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We study the evolution of holographic screens, both generally and in explicit examples, including
cosmology and gravitational collapse. A screen H consists of a one-parameter sequence of maximal
surfaces called leaves. Its causal structure is nonrelativistic. Each leaf can store all of the quantum
information on a corresponding null slice holographically, at no more than one bit per Planck area.
Therefore, we expect the screen geometry to reflect certain coarse-grained quantities in the quantum

gravity theory.

In a given spacetime, there are many different screens, which are naturally associated to different
observers. We find that this ambiguity corresponds precisely to the free choice of a single function
on H. We also consider the background-free construction of H, where the spacetime is not given.
The evolution equations then constrain aspects of the full spacetime and the screen’s embedding in

it.
I. INTRODUCTION

In the search for a quantum theory of gravity in gen-
eral spacetimes, the study of holographic screens [1] has
recently led to interesting new results. An area theorem
was proven for past and future holographic screens in any
spacetime satisfying the null curvature condition [2, 3].
The semiclassical extension of this theorem led to the first
rigorous formulation of a universal Generalized Second
Law [4], applicable in cosmology and other highly dy-
namical spacetimes. In the present paper, we will study
the classical evolution of holographic screens in more de-
tail.

A holographic screen H can be associated to a null fo-
liation of a spacetime M, i.e., a foliation of M into 2+1
dimensional hypersurfaces N(R), each with two spatial
and one light-like direction. (See Fig. 1.) The screen
consists of a sequence of two-dimensional surfaces o(R)
called leaves. Each leaf is the spatial cross-section of
largest area on the corresponding slice N(R). A holo-
graphic screen is called future (past) if the area of each
leaf is decreasing (increasing) in the opposite light-like
direction, i.e., if every o(R) is marginally trapped (anti-
trapped). Future screens appear inside black holes or
near a big crunch. Past holographic screens exist in an
expanding universe, for example in ours.

The covariant entropy bound (Bousso bound) [5, 6] im-
plies that all of the information about the quantum state
on each null slice N(R) can be stored on the correspond-
ing leaf o(R), at a density of no more than one bit per
Planck area. This suggests that the holographic princi-
ple [7-9] applies in all spacetimes. (Several precise semi-
classical versions of this conjecture have recently been
formulated, and in some cases, proven rigorously [10-
14].) The holographic relation between quantum infor-
mation and geometry substantially involves both G and
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h, Newton’s and Planck’s constants. Its origin can only
lie in a quantum theory of gravity, so one expects the
structure of holographic screens to reflect aspects of the
underlying theory.

In spacetimes with conformal boundaries, all or parts
of the screen lie on it [1, 15]. For example, in asymp-
totically Anti-de Sitter spacetimes, the screen is located
on the conformal boundary at spatial infinity. This is
consistent with the AdS/CFT correspondence providing
a full quantum description.

It is therefore of interest to study holographic screens
in more realistic spacetimes, where quantum gravity re-
mains a mystery. (An interesting recent approach ex-
plores a generalization of the stationary-surface conjec-
ture [16, 17] for computing entanglement entropy [18-
20].) In particular, it is important to understand the
dynamics of holographic screens in cosmology and in the
collapsing regions inside of black holes.

Future holographic screens have already been stud-
ied in some detail under the guise of “dynamical hori-
zons” [21] or “future outer-trapped horizons” [22], as in-
teresting candidates for quasi-local boundaries of black
holes. Strictly, the latter objects are more restrictive:
dynamical horizons correspond only to the spacelike por-
tions of future holographic screens. For the purposes of
proving an area theorem, the restriction to spacelike por-
tions is significant: the area theorem is trivial for dynam-
ical horizons, but highly nontrivial for future holographic
screens. This is because without the spacelike assump-
tion, the area theorem relies on a global property that is
hard to prove: the (unique) foliation of a given screen H
into leaves o(R) uniquely defines a foliation of a (portion
of) the spacetime M into null slices N(R).

