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We identify a new contribution to the chiral magnetic conductivity at finite frequencies – the mag-
netization current. This allows to quantitatively reproduce the known field-theoretic time-dependent
(AC) chiral magnetic response in terms of kinetic theory. We evaluate the corresponding AC chiral
magnetic conductivity in two flavor QCD plasma at weak coupling. The magnetization current
results from the spin response of chiral quasiparticles to magnetic field, and is thus proportional
to the quasiparticle’s g-factor. In condensed matter systems, where the chiral quasi-particles are
emergent and the g-factor can significantly differ from 2, this opens the possibility to tune the AC
chiral magnetic response.

PACS numbers: 12.38.Mh,72.10.Bg,75.45.+j

Introduction and summary — The Chiral Magnetic Ef-
fect (CME) [1] (see [2–6] for reviews and additional refer-
ences) is the generation of electric current along an exter-
nal magnetic field induced by the imbalance in the densi-
ties of right- and left-handed chiral fermions. It has been
observed recently in Dirac [7, 8] and Weyl [9, 10] semimet-
als. An evidence for CME in the quark-gluon plasma has
been previously reported by high-energy heavy ion ex-
periments at RHIC [11–13] and LHC [14].

In the limit of a constant external magnetic field, the
CME conductivity σχ0 is completely fixed by the chiral
anomaly:

j =
e2

2π2
µ5B ≡ σχ0 B, (1)

where µ5 = (µR − µL)/2 is the chiral chemical potential
describing the amount of imbalance between the den-
sities of right- and left-handed fermions in the system.
Because it is topologically protected, the zero frequency
CME conductivity σχ0 is universal and is not modified
by interactions (even though the magnitude of magnetic
field can be of course renormalized). As a result, the
CME conductivity is reproduced in approaches that as-
sume very different properties of the system, including
perturbation theory (weak coupling) [1, 15], holographic
correspondence (strong coupling) [16–18], hydrodynam-
ics [20, 21], and kinetic theory [22–28].

However the frequency dependence of the CME con-
ductivity σχ(ω) in an oscillating magnetic field presents
the following puzzle [15]: the real part of the conduc-
tivity drops from σχ0 to 1

3σ
χ
0 as soon as the frequency

deviates from ω = 0. The computation in [15] has been
performed using leading order perturbation theory, and
thus assumed the absence of interactions between the
fermions. Taking account of these interactions through
the damping of fermion propagators smoothens out the
discontinuity in σχ(ω) [29], as conjectured in [15]. In the
collisionless limit of [15], this perturbative field-theoretic
result has to be reproduced by the Chiral Kinetic The-
ory (CKT) without the collision term – and here there

appears to be a problem, as we will now explain.

Indeed, kinetic theory operates with the single par-
ticle distributions, and so the field-theoretic result of
[15] may be interpreted in terms of the particle en-
ergy shift ∆E due to the interaction of chiral particle’s
magnetic moment µ = p/2|p|2 with magnetic field B,

∆E = −µ · B = − p·B
2|p|2 . In equilibrium, this energy

shift aligns µ with B to lower the energy, which in turn
aligns the momentum p of chiral particles along B. The
asymmetry between the left- and right-handed particles
then results in the electric current – however, as will be
shown below, this alignment is responsible only for 1

3 of

the result (1). We will see that the rest 2
3 results from

a more kinematic effect including the Berry curvature
b = p

2|p|3 of the monopole in momentum space [30], that

modifies both the phase space measure and the particle
velocity. In fact, without Berry curvature, the kinematic
modification of particle velocity due to the interaction
with magnetic field yields a contribution to the current
equal to − 1

3 of (1), and cancels exactly the contribution
arising from the particle’s energy shift - there is thus no
CME in equilibrium without the Berry curvature. Since
Berry curvature in momentum space is a quasi-classical
description of chiral anomaly, this explains why there is
no CME in a system of chirally imbalanced fermions in
the absence of anomaly [31, 32].

