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Abstract

The crucial parameter in the current Monte Carlo models of high energy hadron-hadron
interaction is the transverse momentum cutoff pT0 for parton-parton interactions which
slowly grows with energy and regularizes the cross section. This modification of the collinear
factorization formula goes beyond the leading power and thus a natural question arises if
such cutoff can be extracted from a formalism which takes into account power corrections.
In this work, we consider the High Energy Factorization (HEF) valid at small x and a
new model, based on a similar principle to HEF, which in addition has a limit respecting
the Dokshitzer-Dyakonov-Troyan formula for the dijet momentum disbalance spectrum.
Minijet cross section and its suppression is then analyzed in two ways. First, we study
minijets directly in the low-pT region, and demonstrate that higher twist corrections do
generate suppression of the inclusive jet production cross section though these effects are
not leading to the increase of the cutoff with incident energy. Second, we consider hard
inclusive dijet production where Multi Parton Interactions (MPIs) with minijets produce
power corrections. We introduce an observable constructed from differential cross section
in the ratio τ of dijet disbalance to the average dijet pT and demonstrate that the τ > 1
region is sensitive to the cutoff pT0 in the MPI minijet models. The energy dependence
of the cutoff is reflected in the energy dependence of the bimodality coefficient b of the
τ distribution. We compare b calculated from pythia, where one can conveniently control
MPIs by the program parameters, and HEF for a few unintegrated gluon distributions
(UGDs). We find that the energy dependence of b is very sensitive to the particular choice
of UGD and in some models it resembles predictions of the Monte Carlo models.

1 Introduction
The rise of the total cross section in hadron-hadron collisions with energy is driven by minijets,
i.e. jets with relatively low transverse momenta pT , of the order of a few GeV. From the QCD
point of view, this growth is attributed to the rise of the parton density inside a hadron with
decreasing value of longitudinal momentum x (or increasing CM energy of the collision). At
leading order (LO) the colliding partons (mostly gluons at high energies) produce two final state
partons and give rise to two jets. The problem is, however, that the resulting QCD expression
is divergent when pT → 0. This is of course not a paradox, simply the very low pT region is out
of the applicability of the formalism operating on partons (i.e. collinear factorization theorem
[1], see Section 2.1). Thus one has to introduce a cutoff, pT min, above which the formula makes
sense [2]. This is the starting point for so-called minijet models and models including Multi
Parton Interactions (MPIs) which are at the heart of modern event generators like pythia [3] or
herwig + + [4]. The basic idea is that since the minijet cross section σminijet (pT min) can easily

1



exceed the total cross section σtot (for low values of pT min), the ratio σminijet/σND, with σND

being a non-diffractive inelastic component of the total cross section, gives an average number of
hard binary collisions per event, i.e. MPI events [5]. The pT min is a free parameter of the model.
Typically, one does not implement the sharp cutoff but rather a smooth transition regulated
by another parameter pT0. Comparison of the models with MPI with the data indicates that
hadron production at small impact parameters grows in these models too fast with increase
of
√
S. Also the cross section of the interaction at large impact parameters grows faster than

indicated by the data on profile function of the pp interaction leading to cross section much
larger than the experimental one [6, 7]. The typical resolution is to let the pT0 parameter to be
energy dependent pT0 = pT0 (S), slowly growing with S.

We see that there are two general features of the minijet models: (i) an existence of a scale
pT0 above which perturbative collinear factorization applies and (ii) the MPI-type events. Let
us note, that in a typical minijet model these features are related in the sense that the MPI
models require the property (i), which in turn, on itself, can be viewed as a consequence of
color confinement [5] and is independent on MPIs. However at the LHC energies one needs
a cutoff on the scale of 3 GeV and growing with S, making it unlikely that the cutoff could
be solely non-perturbative effect. On the other hand, the MPIs became a separate branch of
high energy physics, not necessarily related to minijets. For example one of the typical direct
MPI signals is expected to be a four-jet hard event with back-to-back dijets [8]. On the theory
side the MPI physics is a very complicated subject and most often is restricted to the double
parton scattering (DPS), see [9] for a comprehensive review. So far no proof exists of the QCD
factorization theorem for DPS, although recently a progress has been made towards the proof
of DPS in the double Drell-Yan process [10].

In this work we have undertaken an attempt to understand the origin of the cutoff and the
low pT suppression within the perturbative QCD. As we will discuss later, the application of
the cutoff to the collinear factorization formula extends it beyond the leading power. Thus, any
approach which aims to explain the cutoff has to incorporate higher twists. Non-negligible power
corrections may be generated by large transverse momenta of incoming partons entering the hard
collision, as compared to the hard scale of the process. These features are naturally incorporated
in the High Energy Factorization (HEF) (or kT -factorization) approaches [11–15]. There, the
transverse momentum of the dijet pair is no longer zero, but equals to the sum of the transverse
momenta of the incoming off-shell gluons. The distribution of these gluons in longitudinal and
transverse momenta is given by so-called Unintegrated Gluon Distribution (UGD). Thus, in
principle, the cutoff on the jet pT is related to the behavior of UGDs in transverse momentum
which, in the low x limit, is given by Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [16–18] or
some BFKL-type evolution. Furthermore, the gluon emissions with small transverse momenta
are suppressed by the Sudakov form factor. In fact, for some UGD models [19, 20] the transverse
momentum of the gluons is generated by the Sudakov form factor and the standard Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution. This is somewhat similar to the soft gluon
resummation [21] technique which was used in [22, 23] to build an eikonal minijet model which
does not require a cutoff (but it is suitable only for the total cross section).

The strategy for our paper is as follows. Using the HEF for inclusive dijet production we
shall perform two independent studies of the pT cutoff:

Study 1. A direct study, where we calculate the pT spectrum for pT & 2 GeV and see if there
is a suppression and determine its energy dependence.

Study 2. An indirect study, where we analyze the hard dijet production with pT & 25 GeV
and look for an observable which is sensitive to power corrections which would come from
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MPIs in minijet models.

As for the study 1, the issue of a direct access to the pT cutoff within an approach involving
an internal kT is actually known in the literature. In [24] it was shown that indeed such approach
can produce pT suppression, which has roughly the correct energy dependence. There is however
an important difference to our study 1. We use HEF of [12–15] which factorizes the cross section
into UGD and a genuine 2 → 2 off-shell hard process which extends collinear minijet formula
beyond leading power. In [24] the minijet production was considered in the sense of a chain of
emissions which does not have hard 2→ 2 process. It is rather suitable for constructing shower-
like Monte Carlo program [25] that can be used to study particle production [26]. More precisely,
in [24] the authors considered a modification of the Catani-Ciafaloni-Fiorani-Marchesini (CCFM)
[27–29] evolution, so-called linked dipole chain model [30], in which any emission in the chain
can contribute a minijet (the emissions are unordered in transverse momenta and thus following
this logic any sub-collision in the chain can be considered as ‘hard’). On the contrary, in HEF,
we require that the large enough hard scale is present that distinguishes the hard 2→ 2 process
from the chain of remaining emissions. Since this hard scale is identified with the jet pT the
two directly emitted partons should be actually considered as hard jets, not the minijets. In
the first approximation hard jets are produced back-to-back and described by the leading power
collinear approach, which does not feature any suppression factor. We will see this feature in
our calculations when we compute the pT spectra in the small pT region from HEF. That is, we
will find no suppression in the pT spectra of the type present in the minijet models. Nonetheless,
it does not mean that there are no minijets in HEF. In fact, HEF takes into account additional
emissions visible as the jet imbalance, and thus as power corrections.

The above motivates the study 2, which concentrates on the indirect access to minijets
in HEF. We introduce an observable related to the dijet imbalance KT , which is sensitive to
minijets. Specifically, we shall consider the cross section differential in the ratio τ , of KT to the
dijet average pT . We will check actual sensitivity of this observable on minijets, in particular on
pT0 cutoff, using pythia and then we shall compare them to similar calculations in HEF models.
Next, we introduce bimodality coefficient which characterizes the τ spectrum. We observe that
the energy dependence of this coefficient is very sensitive to the particular minijet model. We
will see that some of the UGDs used in HEF give energy dependence similar to the one coming
from the minijet models in pythia. This would then indirectly confirm the statement from [24],
but in a way that can be confirmed experimentally when such observable is measured.