Here we will be interested in studying the evolution of
local quantities, the metric and extrinsic curvature of the
leaves. For this purpose, the spacelike assumption yields
no significant simplification. In fact, a number of authors
have studied the local evolution problem for dynamical
horizons [21, 23-27], and some noted that the spacelike
assumption is not required for the validity of the evolu-



N(R)

N(R+dR)

N(R + 2dR)

(R +2dR)

o(R)

(R +.dR) (R + 2dR)

FIG. 1. Left: a future holographic screen, H (blue line). Points represent topological spheres. The dashed lines are 2+1
dimensional null slices N orthogonal to the leaves o of H (blue dots), along the direction k®. H can be constructed leaf by
leaf, using a “zig-zag” procedure. First, deform the leaf o(R) along the other orthogonal null vector, I, by an infinitesimal step
a(R,Y,¢)l* (green downward arrow). The function a < 0 can be chosen arbitrarily; it reflects a kind of observer-dependence
of the holographic screen. Thus one obtains a new surface (R + dR) (red), and from it, a new null slice N(R+ dR) orthogonal
to &. The next leaf o(R+ dR) is the surface of maximal area on N(R+ dR), at some infinitesimal distance Sk along N from &
(orange arrow). Right: a past holographic screen (same color coding). In this case a > 0; the area of the leaves grows towards
the future. We show the same construction, with only one spatial direction suppressed to offer a different visualization. The
leaves o(R) are by definition the maximal area cross-sections of N(R), despite what the figure shows.

tion equations. For completeness, we offer a simplified
derivation of the evolution equations in the Appendix C.
In the main text, our focus will be on their interpretation.
In particular, we will emphasize the role of a gauge choice
which corresponds geometrically to a choice of null folia-
tion, and which has a natural interpretation as reflecting
a choice of observer.

In Sec. II, we establish conventions, and we define the
screen variables: local geometric quantities that can be
associated to a holographic screen. They include the met-
ric and null extrinsic curvatures of the leaves, a tangent
vector field to the leaves describing the relative evolution
of the two null normals, and a tangent vector field nor-
mal to the leaves describing the “slope” and “rate” of
the screen’s progress through the spacetime it is embed-
ded in. We also identify one “global” and one “gauge”
transformation, which leave the screen invariant but act
nontrivially on some of the above variables.

In Sec. III, we present the evolution equations for the
screen variables. We then analyze them from three differ-
ent perspectives. First, in Sec. III A, we regard both the
spacetime M and the screen H as given. This viewpoint
has been examined previously, and it has led to sugges-
tions that the screen evolution can be interpreted as fluid
dynamics. We identify a number of problems with this
interpretation.

Next, in Sec. III B, we regard the spacetime M as given
but consider the evolution equations as a tool for con-
structing H. We find that the equations are underdeter-
mined by one function o on H. We show that this func-
tion corresponds precisely to the ambiguity in choosing a
null slicing; see Fig. 1. More precisely, given a partially

constructed screen up to some leaf o(R), we show that
« can be regarded as a lapse function that describes how
much the infinitesimal step R advances the slicing away
from each point on ¢(R). This defines a new null slice
N(R + dR) and ultimately, a new leaf o(R + dR), in an
a-dependent way.

We can regard « as encoding a kind of generalized
observer-dependence of the screen, in the following sense.
Consider a worldline, and consider the future light-cone
from each point on the worldline. If the worldline is in
a collapsing region (e.g., inside a black hole), then there
will be a cross-section of maximum area on this light-
cone: a marginally trapped surface. The sequence of
such surfaces defined by the above construction yields a
holographic screen, H.

Now consider a different observer, whose worldline co-
incides in some interval with the previous one, but then
departs from it. The above construction still works, and
in the region where the worldlines agree it, it will yield
the same leaves. Therefore the holographic screens will
also agree on those leaves. But the leaves constructed
from the light-cones of points where the worldlines do
not agree will differ. Therefore there is no unique future
evolution for a holographic screen, even if we are given
part of the screen and the entire spacetime M.

This mathematical description of the observer-
dependence of holographic screens, as a choice of the
function «, is the central result of this paper. It would be
nice to explore this further. For example, infinitesimally
nearby screens encode nearly the same subset of M. The
transformation relating them may correspond either to
a change of variables in the underlying theory, or to a



change of the prescription for reconstructing spacetime
from those variables.

Finally, in Sec. III C, we consider the evolution equa-
tions from a “background-free” perspective, where nei-
ther M nor H are given. In this case, we can regard the
screen variables as given. What was previously regarded
as their evolution equations now determines aspects of
the spacetime M, and of how H is embedded in M.
However, from this viewpoint the equations are highly
underdetermined. This is not surprising, since the screen
variables can at most represent a coarse grained subset of
the information in the underlying quantum gravity the-
ory.