When an external magnetic field oscillates with fre-
quency ω that exceeds the inverse relaxation time τR,
ω > τ−1R , the system is driven out of equilibrium, and the
contribution to CME conductivity from the energy shift
in equilibrium distributions should disappear. Since the
leading order perturbative result of [15] corresponds to
τR →∞, this means that as soon as ω deviates from zero,
the CME conductivity should only contain the contribu-
tion from the kinematic effects including Berry curvature
that does not require equilibrium and hence survives at
finite frequency. Based on this, we might expect that at
small non-zero ω the CME conductivity should become
2
3σ

χ
0 – in sharp contrast to 1

3σ
χ
0 computed in [15].
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What is the origin of this discrepancy between the
field-theoretic and kinetic theory results? It appears that
in the kinetic theory description we miss a contribution
to the CME conductivity that at finite frequency is nega-
tive and given by− 1

3σ
χ
0 , and that vanishes in equilibrium,

when ω = 0.
In this paper we identify this missing contribution and

show that it is the magnetization current resulting from
magnetization density m of chiral particles:

JM = ∇×m = −σ0
3

ω

ω + iτ−1R
B. (2)

At frequencies ω � τ−1R the magnetization current con-
tributes an additional − 1

3σ0 to the chiral magnetic con-
ductivity σ(ω), whereas at zero frequency ω = 0 this
contribution vanishes.

Since in chiral materials the Lorentz invariance is in
general lost, the identification of individual contributions
to the chiral magnetic conductivity at finite frequency
may make it possible to manipulate them separately.

CME in static equilibrium — We start our discussion
with a dissection of chiral magnetic conductivity in static
equilibrium. Throughout the paper, we shall assume that
the chirality relaxation time is long enough (in particu-
lar, much longer than the typical relaxation time) that it
makes sense to consider the chirally imbalanced system
as being close to equilibrium.

For brevity, we will consider a weakly interacting the-
ory of single chiral (Weyl) fermion species of right-handed
chirality; the generalization to a massless Dirac fermion
(as well as to QCD in chiral limit) is straightforward.
In this theory, the equilibrium CME current is given by
J = µ

4π2B ≡ σ0B where µ is a chemical potential for the
U(1) chiral charge of the Weyl fermion.

In weakly coupled regime, a natural description of the
system is in terms of a kinetic theory of quasi-particles de-
scribed by the Boltzmann equation with collisions. Colli-
sion terms that cause the system to relax to the thermal
equilibrium set a characteristic relaxation time scale τR
which, due to weak coupling, is much longer than the
thermal quasi-particle scale, τR � T−1 where T is the
system’s temperature. If the external background (such
as the magnetic field B) changes with a rate slower than
τ−1R , we expect the system to stay in local thermal equi-
librium; the hydrodynamic description of the system then
applies. On the other hand, if an external field changes
with a rate faster than τ−1R , the collision terms become
sub-leading and the Boltzmann equation reduces to the
kinetic theory of non-interacting quasi-particles at lead-
ing order. Therefore, τ−1R serves as a crossover scale be-
tween hydrodynamic regime and the free streaming (col-
lisionless) kinetic theory. In this section we will focus on
CME in the hydrodynamic regime.

Quantization of a single right-handed Weyl field gives
“particles” of helicity h = + 1

2 and U(1) chiral charge

Q = +1, as well as “anti-particles” carrying h = − 1
2 and

Q = −1. We will call them fermions and anti-fermions

in the following, while the term “quasi-particles” will be
used to refer to both. The helicity h defines the spin of a
quasi-particle along its momentum direction as S = hp̂ ≡
h p
|p| . Since the magnetic moment is given by µ = Q S

|p|
(with the g factor g = 2), we see that the fermion and
anti-fermion with a given momentum p carry the same
magnetic moment µ = p

2|p|2 . In the presence of magnetic

field B, their energy is shifted by the same amount ∆E =
−µ ·B = − p·B

2|p|2 from the relativistic massless spectrum

E0 = |p|. In equilibrium, this energy shift should give rise
to a tendency of aligning µ with B to lower the energy,
which in turn aligns the momentum p of quasi-particles
along B: this has long been a qualitative explanation of
CME in weakly coupled theory.