Our work is organized as follows. In Section 2 we systematically review theory behind mini-
jets. First, in Subsection 2.1 we review the collinear factorization for the minijet production and
then, in Subsection 2.2, we describe in details how the cutoff is introduced. In Subsection 2.3 we
review the HEF and discuss its relevance to minijet cross section. In particular, we shall explain
that the leading twist limit of HEF does not reproduce the result of Dokshitzer-Dyakonov-
Troyan (DDT) [31] for the dijet momentum disbalance. Therefore, in the next Subsection 2.4
we construct a model similar to HEF but having the DDT limit. In the following sections we
will turn to numerical simulations. First, in Section 3 we shall describe in some details the pro-
cess under consideration, kinematic cuts, etc. in order to unambiguously define the observables.
Later, in Section 4 we will analyze the inclusive dijet spectra in the low pT region in order to
see whether the suppression is produced in HEF and the DDT-based model we constructed in
Subsection 2.4 (study 1). Finally, in Section 5 we will turn to hard inclusive dijets and study
the minijets as a power correction (study 2). We will summarize and make our conclusions in
Section 6.
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2 Minijets in selected approaches

2.1 Collinear factorization and soft gluon resummation
The starting point for a typical minijet model is the collinear factorization formula, which how-
ever has to be modified. In this introductory section we review this issue in a more quantitative
way.

The QCD collinear factorization theorem (see e.g. [1] for a review) expresses the cross section
for hard dijet production as

σ2jet =
∑
a,b

ˆ
dxA
xA

dxB
xB

dσ̂ab
(
xA, xB ;µ2

)
fa/A

(
xA;µ2

)
fb/B

(
xB ;µ2

)
+O

(
µ2

0

µ2

)
, (1)

where fa/A, fb/B are integrated parton distribution functions (PDFs) for a parton a, b inside
a hadron A,B, and dσ̂ab is a partonic, fully differential, cross section which can be calculated
order by order in perturbation theory. In general the partons a, b can be quarks and gluons,
including heavy quarks. The phase space cuts necessary to define a jet cross section (i.e. a
suitable jet algorithm) are hidden inside the partonic cross section. The hard scale µ is the
largest scale in the problem and is typically taken to be the average transverse momentum of
the jets, PT = (|~pT1|+ |~pT2|) /2. The remainder, i.e. the higher ‘twist’ corrections in (1) are
suppressed by the powers of the ratio µ2

0/µ
2, where µ0 is the largest of some other scales present

in the problem, e.g. heavy quark masses, dijet disbalance, etc.
Since the purpose of this work is to study minijets, let us restrict to the semi-hard jets having

transverse momenta pT & 2 GeV. In addition, we are interested in the total CM energies being
much larger than this scale. For such regime the factorization theorem (1) starts to fail. Two
major sources for this are various large logs (containing ratios of very different scales) and power
corrections which are no longer small.

Certainly, the formula (1) would be perfectly valid for fixed s and µ2 →∞, but obviously this
is not the case for minijets. In order to illustrate the problems more quantitatively, let us consider
a cross section (1) as a function of the disbalance between the jets, K2

T , when µ
2
0 � K2

T � µ2.
To leading logarithmic accuracy it is given by the formula due to Dokshitzer-Dyakonov-Troyan,
the so-called ‘DDT formula’1 [31]

dσ2jet

dK2
T

=
∑
a,b,c,d

ˆ
dxA
xA

dxB
xB

dσ̂ab→cd
(
xA, xB ;µ2

)
× ∂

∂K2
T

{
fa/H

(
xA;K2

T

)
Ta
(
K2
T , µ

2
)
fb/H

(
xB ;K2

T

)
Tb
(
K2
T , µ

2
)
Tc
(
K2
T , µ

2
)
Td
(
K2
T , µ

2
)}

+O
(
K2
T

µ2

)
, (2)

where Ta
(
µ2

1, µ
2
2

)
is a ‘Sudakov’ form factor for a parton a (for the original Sudakov’s form

factor in QED see [32]). It can be thought of as a probability for the parton a to evolve between
the scales µ1 and µ2 without any resolvable emissions. We shall give the explicit formula later
(see Subsection 2.4, Eq. (33)), for now let us just mention that

Ta
(
µ2, µ2

)
= 1, Ta

(
µ2

0, µ
2
)
w 0 , µ� µ0 , (3)

1More precisely, the notion ‘DDT formula’ refers to the factorization formula for the transverse distribution
of the Drell-Yan pairs in hadron-hadron collision. Its generalization for decorrelation of a di-hadron system in
hadron-hadron collision was given in [31]. In the present work we use the term ‘DDT formula’ for the latter.
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for µ0 being the lowest scale in our problem. Let us remark, that the relevant DDT formula
in [31] was actually derived for a production of hadrons in hadron-hadron collision, and thus
it contained fragmentation functions which accompanied the form factors Tc, Td in (2). For
the purpose of this paper we have adjusted that formula for dijets by setting the fragmentation
functions to be the delta functions. Let us note, that due to the listed properties of the Sudakov
form factors, this formula reduces to (1) when integrated over the jet disbalance KT . Since
the appearance of the DDT formula a lot of effort has been put into improving the accuracy of
perturbative predictions for such semi-inclusive observables. In particular so-called Transverse
Momentum Dependent (TMD) factorization theorem has been established for certain processes
[1]. We shall discuss these at the end of this section and for the purpose of the present discussion
we shall stick to the leading-log formula (2).

In case of minijets, the formula (2) looses its accuracy as now KT can be easily of the order
of µ (which is the average pT of the jets). This can be seen by inspecting the derivative in (2)
as a function of KT , for example in the pure gluonic channel:

G
(
x,K2

T , µ
2
)

=
∂

∂K2
T

{
f2
g/H

(
x;K2

T

)
T 4
g

(
K2
T , µ

2
)}

. (4)

This distribution is plotted in Fig. 1 as a function of KT for fixed µ = PT = 2.5 GeV and
µ = 300 GeV, and two values of x (note that for simplicity we have used the same values of
x entering both PDFs in (4)). In this presentation we use the leading order GRV98 PDF set
[33] (we explain the reason for using this PDF set in Section 3). We see that the characteristic
KT , let us call it KT0, generated by the density G is large when compared to the average PT
of minijets so that KT0/PT ∼ O(1) (left plot in Fig. 1; KT0 may be defined for example as the
value for which the distribution has a maximum, although median would probably be a more
realistic estimate). For comparison, we plot the same distribution for hard jets (right plot in
Fig. 1) with µ = 300 GeV. For the latter, the ratio KT0/PT becomes much smaller than the
unity and the situation improves with increasing scale. To summarize, the power corrections
cannot be neglected for minijets and one has to necessarily venture beyond leading ‘twist’ to
account for minijets. Let us remind, that the formula (2) is a more ‘exclusive’ version of (1)
and the condition that we can neglect the power corrections is actually a condition necessary to
obtain (1) when the integral over KT is performed.

There is yet another source of errors in the DDT formula, namely the sub-leading logs.
Actually, in its original formulation the DDT formula was written for processes with only two
hadrons such as for instance the Drell-Yan process [34]. Assuming strong ordering in the trans-
verse momenta of emitted gluons one obtains a formula similar to (2) but with two Sudakov
form factors instead of four (and of course with an appropriate hard partonic cross section rel-
evant to Drell-Yan process). However, the strong ordering in transverse momenta for the soft
gluons is a too strong assumption and gives a non-physical suppression in the low KT limit. The
improved approach for Drell-Yan pairs was proposed in [21, 35, 36] which resums the soft gluons
(thus the approach is often called the ‘soft gluon resummation’) using the impact parameter
space conjugate to transverse momenta. As a result one finds a flat distribution at small KT

rather than an exponentially suppressed cross section. There exists a more general approach,
so called Transverse Momentum Dependent (TMD) factorization (see e.g. [1]). It is a rigorous
factorization theorem of QCD and is valid to leading power in the hard scale. It is important
to note, that this theorem is valid for processes with at most two hadrons. Thus the most com-
plicated processes are Drell-Yan process [37] and semi-inclusive deep inelastic scattering [38].
The theorem is violated when more hadrons are present [39], thus it fails for example for jet
production in hadron-hardon collision. However, although the TMD factorization is not a strict
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Figure 1: The density G entering the DDT formula for two different values of x and two fixed
values of µ = PT = 2.5 GeV (left) and 300 GeV (right). The PDF set used here was GRV98
[33].

leading-power theorem holding to all orders in αs, it has been shown in [40] that it holds to
next-to-logarithmic accuracy for the latter case.

Before discussing the power corrections to (2) let us make some general comments. The twist
corrections to deep inelastic structure functions, i.e. the corrections O

(
1/Q2

)
with Q2 being the

photon virtuality, were studied long time ago in the context of the operator product expansion
(OPE) [41] and using Feynman diagrams [42]. While OPE is very general, it becomes very
complicated for more exclusive processes (see e.g. [43] and [44]). As for jet production in hadron-
hadron collisions no higher twist factorization exists (see also a discussion of power corrections
coming from heavy quarks in the end of this subsection). On the other hand there are approaches
which take into account all power corrections of a certain class. At very large energies the logs of
the form log (1/x), where x is a fraction a hadron longitudinal momentum carried by the parton,
become large and can be resummed by means of the BFKL equation. Let us note, however, that
it is often arguable if such logs should be resummed at currently achievable energies, as most of
the observables measured at LHC can be explained using collinear factorization supplemented
by the DGLAP-type parton showers. Nevertheless, the BFKL formulation leads to HEF, which
as mentioned in the Introduction resums the power corrections of the form KT /µ. We shall
describe HEF in more details in Subsection 2.3.