In Sec. IV, we illustrate our general analysis with
some examples. We construct screens explicitly for black
holes and for cosmological solutions, and we compute the
screen variables. In particular, we construct two differ-
ent screens for the same cosmology, only one of which
is spherically symmetric. This illustrates the observer-
dependence associated with a choice of different world-
lines and null slicings.

Relation to Other Work Our analysis builds on earlier
studies of dynamical horizons and future outer-trapped
horizons, such as Refs. [21-23, 28-30]. In many of these
works, an analogue of the first law of black hole thermo-
dynamics was sought. (The second law holds trivially for
dynamical horizons.) However, it is not clear that physi-
cally meaningful intrinsic and extrinsic variables, such as
total energy and temperature, can be uniquely defined.
We do not pursue this direction here, though we note in
Sec. IV that a certain local geometric quantity x limits
to the usual surface gravity of an event horizon, in all
examples where a sensible comparison can be made.

Here, we focus on local parameters that arise naturally
from the geometry of holographic screens. In Sec. I1I
we take as our starting point the evolution equations of
Gourgoulhon and Jaramillo [25-27]. (For completeness,
their derivation is given in the Appendix C.) In Sec. IV,
we make use of the work of Booth et al. [31], who ex-
plicitly constructed dynamical horizons for spherical dust
collapse.

II. KINEMATICS OF HOLOGRAPHIC
SCREENS

A future (past) holographic screen, H, is a hypersurface
(not necessarily of definite signature) that is foliated by
marginally trapped (anti-trapped) codimension-2 spatial
surfaces called leaves. For simplicity we will take space-
time to have four dimensions in what follows, and we
consider future screens unless otherwise noted; but all re-
sults are easily generalized. By a surface we shall mean a
smooth two-dimensional achronal surface. We will con-
sider only regular screens, which satisfy a set of further
mild technical conditions [3] such as the generic condi-
tion, Eq. (62) below. In this section, we will discuss the
kinematic structure underlying holographic screens and

establish a number of conventions.

A. Tangent and Normal Vectors

In a Lorentzian manifold, every two-dimensional spa-
tial surface has two future-directed orthogonal null vector
fields, k* and [®. Tt is convenient to choose their normal-
ization such that

kol = 1. (1)

This allows for arbitrary rescalings | — I, k — vk,
where v is an arbitrary positive function on the screen
H. We show below that this gives rise to a U(1) gauge
Symimetry.

A surface is marginally trapped if

0% =0, 60U <o0. (2)

By the above definition, a future holographic screen can
be thought of as a one-parameter sequence of such sur-
faces, its leaves o(R). In principle, any parameter can be
used. For example, the existence of an area theorem for
holographic screens [2, 3] makes it possible to choose R
to be a monotonic function of the area of the leaves.

Next we wish to define a vector field i which is tangent
to H and normal to each leaf o(R). The latter condition
implies that

he = al® + Bk® . (3)

A key intermediate result in the proof of the area theo-
rem [3] is that o < 0 everywhere on H (in our conven-
tion where [ is future-directed). That is, the evolution of
leaves of a future holographic screen is towards the past
or the spatial exterior.

The parameter B corresponds to the “slope” of the
holographic screen. By Eq. (3), the screen is past-
directed if 8 < 0 and spatially outward-directed if 8 > 0.
The generic condition of Ref. [3] prevents h from becom-
ing collinear with k, so (8 is always finite. However, 5 has
no upper bound. In the limit as 8 — oo, H approaches
an isolated horizon. For example, H can approach the
event horizon of a black hole from the inside.

Because 3 can have any sign, H need not be of definite
signature. Thus we cannot require that i have unit norm:

h®h, = —2af . (4)
Instead, we normalize h by requiring that
h(R) =h*(dR), =1, (5)

where R is the (arbitrary) foliation parameter. We also
define a vector normal to H and to every leaf:

n® = —al® + Bk* | (6)

which satisfies h®n, = 0 and n*n, = 2a/3.



There are two ways to think about this normalization,
corresponding to different perspectives on screen evolu-
tion. In one viewpoint, we consider a given screen H in
a given spacetime M. Then it is natural to choose a fo-
liation parameter R, which fixes the product af via the
above two equations. The ratio 3/« is fixed by the slope
of the screen’s embedding in M.