We will be more quantitative on this. The equilibrium
thermal distributions of fermions (f+) and anti-fermions
(f−) in the magnetic field B become

f eq± (p) = f0±(|p| −∆E) ≈ f0±(|p|)− βf0±(1− f0±)∆E ,(3)

where f0±(x) = 1/(eβ(x∓µ) + 1) is the Fermi-Dirac dis-
tribution with a chemical potential µ and temperature
T ≡ β−1, that we have expanded to linear order in B.
The U(1) charge current in kinetic theory (in leading or-
der gradient expansion) is easy to understand intuitively:

J =
∫
p
vp(f+(p)− f−(p)), where

∫
p
≡
∫

d3p
(2π)3 and vp is

the quasi-particle velocity which is vp = p̂ to leading or-
der in B (we will come back to accounting the correction
to velocity shortly). Then the net current resulting from
the shift of distributions in (3) is

JEQ =
β

2

∫
p

p(p ·B)

|p|3
∑
s=±

sf0s (|p|)(1− f0s (|p|))

=
1

3
× B

4π2
β

∫ ∞
0

d|p||p|
∑
s=±

sf0s (|p|)(1− f0s (|p|))

=
1

3
× µ

4π2
B =

1

3
σ0B , (4)

where we have used an identity

β

∫ ∞
0

d|p||p|
∑
s=±

sf0s (|p|)(1− f0s (|p|)) = µ (5)

that holds independently of temperature β−1 = T . We
see that the shift of thermal equilibrium distribution from
the magnetic moment interaction (3) explains only 1

3 of
the expected value of CME in equilibrium.

To identify the remaining 2
3 , we need a more careful de-

scription of kinetic theory of chiral fermions: the chiral
kinetic theory. A novel element in chiral kinetic theory
is the inclusion of quantum effect originating from chi-
ral spinors in first order of ~∂x/p, which appears as a
Berry curvature of monopole shape in momentum space:
b = p

2|p|3 . This Berry curvature has been shown to be

sufficient to describe the chiral anomaly in the framework
of kinetic theory of quasi-particles [22–28]. We will now
show that this Berry curvature plays a crucial role in ex-
plaining the rest 2

3 of the equilibrium CME conductivity.
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The Berry curvature modifies the charge current J =∫
p

√
GvBp (f+(p)− f−(p)) in the following way: it affects

the phase space measure
√
G = (1 + b · B), and also

changes the quasi-particle velocity vBp :

√
GvBp =

∂E
∂p

+

(
∂E
∂p
· b
)
B = p̂+

(p ·B)p

|p|4
+O(B2) .

To linear order in B, the contribution to the net cur-
rent arising from this modification of phase space and
velocity (that is independent of the modification of the
thermal equilibrium distribution considered above) can
be obtained by using f±(p) = f0±(|p|) as

JKM =

∫
p

p(p ·B)

|p|4
(f0+(|p|)− f0−(|p|))

=
2

3
× B

4π2

∫ ∞
0

d|p|(f0+(|p|)− f0−(|p|))

=
2

3
× µ

4π2
B =

2

3
σ0B , (6)

where we use the identity
∫∞
0
d|p|(f0+(|p|) − f0−(|p|)) =

µ that is related to the identity (5) via integration by
parts. Because this term in the current arises from the
modification of quasiparticle velocity, we will call (6) the
kinematic contribution to CME; it is responsible for 2

3 of
the equilibrium CME conductivity.

If we had not included the Berry curvature, and simply
used vBp = ∂E

∂p with
√
G = 1 (obtained by putting b =

0), it is easy to check that we would get the kinematic
contribution of JKM = − 1

3σ0B that would cancel (4)
resulting in the zero total CME in equilibrium. In other
words, the change in the velocity vBp due to the energy
shift from magnetic moment interaction with magnetic
field precisely cancels the contribution from the shift of
thermal equilibrium distribution due to the same energy
shift in the equilibrium CME. We see that the net amount
of the equilibrium CME, J = σ0B, originates solely from
the Berry curvature.

The dissection of J into JEQ and JKM described above
is important both conceptually and practically when
we consider out-of-equilibrium CME in free streaming
regime discussed in the next section. In this regime, the
thermal relaxation governed by the time scale τR cannot
follow the fast change of the system induced by the time
dependence of the background field. The contribution to
CME from the shift of thermal equilibrium distribution
JEQ is expected to be lost, while the kinematic contri-
bution JKM that does not rely on relaxation dynamics
should persist. We may thus naively expect that about 2

3

of the equilibrium CME (carried by JKM) will survive in
out-of equilibrium conditions. Interestingly, in the next
section, we will see that the story of CME in out-of equi-
librium is more subtle.

