ref. [7] and is given by

φ
⊥(v2)
V (x, µ) =

1

24
δ(2)(x− 1

2
), (7)

where δ(n) is the nth derivative of the Dirac delta function. The coefficient of the order-αs

contribution, φ
⊥(1)
V (x, µ), was computed in Ref. [10] and is given by2

φ
⊥(1)
V (x, µ) = CFθ(1− 2x)

{[

8x

1− 2x

(

log
µ2

m2
Q(1− 2x)2

− 1

)]

+

+

[

16x(1− x)

(1− 2x)2

]

++

}

+(x↔ 1− x), (8)

where CF = (N2
c − 1)/(2Nc), Nc = 3 is the number of colors, and the plus and plus-plus

distributions are defined by

∫ 1

0

dx f(x)[g(x)]+ =

∫ 1

0

dx [f(x)− f(1
2
)]g(x), (9a)

∫ 1

0

dx f(x)[g(x)]++ =

∫ 1

0

dx [f(x)− f(1
2
)− f ′(1

2
)(x− 1

2
)]g(x). (9b)

Although φ
⊥(0)
V (x, µ) and φ

⊥(v2)
V (x, µ) are independent of µ, we keep µ explicit in their argu-

ments as a reminder that a single scale µ applies to all of the terms in φ⊥
V (x, µ) [Eq. (4)].

The quarkonium decay constant f⊥
V (µ) is given by

f⊥
V (µ) =

√
2Nc

√
2mV

2mQ
ΨV (0)

[

1− 5

6
〈v2〉V − CFαs(µ)

4π

(

log
µ2

m2
Q

+8

)

+O(α2
s, αsv

2, v4)

]

, (10)

where the order-v2 term was computed in Ref. [7] and the order-αs term was computed in

Ref. [10]. Here, ΨV (0) is the quarkonium wave function at the origin, which is given in terms

2 Eq. (3.17) of Ref. [10] applies to the case in which ∆ in Eq. (3.16) of Ref. [10] is set equal to zero. We

thank the authors of Ref. [10] for confirming that this is the case.
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of an NRQCD LDME by [8]

ΨV (0) =
1√
2Nc

〈V (ǫV )|ψ†
σ · ǫV χ|0〉. (11)

The hard-scattering kernel TH for the process H → V + γ is given by

TH(x, µ) = T
(0)
H (x, µ) +

αs(µ)

4π
T

(1)
H (x, µ) +O(α2

s), (12a)

where

T
(0)
H (x, µ) =

1

x(1− x)
, (12b)

T
(1)
H (x, µ) = CF

1

x(1− x)

[

2

(

log
m2
H

µ2
− iπ

)

log x(1− x) + log2 x+ log2(1− x)− 3

]

.

(12c)

The order-αs term in TH was computed in Ref. [10] by taking the quark mass to be the

pole mass and in Ref. [11] by taking the quark mass to be the MS mass.3 The expression in

Eq. (12c) is for the case in which the quark mass is taken to be the MS mass.

III. RESUMMATION OF LOGARITHMS IN THE DIRECT AMPLITUDE

Our strategy for resumming logarithms of m2
H/m

2
Q is the following. In Eq. (1) we take

the scale µ to be mH . Then TH [Eq. (12)] contains no large logarithms. Note that, if one

takes the quark mass in the computation of TH to be the pole mass, then the order-αs

correction to TH(x, µ) contains a term that is proportional to log(m2
H/m

2
Q), as can be seen

from the corrected version of Eq. (4.23) of Ref. [10]. Such large NLLs would slow, or even

spoil, the convergence of the perturbation expansion. We initially evaluate φ⊥
V (x, µ) and

f⊥
V (µ) at a scale µ0 of order mQ, so that the perturbative expressions in Eqs. (5), (7) and

(8) do not contain any logarithms of m2
H/m

2
Q. Then, we evolve φ⊥

V (x, µ) and f
⊥
V (µ) to the

scale µ = mH , along with mQ(µ). Expressions for the evolution of mQ(µ) and f⊥
V (µ) are

given in Appendix A. We now address the evolution of φ⊥
V (x, µ).

3 Eq. (4.23) of Ref. [10] contains a typo: 3 ln[µ2/(−m2
h)] should be replaced with 3 ln(µ2/m2

Q). This typo

was noted in Ref. [11]. We thank the authors of Ref. [10] for confirming the existence of this typo.
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A. Evolution of the LCDA

The LCDA φ⊥
V (x, µ) satisfies the evolution equation [5]

µ2 ∂

∂µ2
φ⊥
V (x, µ) = CF

αs(µ)

2π

∫ 1

0

dy VT (x, y)φ
⊥
V (y, µ), (13)

where the LO evolution kernel VT (x, y) is given by [5]

VT (x, y) = V0(x, y)−
1− x

1− y
θ(x− y)− x

y
θ(y − x), (14a)

V0(x, y) = VBL(x, y)− δ(x− y)

∫ 1

0

dz VBL(z, x), (14b)

VBL(x, y) =
1− x

1− y

(

1 +
1

x− y

)

θ(x− y) +
x

y

(

1 +
1

y − x

)

θ(y − x). (14c)

As is well known, the eigenfunctions of LO evolution kernel for φ⊥
V (x, µ) are given by [9]

Gn(x) = w(x)C(3/2)
n (2x− 1), (15)

where w(x) = x(1−x) is the weighting function and the C
(3/2)
n are Gegenbauer polynomials.

The corresponding eigenvalues (anomalous dimensions) are

γ⊥(0)
n = 8CF (Hn+1 − 1), (16)

where the Hn are harmonic numbers. The orthogonality relation of the Gegenbauer poly-

nomials is given by

Nn

∫ 1

0

dxw(x)C(3/2)
n (2x− 1)C(3/2)

m (2x− 1) = Nn

∫ 1

0

dxGn(x)C
(3/2)
m (2x− 1)

= δnm, (17)

where the normalization factor Nn is given by

Nn =
4(2n+ 3)

(n + 1)(n+ 2)
. (18)

In order to work out the evolution of the LCDAs, it is convenient to write them in terms

of the eigenfunctions. Using Eq. (17), we have

φ⊥
V (x, µ) =

∞
∑

n=0

φ⊥
n (µ)Gn(x), (19a)

where the moments φ⊥
n (µ) are given by

φ⊥
n (µ) = Nn

∫ 1

0

dxC(3/2)
n (2x− 1)φ⊥

V (x, µ). (19b)
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In a similar fashion, we can write TH in terms of Gegenbauer polynomials:

TH(x, µ) =

∞
∑

n=0

NnTn(µ)C
(3/2)
n (2x− 1), (20a)

where

Tn(µ) =

∫ 1

0

dx TH(x, µ)Gn(x). (20b)

Then, using Eq. (17), we can write the light-cone amplitude, at least formally, as a sum over

moments of TH and φ⊥
V :

∫ 1

0

dx TH(x, µ)φ
⊥
V (x, µ) =

∞
∑

n=0

Tn(µ)φ
⊥
n (µ). (21)

The moments φ⊥
n (µ) can be written in terms of the moments φ⊥

n (µ0) as

φ⊥
n (µ) =

n
∑

k=0

Unk(µ, µ0)φ
⊥
k (µ0), (22)

where we are using the notation of Ref. [11]. The expressions for Unk(µ, µ0) at LL and NLL

accuracies are given in Appendix B. Note that the off-diagonal elements of Unk(µ, µ0) are

nonvanishing only for even n− k [13, 14].

We decompose the light-cone amplitude according to the powers of αs and v
2:

∫ 1

0

dx TH(x, µ)φ
⊥
V (x, µ) = M(0,0)(µ) +

αs(µ)

4π
M(1,0)(µ) +

αs(mQ)

4π
M(0,1)(µ)

+〈v2〉VM(0,v2)(µ) +O(α2
s, αsv

2, v4), (23a)

where

M(i,j)(µ) =

∫ 1

0

dx T
(i)
H (x, µ)φ

⊥(j)
V (x, µ) =

∞
∑

n=0

T (i)
n (µ)φ⊥(j)

n (µ). (23b)

T
(0)
n (µ) and T

(1)
n (µ) vanish for n odd and are given for n even by

T (0)
n (µ) = 1, (24a)

T (1)
n (µ)/CF = −4(Hn+1 − 1)

(

log
m2
H

µ2
− iπ

)

+ 4H2
n+1 − 3 + 4πi, (24b)

where the expression for T
(1)
n (µ) was first given in Ref. [11]. The φ

⊥(i)
n (µ) also vanish for n

odd.

For M(0,0)(µ), we use the NLL expression for Unk(µ, µ0) to compute φ
⊥(0)
n (µ), while, for

the other M(i,j)(µ), we use the LL expression for Unk(µ, µ0).

As was noted in the Appendix of Ref. [7], the eigenfunction series for M(0,v2)(µ) is not

convergent. Some of the eigenfunction series for the other M(i,j)(µ) converge rather slowly.