For completeness let us discuss a special case when KT � µ. For the case of the Drell-Yan
process this kinematic region was studied in [45, 46], before the DDT formula was established.
The corrections of this type can be obtained calculating explicitly additional emission by means
of 2→ 3 process, away from the singular (soft and/or collinear) region. In particular, the HEF
partially recovers this perturbative limit for certain UGDs.

Finally, let us make some comments on the power corrections coming from the heavy quark
masses. Actually, they can be explicitly taken into account in the hard cross section, order-by-
order. The problem is however, that by doing so the cross section becomes infra-red unsafe for
large pT , i.e. we shall encounter logs of the type log

(
P 2
T /m

2
Q

)
where mQ is the mass of a heavy

quark Q. This problem can typically be addressed by so-called general-mass scheme, which
supplements the hard cross section with a proper subtraction terms (see [47] for a general proof
and [48] for a formulation for jets in DIS at NLO). However, for jets in hadron-hadron collisions
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there is a problem with the cancellation of soft singularities when incoming lines are massive [49]
and thus the power corrections are unlikely to be controlled using the general-mass schemes. We
shall ignore all these complications as we will be focused on pure gluonic contributions, which
should dominate at high energies.

2.2 Singularity pT → 0 and soft cutoff
In this section we shall discuss in detail the concept of the soft transverse momentum cutoff.
We shall restrict our considerations to gluons only. This is done for two major reasons. First,
the gluons dominate at high energies and this is sufficient to illustrate all the effects we analyze
in the paper (we do not aim at giving any predictions or comparisons with data). Second, later
on we shall make comparisons across models including HEF, which is basically restricted only
to gluons dominating at high energies. In principle one could consider off-shell quarks, but the
subject is still poorly developed and would unnecessarily complicate our study (see [50, 51] for
selected recent results).

Let us start by writing LO contribution to (1). We parametrize the momenta of hadrons as

pµA =

√
S

2
nµ+, pµB =

√
S

2
nµ− , (5)

where n± = (1, 0, 0,±1) and S = 2pA · pB is the CM energy squared. The kinematics of the
hard subprocess g (kA) g (kB)→ g (p1) g (p2) is

kµA = xAp
µ
A, kµB = xBp

µ
B , (6)

pµ1 = z1p
µ
A +
−p2

T1

z1S
pµB + pµT1, pµ2 = z2p

µ
A +
−p2

T2

z2S
pµB + pµT2 , (7)

with momentum conservation kA + kB = p1 + p2. Obviously z1, z2 are directly related to
rapidities y1,2 in the following way

z1,2 =
|~pT 1,2|√

S
e y1,2 , (8)

with p2
T1,2 = − |~pT1,2|2. Due to the transverse momentum conservation both outgoing jets have

exactly the same transverse momentum |~pT1| = |~pT2|. In what follows we shall simply use
notation |~pT1,2| ≡ pT for brevity. In the above kinematics, the cross section can be calculated
as

σ2jet =
1

16π

ˆ
dp2
T

p4
T

ˆ
z1dz1 z2dz2

(z1 + z2)4

fg/H
(
z1 + z2, µ

2
)
fg/H

(
p2
T

S

z1 + z2

z1z2
, µ2

)
1

2

∣∣M∣∣2
gg→gg (z1, z2) , (9)

where the amplitude squared and averaged/summed over spin and color reads

∣∣M∣∣2
gg→gg (z1, z2) = g4 9

2

(
z2

1 + z1z2 + z2
2

)3
z2

1z
2
2 (z1 + z2)

2 . (10)
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Typically, as the hard scale µ one chooses the pT of the jets. From (9) we see that the cross
section diverges like

dσ2jet

dp2
T

∼ α2
s

(
p2
T

)
p4
T

. (11)

In the pioneering work [5] the MPI model was constructed with σ2jet modified to remove
this singularity by defining

σ′2jet =

ˆ
dσ2jet

dp2
T

p4
T

(p2
T + p2

T0 (S))
2

α2
s

(
p2
T + p2

T0 (S)
)

α2
s (p2

T )
, (12)

where pT0 (S) is the model parameter we have briefly discussed in the Introduction. For example
in version 8.1 of pythia it is defined as

pT0 (S) = 2.28

( √
S

7 TeV

)0.215

GeV . (13)

for standard pythia settings (including pre-determined PDF sets to be used by default). Let
us mention, that the MPI model and the entire event generation procedure in pythia is very
complex, much more then the simple Eq. (12). Nevertheless Eq. (12) constitutes one of the core
building blocks of this powerful program.

The pT spectrum of minijets dσ′2jet/dp
2
T within the presented model should exhibit a strong

suppression for small pT , slowly growing with energy. It is interesting to ask if such a suppression
could be directly observed. Putting this question aside, we will simply calculate (see Section 4)
the inclusive dijet production in the small pT region using pythia and compare with the minijet
spectrum dσ′2jet/dp

2
T . There are a few interesting features of this calculation (thought to be

more realistic than (12)) which will be discussed later.

2.3 High Energy Factorization
Let us now discuss how the power corrections in (2) can be taken into account in kT -factorization
(we use the terms ‘high energy factorization’ and ‘kT -factorization’ interchangeably in the
present work, although both terms have different origin).

In kT -factorization the cross section is calculated as a convolution of so-called unintegrated
gluon distributions (UGDs) and an off-shell matrix element. UGDs depend not only on lon-
gitudinal momentum fractions x, but also on the transverse momenta kT of the gluons – a
feature neglected in the collinear factorization due to the power counting. For the first time kT -
factorization was used in [11] for inclusive jet production at high energies using basically 2→ 1
process g∗g∗ → g. Let us note that the 2→ 1 process does not exist when the incoming partons
are on-shell and collinear, but it appears at lowest order in the kT factorization approach. Later,
a similar idea (originally called HEF) was used to compute heavy quark production [12–15] by
means of a gauge invariant matrix element for g∗g∗ → QQ which was extracted from the Green
function utilizing suitable eikonal projectors. The UGDs were assumed to undergo BFKL evo-
lution. A natural step forward was to adopt the HEF to account for jet production processes at
high energy. Thus, the HEF has been extended to all channels [52], including gluons. At small
x the forward jets are especially interesting. They can be treated in a limiting case of HEF,
where one of the gluons becomes on-shell [53–55]. In this approximation, this gluon is treated
as a ‘large-x’ gluon and is assigned a standard collinear PDF. In the Color Glass Condensate
(CGC) approach [56] a similar idea was used to study forward particle production in saturation
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A)

pA

pB

kA

kB

Fg∗/A

Fg∗/B

B)

=

kA

kB

p1

p2

kA

kB

Figure 2: A) Schematic representation of the factorization formula (14) B) The hard gauge
invariant tree level off-shell process expressed in terms of a matrix element of straight infinite
Wilson lines, with the slopes being pA (top) and pB (bottom). The blue blob on the r.h.s.
denotes a standard QCD contribution with four and triple gluon vertices. Only planar (color-
ordered) diagrams are shown.

domain and exists under the name of the ‘hybrid’ formalism [57]. In fact, the hybrid version
of HEF can be derived from CGC in the so called dilute limit (i.e. the case when the parton
density of the target hadron is not large) [58, 59]. Several observables relevant for LHC have
been calculated within the hybrid HEF, see Refs. [51, 60–63]. In the present work we are not
concerned with forward jets thus we shall not use the hybrid version of HEF, but the original
one with two off-shell incoming particles.