Out-of equilibrium CME — One way of driving the
system out-of equilibrium is to apply a magnetic field
oscillating in time with frequency ω. When the sys-

tem reaches a stationary phase, the CME current os-
cillates with the same frequency and we can define a
chiral magnetic conductivity σ(ω) by J(ω) = σ(ω)B(ω)
in frequency space. In the hydrodynamic regime ω �
τ−1R , thermal relaxation dynamics is able to sustain in-
stantaneous thermal equilibrium, and the chiral mag-
netic conductivity should approach the equilibrium value
σ(ω) → σ0. In the free-streaming regime ω � τ−1R
on the other hand, the system is unable to follow the
rapidly oscillating magnetic field, and the distribution
functions f±(p) cannot deviate much from f0±(|p|). As
long as ω � T where T is the typical energy of quasi-
particles, the kinetic description with the previous energy
shift ∆E = − p·B

2|p|2 should still apply. We then would ex-

pect that only the kinematic contribution of CME, JKM,
manifests itself and that σ(ω)→ 2

3σ0 in the free stream-
ing regime.

A first hint of what should be truly happening in free
streaming regime can be seen in the diagrammatic 1-loop
computation of σ(ω) in Ref.[15], as well as in the Hard
Thermal Loop (HTL) computation of Ref.[25, 29, 33].
The real part of σ(ω) at ω = 0 agrees with the equilib-
rium value σ0 as expected, while it drops discontinuously
to 1

3σ0 for an infinitesimally non-zero ω. A careful in-
spection shows that this behavior of σ(ω) arises from the
structure

σ(ω) = σ0

(
1− 2

3

ω

ω + iε

)
, ε = 0+ , (7)

which is a good approximation to the full σ(ω) in the
kinetic HTL regime ω � T . The presence of iε is an
artifact of non-interacting limit, which is replaced by the
effective relaxation rate iτ−1R that smoothens the discon-
tinuity at ω = 0 [29]. The important fact for us is that
this result indicates σ(ω) → 1

3σ0 in the free streaming

regime ω � τ−1R after this replacement. As we mentioned
in the Introduction, this is in puzzling contradiction to
our expectation of σ(ω) → 2

3σ0 based on the dissection

of equilibrium CME into JEQ and JKM. Since both JEQ

and JKM follow from the structure of chiral kinetic the-
ory, the only possible solution should be an existence of
yet another contribution to CME that vanishes in hy-
drodynamic regime (i.e. in equilibrium) and approaches
− 1

3σ0B in the free-streaming regime. We will now show
that such a contribution indeed exists.

The charge current we presented before, J =∫
p

√
GvBp (f+(p) − f−(p)) is the leading classical term

in the expansion in powers of ~∂x/p. Since the Berry
curvature in momentum space is the first quantum cor-
rection in this parameter, we have to consider the first
quantum corrections to the expression for J . One such
correction is a magnetization current arising from quan-
tum spins of quasi-particles [27]: JM = ∇×m where the
magnetization density m is given by the sum of magnetic
moments of quasi-particles µ = p

2|p|2 (recall that fermion

and anti-fermion with a given momentum p carry the
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same magnetic moment),

m =

∫
p

p

2|p|2
(f+(p) + f−(p)). (8)

In fact, one can show that the current JM is responsi-
ble for the kinematic contribution of 2

3 of the equilibrium
chiral vortical effect (CVE) in the presence of non-zero
fluid vorticity, and the rest 1

3 of equilibrium CVE arises
from the shift of thermal equilibrium distribution in the
presence of vorticity [27]: this closely parallels the dis-
section of equilibrium CME we discuss before. It turns
out that this quantum current also gives rise to the ad-
ditional contribution to out-of equilibrium CME, as we
will now demonstrate.

The key element is the Bianchi identity, the well-
known Faraday’s Law of induction, ∂B

∂t + ∇ × E = 0
between a time-dependent magnetic field and a space-
dependent electric field, which in the frequency space be-
comes −iωB + ∇×E = 0. Note that this is an identity
in terms of vector potential (A0,A): the time-dependent
magnetic field iωB is a space-dependent electric field
∇ × E. The electric field gives a local acceleration to
quasi-particles ṗ = QE = ±E, and the free streaming
Boltzmann equation in frequency space becomes

∂f±(p)

∂t
+ ṗ · ∂f±(p)

∂p
= −iωf±(p)±E · ∂f±(p)

∂p
= 0 .(9)

The solution of this equation to linear order in E with a
retarded boundary condition is f±(p) = f0±(|p|)+δf±(p)

with δf±(p) = ±i (E·p̂)ω+iε βf
0
±(|p|)(1 − f0±(|p|)). The iε

should be replaced in the interacting theory by iτ−1R that
appears in the collision term of the Boltzmann equation,
that we neglect in free streaming regime. The spin mag-
netization from this distribution is (see 8)

m =
iβ

ω + iτ−1R

∫
p

p

2|p|2
(E · p̂)