We address these issues of nonconvergence and slow convergence in Sec. IV.
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IV. NONCONVERGENCE OF THE EIGENFUNCTION SERIES AND SUMMA-

TION BY THE ABEL-PADÉ METHOD

A. The problem of nonconvergence

From the theory of orthogonal polynomials on a finite interval, we know that a series of

Gegenbauer polynomials C
(3/2)
n (2x− 1) can represent sufficiently smooth functions over the

interval 0 < x < 1. That is, C
(3/2)
n (2x − 1) are a complete set of functions and satisfy the

completeness relation

∞
∑

n=0

Nnw(x)C
(3/2)
n (2x− 1)C(3/2)

n (2y − 1) = δ(x− y). (25)

From the theory of orthogonal polynomials, it follows that the sum over n on the right

side of Eq. (21) or Eq. (23b) is well defined and is equal to the left side of Eq. (21) or

Eq. (23b) when TH(x, µ) and φ
⊥
V (x, µ) are sufficiently smooth functions of x [15]. A difficulty

can arise because the nonrelativistic expansion of φ⊥
V (x, µ) contains generalized functions

(distributions) in x about the point x = 1/2. For example, the factor δ(2)(x − 1
2
) in φ

⊥(v2)
V

[Eq. (7)] causes the sum over n in the expression for M(0,v2)(µ) to diverge, as was shown in

the Appendix of Ref. [7]. Nevertheless, M(0,vn)(µ) remains well defined as µ evolves.

In order to demonstrate this, we define the quantity

M(i,j)(µf , µ) =

∫ 1

0

dx T
(i)
H (x, µf)φ

⊥(j)
V (x, µ), (26)

which gives the projection of φ
⊥(j)
V (x, µ) onto the hard-scattering amplitude evaluated at the

final scale in the evolution µf . Note that M(i,j)(µf , µf) = M(i,j)(µf). Now, M(0,vn)(µf , µ)

satisfies the same evolution equation as does φ⊥
V (x, µ), namely,

µ2 ∂

∂µ2
M(0,vn)(µf , µ) = CF

αs(µ)

2π

∫ 1

0

dx

∫ 1

0

dy T
(0)
H (x, µf )VT (x, y)φ

⊥(vn)
V (y, µ). (27)

First, we note that M(0,vn)(µf , µ0) is well defined. This follows from the definition of

M(0,vn)(µf , µ0) in Eq. (26), the fact that φ
⊥(vn)
V (x, µ0) is proportional to δ(n)(x − 1

2
),

and the fact that T
(0)
H (x, µf) is infinitely differentiable at x = 1/2. [We remind the

reader that T
(0)
H (x, µ) is actually independent of µ.] Furthermore, it is easy to see that

∫ 1

0
dx T

(0)
H (x, µ)VT (x, y) is infinitely differentiable with respect to y at y = 1/2. It then fol-

lows from the evolution equation (27) that µ2(∂/∂µ2)M(0,vn)(µf , µ) is well defined for all µ

between µ0 and µf . Therefore, M(0,vn)(µf , µf) = M(0,vn)(µf) is well defined.

11



B. Solution of the problem and the Abel-Padé method

In order to address the difficulty of nonconvergent eigenfunction series, we first define a

smearing function S(x, y, z) by modifying the completeness relation (25). We introduce a

factor zn into each term in the sum over n:

S(x, y, z) =
∞
∑

n=0

znNnw(x)C
(3/2)
n (2x− 1)C(3/2)

n (2y − 1), (28)

where z is a complex parameter. For |z| < 1, the sum over n in Eq. (28) is absolutely conver-

gent, and S(x, y, z) is an ordinary function of x and y. As z approaches 1, S(x, y, z) becomes

more and more sharply peaked around x = y and, in the limit z → 1, is a representation of

δ(x− y). We use the smearing function to define a smeared distribution amplitude:

φS(x, z, µ) =

∫ 1

0

dy S(x, y, z)φ⊥
V (y, µ)

=

∞
∑

n=0

φ⊥
n (µ)

∞
∑

m=0

zmw(x)C(3/2)
m (2x− 1)Nm

∫ 1

0

dy w(y)C(3/2)
m (2y − 1)C(3/2)

n (2y − 1)

=
∞
∑

n=0

φ⊥
n (µ)

∞
∑

m=0

zmw(x)C(3/2)
m (2x− 1)δnm

=
∞
∑

n=0

φ⊥
n (µ)z

nGn(x), (29)

where we have used the orthogonality relation (17). For |z| < 1, φS(x, z, µ) is an ordinary

function of x. Because S(x, y, z) is a representation of δ(x−y) in the limit z → 1, φS(x, z, µ)

is a representation of φ⊥
V (x, µ) in the limit z → 1. That is, Eq. (29) can be used to define

generalized functions in φ⊥
V (x, µ) as a limit of a sequence of ordinary functions. It then

follows, from the theory of orthogonal functions, that, for any z < 1,

∫ 1

0

dx TH(x, µ)φS(x, z, µ) =
∞
∑

n=0

Tn(µ)z
nφ⊥

n (µ).
4 (30)

4 It can be seen from the analysis of the Appendix of Ref. [7] that, for φ⊥V (x, µ) → φ
⊥(0)
V (x, µ) ≡ δ(0)(x− 1

2 )

and TH(x, µ) → T
(0)
H (x, µ), the sum on the right side of Eq. (30) is absolutely convergent for arbitrary µ

when z < 1.
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Then, we obtain the light-cone amplitude M that corresponds to the distribution φ⊥
V (x, µ)

by taking the limit of the sequence of ordinary functions that we use to define φ⊥
V (x, µ):

M =

∫ 1

0

dx TH(x, µ)φ
⊥
V (x, µ) = lim

z→1

∫ 1

0

dx TH(x, µ)φS(x, z, µ)

= lim
z→1

∞
∑

n=0

Tn(µ)z
nφ⊥

n (µ). (31)

We note that Eq. (31) amounts to Abel summation of the eigenfunction series. A mathe-

matical proof of Eq. (31) is beyond the scope of this paper. However, we will describe a

several numerical tests that strongly support the validity of the Abel summation in Eq. (31).

In principle, one can use Eq. (31) to compute the light-cone amplitude, making use of

Eq. (22) to take into account the scale evolution of the LCDA. In order to do this, one would

need carry out the sum in Eq. (31) before taking limit z → 1. In practice, in carrying out

a numerical evaluation, one must include enough terms in the sum to guarantee that the

remainder is small for a given value of |1− z|. For the functions TH(x, µ) and φ⊥
V (x, µ) that

we consider, this typically requires that one include thousands of terms in order to achieve

percent-level precision.5

A much more efficient procedure is to use Padé approximants to approximate the sum

in Eq. (31). As we have mentioned, we refer to this method that makes use of a combina-

tion of Abel summation and Padé approximants as the “Abel-Padé method.” The sum in

Eq. (31) defines a function of z that is analytic for |z| < 1. The Padé approximant gives an

approximate analytic continuation of that function to larger values of |z|. In particular, the

Padé approximant can give precise values of Eq. (31) for z = 1, even when poles in the disc

|z| < 1 render the radius of convergence of the series to be less than 1. Consequently, a Padé-

approximant expression that is based on a given partial sum can give much better precision

as z → 1 than does the original partial sum. For the functions TH(x, µ) and φ
⊥
V (x, µ) that

we consider, one can typically achieve much better than percent-level precision by keeping

20 terms in the partial sum and generating a 10× 10 Padé approximant.

In Appendix C3, we have tested the Abel-Padé method for the cases φ⊥
V (x, µ) →

φ⊥
V (x, µ0) → δ(k)(x − 1

2
), with k = 0, 2, . . . , 10, and TH(x, µ) → T

(0)
H (x, µ0), i.e., with no

5 We have verified numerically, for the cases M(0,0) and M(0,v2), with µ = mQ, mH/2, mH , 2mH , 1 TeV,

and 2 TeV, that the Abel summation does converge, although very slowly, to the result that is given by

the Abel-Padé procedure.
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evolution. Analytic results are easily obtained in these cases, and the Abel-Padé expres-

sion converges quickly to them, even though the eigenfunction series are not convergent for

k > 0. As can be seen from the Appendix of Ref. [7], evolution of φ
⊥(0)
V (x, µ0) to a higher scale

generally improves that convergence of the eigenfunction series. (This general property is

confirmed numerically in Appendix C3.) It seems, therefore, that the zero-evolution tests of

the Abel-Padé method that we have made are particularly demanding. We have also tested

the Abel-Padé method by expanding the LL evolved expression for c2(µ) = f⊥
V (µ)M(0,v2)(µ)

as a series in αs, using the Abel-Padé method to compute the first three terms in the series

from their eigenfunction expansions (taking µ0 = mc, mb and µ = mH), and comparing the

results with the analytic expressions for the first three terms in the series in Eq. (39b) of

Ref. [7]. Again, the Abel-Padé expressions converge rapidly to the analytic results, even

though the eigenfunction series themselves are not convergent.

We conclude that the Abel-Padé method is reliable, and we use it in this paper to sum

all of the eigenvalue series for the LCDAs.