The factorization formula for HEF reads (including only gluons)

dσAB→gg =

ˆ
d2kT A

ˆ
dxA
xA

ˆ
d2kT B

ˆ
dxB
xB

Fg∗/A (xA, kT A;µ) Fg∗/B (xB , kT B ;µ) dσ̂g∗g∗→gg (xA, xB , kT A, kT B ;µ) , (14)

where Fg∗/A, Fg∗/B are UGDs for hadrons A,B and dσ̂g∗g∗→gg is the partonic cross section
build up from the gauge invariant g∗g∗ → gg amplitude (Fig. 2A). The momenta of the off-shell
gluons have the following form relevant to the high energy approximation:

kA ' xApA + kTA, kB ' xBpB + kTB . (15)

The off-shell partonic cross section is defined by a reduction of the Green’s function, where
the off-shell legs kA and kB are contracted with eikonal projectors proportional to pµA and pµB .
Unlike the g∗g∗ → qq amplitude used in original HEF, the gluonic off-shell hard process cannot
be just calculated from the standard Feynman diagrams in a gauge invariant way. There are
number of ways this can be done in consistency with the high energy approximation used to
define the hard process. First, one can include the bremsstrahlung from the lines to which the
hard process is attached. At high energies those lines are eikonal. Such idea was used in [52]
to calculate g∗g∗ → gg and later in [64] a general method for helicity amplitudes as well as
numerical algorithm for any number of partons was developed. Second, in the approximation
used to derive (14) the gauge invariant amplitude for g∗g∗ → gg is equivalent to the Lipatov’s
vertex RRPP [65, 66] in the quasi-multi-regge kinematics. A more general approach is to
consider matrix element of straight infinite Wilson line operators with the polarization of the
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off-shell gluon identified as the Wilson line slope [67]. This method can be also used beyond
the high energy approximation [68, 69]. Finally, a method generalizing the BCFW recursion
[70, 71] to the off-shell case is also available [72, 73]. Although the Lagrangian method of [65]
is the most general, in practical computations, especially for multiple external legs, the other
mentioned methods are more efficient. For the hybrid version of (14) a very efficient method
of calculating helicity amplitudes for g∗g → g . . . g was found in [74]. Some other applications
and different ways of calculating g∗g∗ → gg were given e.g. in [52, 75]. Moreover, many other
studies have been done using kT -factorization, see for example [51, 76–81].

The partonic cross section in (14) is defined as

dσ̂g∗g∗→gg =
1

2xAxBS

1

2

∣∣M∣∣2
g∗g∗→gg dPS , (16)

where dPS is the two-particle phase space while
∣∣M∣∣2

g∗g∗→gg is the amplitude squared for the
gauge invariant off-shell process discussed above. Using the method of [67] it can be calculated
as follows. First, the amplitude is decomposed into the color-ordered amplitudes [82]. For
the one particular ordering of the external lines the color-ordered amplitude is given by the
planar diagrams displayed in Fig. 2B in Feynman gauge. The double lines on the top and the
bottom correspond to the Wilson line propagators. Calculation of these diagrams (with proper
normalization) gives the following result for the square of the amplitude

|A|2 (kA, p1, p2, kB) = − g4

s2t2t1t2

1

k2
TAk

2
TB{

k2
TAtt2

[
k2
TA

(
k2
TBss+ tt1u

2
1

)
+ 2t1u1W

]
+ k2

TBtt1
[
k2
TB

(
k2
TAss+ tt2u

2
2

)
+ 2t2u2W

]
+ k2

TAk
2
TBt

[
t
(
s2s2 + 2t1t2u1u2

)
+ ss

(
s2t− 4t1t2

(
s+ t1 + t2 − t

))]
+ t1t2W

2
}
, (17)

where
W =

[
s
(
st+ t1t2

)
− st

(
s+ t1 + t2 − t

)]
. (18)

Above we have used abbreviations k2
TA,B ≡

∣∣∣~kTA,B∣∣∣2. The standard and auxiliary Mandelstam
invariants read

s = (kA + kB)
2
, t = (kA − p1)

2
, u = (kA − p2)

2
, (19)

s = (xApA + xBpB)
2
, t1,2 = (xApA − p1,2)

2
, u1,2 = (xBpB − p1,2)

2
. (20)

They satisfy s + t + u = −k2
A − k2

B and s + t1,2 + u1,2 = 0. The order of arguments in (17)
corresponds to the order of the external legs (see Fig. 2B). The color dressed amplitude is
obtained by summing over all noncyclic permutations of the external legs (minus equivalent
permutations due to the relations like |A|2 (kA, p1, p2, kB) = |A|2 (kB , p2, p1, kA), etc.)

∣∣M∣∣2
g∗g∗→gg =

1

(2π)
2

N2
c

(N2
c − 1)

2
[
|A|2 (kA, p1, p2, kB) + |A|2 (kA, p2, p1, kB) + |A|2 (kA, p1, kB , p2)

]
. (21)

The factor 1/ (2π)
2 constitutes the helicity average for the off-shell gluons as their ‘polarization’

vectors can be thought of to be ‘continuous’. It is because one can show that these polarizations
are kµTA/kTA and kµTB/kTB which depend on the transverse angle spanning between 0 and 2π.
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Using the same kinematics as for the collinear case (but now with (15) for initial states) we
can write the cross section as

dσAB→gg =
1

32π2

ˆ
d2~kTAd

2~kTB

ˆ
dp2
T dφ[

z1

(
~pT − ~KT

)2

+ z2p2
T

]2

ˆ
z1dz1 z2dz2

(z1 + z2)
2

Fg∗/A (z1 + z2, kTA, µ)Fg∗/B
(

1

z2S

(
~pT − ~KT

)2

+
1

z1S
p2
T , kTB , µ

)
1

2

∣∣M∣∣2
g∗g∗→gg

(
z1, z2,~kTA,~kTB ;µ

)
, (22)

where
~KT = ~kTA + ~kTB . (23)

The invariants in (17) can be easily expressed in terms of integration variables in (22). Compar-
ing this with the collinear expression (9) we see that the singularity p2

T → 0 can be potentially
regularized by a nonzero KT . Let us note, however, that KT can be zero even if kTA, kTB gener-
ated in UGDs are nonzero. In fact due to the transverse momentum conservation whenever the
jets are back-to-back KT = 0 and the singularity p2

T → 0 remains bare. For nonzero kTA, kTB
the KT depends on relative orientation of the vectors ~kTA, ~kTB . Since UGDs do not generally
depend on angles, the only correlations can be hidden inside the matrix element. Moreover,
the expression (22) has to be integrated over transverse variables to be actually compared with
the collinear expression. We shall later perform a detailed numerical study and see whether the
modification of 1/p4

T factor due to KT can produce a cutoff similar to minijet models. This
in principle would be possible, as one can check that the median of the transverse momenta
given by UGDs grows with decrease of x. Anticipating the result, however, let us recall, that
actually (22) should be used in the hard scattering regime, that is for µ ∼ pT large. This can be
also understood by realizing that the main contribution to

∣∣M∣∣2
g∗g∗→gg comes from the collinear

region. In fact it can be shown that

ˆ 2π

0

dα1

2π

dα2

2π

∣∣M∣∣2
g∗g∗→gg

(
z1, z2,~kTA,~kTB ;µ

)
=
∣∣M∣∣2

gg→gg (z1, z2;µ)

+O
(
kTA
µ

)
+O

(
kTB
µ

)
+O

(
kTAkTB
µ2

)
, (24)

where α1, α2 are the angles on the transverse plane of the vectors ~kTA, ~kTB and the first term
on the r.h.s. is the collinear matrix element. By using the above expression and expanding in
powers of kT /µ one can find systematically power expansion of the cross section. The UGDs are
typically peaked for small values of kTA, kTB thus the collinear contribution is the dominant
one (the leading power contribution). Therefore one should expect that the applicability of (22)
is in the high pT domain.

Let us make now a few comments about the HEF. The first comment concerns the collinear
limit of (22). One would expect that for large pT the cross section dσ/dpT calculated converges to
the collinear one (9). Performing the expansion (24) and retaining the first collinear contribution
only we are left with integrals in (22) of the type

ˆ k2Tmax

dk2
TA Fg∗/A (xA, kTA, µ) ≡ f (kTmax)

g/A (xA, µ) , (25)
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where kTmax is the upper bound on kT which in practice is constrained by the grid size of the
UGDs or specific kinematic cuts. The point is that the function f (kTmax)

g/A is in general not exactly
a collinear gluon PDF, which is defined as

fg/A (xA, µ) = f
(µ)
g/A (xA, µ) . (26)

Thus, we will overshoot the collinear result if the hard scale µ is not too large and the UGDs
do not fall very rapidly with kT . In other words, the convergence to the collinear result for
finite µ is rather weak. The remedy could be to set kTmax = µ, but this not inherent part
of the HEF. Let us illustrate the above with a concrete and practical example. According to
the Kimber-Martin-Ryskin (KMR) prescription [19, 20] (actually its commonly used simplified
form), an UGD can be constructed from a collinear PDF as follows:

Fg∗/H (x, kT , µ) =
∂

∂k2
T

[
fg/H (x, kT )Tg (kT , µ)

]
, (27)

where Tg is the Sudakov form factor. We see that the kTmax has to be equal to µ in order to
recover fg/H upon integration over kT .

In order to address another possible issue of HEF, let us consider the cross section as a
function of the jet disbalance KT , dσ/dKT . It can be calculated within HEF using (22). Let us
now find the collinear limit of dσ/dKT . It is easy to see, that it will not converge to the DDT
formula (2). This is not necessarily a problem, as the natural domains of applicability of HEF
formula and DDT are very different. Nevertheless, it would be interesting to have a formula
which includes subleading powers of KT while possessing the leading twist limit given by (2).
We shall construct such a formula in the next subsection.