∑
s=±

sf0s (|p|)(1− f0s (|p|))

=
1

3
× iE

ω + iτ−1R

β

4π2

∫ ∞
0

d|p||p|
∑
s=±

sf0s (|p|)(1− f0s (|p|))

=
1

3
× iE

ω + iτ−1R
σ0 . (10)

This gives the magnetization current (2)

JM = ∇×m =
σ0
3

i(∇×E)

ω + iτ−1R
= −σ0

3

ω

ω + iτ−1R
B(11)

that contributes an additional − 1
3σ0 to the chiral mag-

netic conductivity σ(ω) in free-streaming regime ω �
τ−1R : JM → −1

3σ0B. Together with JKM = 2
3σ0B, this

explains the total CME current of J = 1
3σ0B in the free

streaming regime. Note that the physics of JM is inde-
pendent of the Berry curvature.

Dependence on the g-factor — The anatomy of CME
in and out-of equilibrium presented above depends on
the g-factor (taken to be g = 2 for relativistic chiral

ω � τ−1
R ω � τ−1

R

JEQ 1
3

0

JKM 2
3

2
3

JM 0 − 1
3

J total 1 1
3

TABLE I. The dissection of CME in the hydrodynamic (ω �
τ−1
R ) and the free-streaming (ω � τ−1

R ) regimes. The numbers
are in units of the equilibrium CME conductivity.

fermions), and it is easy to generalize our results to an
arbitrary value of g-factor. This discussion should be im-
portant in Dirac/Weyl semi-metals where the emergent
pseudo-chiral fermions are expected to have a dynami-
cally determined g-factor different from g = 2. It also
helps us to disentangle the physics of Berry curvature
and the physics of spin magnetic moment (g-factor). The
magnetic moment of a quasi-particle of momentum p is
µ = g

2Q
S
|p| , and therefore the contribution from the shift

of thermal distribution in equilibrium is modified by a
factor of g/2, which becomes JEQ = g

6σ0B. It is easy
to check that the effect of the Berry curvature together
with the new energy shift gives

√
GvBp =

∂E
∂p

+

(
∂E
∂p
· b
)
B = p̂+

(2− g)

4

B

|p|2
+
g

2

(p ·B)p

|p|4
,

which results in the kinematic contribution to equilib-
rium CME as JKM = (1 − g

6 )σ0B. As expected, the

total equilibrium CME, J = JEQ + JKM = σ0B, is ro-
bust and does not depend on the value of g-factor.

In the free streaming regime ω � τ−1R , only the kine-
matic contribution of JKM = (1 − g

6 )σ0B survives. On
the other hand, the spin magnetization changes by a
factor of g

2 , therefore the magnetization current con-
tribution will change by the same factor and become
JM = − g6σ0B. The total CME in the free streaming

regime is then J = JKM + JM = (1− g
3 )σ0B.

It is interesting to consider what the results would look
like in the absence Berry curvature (which can be seen
by keeping only the terms with the g-factor). The equi-
librium CME is absent in this case, while the CME in
free-streaming regime is − g3σ0B. Interestingly, the exis-
tence of CME in free streaming regime does not neces-
sarily require the Berry curvature, but its value would be
smaller by σ0B from the one with the Berry curvature.
The importance of distinguishing the effects of the Berry
curvature and of the magnetic moment has been also em-
phasized in the context of gyrotropic effect [34–36]. We
emphasize again that the equilibrium CME in hydrody-
namic regime, J = σ0B, is a consequence of the Berry
curvature, independent of the physics of spin magnetic
moment (g-factor).