V. COMPARISON WITH A MODEL LCDA

In Ref. [11], it was proposed to incorporate the effects of the order-v2 and order-αs

corrections to the LCDA by making use of a model LCDA:

φ⊥M
V (x, µ0) = Nσ

4x(1− x)√
2πσV (µ0)

exp

[

−(x− 1
2
)2

2σ2
V (µ0)

]

. (32)

Here, Nσ is chosen so that
∫ 1

0

dx φ⊥M
V (x, µ0) = 1. (33)

It is stated in Ref. [11] that the width parameter σV (µ0) is chosen so that φ⊥M
V (x, µ0) yields

the second moment of φ⊥
V (x, µ) through linear order in v2 and αs:

4σ2
V (µ0) =

∫ 1

0

dx (2x− 1)2φ⊥M
V (x, µ0) ≡

〈v2〉V
3

+
CFαs(µ0)

4π

(

28

9
− 2

3
ln
m2
Q

µ2
0

)

. (34)

The initial scale is chosen to be µ0 = 1 GeV.

The model LCDA circumvents the problem of the nonconvergence of the eigenfunction

series for M(0,v2)(µ): Because φ⊥M
V (x, µ0) is an ordinary function of x, the eigenfunction

series converges. However, a number of assumptions go into the construction of the model

LCDA. We now discuss the validity of those assumptions.
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First, we note that the first equality in Eq. (34) holds only in the zero-width (σV → 0)

limit. In Ref. [11], numerical values of σV (1 GeV) were computed by equating 4σ2
V to the

expression on the right side of the second equality in Eq. (34). This procedure leads to

values for the second x moments of φ⊥M
V (x, 1 GeV) that differ substantially from the true

values of second x moments of φ⊥
V (x, 1 GeV) through linear order in v2 and αs. For example,

in the case of the J/ψ, with mc = 1.4 GeV and 〈v2〉J/ψ = 0.225, the second x moment of

φ⊥M
V (x, 1 GeV) is 0.120256, while the second x moment of φ⊥

V (x, 1 GeV) through linear order

in v2 and αs is 0.207729. In fact, in this case, there is no choice of σV (1 GeV) that yields

the correct second x moment through linear order in v2 and αs.

Second, we note that only the second x moment of the order-αs correction to the LCDA

enters into the model LCDA. That is, there is an implicit assumption that the order-αs

correction can be adequately characterized by its second x moment alone. However, the

order-αs correction to the LCDA has substantial x moments beyond the second moment,

and, so, this assumption seems to be questionable. In contrast, only the second x moment

of the order-v2 correction to the LCDA is nonvanishing.

Third, the functional form of the LCDA has implications for the higher x moments of

the LCDA. These higher x moments are related to corrections to the LCDA of higher order

in v2 (see Refs. [16–18] and Appendix C) and to higher x moments of the corrections to

the LCDA of order αs and higher. It is not clear that the functional form of the LCDA

accounts adequately for these corrections. In Appendix C2, we examine x moments of the

model LCDA in order α0
s, using the relationships between the x moments of the LCDA

and the NRQCD LDMEs that are given in Refs. [16–18]. We find that x moments of the

model LCDA are much larger than expectations from the NRQCD velocity-scaling rules,

suggesting that the model LCDA leads to spuriously large corrections of higher order in v2.6

The ultimate test of the model LCDA is whether it leads to an accurate numerical result

for the light-cone amplitude. We will carry out such a test by comparing the results for

the light-cone amplitude that are obtained from the model LCDA with the results for the

light-cone amplitude that are obtained from our calculation through orders αs and v2. In

6 Strictly speaking, the velocity-scaling rules state that an LDME 〈vn〉V , which is defined by the obvious

generalization of Eq. (6), vanishes as vn in the limit v → 0. However, in phenomenology, the velocity-

scaling rules are usually taken to mean that 〈vn〉V is equal to vn times a coefficient of order one. This

point of view is supported by the generalized Gremm-Kapustin relation [19].
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doing so, we are implicitly assuming that the expansions in the small parameters αs and v
2

are valid and that corrections beyond those in orders αs and v
2 are small in comparison with

the corrections of orders αs and v
2. One could question whether the evolution from the scale

µ0 to the scale mH could invalidate the αs and v
2 expansions. Regarding the αs expansion,

evolution from the scale 1.0 GeV to the scalemH changes the order-αs correction from 16% of

the order-α0
s contribution to 9% of the order-α0

s contribution, suggesting that evolution does

not spoil the αs expansion. Further tests of the αs expansion would require the computation

of corrections of still higher orders in αs. We can investigate the convergence of the v2

expansion (nonrelativistic expansion) and the effects of evolution on it more completely, and

we do so in Appendix C. There, we test the numerical convergence of the nonrelativistic

expansion in order α0
s for the example of the model LCDA. We find that the nonrelativistic

expansion converges rapidly to the exact result for the model LCDA at the scale µ = µ0

and that it converges even more rapidly at the scale µ = mH . The expansion through order

v2 gives a good approximation to the exact result. We conclude that the model LCDA, if it

is valid, should not produce corrections beyond the leading order in αs and v
2 that deviate

significantly from the sum of the corrections of order αs and order v2 that we compute in

this paper.

We can assess whether the contributions of higher order that arise from the model LCDA

φ⊥M
V (x, µ) agree with the contributions of order v2 and order αs that we compute by exam-

ining the quantity

∆(µ) =
αs(µ0)

4π
M(0,1)(µ) + 〈v2〉VM(0,v2)(µ), (35)

where, in order to compare with φ⊥M
V (x, µ), we take µ0 = 1 GeV in αs(µ0) and, implicitly,

in M(0,1)(µ) and M(0,v2)(µ). The equivalent expression for the model LCDA φ⊥M
V (x, µ), is

given, up to corrections of higher orders in αs and v
2, by

∆M (µ) =

∫ 1

0

dx T
(0)
H (x, µ)[φ⊥M

V (x, µ)− φ
⊥(0)
V (x, µ)]. (36)

In Table I we compare the values of ∆(µ0) and ∆M (µ0) for the J/ψ and Υ(nS) states, using

the values of the input parameters that are given in Ref. [11]. In the case of ∆M (µ0), we also

show the values that result from varying σV (µ0) by ±25%, as was suggested in Ref. [11].

As can be seen from Table I, the central value of ∆M (µ0) deviates from the value of ∆(µ0)

by −13% for the J/ψ, +174% for the Υ(1S), +72% for the Υ(2S), and +55% for the Υ(3S).

We also see that the result is very sensitive to the choice of σV (µ0): The values of ∆M(µ0)

16



V ∆(µ0) ∆M (µ0) ∆M (µ0)
∣

∣

σV →0.75σV
∆M (µ0)

∣

∣

σV →1.25σV

J/ψ 0.971375 0.843339 0.510365 1.12087

Υ(1S) 0.0770658 0.211269 0.116175 0.338490

Υ(2S) 0.209066 0.359150 0.195740 0.563622

Υ(3S) 0.295732 0.458135 0.250834 0.697510

TABLE I: Numerical values of ∆(µ0) and ∆M (µ0) for V = J/ψ and Υ(nS) at µ0 = 1 GeV. In

the last two columns, we have evaluated ∆M (µ0) by replacing σV (µ0) by 0.75 and 1.25 times its

nominal value, respectively.

V ∆(µ) ∆M (µ) ∆M (µ)
∣

∣

σV →0.75σV
∆M (µ)

∣

∣

σV →1.25σV

J/ψ 0.684103 0.522962 0.337973 0.666378

Υ(1S) 0.103008 0.150110 0.084148 0.233466

Υ(2S) 0.200579 0.246479 0.139542 0.368862

Υ(3S) 0.264641 0.307054 0.176647 0.444124

TABLE II: Numerical values of ∆(µ) and ∆M (µ) for V = J/ψ and Υ(nS) at µ = mH . In the last

two columns, we have evaluated ∆M (µ) by replacing σV (µ0) by 0.75 and 1.25 times its nominal

value, respectively.

vary by factors of 2 or more as σV (µ0) is varied by ±25%. (In contrast, ∆(µ0) would vary by

less than ±25% if the input parameter 〈v2〉V were varied by ±25%.) Therefore, we regard

the approximate agreement of the central value of ∆M (µ0) with the value of ∆(µ0) for the

case of the J/ψ as accidental.

In Table II we compare the values of ∆(mH) and ∆M (mH) for the J/ψ and Υ(nS) states,

using the values of the input parameters at 1 GeV that are given in Ref. [11]. Again, in the

case of ∆M (mH), we also show the values that result from varying σV (µ0) by ±25%. We

make use of the Abel-Padé method in carrying out the evolution of µ from µ0 = 1 GeV to

mH = 125.09 GeV, taking 100 terms in the eigenfunction expansion and using a 50 × 50

Padé approximant.