Finally, let us mention that in practical applications it is convenient to use Monte Carlo
programs to generate various observables for jets, instead of using the formulae like e.g. (22).
Thus in our study we use an implementation of HEF in a computer program [83] which relies
on the foam adaptive Monte Carlo [84]. It allows to generate partonic events (‘weighted’ or
‘unweighted’), store them and make further analysis in a convenient way. No parton shower or
hadronization is done in the current version. Let us however mention that the kT dependence
of gluon distributions acts much like the initial state parton shower (see e.g. [61, 85]).

2.4 Extension of DDT beyond leading power
In order to make our analysis as complete as possible, we will construct now a version of
HEF which in the leading power limit reduces to the DDT formula (2) for the dijet disbalance
spectrum. The goal of doing this is to use broad spectrum of models with internal gluon kT .
In HEF described in the previous subsection the kT dependent UGDs take into account two
ladders of initial state emissions for each colliding hadron; it is most transparent when UGDs
are considered within the KMR approach (27) (see Fig. 2A). There are no final state emission
ladders in HEF, whilst the DDT formula (2) has a one ladder attached to each leg of the hard
process, including the final state lines (Fig. 2B) [31]. Of course, the DDT formula is the leading
twist expression, on the contrary to HEF. Below, we shall construct a HEF-based model which
has a similar philosophy to the DDT, but includes power corrections.
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Figure 3: A) In HEF with the KMR prescription (27) the kT of initial state gluons on both
sides is produced by the gluon PDF and the Sudakov form factor B) In the leading twist DDT
formula of Eq. (2) one ladder of emissions is associated with each leg of the hard process.

Let us first write (2) as

dσ2jet

dK2
T

= 2

ˆ
dxA
xA

dxB
xB

dσ̂gg→gg
(
xA, xB ;µ2

)
×
{

∂

∂K2
T

[
fg/A

(
xA;K2

T

)
Tg
(
K2
T , µ

2
)]
fg/B

(
xB ;K2

T

)
T 3
g

(
K2
T , µ

2
)

+ fg/A
(
xA;K2

T

)
fg/B

(
xB ;K2

T

)
T 3
g

(
K2
T , µ

2
) ∂

∂K2
T

Tg
(
K2
T , µ

2
)}

, (28)

where we have used the symmetry with respect to exchange of hadrons A ↔ B (this gives a
factor of 2). Building upon the above formula and using (27) we now define

dσ
(IDDT)
2jet

dK2
T

=
dσ

(IS)
2jet

dK2
T

+
dσ

(FS)
2jet

dK2
T

, (29)

where the ‘initial state’ contribution is

dσ
(IS)
2jet = 2

ˆ
dxA
xA

dxB
xB

ˆ
d2KT dσ̂g∗g→gg

(
xA, xB , ~KT ;µ2

)
Fg∗/A (xA,KT , µ) fg/B

(
xB ,K

2
T

)
T 3
g

(
K2
T , µ

2
)
, (30)

while the ‘final state’ contribution is

dσ
(FS)
2jet = 2

ˆ
dxA
xA

dxB
xB

ˆ
d2KT dσ̂gg→gg∗

(
xA, xB , ~KT ;µ2

)
× fg/A

(
xA;K2

T

)
fg/B

(
xB ;K2

T

)
T 3
g

(
K2
T , µ

2
)
Tg
(
K2
T , µ

2
)
. (31)
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We have defined the final state transverse momentum distribution as

Tg
(
K2
T , µ

2
)

=
∂

∂K2
T

Tg
(
K2
T , µ

2
)
. (32)

The Sudakov form factor we use is given by the following formula [31]:

Tg
(
k2
T , µ

2
)

= exp

{
−
ˆ µ2

k2T

dp2
T

p2
T

ˆ 1

∆

dz
αs
(
p2
T

)
2π

[(1− z)Pgg(z,∆) +NfPqg (z)]

}
, (33)

where
Pgg(z,∆) = 2CA

(
z

1− z + ∆
+

1− z
z

+ z(1− z)
)
, (34)

Pqg(z) =
1

2

(
z2 + (1− z)2

)
. (35)

The cutoff parameter ∆ is taken to be ∆ = k2
T /µ

2. We note that there are various forms of the
cutoff parameter in the literature, see for example [19]. The partonic cross section dσ̂g∗g→gg is
calculated in the exact same way as in the hybrid HEF described before, taking into account
the gauge invariant off-shell amplitude with only one leg being off-shell

dσ̂g∗g→gg =
1

2xAxBS

1

2

∣∣M∣∣2
g∗g→gg dPS , (36)

where
∣∣M∣∣2

g∗g→gg was calculated for instance in [53] and using helicity amplitudes in [74]. It
reads ∣∣M∣∣2

g∗g→gg =
g4

2π

N2
c

N2
c − 1

(
s4 + t

4
1 + u4

1

) (
ss+ tt1 + uu1

)
sstt1uu1

, (37)

with the invariants defined in (19),(20), but now kTA ≡ KT . In the above form the on-shell
limit is visible right away: when KT → 0 we have s→ s, t1 → t, u1 → u and we get the known
collinear result.

The partonic cross section with final state off-shell dσ̂gg→gg∗ is a new construction and to our
knowledge does not exist in the literature. It is constructed from the gauge invariant off-shell
amplitude with the final state particle taken off-shell

dσ̂gg→gg∗ =
1

2xAxBS

1

2

∣∣M∣∣2
gg→gg∗ dPS

(
K2
T

)
, (38)

where dPS
(
K2
T

)
is the two-particle phase space to produce a spacelike state with mass K2

T . Let
us now explain, how the amplitude

∣∣M∣∣2
gg→gg∗ is calculated, as it differs from the standard way

the HEF amplitudes are obtained.
First consider the kinematics involved in (31), see Fig. 4A. The idea is that first the two states

are produced: an on-shell gluon p2 and the off-shell one with momentum p̃1, p̃2
1 = −K2

T . Next,
this off-shell dressed gluon undergoes emissions described by Tg defined in (32) and becomes
on-shell p1 = p̃1 +KT , p2

1 = 0. The first stage happens via the off-shell gauge invariant process
g (kA) g (kB) → g∗ (p̃1) g (p2) calculated from diagrams depicted in Fig. 4B according to the
prescription of [67]. As the Wilson line slope we take here the momentum p1 (not the eikonal
vectors pA,B , as it was the case for HEF), so that

p̃1 · p1 = 0, KT · p1 = 0 . (39)
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Figure 4: A) Momentum assignment in the final state contribution to (29); the final state
momentum p̃1 is off-shell. B) Diagrams contributing to the gauge invariant final state off-shell
process; the Wilson line slope is given by the vector p1 so that p̃1 · p1 = 0.

The result reads ∣∣M∣∣2
gg→gg∗ =

g4

2

N2
c

N2
c − 1

(
s̃4 + t̃4 + ũ4

) (
ss̃+ tt̃+ uũ

)
ss̃tt̃uũ

. (40)

It looks basically the same as (37) but now

s̃ = (p2 + p1)
2
, t̃ = (xApA − p1)

2
, ũ = (xBpB − p1)

2
, (41)

s = (p2 + p̃1)
2
, t = (xApA − p̃1)

2
, u = (xBpB − p̃1)

2
. (42)

The above final state contribution differs from the standard approach adapted in the event
generators. In the latter, the on-shell gg → gg process is augmented with the final state splitting
g → gg with probability related to the Sudakov form factor. Formally, the splitting is purely
collinear, as the transverse momenta are integrated over. This part of the generation is purely
perturbative based on the time-like DGLAP evolution. Then, the true exclusive kinematics has
to be reconstructed/modelled. In the case of the present model, the final state line is space-like,
with explicit (non-integrated) off-shellnes. Note, that since this final state does not split into
on-shell partons the fact it is space-like is perfectly valid.

It is important to mention that, by construction, the maximal allowed value of KT is
KTmax = µ. It is easy to see that then, in the leading power approximation we recover both
the collinear result (1) and the DDT formula (2). In what follows we shall abbreviate the new
model as IDDT (an ‘improved DDT’).

We have implemented the IDDT approach in a computer program [83] and in Fig. 5 we show
the results of the consistency checks we have performed (for a detailed description of the setup
and cuts see the next section). First, we compare the leading power limit of the IDDT with the
collinear result for the pT spectrum. We see (Fig. 5A) that they match ideally. We also show
separately the contributions from the ‘initial state’ (30) and ‘final state’ cross sections. Next, we
compare the spectrum in the jet disbalance KT with the one obtained from the DDT formula
(Fig. 5B) and find a perfect agreement. Thus we have gained exactly the properties we wanted,
that is the formula (29) has the collinear and the DDT limits at leading power.