Interpolating hydrodynamic regime and free stream-
ing regime — In interacting systems, such as QCD and
Dirac/Weyl semi-metals in weakly coupled regime, the
transition between the hydrodynamic regime and the free
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ω � τ−1
R ω � τ−1

R

JEQ g
6

0

JKM 1 − g
6

1 − g
6

JM 0 − g
6

J total 1 1 − g
3

TABLE II. The dissection of CME with an arbitrary g-factor.
The terms with the g-factor originate from the physics of spin
magnetic moment, and the others from the physics of Berry
curvature.

streaming regime should be well approximated by a func-
tion

σ(ω) = σ0

(
1− g

3

ω

ω + iτ−1R

)
, (12)

with a single effective parameter τR with a dimension
of time. One way to fix this parameter is to consider a
small frequency expansion, σ(ω) = σ0 − iξ5ω + O(ω2)
with ξ5 = − g3σ0τR, where ξ5 is one of the parity-odd
transport coefficients in second order hydrodynamics,
J = σ0B + ξ5

dB
dt [21]. In two-flavor QCD, it has been

computed in leading-log accuracy of coupling constant
αs ≡ g2s/(4π) by re-summing leading pinch singularities
[37], ξ5 ≈ − 0.5

α2
s log(1/αs)

σ0

T , which gives (with g = 2)

τ−1R ≈ 1.3α2
s log(1/αs)T (2− flavor QCD) . (13)

We also mention that the imaginary part of σ(ω)
is proportional to the parity-odd spectral density [37,
38] ρodd(k) = −2 Imσ(k) that appears in the ther-
mal fluctuation-dissipation relation of charge current
〈J i(k)J j(−k)〉 ∼

(
1
2 + nB(ω)

)
iεijlklρodd(k). As can be

seen from (12) the ρodd(ω) is proportional to the g-factor
– this provides an intuitive explanation of why ρodd(k),
though it arises from the same triangle diagram, is sensi-
tive to the microscopic details of dynamics that are not
constrained by the chiral anomaly.

Towards a full quantum description of AC chiral mag-
netic conductivity in QCD — To describe the AC CME
conductivity σ(ω), we have to keep in mind that the
kinetic theory is valid only in the classical regime of
quasi-particles, ω � T , where T characterizes the typ-
ical energy-momentum of thermal quasi-particles. For
ω � T the probing scale is smaller than the Compton
length of quasi-particles, and the response function is
governed by quantum dynamics. This quantum response
is dominated by a sum of one-particle responses of quasi-
particles without collisions (since the scale of collisions is
well separated from T , see (13)), and it is reliably cap-
tured by a 1-loop diagrammatic computation [15].

This suggests a smooth interpolation of the previous ki-
netic theory result (12) in ω � T with a 1-loop diagram-
matic result in ω � T . In FIG. 1, we plot the emerging
global picture of σ(ω) in two-flavor perturbative QCD
with αs = 0.2 (neglecting the log factor) and µA/T = 0.1.
For comparison, we also show a result in the AdS/CFT

0 1 2 3 4

ω

T

0.2

0.4

0.6

0.8

1.0

σ (ω)

σ0

FIG. 1. The real (blue) and imaginary (red) parts of σ(ω)
in two-flavor pQCD with αs = 0.2 and µA/T = 0.1 (solid
lines). The dotted curves are the results in the AdS/CFT
correspondence [16].

correspondence for strongly coupled regime. One can see
that at large frequency the pQCD and AdS/CFT results
for the real part of conductivity approach each other,
whereas at small frequency these results significantly dif-
fer signaling the difference in the relaxation mechanisms
in these approaches. At zero frequency, the CME con-
ductivity is completely fixed by the chiral anomaly and
is universal. The imaginary part of AC conductivity is
seen to exhibit different behavior both at small and large
frequencies.

Discussion — We have identified the new contribu-
tion to chiral magnetic conductivity – the magnetization
current (11) that allows to quantitatively reproduce the
field-theoretic AC response in terms of kinetic theory.
The magnetization current results from the spin response
of chiral quasiparticles to magnetic field, and is thus pro-
portional to the quasiparticle’s g-factor, see Table II.

The Lorentz-invariance of Dirac and Weyl actions
fixes the value of g-factor to g = 2, and the field-
theoretic result automatically takes account of the corre-
sponding magnetization current contribution. However,
in Dirac/Weyl semimetals, the chiral quasiparticles are
emergent, and the value of g-factor can significantly dif-
fer from g = 2 – for example, in Bi2Se3 that possesses 3D
Dirac quasiparticles with a finite mass of about 160−300
meV the value of g-factor is g = 20 − 30 [39] due to a
strong spin-orbit interaction. Moreover, left- and right-
handed chiral quasiparticles may have different proper-
ties in so-called asymmetric Weyl semimetals, leading to
essential modification of CME [40].

Therefore, the identification of individual contribu-
tions to CME conductivity presented above opens the
possibility to tune the chiral magnetic response at finite
frequencies by choosing the appropriate chiral materials.
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