In Ref. [11], it was suggested that the evolution of the model LCDA to the scale µ = mH

would reduce the dependence on the specifics of the model. As can be seen from Table II,
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the central value of ∆M (mH) deviates from value of ∆(mH) by −24% for the J/ψ, +46% for

the Υ(1S), +23% for the Υ(2S), and +16% for the Υ(3S). Comparison with Table I shows

that, in the case of the J/ψ, the deviation of ∆M (mH) from ∆(mH) actually increases as µ

is evolved from µ0 = 1 GeV to mH . While the deviations in the case of the Υ(nS) states

decrease as µ is evolved from 1 GeV to mH , they are still rather large, especially in the case

of the Υ(1S). Furthermore, the results are very sensitive to the choice of σV (1 GeV): The

values of ∆M(mH) vary by factors of 2 or more as σV (1 GeV) is varied by ±25%.

We would expect the uncalculated corrections of higher orders in αs and v2 to be of

size αs or v2 relative to the corrections that we have calculated. We see that the model

LCDA of Ref. [11] produces results that deviate from ours by amounts that are much larger

than the expected sizes of these uncalculated corrections. Therefore, we conclude that the

model LCDA of Ref. [11] does not lead to reliable results for contributions to the light-cone

amplitude of the order-αs and order-v2 corrections to the LCDA. However, because the

value of ∆(mH) is small in comparison with the leading contribution to the leading light-

cone amplitude M(0,0) = 4, the deviations of ∆M(mH) from ∆(mH) affect the light-cone

amplitude only at the level of about 4% for the J/ψ and at the level of about 1% for the

Υ(nS) states.

VI. COMPUTATION OF THE DECAY RATES

A. Direct amplitude

Our formula for the light-cone direct amplitude through order αs, with NLL resummation

of logarithms of m2
H/m

2
Q, is

iMLC
dir [H → V + γ]

=
i

2
eeQκQmQ(µ)(

√
2GF )

1/2

(

−ǫ∗V · ǫ∗γ +
ǫ∗V · pγp · ǫ∗γ

pγ · p

)

f⊥
V (mH)

f⊥
V (µ0)

√
2Nc

√
2mV

2mQ
ΨV (0)

×
{[

1− 5

6
〈v2〉V +

CFαs(µ0)

4π

(

log
m2
Q

µ2
0

− 8

)]

M(0,0)(µ)

+
αs(µ)

4π
M(1,0)(µ) +

αs(µ0)

4π
M(0,1)(µ) + 〈v2〉VM(0,v2)(µ)

}

, (37)

where, in computing iMLC
dir [H → V + γ], we take e =

√

4πα(0).

We note that the formula (37) does not contain any cross terms of order α2
s, αsv

2, or v4.
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In contrast, the expressions in Ref. [11] do contain such cross terms because the expansions

of TH and the ratio f⊥
V /fV in powers of αs and 〈v2〉V appear as factors in the expression

that was used in Ref. [11] for the direct amplitude. On the other hand, our computation

contains cross terms that arise from the ratio f⊥
V /fV that are not contained in the expression

for f⊥
V /fV in Ref. [11]. That is because we use the values of the LDMEs that were extracted

in Refs. [20, 21] by making use of a formula for the quarkonium leptonic width that contains

the expansion of the factor fV in powers of αs and 〈v2〉V . All of the cross terms that we

have mentioned appear at orders that are beyond the claimed precision of our calculation or

the calculation of Ref. [11]. In our calculation, they are taken into account in our estimates

of uncertainties from uncalculated higher-order corrections.

In the evolution of the expression in Eq. (37), we choose the initial scale to be µ0 = mQ

and the final scale to be µ = mH . This choice incorporates the logarithms of m2
H/m

2
Q into

the evolved expressions. We will discuss the effect of using the choice of scale µ0 = 2mQ in

Sec. VII.

We note that, in Ref. [11], the initial scales were taken to be 1 GeV for the LCDAs and

2 GeV for the ratio of decay constants f⊥
V /fV . This latter choice is somewhat inconsistent

with the use of values of 〈v2〉V from Refs. [20, 21], as they were extracted by making use of

the expansion of fV in powers of αs and 〈v2〉V , with αs(µ) evaluated at the scale mV .

B. Indirect amplitude

In computing the indirect amplitude, we follow Refs. [1, 7], taking

iMind = iAind

(

−ǫ∗V · ǫ∗γ +
ǫ∗V · pγ pV · ǫ∗γ

pγ · pV

)

, (38a)

where

Aind =
gV γ

√

4πα(mV )mH

m2
V

[

16π
α(mV )

α(0)
Γ(H → γγ)

]
1
2

, (38b)

and gV γ is expressed in terms of the width of V into leptons [1]:

gV γ = − eQ
|eQ|

[

3m3
V Γ(V → ℓ+ℓ−)

4πα2(mV )

]
1
2

. (38c)

We obtain Γ(H → γγ) from the values of the Higgs-boson total width and branching fraction

to γγ in Refs. [2, 3]. The expression (38b) for Aind neglects a small phase that is about 0.005.

As in Ref. [1], we have chosen the scales of the electromagnetic coupling as follows: we use
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α(mV ) to compute gV γ from the V leptonic width, we use e =
√

4πα(mV ) for the couplings

of the virtual photon, and we use e =
√

4πα(0) for the coupling of the real photon. We

have also compensated for the fact that Γ(H → γγ) was computed in Refs. [2, 3] using

e =
√

4πα(0).

In contrast with the calculations in Refs. [1, 11], our calculation of Aind does not include

contributions that are suppressed as m2
V divided by combinations of m2

H , m
2
t , m

2
Z , or m

2
W ,

where mt, mW , mZ are the masses of the top quark, W± boson, and Z0 boson, respectively.

Such contributions can arise not only from explicit mV terms in the amplitude for H → γγ∗,

but also from electroweak corrections to the amplitude for H → V + γ. In the latter, it is

not possible to distinguish between direct and indirect processes in a gauge-invariant way.

C. Numerical inputs

We take the pole masses to be the one-loop values mc = 1.483 GeV and mb = 4.580 GeV,

we take the MS masses to be mc = 1.275 GeV and mb = 4.18 GeV, and we take mH =

125.09± 0.21 (stat.)± 0.11 (syst.) GeV, which implies, from the tables in Refs. [2, 3], that

Γ(H → γγ) = (9.308 ± 0.120)× 10−6 GeV. Here, we have included a 1% uncertainty from

uncalculated higher-order terms in the theoretical expression, an uncertainty of 0.022%

from the uncertainty in mt, an uncertainty of 0.024% from the uncertainty in mW , and

an uncertainty of 0.82% from the uncertainty in mH . Our values for |ΨV (0)|2 and 〈v2〉V
are shown in Table III. Following Ref. [1], we use the values from Refs. [20, 21], except

that we have increased the uncertainties in 〈v2〉Υ(1S) and 〈v2〉Υ(2S) from those in Ref. [21].

V |ΨV (0)|2 (GeV3) 〈v2〉V

J/ψ 0.0729 ± 0.0109 0.201 ± 0.064

Υ(1S) 0.512 ± 0.035 − 0.00920 ± 0.0105

Υ(2S) 0.271 ± 0.019 0.0905 ± 0.0109

Υ(3S) 0.213 ± 0.015 0.157 ± 0.017

TABLE III: Values of |ΨV (0)|2 in units of GeV3 and 〈v2〉V for V = J/ψ and Υ(nS). These values

have been taken from Refs. [20, 21], except for the uncertainties in 〈v2〉Υ(1S) and 〈v2〉Υ(2S), which

are described in the text.
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The uncertainty from uncalculated corrections of order v4 was estimated in Ref. [21] by

multiplying the central value of 〈v2〉Υ(nS) by v2, where v2 = 0.1 was used for the Υ(nS)

states. Because the central value of 〈v2〉Υ(1S) is anomalously small (much less than v2), owing

to an accidental cancellation in the MS subtraction scheme, the estimate of the uncalculated

order-v4 corrections in Ref. [21] considerably understates the uncertainty from this source.

The uncertainty for 〈v2〉Υ(2S) was also slightly underestimated. Instead of using the estimates

in Ref. [21], we take the uncertainties in 〈v2〉Υ(1S) and 〈v2〉Υ(2S) from uncalculated order-v4

corrections to be v4 = 0.01.

D. Sources of uncertainties

In calculating the decay rates, we take into account uncertainties in both the direct and

indirect amplitudes, as is described below. In computing branching fractions, we also take

into account the uncertainty in the total decay width of the Higgs boson [2, 3].

1. Direct amplitude

In the direct amplitude, we include the uncertainties that arise from the uncertainties

in ΨV (0) and the uncertainties in 〈v2〉V . We also include the uncertainties that arise from

uncalculated corrections of order α2
s, order αsv

2, and order v4. We estimate the uncertainties

from these uncalculated corrections, relative to the lowest non-trivial order in the direct

amplitude, to be {[CFCAα2
s(mQ)/π

2]2 + [CFαs(mQ)v
2/π]2 + [v4]2}1/2 for the real part of

the direct amplitude and {[CAαs(mQ)/π]
2 + [v2]2}1/2 for the imaginary part of the direct

amplitude. (Note that the real part of the direct amplitude starts in absolute order α0
s and

the imaginary part of the direct amplitude starts in absolute order αs.) We take v2 = 0.3

for the J/ψ and v2 = 0.1 for the Υ(nS) states.