In the end, let us stress that the above construction is a model of higher twists, not a strict
QCD derivation. We have neglected all the details concerning factorization and higher order
corrections. Our aim was to catch certain properties such a formula should have in order to
study their effect on minijets.
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Figure 5: A) The leading power limit of the IDDT formula (29) for jet pT spectrum in comparison
with the LO collinear factorization. We see that it has the correct collinear limit as the solid
line (IDDT) is on the top of the dotted line (collinear). We show also final state and initial state
contributions of IDDT. B) The same but for the spectrum of jet disbalance and in comparison
with the DDT formula.

3 Setup for numerical studies
Before presenting the detailed numerical results of the different minijet formulations, we shall
first define the observable we are going to calculate as well as the kinematic cuts and details of
the setups of the Monte Carlo programs.

The LO collinear jet formula (1) or (12) describes the production of exactly two jets. In more
realistic simulations we deal with multi-parton configurations and a more careful definition of
two-jet cross section is needed. This concerns simulations using both pythia and Monte Carlo
implementation of HEF or IDDT. In the following, we will consider inclusive dijet cross section
with jets reconstructed using the anti-kT algorithm with certain pTmin and R = 0.5 (if not stated
otherwise). We require at least two jets to be above pTmin. We tag the two hardest jets, but we
do not order them in their pT , thus the spectra for both jets are identical. We require both jets
to fit within [−4, 4] rapidity window.

We shall use three approaches: (i) pythia, (ii) HEF as described in Subsection 2.3, (iii) IDDT
constructed in Subsection 2.4. For reference we sometimes use also the pure collinear formula
(9). The approaches (i), (ii) and (iii) will be used in the direct study of minijets in Section 4,
while the indirect minijet study shall utilize models (i) and (ii).

The pythia generator has two disjoint modules: ‘soft QCD’ and ‘hard QCD’. The first one is
used when all produced particles have transverse momenta around or slightly above pT0 cutoff.
The second is suitable for high-pT particles. From the point of view of minijet model, they
differ by the fact that in the ‘hard QCD’ module the hardest binary collision does not have the
suppression factor as in (12).

Whenever we use pythia we use some non-standard settings in order to make clean compar-
isons. First, we use only gluonic channel. Second, we use LO GRV98 [33] PDFs with matching
LO αs. The reason we use GRV98 instead of some more up-to-date sets in that we will compare
pythia calculations to HEF with KMR in the low pT region. This requires that the PDF used
to construct KMR has to be defined for small enough scale, smaller than 1 GeV. As of today,

16



this requirement is satisfied only by GRV98 distribution.
Above are the generic settings. The other settings concerning MPIs or parton showers and

hadronization will be determined when necessary. In the description of the plots we shall use
the following abbreviations: PS for final state and initial state parton showers and HAD for
hadronization. In order to comply with the minijet formula we choose the hard scale to be the
average pT of jets.

In our analysis within HEF we will use several UGDs: (i) the KMR gluon distribution [19, 20]
given by (27) based on the GRV98 collinear PDF. Note, that this is actually a prescription of
DDT; the genuine KMR prescription is much more complicated, but traditionally (27) functions
as KMR in the literature. (ii) The Kwiecinski-Martin-Stasto (KMS) [86] gluon distribution which
supplements the BFKL equation with the DGLAP corrections. More precisely it incorporates
the kinematic constraint to maintain the energy conservation and the nonsingular parts of the
gluon-gluon splitting function. This gluon distribution has been fitted to HERA F2 data in [87]
and we will call this set KMS-HERA. In [88] fits have been performed to the jet LHC data
(using however only gluonic part of the KMS equation). We shall call this set KMS-LHC in
what follows. (iii) The CCFM equation [27–29] taken from [89] and based on the computer code
[90]. We note that various CCFM sets differ between each other and thus we are not making
any conclusions regarding CCFM from our work. The important point of the CCFM equation
is that it encodes both the BFKL and DGLAP limits through the angular ordering constraint.
A very important difference between KMS and CCFM evolution equations is that KMS does
not depend on the hard scale of the process. We shall see, that this feature is important for jet
studies. Similar to CCFM, the KMR approach does encode the hard scale dependence through
the Sudakov form factor. In fact, in certain limit the CCFM gluon distribution can be reduced
to the one of KMR [91].

All numerical simulations for HEF are performed using the extension of the C++ program
[83] briefly described in the end of Section 2.3.

4 Direct study of minijet suppression
In the present section we directly study pT spectra of minijets, i.e. inclusive dijets with pT &
2 GeV using pythia and HEF/IDDT in the small pT region. In particular, we will check whether
the internal gluon kT can give a jet suppression compliant with the minijet formula (12). We
have already anticipated the result: the main contribution in HEF/IDDT at low pT comes from
the collinear region of small kT which does not have the suppression factor built in. We shall
check this through numerical analysis of the pT spectra.

Before we explore the HEF, let us ask a question how the suppression of the minijet spectrum
looks in a realistic model which implements it. To this end we use the ‘soft QCD’ module of
pythia suitable for small pT and calculate the inclusive dijet spectra as described in the Section 3.
The result is presented in Fig. 6. First, we indeed see big suppression of the spectrum which
means that every binary collision in the small pT region is suppressed – this is the feature of
the ‘soft QCD’ module of pythia; in the ‘hard QCD’ module the hardest binary collision is not
suppressed (see also the discussion below). The suppression produced in pythia is much bigger
then the one following from the naive dσ′2jet/dpT spectrum of Eq. (12). This is because in the
‘soft QCD’ module of pythia the suppression is modelled by the Sudakov-like form factor, where
(12) enters the Sudakov-like exponent. The suppression growing with the CM energy is clearly
visible. Second, we observe an enhancement of the spectrum at moderate pT as compared to the
naive dσ′2jet/dpT spectrum. This feature does survive the hadronization, as seen in the figure.
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Figure 6: The suppression of minijet pT spectrum comparing to the LO collinear factoriza-
tion calculated with pythia using ’soft QCD’ simulation with parton shower and with/without
hadronization. The minijet model of Eq. (12) is also shown. The enhancement of the spectra
with respect to the collinear factorization vanishes for sufficiently large pT s.

We shall come back to this enhancement later below and discuss it in more details.
Now we do the same for HEF and IDDT models. Here we are interested in a suppression with

respect to the LO collinear factorization so we have to use the consistent gluon distributions.
Thus we use the KMR based on GRV98 in HEF and we use the GRV98 itself in collinear
factorization. We show the results in Fig. 7. First, we see that the direct suppression of the
spectrum due to the internal gluon kT is very small comparing to the minijet model (the top
plot has the same horizontal scale as Fig. 6, while in the bottom plot we zoom the low-pT
region). Second, the suppression has the opposite energy dependence than (13), i.e. it becomes
weaker when the energy is higher. This feature is present in both models HEF and IDDT
and is qualitatively the same. Interestingly, the spectra for HEF (but not for IDDT) show
an enhancement at moderate values of pT relative to the collinear curves, similar to the one
discussed above in pythia. This enhancement comes from the power corrections and vanishes
for sufficiently high pT . It is now interesting to compare this calculation to similar calculation
made with pythia with the ‘hard QCD’ module with and without MPIs. Obviously, the ‘hard
QCD’ cannot formally be used in the low-pT region, but technically it can be done and this
sheds some light on the interpretation of the results from Fig. 7. Namely, in the ‘hard QCD’
module the hard process does not have any pT regularization factor and we expect the results
to exhibit similar behavior to Fig. 7. We show these results in Fig. 8. By comparing them to
Fig. 7 (in particular the bottom plots) we see that, qualitatively, the behaviour is very similar
meaning that indeed the hard process in HEF (or IDDT) does not have the suppression of the
kind (12). We also see that pythia with MPIs shows the same enhancement as HEF curves. This
means that MPIs generate power corrections which are visible in the inclusive dijet spectra. We
note that the enhancement vanishes for sufficiently large pT as required by the AGK cutting
rules [92].
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Figure 7: A) The same as in Fig. 6 but for HEF and IDDT approaches. B) The zoom into the
low-pT region of the top plot.
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The similarity of the HEF spectra and pythia with ‘hard QCD’ module and MPI suggests
that the power corrections in HEF may imitate MPIs in certain circumstances. The power
corrections in HEF come from the tails in the transverse momentum of the UGDs. Actually,
one can think of a collision within HEF as ‘multiple collisions’ weighted by a distribution of
internal transverse momentum. This distribution is peaked at small transverse momentum,
thus the collinear contribution (one of the multiple collision bundle) is dominant (the leading
power contribution), and it is not suppressed. Further ‘collisions’ for larger internal transverse
momenta are less important as the internal transverse momentum distribution falls off quickly.
However, those sub-leading power corrections may exhibit different energy behavior. We shall
investigate this point in the next section.