In Ref. [11], it was suggested that the uncertainties in ΨV (0) and 〈v2〉V were underesti-

mated in Refs. [20, 21]. We now address these issues.

One difficulty that was raised in Ref. [11] is that one-loop pole masses were used in

Refs. [20, 21] in the one-loop expression for Γ(V → ℓ+ℓ−), which was used to compute

ΨV (0). The objection is that the pole mass is ill defined outside of perturbation theory and

is subject to renormalon ambiguities. However, in Refs. [20, 21], the pole mass was used in
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conjunction with one-loop corrections to Γ(V → ℓ+ℓ−) that are calculated using the pole

mass. This is equivalent, up to corrections of higher order in αs, to the use of the MS mass

in conjunction with one-loop corrections to Γ(V → ℓ+ℓ−) that are calculated using the MS

mass. At one-loop order, the numerical difference between the two procedures is small.

Another difficulty that was raised in Ref. [11] is that the perturbation series for Γ(V →
ℓ+ℓ−) has very large corrections at two-loop and three-loop orders [22–25]. The perturbation

series was truncated at one-loop order in Refs. [20, 21]. While an understanding of the large

two-loop and three-loop corrections to Γ(V → ℓ+ℓ−) is still lacking, it should be noted that

the analyses in Refs. [20, 21] of the wave functions at the origin for the vector states V and

the pseudoscalar states P , which make use of the one-loop expressions for Γ(V → ℓ+ℓ−) and

Γ(P → γγ), result in the same values for the corresponding V and P wave functions at the

origin, up to differences whose numerical sizes are of order v2, in agreement with NRQCD

velocity scaling. This agreement was obtained in spite of the fact that both Γ(V → ℓ+ℓ−)

and Γ(P → γγ) receive different large corrections in two-loop order [24], and it suggests

that one-loop truncation is a reasonable procedure at the current level of precision.

In Ref. [11], the ratio f⊥
V (µ)/fV appears, where the direct amplitude is proportional to

f⊥
V (µ) and Γ(V → ℓ+ℓ−) is proportional to f 2

V . The expression for this ratio through order

αs (one-loop order) and through order v2 was used in Ref. [11], rather than the separate

expressions for the numerator and the denominator. At the one-loop order, for which the

perturbation series for the numerator and the denominator are separately well behaved,

the use of the ratio confers no particular advantage. At the two-loop order, at which the

perturbation series for Γ(V → ℓ+ℓ−) ∝ f 2
V is badly behaved, the ratio could conceivably be

better behaved than either the numerator or the denominator. However, this conjecture has

not yet been validated, as the two-loop corrections to f⊥
V (µ) have yet to be calculated.

Finally, we mention that, even if we assume that the uncertainty in the perturbative

expression for Γ(V → ℓ+ℓ−) is as large as 100% of the contribution of the one-loop term, the

resulting uncertainty in 〈v2〉V is comparable to that from other sources of uncertainty. If we

repeat the analyses of Refs. [20, 21], but allow the perturbative expression for Γ(V → ℓ+ℓ−)

to vary by 100% of the contribution of the one-loop term, then the values for 〈v2〉V deviate

from the central value by a maximum of 88%, 143%, 62%, and 135% of the error bars in

Table III for the J/ψ, Υ(1S), Υ(2S), and Υ(3S), respectively. Hence, the uncertainties in

〈v2〉V that are given in Table III seem to be ample to take into account the uncertainties in
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the perturbative expression for Γ(V → ℓ+ℓ−).

2. Indirect amplitude

In estimating the uncertainties in the indirect amplitude, we follow the method that is

given in footnote 2 of Ref. [1]. As we have already mentioned, we include in Γ(H → γγ) the

uncertainties that arise from uncalculated higher-order terms in the theoretical expression,

the uncertainty in mt, the uncertainty in mW , and the uncertainty in mH . We assume that

the uncertainties in the leptonic decay widths are 2.5% for the J/ψ, 1.3% for the Υ(1S),

and 1.8% for the Υ(2S) and Υ(3S) states. We take the relative uncertainty in the indirect

amplitude from uncalculated mass corrections to be m2
V /m

2
H .

E. Method for computing uncertainties in the decay rates

Owing to cancellations between the direct and indirect amplitudes, small variations in

those amplitudes can result in very nonlinear changes in Γ(H → V + γ). Hence, one cannot

reliably estimate the total uncertainty in Γ(H → V + γ) simply by adding the uncertainties

from the individual sources in quadrature. Instead, we use the following method to estimate

the total uncertainty in Γ(H → V +γ). We write Γ(H → V +γ) as a function of the various

uncertain input parameters and the normalizations of the direct and indirect amplitudes.

Then, we find the global maximum and global minimum of Γ(H → V +γ) in a region about

the central values of the input parameters and normalizations that is constrained as

∑

i

∣

∣

∣

∣

ci − ci0
∆ci

∣

∣

∣

∣

2

≤ 1, (39)

where the ci are the input parameters and normalizations, the ci0 are the central values of

the ci, and the ∆ci are the uncertainties in the ci. We take the upper (lower) error bar on

Γ(H → V + γ) to be the global maximum (minimum) of Γ(H → V + γ) minus the central

value of Γ(H → V + γ).

VII. RESULTS

Our results for the direct and indirect amplitudes are given in Table IV, where the

evolution of the direct amplitudes has been computed by the Abel-Padé method, and we
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have retained 100 terms in the eigenvalues series and used 50× 50 Padé approximants.

We note that, had we made the choice of initial scale µ0 = 2mQ, that would have shifted

our results for the real parts of the direct amplitudes by +13%, +4%, +4%, and +4% for

the J/ψ, the Υ(1S), the Υ(2S), and the Υ(3S), respectively. These shifts are within our

estimated uncertainties for the real parts of the direct amplitudes, which are 15%, 4%, 4%,

and 4% for the J/ψ, Υ(1S), Υ(2S), and Υ(3S), respectively. The choice of initial scale

µ0 = 2mQ would have shifted our results for the imaginary parts of the direct amplitudes by

+0.1% and −1.6% for the J/ψ and Υ(nS) states, respectively. These shifts are well within

our estimated uncertainties for the imaginary parts of the direct amplitudes.

The results in Ref. [7] for the real parts of the direct amplitudes are considerably larger

than our results, by 66%, 20%, 22%, and 23% for the J/ψ, Υ(1S), Υ(2S), and Υ(3S),

respectively. These differences are due, primarily, to the use of LL evolution, rather than

NLL evolution, form(µ) and f⊥
V (µ) in Ref. [7]. The differences are larger than the values that

one obtains simply by considering the generic size of a next-to-leading logarithm, namely,

[αs(mQ)/π]
2 log(m2

H/m
2
Q). In the case of φ⊥

V (x, µ), the use of NLL evolution, rather than LL

evolution, changes the direct amplitude by about 0.12% for the J/ψ and about 0.16–0.17%

for the Υ(nS) states. These changes are negligible in comparison with the uncertainties

in the direct amplitudes. The use of the Abel-Padé method to sum the logarithms of

c2(µ) = f⊥
V (µ)M(0,v2)(µ) to all orders in αs, rather than through order α2

s, as in Ref. [7],

amounts to about a 10% change in the case of the J/ψ and to about a 4% change in the case

of the Υ(nS) states. Since the corrections to the direct amplitude that arise from c2(µ) are

about 4% in the case of the J/ψ and about 3% in the case of the Υ(nS) states, the changes

to the direct amplitude that result from the use of the Abel-Padé method are negligible in

comparison to the uncertainties.

The results in Ref. [11] for the ratio of the real part of the direct amplitude to the indirect

amplitude are slightly larger than our results for that ratio, by 17%, 7%, 7%, and 8.5% for

the J/ψ, Υ(1S), Υ(2S), and Υ(3S), respectively. These differences are somewhat larger

than our relative uncertainties in the real parts of the direct amplitudes, and they are also

larger than the uncertainties that are given in Ref. [11] for the ratio of the real part of the

direct amplitude to the indirect amplitude.

The results in Ref. [11] for the ratio of the imaginary part of the direct amplitude to the

indirect amplitude differ from our results for that ratio by −12%, 9%, 4%, and 1% for the
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J/ψ, Υ(1S), Υ(2S), and Υ(3S), respectively. These differences are well within our relative

uncertainties for the imaginary parts of the direct amplitudes.

As we have already mentioned, there are several possible sources of these differences

between our results for the direct amplitudes and those of Ref. [11]. (1) Our initial scales for

the evolution of f⊥
V (µ) and the LCDAs are different from those in Ref. [11]. (2) Our formula

for the direct amplitude (37) treats cross terms of order α2
s, αsv

2, and v4 differently than

does the corresponding formula in Ref. [11]. (3) Our treatment of the order αs and order v2

corrections to the LCDA is different from the model-LCDA treatment of Ref. [11].

V αV βV

J/ψ 11.71 ± 0.16 (0.627+0.092
−0.094) + (0.118+0.054

−0.054)i

Υ(1S) 3.283 ± 0.035 (2.908+0.122
−0.124) + (0.391+0.092

−0.092)i

Υ(2S) 2.155 ± 0.028 (2.036+0.087
−0.089) + (0.293+0.069

−0.069)i

Υ(3S) 1.803 ± 0.023 (1.749+0.077
−0.078) + (0.264+0.062

−0.062)i

TABLE IV: Values of the parameters αV and βV in Γ(H → V + γ) = |αV − βV κQ|2 × 10−10 GeV

for V = J/ψ and Υ(nS).

Our results for the SM decay rates and branching fractions (κQ = 1) are given in Table V.

In computing the uncertainties in the branching fractions, we have included the effect of the

uncertainty in the Higgs-boson total width.

V Γ(H → V + γ) (GeV) Br(H → V + γ)

J/ψ 1.228+0.042
−0.042 × 10−8 3.01+0.16

−0.15 × 10−6

Υ(1S) 2.94+1.25
−1.02 × 10−11 7.19+3.07

−2.52 × 10−9

Υ(2S) 1.00+0.48
−0.39 × 10−11 2.45+1.18

−0.96 × 10−9

Υ(3S) 7.27+3.67
−2.93 × 10−12 1.78+0.90

−0.72 × 10−9

TABLE V: SM values of Γ(H → V + γ) in units of GeV and Br(H → V + γ) for V = J/ψ and

Υ(nS).

Our results for the SM decay rates agree with those in Ref. [7], within the uncertainties

that are given in Ref. [7], except in the case of the Υ(1S). In this case, the real parts of the
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SM direct and indirect amplitudes nearly cancel, and so, as was pointed out in Ref. [11],

the inclusion of the imaginary part of the direct amplitude results in a significant increase

in the rate.

Our results for the SM branching fractions agree with those in Ref. [11], within our uncer-

tainties. Note that our estimated uncertainties in the branching fractions are comparable to

those of Ref. [11], except in the case of the Υ(1S), for which our uncertainty is considerably

larger. Since, in the Υ(1S) case, our uncertainty in the ratio of the direct amplitude to the

indirect amplitude is essentially the same as Ref. [11], we suspect that the difference between

the uncertainty estimates arises because of the highly nonlinear dependences of the decay

rate on the input parameters. (See Sec. VIE.)

VIII. SUMMARY AND DISCUSSION

In this paper, we have presented new calculations of Higgs-boson decay rates to vector

heavy-quarkonium states plus a photon, where we have considered the vector quarkonium

states J/ψ and Υ(nS), with n = 1, 2, or 3. As was pointed out in Ref. [1], these decay

rates, when compared with data from a high-luminosity LHC run, can provide information

about the Hcc̄ and Hbb̄ couplings. Our calculation is carried out in the light-cone formalism

in which the nonperturbative parts of the quarkonium light-cone distribution amplitudes

(LCDAs) are expressed in terms of nonrelativistic QCD long-distance matrix elements [10].

Our calculations of the direct decay amplitudes take into account corrections through order

αs and order v2 and include resummations of logarithms of m2
H/m

2
Q to all orders in αs

through order v2 at NLL accuracy.

In order to resum logarithms that are associated with the quarkonium LCDAs, we have

devised a new method, called the “Abel-Padé method,” which makes use of Abel sum-

mation, accelerated through the use of Padé approximants. The new method allows us

to compute formally divergent sums over the eigenfunctions of the LO evolution kernels.

These divergences arise because the LCDAs at initial scale of the evolution are generalized

functions (distributions) of the light-cone fractions, rather than ordinary functions. The

Abel-Padé method defines these distributions as sequences of ordinary functions and, hence,

gives finite and unambiguous results for the formally divergent sums. We have tested this

method numerically against known analytic results for the LCDAs, and we find that it con-
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verges quickly and reliably to the values from analytic calculations. It solves the general

problem of carrying out the scale evolution in a nonrelativistic expansion of the LCDA for

heavy-quarkonium systems, and it should be applicable in other situations in which series

of orthogonal polynomials fail to converge when they are used to represent generalized func-

tions. Using the Abel-Padé method, we were able to make definitive calculations of the

LCDA-evolution effects in Higgs-boson decays to a quarkonium plus a photon.

We have compared the Abel-Padé method with the approach of Ref. [11], in which a

model LCDA is used to take into account relativistic and QCD corrections to the LCDA. In

contrast with the model approach, the Abel-Padé method makes use only of the calculated

nonrelativistic corrections [7] and QCD corrections [10], and does not introduce any new

model assumptions. We find that the model of Ref. [11] gives results that disagree substan-

tially with those from the Abel-Padé method and that the model results are very sensitive

to the choices of model parameters. It turns out that the relativistic and QCD corrections to

the LCDA have only small effects on the direct decay amplitude, and so the large differences

between the model and Abel-Padé calculations of the relativistic and QCD corrections to

the LCDA have only small effects on the decay rates.

Our results for the ratios of the direct decay amplitudes to the indirect decay amplitudes

are in reasonable agreement with those in Ref. [11]. Since the indirect decay amplitude can

be determined quite precisely, this implies that our direct decay amplitudes are in reasonable

agreement with those in Ref. [11]. Our results for the real parts of the direct decay amplitudes

are considerably smaller than those in Ref. [7], owing to the use in Ref. [7] of LL resummation,

rather than NLL resummation, of the logarithms of m2
H/m

2
Q. Our result implies that the

sensitivities of the decay rates to the HQQ̄ couplings are considerably smaller than the

sensitivities that were suggested in Ref. [7], especially in the case of the J/ψ.

Our results for the SM decay rates are in good agreement with those of Ref. [7], except

in the case of the Υ(1S). As was pointed out in Ref. [11], it is important to include the

imaginary part of the direct amplitude in the case of the decay to Υ(1S) because there is

an almost exact cancellation between the real parts of the direct and indirect amplitudes.

The inclusion of the imaginary part of the direct amplitude in our calculation increases the

decay rate in the Υ(1S) case substantially in comparison to the rate that is given in Ref. [7].

The branching fractions that we find are in good agreement with those in Ref. [11]. Our

uncertainty estimate in the case of the Υ(1S) differs from that in Ref. [11], possibly owing
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to the highly nonlinear dependence of the rate on the input parameters. In Sec. VIE,

we have presented a novel method for estimating the uncertainties in the presence of such

nonlinearities.

In the calculations that we have described, there is one important theoretical issue that

remains unresolved. The direct amplitude is proportional to the quarkonium wave function

at the origin. The wave function at the origin is usually determined by comparing the

theoretical expression for the quarkonium decay rate to leptons with the measured rate. In

Refs. [7, 11], and in the present work, the one-loop expression for the decay rate was used.

Two- and three-loop expressions exist [23–25], but the higher-loop corrections apparently

destroy the convergence of the perturbation series. As we have mentioned, the one-loop

analyses in Refs. [20, 21] result in values for the corresponding vector and pseudoscalar wave

functions at the origin that agree, up to differences whose numerical sizes are of relative order

v2. This agreement, which is predicted by the NRQCD velocity-scaling rules, is obtained

in spite of the fact that the two-loop corrections to the vector decays to leptons and the

pseudoscalar decays to two photons are large and different in relative size. The agreement

suggests that the one-loop truncations of the perturbation series may lead to reasonable

results for the wave functions at the origin at a level of precision of order v2.

In Ref. [11], the ratio of decay constants f⊥
V /fV appears. The direct H → V +γ amplitude

is proportional to f⊥
V , and the leptonic width of the vector quarkonium is proportional to

f 2
V . This ratio is evaluated through order αs (one-loop order) and order v2. Hence, the

calculation in Ref. [11] also truncates the perturbation series for the leptonic width at one-

loop level. It is conceivable that the ratio f⊥
V /fV is better behaved than either the numerator

or the denominator. A calculation of two-loop QCD corrections to f⊥
V would help to test

this conjecture.

Higgs boson decays to a vector quarkonium plus a photon provide important opportu-

nities to measure the HQQ̄ couplings at the LHC and are the only known processes that

can provide phase information about those couplings. In order to take advantage of these

opportunities to determine the HQQ̄ couplings, it is essential to have the theoretical calcu-

lations of the decay rates under good control. In this paper, we have addressed the issue of

the divergences that appear when one uses conventional eigenfunction-expansion methods

to resum the logarithms of m2
H/m

2
Q that appear in the nonrelativistic expansions of the

quarkonium light-cone distribution amplitudes. With the resolution of this issue, we believe
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that, aside from the matter of the determination of quarkonium wave functions at the origin

that we have mentioned above, calculations of the rates for Higgs-boson decays to vector

quarkonia plus a photon are now on a sound theoretical footing.