5 Indirect study of minijets
In the previous section we saw that the internal kT flowing into the hard process as in HEF/IDDT
approaches does not give the suppression of dijet production compliant with the minijet model
(12). This is simply because the off-shell 2→ 2 hard process is dominated by the leading power
contribution for which the effect of internal gluon kT is small. Thus, the next question we ask is
about the relation of power corrections created in minijet model with MPIs and power corrections
rendered in HEF. We stress that we consider here inclusive dijet production at relatively small
transverse momenta. The spectra for very large pT would not be affected by MPIs.

In order to support the above statement that minijet model with MPI can generate similar
corrections to HEF let us have again a look at the pT spectra. We can see from Fig. 7 and
Fig. 8 that within HEF and pythia with MPIs there is an enhancement for larger pT ’s comparing
to the collinear result. Both IDDT and pythia without MPIs do not have this feature. The
reason for the IDDT model to be quickly convergent to the collinear result is because, by
construction, we do not allow KT to be bigger than the hard scale µ. On the contrary, in HEF
KT may be anything allowed by the jet kinematics. Thus we may draw a conclusion that both
MPI corrections to the hard process in pythia and power corrections in HEF may have similar
components. In this section we will study this point. Because IDDT does not allow for sizeable
power corrections we will not consider it in this section anymore.

First we take a closer look at the direct comparison of Figs. 7-8 for certain CM energy, say√
S = 14 TeV (Fig. 9A). We see, that for larger pT ’s both pythia with MPIs and HEF start

to exhibit indeed a similar enhancement comparing to the collinear result, but further in pT
the pythia spectrum converges to the collinear one while HEF converges much more slowly. We
calculate also the spectra of the dijet momentum disbalance KT (Fig. 9B). We see that the
MPIs in pythia model produce higher tail of the KT spectrum, which in addition is close to the
one from HEF. These calculations are interesting, but as discussed before they are extrapolated
beyond the natural domain of the applicability of the models used; both pythia with the ‘hard
QCD’ module and HEF require rather high pT to be present. Let us remind that we used pythia
with the ‘hard QCD’ module in order to enforce the statement that HEF is dominated by the
hard process which does not have the suppression.

Thus we make another set of calculations, now requiring pT > 25 GeV to get rid of the range
in pT which normally would be strongly suppressed. This is the domain of applicability of both
pythia ‘hard QCD’ and HEF. The results are presented in Fig. 9C-D. As for the pT spectrum,
the situation does not change comparing to the smaller pT cut. For the disbalance KT spectrum,
we see that at first the HEF tail drops below pythia with MPI, but later it again rises toward the
model with MPIs. The IDDT model has a similar (unphysical) low-KT behavior as the genuine
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DDT obtained from (2). It is important to stress, that in HEF we have been using the KMR
based on GRV98 gluon distribution so far, and the features discussed above will be different for
different UGDs. Similar, the shape of the pythia’s enhancement will depend on the MPI model
parameters, in particular on the pT0 parameter, as we will see below.

In order to better access the power corrections and study their energy dependence we propose
the following observable. We investigate a differential cross section for inclusive dijets in the
following variable:

τ =
KT

µ
=

2KT

pT1 + pT2
. (43)

It can be thought as being a measure of the ‘twist content’ in the approach. That is, the
small τ ∼ 0 corresponds to the leading power, while τ > 1 region is sensitive to higher power
corrections. We expect that in HEF we will observe sizeable contribution to τ > 1 region. On
the other hand, in pythia generator the small momentum disbalance is generated by the parton
shower, but it does not give significant contribution to τ > 1. However, we expect that for τ > 1
the contribution of MPIs should be visible, because almost uncorrelated partons originating in
different hard collisions can produce very disbalanced jets. We shall come back to this later in
this section.

We will be concerned with the shape of the τ distribution only. Since various UGDs often
have different normalizations we shall divide the differential cross sections by the total cross
section. We shall investigate this observable within the different approaches with a known
minijet implementation for various pT0 settings (we mean pythia here) and HEF.

In Fig. 10 we show the results for the CM energy range 7 − 30 TeV calculated in pythia for
a few choices of the parameters in the parametrization of pT0 (S). Namely, we consider the
following scenarios: (A) no MPI interactions, (B) constant pT0 = 2.28 GeV, (C) the standard
implementation given by (13), (D) the choice (13) with the exponent taken to be around twice
as big. In Fig. 11 we compare these scenarios for two fixed energies 14 TeV and 30 TeV. In a
similar manner we calculate the spectra in τ using HEF in Fig. 12. We use the following UGDs
described in Section 3: (A) KMR based on GRV98, (B) the CCFM, (C) the KMS-HERA and
(D) the KMS-LHC.

Let us discuss first the spectra obtained from pythia. We see, that the distributions have a
bimodal character, i.e. they have two peaks, one close to τ = 0 and the second close to τ = 2.
The second peak (at large τ) is much weaker than the leading peak and its strength depends on
the amount of MPIs present in the model: the more MPIs the stronger the second peak. This
is seen when comparing the plots without suppression of minijets (Fig. 10B), throughout the
increasing suppression (Figs. 10C-D), up to the ‘infinite’ suppression (i.e. no MPIs, Fig. 10A).
This is even more visible from Fig. 11 where we compare these models for fixed energies. Let us
note, that there is a peak close to τ = 2 even if there are no MPIs. There are two types of events
contributing to this region in that case. (i) Events due to the final state parton shower, where
the emitted parton happens to be hard and emitted at an angle large enough to be reconstructed
as a separate jet; this jet is then tagged together with the ‘mother’ jet. (ii) Events due to the
initial state parton shower and accompanying beam remnant reconstruction. We have checked
that the events involving initial state parton shower seem to happen more often than the final
state splitting scenario. Naturally, these contributions depends on the jet algorithm. In case
the MPIs are added, the second peak is enhanced relative to the first one, because now also
(almost) uncorrelated partons may be clustered into jets that are tagged.

In order to investigate the energy dependence of the second peak we shall use the bimodality
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Figure 10: Spectra of the variable τ = 2KT / (pT1 + pT2) in pythia with parton showers, no
hadronization and with several choices of MPI model parameters. A) MPI is switched off, B)
the pT0 (S) = const., C) the standard choice of (13), D) the choice (13) but with the exponent
approximately as twice as big.
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Figure 12: Spectra of the variable τ = 2KT / (pT1 + pT2) in HEF with various UGDs: A) KMR
with GRV98, B) the CCFM, C) the KMS-HERA, D) the KMS-LHC.
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Figure 13: The bimodality coefficient defined in (44) for various approaches as a function of
energy. A) pythia with different minijet suppression , B) HEF with various UGDs.

coefficient defined as

b =
γ2 + 1

κ
, (44)

where the skewness γ and the kurtosis κ are defined as

γ =
µ3

σ3
, κ =

µ4

σ4
, (45)

with µn being the n-th central moment and σ the standard deviation. We calculate b as a
function of energy in Fig. 13A. We see that the bimodality coefficient reflects (to some extent)
the energy dependence of the minijets contribution. When there are no MPIs the coefficient
is perfectly linear with energy. When we switch on MPIs b jumps to a higher value and then
the increase is dictated by the amount of suppression of minijets. Thus we may conclude, that
the bimodality coefficient of the normalized spectra in τ is a reasonable measure of the minijet
contribution as a function of energy when a hard process is present.

Let us now turn to HEF and make a similar analysis. First we calculate the spectra in τ
shown in Fig. 12. Interestingly, we see that these spectra also feature the bimodal character.
There is no explicit parton shower in HEF, however the transverse momentum dependent gluons
with exact off-shell kinematics render an equivalent of the initial state parton shower (see e.g.
[61, 85]). As we discussed for the pythia case, the initial state shower contributes significantly
to this region. We saw however that this contribution alone has different energy dependence
than when MPIs are added. It will thus interesting to study the energy dependence of the
second peak in HEF and compare it with pythia. The results for the τ distribution are shown
in Fig. 12. We see that KMR with GRV98 (Fig. 12A) produce superficially similar spectra to
those of pythia with MPIs. The CCFM (Fig. 12B) looks more flat with the second peak only
very slowly varying with energy. The KMS distribution which does not have the hard scale
evolution (i.e. the Sudakov resummation) produce very different shapes. They are much more
peaked near τ = 0 (Figs. 12C-D). Spectra for both versions of KMS also differ considerably
with respect to the second peak. To compare the energy evolution of the second peak let us
now extract the bimodality coefficient from these spectra. The result is presented in Fig. 13B.
First, we see that the normalizations vary significantly for different models. This is because the
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normalization is sensitive to the first peak, which is different across models. Second, looking
at the energy dependence, we see that the KMR with GRV98 has a similar (but not the same)
tendency to pythia with MPIs and the suppression parameter pT0 (S) = const. The rise with
energy is slightly slower, but not as slow as the model (13). It is better seen in Fig. 14 where
we collect the pythia results with only extreme settings for clarity and some of the HEF results.
In this plot we normalize the bimodality coefficient by its value at 7 TeV to compare the energy
dependence. The conclusion from this plot is as follows. The HEF can render power corrections
which definitely can show similar energy evolution to the one from MPIs in the event generator
(due to the evolution of pT (S)). Here it is satisfied by KMR and KMS-HERA UGDs. It seems
however that the energy dependence they give flattens earlier than pythia minijet models. The
initial rise is also more rapid.