Appendix A: Evolution of the running mass and decay constant

Here we collect formulas at NLL accuracy for the evolution of the running MS mass m(µ)

[26] and the decay constant f⊥
V (µ) [27].

m(µ)

m(µ0)
=

[

αs(µ)

αs(µ0)

]−γm0 /(2β0)
[

1− γm1 β0 − β1γ
m
0

2β2
0

αs(µ)− αs(µ0)

4π
+ · · ·

]

, (A1a)

f⊥
V (µ)

f⊥
V (µ0)

=

[

αs(µ)

αs(µ0)

]+γT0 /(2β0)
[

1 +
γT1 β0 − β1γ

T
0

2β2
0

αs(µ)− αs(µ0)

4π
+ · · ·

]

, (A1b)

where

γm0 = −6CF , γm1 = −3C2
F − 97

3
CFCA +

20

3
CFTFnf , (A2a)

γT0 = 2CF , γT1 = −19C2
F +

257

9
CFCA − 52

9
CFTFnf . (A2b)

Here, β0 = 11
3
Nc − 2

3
nf is the one-loop coefficient of the QCD beta function, β1 = 34

3
C2
A −

20
3
CATFnf − 4CFTFnf is the two-loop coefficient of the QCD beta function, CF = (N2

c −
1)/(2Nc), CA = 3, Nc = 3 is the number of colors, TF = 1/2, and nf is the number of active

quark flavors.

Appendix B: Evolution matrix

At NLL accuracy, the evolution matrix Unk(µ, µ0) is given by [13]

Unk(µ, µ0) =







ENLO
n (µ, µ0), if k = n,

αs(µ)
4π ELO

n (µ, µ0)dnk(µ, µ0), if k < n,
(B1)
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where

ELO
n (µ, µ0) =

[

αs(µ)

αs(µ0)

]

γ
⊥(0)
n
2β0

, (B2a)

ENLO
n (µ, µ0) = ELO

n (µ, µ0)

[

1 +
αs(µ)− αs(µ0)

4π

γ
⊥(1)
n β0 − γ

⊥(0)
n β1

2β2
0

]

, (B2b)

dnk(µ, µ0) =
Mnk

γ
⊥(0)
n − γ

⊥(0)
k − 2β0

{

1−
[

αs(µ)

αs(µ0)

]

γ
⊥(0)
n −γ

⊥(0)
k

−2β0
2β0

}

, (B2c)

Mnk =
(k + 1)(k + 2)(2n+ 3)

(n+ 1)(n+ 2)
(γ⊥(0)
n − γ

⊥(0)
k )

×
[

8CFAnk − γ
⊥(0)
k − 2β0

(n− k)(n+ k + 3)
+ 4CF

Ank − ψ(n+ 2) + ψ(1)

(k + 1)(k + 2)

]

, (B2d)

Ank = ψ(n+k+4
2

)− ψ(n−k
2
) + 2ψ(n− k)− ψ(n+ 2)− ψ(1). (B2e)

Here ψ(n) is the digamma function. The LO and NLO anomalous dimensions, γ
⊥(0)
n and

γ
⊥(1)
n , respectively, are given by

γ⊥(0)
n = γ(0)n − γT0 , (B3a)

γ⊥(1)
n = γ(1)n − γT1 , (B3b)

where, from Refs. [4, 28], we have

γ(0)n = 8CF (Hn+1 − 3/4), (B4)

and, from Refs. [29, 30], we have

γ(1)n ≡ 4C2
F

[

H
(2)
n+1 − 2Hn+1 −

1

4

]

+ CFCA

[

−16Hn+1H
(2)
n+1 −

58

3
H

(2)
n+1 +

572

9
Hn+1 −

20

3

]

−8

(

C2
F − 1

2
CFCA

)[

4Hn+1

(

S
′(2)
(n+1)/2 −H

(2)
n+1 −

1

4

)

− 8S̃n+1 + S
′(3)
(n+1)/2 −

5

2
H

(2)
n+1

+
1 + (−1)n

(n+ 1)(n+ 2)
+

1

4

]

+
32

9
CF

nf
2

[

3H
(2)
n+1 − 5Hn+1 +

3

8

]

, (B5a)

where

H(k)
n ≡

n
∑

j=1

1

jk
, with H(1)

n ≡ Hn, (B5b)

S
′(k)
n/2 ≡











H
(k)
n/2, if n is even,

H
(k)
(n−1)/2, if n is odd,

(B5c)

S̃n ≡
n

∑

j=1

(−1)j

j2
Hj . (B5d)
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Here, the H
(k)
n are the generalized harmonic numbers. Note that the off-diagonal matrix

elements, which are proportional to dnk(µ, µ0), are nonvanishing only for even n − k [13,

14]. One can obtain Unk(µ, µ0) at LL accuracy by replacing ENLO
n (µ, µ0) in Eq. (B1) with

ELO
n (µ, µ0) and setting the off-diagonal terms to zero.

Appendix C: Nonrelativistic expansion

In this appendix we discuss the nonrelativistic expansion of the light-cone amplitude in

order α0
s and investigate the convergence of that expansion numerically.

1. Formulation of the expansion

In Ref. [7], a formal expansion of the LCDA was given. Making the change of light-cone

variables x→ 2x− 1, we write that expansion as

φ⊥
V (x) =

∞
∑

k=0

(−1)k〈xk〉
2kk!

δ(k)(x− 1
2
), (C1)

where the normalization condition is

∫ 1

0

dx φ⊥
V (x) = 1. (C2)

Here, 〈xk〉 is defined by

〈xk〉 = 2k
∫ 1

0

dx (x− 1
2
)kφ⊥

V (x). (C3)

As we will see in Appendix C2, the kth x moment in Eq. (C3) is proportional, in order

α0
s, to the NRQCD LDME 〈vk〉. Hence, the expansion in Eq. (C1) is the nonrelativistic

expansion of the LCDA in order α0
s . In the following discussions, we will assume that φ⊥

V (x)

is even under the replacement x ↔ 1 − x (charge-conjugation parity), in which case, only

the moments 〈xk〉 with k even are nonvanishing.

The meaning of this formal expansion is that, if one integrates φ⊥
V (x) against a test

function f(x), then that integral is replaced by the sum of the integrals of φ⊥
V (x) against

each term in the Taylor expansion of f(x):

∫ 1

0

dx f(x)φ⊥
V (x) =

∞
∑

k=0

1

k!

[

dk

dxk
f(x)

]
∣

∣

∣

∣

x=1/2

∫ 1

0

dx (x− 1/2)kφ⊥
V (x) =

∞
∑

k=0

f (k)〈xk〉, (C4a)
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where

f (k) =
1

2kk!

[

dk

dxk
f(x)

]
∣

∣

∣

∣

x=1/2

. (C4b)

In our case, we wish to compute the light-cone amplitude

M(0)(µ) =

∫ 1

0

dx TH(x, µ)φ
⊥
V (x, µ), (C5)

where the superscript (0) denotes order α0
s. M(0)(µ) has the nonrelativistic expansion

M(0)(µ) =

∞
∑

k=0

M(0,v2k)(µ), (C6)

where

M(0,v2k)(µ) = f (2k)〈x2k〉, (C7)

and we make the identification

f(x) =
∞
∑

n=0

n
∑

m=0

Tn(µ)Unm(µ, µ0)NmC
(3/2)
m (2x− 1). (C8)

We compute the derivatives of this quantity by making use of the Abel summation in

Eq. (31). That is, we compute

f (2k) = lim
z→1

∞
∑

n=0

n
∑

m=0

znTn(µ)Unm(µ, µ0)Nm
1

22k(2k)!

d2k

dx2k
C(3/2)
m (2x− 1)

∣

∣

∣

∣

x=1/2

. (C9)

and we accelerate the convergence of the sum of m by making use of Padé approximants, as

we have described earlier.

Making use of the identities

d

dx
Cλ/2
n (x) = λC

(λ+2)/2
n−1 (x) (C10a)

and

C
λ/2
2n (0) =

(−1)n

(2n)!!

(λ+ 2n− 2)!!

(λ− 2)!!
, (C10b)

we obtain a convenient expression for the even derivatives of the even-order Gegenbauer

polynomials:
d2k

dx2k
C

(3/2)
2n (2x− 1)

∣

∣

∣

∣

x=1/2

= (−1)n−k22k
(2n+ 2k + 1)!!

(2n− 2k)!!
. (C11)
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2. Sizes of the nonrelativistic moments

In order α0
s, the x moments of the LCDA [Eq. (C3)] have the following relationships to

the NRQCD LDMEs [16–18]:

〈x2k〉 = 〈v2k〉
2k + 1

. (C12)

As we have mentioned in footnote 6, the NRQCD velocity-scaling rules, in their strictest

sense, state that 〈vn〉V vanishes as vn in the limit v → 0. However, in phenomenology, the

velocity-scaling rules are usually taken to mean that

〈v2k〉 ∼ 〈v2〉k, (C13)

where ∼ means equal up to a coefficient of order one. These approximate sizes of the LDMEs

are consistent with the generalized Gremm-Kapustin relation [19].

Now let us consider the x moments of the model LCDA in Eq. (32), which we denote by

〈xk〉M . We compute σJ/ψ(µ0) using Eq. (34), but we drop the order-αs term so as to obtain

the behavior at order α0
s. Then, using 〈v2〉J/ψ = 0.201 we obtain σJ/ψ = 0.129422. The first

several x moments are then

〈x0〉M = 1,

〈x2〉M = 0.0573955,

〈x4〉M = 0.00962303,

〈x6〉M = 0.00259973,

〈x8〉M = 0.000943655,

〈x10〉M = 0.000419855. (C14)

On the other hand, from the relationship between the x moments and the LDMEs at order

α0
s [Eq. (C12)] and the NRQCD velocity-scaling rules [Eq. (C13)], we expect that

〈x0〉 = 1,

〈x2〉 = 0.0573955,

〈x4〉 ∼ 0.00592964,

〈x6〉 ∼ 0.000729288,

〈x8〉 ∼ 0.0000976684,

〈x10〉 ∼ 0.0000137595. (C15)
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The expression for 〈x2k〉M in the limit σV → 0 is given by

〈x2k〉M = (2σV )
2k(2k − 1)!!

[

1 +O(σ2
V )
]

. (C16)

Hence, the model LCDA satisfies the NRQCD velocity-scaling rules in the strict sense that

the 2kth moment vanishes as the kth power of a quantity that could be interpreted as the

square of the velocity. However, we see from Eq. (C14) that the first several xmoments of the

model LCDA badly violate the broader expectation that the LDMEs satisfy the relationship

in Eq. (C15).

The crucial issue for the convergence of the velocity expansion is the behavior of the 2kth

x moment of the LCDA in the limit k → ∞ for fixed σV . We can derive an asymptotic

expansion for the x moments of the model LCDA by integrating the definition in Eq. (C3)

twice by parts. The result for even moments is

〈x2k〉M =

[

∂
∂x
φ⊥M
V (x)

]
∣

∣

x=0
−

[

∂
∂x
φ⊥M
V (x)

]
∣

∣

x=1

4(2k + 1)(2k + 2)
+O[1/(2k)3]

= Nσ

√

2/πe−1/(8σ2V )

σV (2k + 1)(2k + 2)
+O[1/(2k)3]. (C17)

Hence, we see that the 2kth moment falls as 1/k2 in the limit k → ∞, while we expect,

from Eqs. (C12) and (C15), that the 2kth moment should fall faster than v2k. Nevertheless,

Eq. (C17) shows that the nonrelativistic expansion converges for the model LCDA, in the

absence of evolution, provided that

T
(2k)
H ≡ 1

22k(2k)!

[

d2k

dx2k
TH(x)

]
∣

∣

∣

∣

x=1/2

. (C18)

grows more slowly than a power of k.7

We record here the values for 〈x2k〉 that we obtain by retaining both the order-αs term

7 We note that the limits k → ∞ and σV → 0 cannot be interchanged, as can be seen explicitly from

Eqs. (C16) and (C17).
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and the order-v2 term in Eq. (34), which corresponds to taking σJ/ψ = 0.228.

〈x0〉M = 1,

〈x2〉M = 0.120256,

〈x4〉M = 0.0373473,

〈x6〉M = 0.0166916,

〈x8〉M = 0.00909954,

〈x10〉M = 0.00561735. (C19)

These x moments, of course, lead to a slower convergence of the nonrelativistic expansion

than those for the case σJ/ψ = 0.129422.

3. Numerical tests of the convergence of the nonrelativistic expansion

Now let us test numerically the convergence of the nonrelativistic expansion of the light-

cone amplitude in order α0
s , which is given in Eq. (C6). We do this by comparing the

numerical results from the nonrelativistic expansion of the light-cone amplitude with the

numerical results that are obtained by computing the light-cone amplitude directly from

a model LCDA. For this purpose, we make use of the model LCDA in Eq. (32). As we

have pointed out, the x moments of this model LCDA decrease much more slowly with

increasing moment number than would be expected from the NRQCD velocity-scaling rules.

Therefore, we expect the nonrelativistic expansion to converge more slowly for this model

LCDA than for a more realistic LCDA. However, as we will see, even for this model LCDA,

the convergence of the nonrelativistic expansion is quite rapid.

a. Without evolution

We first take the case of no evolution, i.e., µ = µ0. We consider TH(µ) at leading order

in αs. Then, f(x) = T
(0)
H , and we can compute f (2k) analytically from Eq. (C4b), with the

result

M(0,v2k)(µ0) = 4〈x2k〉 (C20)

for all k. We note that we can also compute the f (2k) in Eq. (C20) by making use of the Abel

summation in Eq. (C9). If we accelerate the convergence of the sum over m by employing a

35



50 × 50 Padé approximant, then, through M(0,v10), the agreement with the coefficient 4 in

Eq. (C20) holds to greater than 5 places after the decimal. This agreement provides strong

confirmation of the validity of the Abel summation in Eq. (C9), as supplemented by the use

of Padé approximants.

Using the x moments of the model LCDA that correspond to σJ/ψ = 0.129422 [Eq. (C14)],

we find that
5

∑

k=0

M(0,v2k)(µ0)|M = 4.28393. (C21)

On the other hand, if we evaluate M(µ0) directly in Gegenbauer-moment space, taking the

first 20 Gegenbauer moments, we obtain

M(µ0)|M ≈ 4.28670. (C22)

This value agrees very well with the one that is obtained from the first 5 terms in the

nonrelativistic expansion. [It also agrees very well with the value that is obtained by direct

computation of the amplitude in x space as, in Eq. (C5).] The order-v2 term in the expansion

accounts for 80% of the higher-order corrections. As we have noted, the x moments of the

model LCDA severely violate the velocity-scaling relation in Eq. (C13), and, so, we would

expect that, in the case of a more realistic LCDA, the order-v2 term in the expansion would

account more fully for the higher-order corrections. If we use the values of the x moments

in Eq. (C15), which are based on the NRQCD velocity-scaling rules, then we find that the

order-v2 term in the expansion accounts for 89% of the higher-order corrections.

We can evaluate these same quantities for the x moments in Eq. (C19), which correspond

to the choice σJ/ψ = 0.228. We remind the reader that this value of σJ/ψ corresponds to the

inclusion of the order-αs corrections, as well as the order-v
2 corrections, in the model LCDA.

Hence, for this value of σJ/ψ, the relationship between the x moments of the model LCDA

and the NRQCD LDMEs in Eq. (C12) does not hold, and the x-moment expansion is not,

strictly speaking, a nonrelativistic expansion. Nevertheless, it is interesting to examine the

convergence of the x-moment expansion in this case. The result for the x-moment expansion

is
5

∑

k=0

M(0,v2k)(µ0)|M = 4.75605, (C23)

and the result for the direct evaluation, using the first 20 Gegenbauer moments, is

M(µ0)|M ≈ 4.84334. (C24)
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Again, there is good agreement between the results from x-moment expansion and the direct

evaluation, although, as expected, the x-moment expansion converges more slowly with this

choice of σJ/ψ.

b. With evolution

In this section, we compute the same quantities as in the preceding section, but taking

µ = mH and µ0 = 1 GeV. We use LL evolution. In order to compute the coefficients of the

〈x2k〉 in the presence of evolution, we use the Abel summation in Eq. (C9), accelerating the

convergence to the limit by employing a 50× 50 Padé approximant. The result is

M(0,0)(µ) = 4.91403〈x0〉,

M(0,v2)(µ) = 2.95670〈x2〉,

M(0,v4)(µ) = 2.31150〈x4〉,

M(0,v6)(µ) = 1.96596〈x6〉,

M(0,v8)(µ) = 1.74271〈x8〉,

M(0,v10)(µ) = 1.58320〈x10〉. (C25)

We note that the evolution results in a decreasing sequence of coefficients, and, so we expect

the nonrelativistic expansion to converge more rapidly than in the absence of evolution.

With choice σJ/ψ = 0.129422, the nonrelativistic expansion gives

5
∑

k=0

M(0,v2k)(µ)|M = 5.11340, (C26)

and the direct evaluation, using the first 20 Gegenbauer moments, gives

M(µ)|M = 5.11425. (C27)

There is good agreement between the nonrelativistic expansion and the direct evaluation.

As expected, the nonrelativistic expansion converges more rapidly than in the case of no

evolution. In this case, the order-v2 term in the expansion accounts for 85% of the higher-

order corrections. We would expect that, in the case of a more realistic LCDA, the order-v2

term in the expansion would account more fully for the higher-order corrections. If we use

the values of the x moments in Eq. (C15), which are based on the NRQCD velocity-scaling
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rules, then we find that order-v2 term in the expansion accounts for 92% of the higher-order

corrections.

Finally, we carry out the same computation with the choice σJ/ψ = 0.228. Again, we re-

mind the reader that this value of σJ/ψ corresponds to the inclusion the order-αs corrections,

as well as the order-v2 corrections, in the model LCDA, and, so, for this value of σJ/ψ, the

expansion the x-moment expansion of the LCDA is not, strictly speaking, a nonrelativistic

expansion. The result for the x-moment expansion is

5
∑

k=0

M(0,v2k)(µ)|M = 5.41349, (C28)

and the result from the direct evaluation is

M(µ)|M ≈ 5.43700. (C29)

Again, the x-moment expansion converges rapidly to the result from the direct evaluation,

although, as expected, not as rapidly as with the choice σJ/ψ = 0.129422.
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