There are several comments in order. First, the bimodality coefficient from pythia models
depends on the jet radius R as does the calculated τ distribution for large τ . It is clear that
by decreasing the jet radius we will reconstruct more jets which will eventually start to balance
each other. This sensitivity of large τ to R is a natural feature. In this regime the dijets are
accompanied by a large ‘underlying event’ activity. From LHC data [93] it is known that the
underlying event observables are sensitive to R. The sensitivity mechanism of τ distribution
on R will become more clear from the discussion below. Second comment concerns the chosen
rapidity coverage, namely |η| < 4. In pythia without MPIs the recoiling system for large τ most
probably consists from a hard jet (or jets) which lie outside the chosen rapidity window. Thus
one may wonder how the results depend on the rapidity coverage. We verified that there is no
change in τ distributions (both with and without MPIs) for the rapidity window widths between
|η| < 2 and |η| < 5. In HEF the dijet imbalance is produced by the emissions which are hidden
in the kT dependent UGDs. The standard small-x evolution equations do not order emissions in
kT , thus the large imbalance can be caused by either several softer emissions or one very hard.
By definition, these are unresolved, untagged, emissions. Moreover, they are further away in
rapidity than the hard process. In evolution equations which mix the evolution in hard scale and
x the situation is more complicated, but there is always a possibility to have a harder jet outside
the acceptance. Clearly, the detailed structure of the recoiling system cannot be fully explored
by solely studying the inclusive quantity like the production of two dijets. While pythia being
the full event generator can provide such information, it is impossible to resolve these emissions
on the level of inclusive HEF factorization used in this work. In order to answer this question
a full event generator based on the HEF factorization with un-ordered emissions (in kT ) and
exact energy momentum conservation would be needed. Therefore, further detailed studies of
this contribution are necessary.

To see more directly how the large KT disbalance can be created due to MPIs, we display in
Fig. 15 several events in (φ, η, pT ) space obtained from pythia with MPI and parton showers. We
have traced the origin of the final state particles that later form the jets; particles originating
in different hard collision are denoted using different colors. The resulting jets are displayed
as cones with radius R = 0.5. The two top plots present two events with small disbalance
relative to the hard scale (small τ). We see that the jets are reconstructed from the particles
originating in the same hard collision. The bottom plots show two events which contribute to
large disbalance to hard scale ratio τ , thus to power corrections. We see that the leading jets
are reconstructed from final state partons originating from different hard collisions. Moreover,
we see that a mixture of partons from different hard collisions may enter a jet.

Let us now make some comments on the energy dependence of the power corrections from
UGDs other then KMR, that is undergoing the BFKL evolution and its extensions. From
Fig. 14 it seems that they give much weaker energy dependence than Sudakov-based KMR
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approach. In particular the CCFM gluon distribution gives the behaviour of power corrections
as if there were no MPIs. This is interesting and may be connected to the particular way the
emissions are ordered, namely it is less probable in CCFM to emit a hard gluon far away in
rapidity. Let us stress however, that different CCFM sets differ considerably depending on the
particular implementation (we are not concerned in comparing various CCFM distributions in
this paper). Moreover, all BFKL-based gluons have been fitted to experimental data on the
structure functions in Deep Inelastic Scattering. This process is dominated by small kT and
thus the large kT tails of these distributions are burdened with rather sizeable errors. It is thus
important to keep in mind these restrictions.

6 Summary and conclusions
Our work can be summarized as follows. We have performed a comprehensive analysis of the
minijet cross section and its crucial component – the pT cutoff. Despite the fact that in event
generators minijets are described by the collinear formula, the kinematic domain ventures out
of the leading power approximation. Therefore we attempted to explain the cutoff using various
forms of kT -factorization for inclusive dijet production: the High Energy Factorization (HEF)
with two off-shell gluons in the initial state and an extension of the Dokshitzer-Dyakonov-
Troyan formula beyond the leading power (IDDT). Both approaches involve unintegrated gluon
distributions (UGD) which inject nonzero transverse momentum into the hard process and thus
there is a potential mechanism for a dynamical cutoff on small pT .

We have performed two analyses: (i) direct calculations of pT spectra in the low-pT region
(pT > 2 GeV) to see if the cutoff is generated, (ii) calculations for relatively hard inclusive dijets
with pT > 25 GeV and analysis of subleading effects in search for a patterns of minijets.

As far as the direct study (i) is concerned we find that the suppression which is generated
is small and has a ‘kinematic’ origin and thus the opposite energy dependence than in the MC
models. It is in fact something one should expect as the leading contribution to the cross section
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Figure 15: Events in (φ, η, pT ) space from pythia where the final state particles and their MPI
origin are shown. Particles originating in various hard processeses (above certain pT threshold)
are denoted using different colors. The reconstructed leading jets are symbolically represented by
cylinders with radius 0.5. The beam remnants are also displayed. The top row (A-B) represents
events with small relative momentum disbalance τ (relative to the hard scale). The bottom row
(C-D) represent events where the relative disbalance τ is large. We see that the leading jets
originate from different subprocesses here.
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in HEF/IDDT with 2→ 2 hard process comes from the very small internal transverse momenta.
The results are similar to the ones obtained from pythia when the ‘hard QCD’ block is used.

In the study (ii) we use differential cross section in a variable τ defined to be the ratio
of dijet disbalance to the average pT . We observe, that when it is calculated in pythia with
MPIs it has a bimodal character with one bump located close to τ ∼ 0 and the second bump
(much smaller) located close to τ ∼ 2. The second bump is sensitive to the pT cutoff in MPI
model. The same observable calculated within HEF reveals similar feature. We investigated the
energy dependence of the bimodality coefficient b which characterizes the relative magnitude of
the two peaks. We find that the energy dependence of b calculated from pythia resembles the
energy evolution of the pT cutoff in MPI model. Thus by studying b in HEF we could obtain
information about minijets constituting emissions which lead to the dijet disbalance. We found
that the UGD constructed according to the prescription which uses collinear gluon PDF and
Sudakov form factor (proposed by Kimber, Martin and Ryskin and before that indirectly by
Diakonov, Dokshitzer and Troyan) produces minijets which are only slightly suppressed with
CM energy (for large energies). The UGDs with explicit BFKL kernel present give stronger
suppression. None of the models recovers exactly the minijet suppression from the pythia event
generator.

Let us stress that we did not intend to compare pythia and HEF. Conversely, we have used
pythia to give a possible interpretation to power corrections present in the HEF approach.
The latter is by definition an inclusive formulation and certain effects are hidden, or, broadly
speaking, parametrized by the kT dependent gluon distributions. One has to keep in mind that
this was done neglecting the details of the recoil system present outside the acceptance region.

We note that while it is practically impossible to measure the minijets directly, where by
‘directly’ we mean a measurement of pT spectrum around pT ∼ 2 GeV with reconstructed jets
(although charged particle jets could be possible), our study (ii) is feasible with the current
detectors operating at the LHC. This could supplement the measurements of underlying event
(e.g. [94]) as a main source of restricting MPI model parameters [95].

In the present work we did not discuss the gluon saturation [11] issues. It is clear that at
some point for very high energies the nonlinear effects in the gluon density should come into
play, especially at small pT . In a naive study, where one would just use UGD with nonlinear
evolution of the Balitsky-Kovchegov type [96, 97] the situation would not change significantly,
unless large saturation scale Qs ∼ pT is used. The point is however, that the HEF is not correct
in the saturation domain and more complicated approach involving several UGDs is needed
[59, 98]. Whether such improved factorization can generate a sizeable cutoff with the right
energy dependence is still open, especially since the problem with the cutoff persists for large
impact parameters where gluon densities are not too large [6, 7].

One of the important practical outcomes of the present work is the observation that the
naive mixing HEF and double parton scattering mechanism can lead to the double counting.
The latter is based on the leading twist factorization and using it by simply replacing the
collinear expressions by kT factorized expressions may double count in the region sensitive to
large gluon transverse momenta. Whether this happens depends on particular evolution used
for the unintegrated gluon distribution.

In other words, we have demonstrated that the HEF can imitate the MPIs effect in the region
of large relative dijet momentum imbalance, depending on the choice of the unintegrated gluon
distributions. We did this via numeric simulations of relevant observables in both approaches and
comparing them. It would be interesting to do a detailed analytical study of power corrections
in both approaches. This is beyond the present work and is left for a future study.
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