Alternatively, we may consider only the spacetime M
as given, and consider it our task to construct the screen
H. In this case the screen will not be unique. Even if
some portion of the screen is known (as a set of leaves
associated with a finite range of R), this does not de-
termine the remainder of the screen. We shall see that
the ambiguity is precisely associated with a choice of a
negative function « on H (at fixed choice of [). This cor-
responds to a choice of null foliation of M, or physically,
to a choice of observer associated with the screen. We
will later identify a constraint equation that determines
B as a function of o and other data, Eq. (61) below. The
parameter R is then determined by Eq. (5).

The induced metric on the screen H is not always well-
defined:

1
Yab = Jab — =——=NaNb ; (7)

2a3
This is ill-defined on null portions of H, i.e., when (3
vanishes; and it changes signature when § changes sign.
But we will not need this metric below.
By contrast, the induced spatial metric on a leaf o(R)
is always well defined:

Gab = Gab + kalb + lakb . (8)

B. Extrinsic Curvature and Acceleration

We are interested in the extrinsic curvature of the
leaves o(r) in the spacetime, rather than the extrinsic
curvature of the screen H. Since the leaves are of codi-
mension 2, the full extrinsic curvature data consists of
the following objects: the null extrinsic curvatures in the
k and [ directions, respectively; and the so-called Wein-
garten map, which measures how the null normals vary
with respect to each other.

The null extrinsic curvatures are defined by

Bl = 454 Veka (9)
l c
By = ;4 Vela - (10)
The expansion and shear are given by
k) a

0" = B g0 (11)

k k 1
01(1 : = B((al))) - 59(k)qab y (12)

and similarly for [. We recall that by definition of a future
holographic screen, %) = 0 and 6% < 0.

Analagously one can define extrinsic curvature, expan-
sion, and shear for any vector field orthogonal to o, such

4

as h® or n®. Since the definitions are linear, Eq. (3) im-
plies, e.g.,

0 = V) + pe*) = gV | (13)
0" = —afV + o) = —ag® (14)

From the one-form —I,V,kb, one can construct the
normal one-form by projection along the leaf,

Qo = ¢,5(~ 1V EY) | (15)

and the acceleration k by projection along the evolution
vector field,

f=h(—1,V E) . (16)

This quantity is called “surface gravity” in Refs. [25-27]
and is denoted x there. We will reserve that term and
notation for a different, closely related quantity defined
in Eq. (18) below, because we find that it better matches
the surface gravity of event horizons.

It is easy to see that the following expressions are
equivalent to Eq. (16): & = kyh®Val® = hyh?V.kb =
—1,h*V . (h®/B). Yet another equivalent expression for &
can be given by extending the null vector fields k and [
into a neighborhood of H (which was not needed above),
according to the following prescription: [ is parallel trans-
ported along itself, and k is parallel transported but

rescaled so as to satisfy k%, = —1 everywhere. With
this choice, one finds
kY ok = Kk (17)
where
I
K= —. 18
5 (18)

At points where 5 = 0, the above prescription fails to ex-
tend [ into an open neighborhood of such points, leading
to a divergence.

Notably, Eq. (17) takes the same form as the defini-
tion of the surface gravity of a Killing horizon. How-
ever, the acceleration x is not invariant under certain
allowed rescalings of k, which we will discuss shortly.
For Killing horizons, there is a similar ambiguity, which
would also rescale the surface gravity. But in some cases
(e.g. asymptotically flat spacetimes), a preferred normal-
ization of the Killing vector field kxp exists [32]. In our
case, by contrast, the normalization is set by the choice
of evolution parameter R, which is ambiguous.

In Sec. IV we will consider a particularly simple choice
of parametrization. Remarkably, we will find for a large
class of dynamical solutions that the acceleration defined
in Eq. (17) agrees with the standard Killing surface grav-
ity of the corresponding static solutions.

C. Gauge and Reparametrization Transformations

There are two kinds of transformations that do not
change the screen and preserve the conventions of



Egs. (1) and (5). The first transformation is analogous
to a global symmetry, in that it does not depend on the
position. The second is a U(1) gauge symmetry.

The first symmetry is a trivial reparametrization of
the label R of the leaves. There are certain geometrically
motivated choices one could consider in order to fix R:
for example, by linking it to the area A of the leaves,
e.g. via A = 47R? or A = exp(R). Here we will insist
only that R grow monotonically with A. Then we can
consider any transformation R — R’ with

exp[y(R)] = >0. (19)
Note that v can only depend on R, not on the angular
position on each leaf. The above conventions and defini-
tions imply the following transformation properties:

h—e 7h (20)
n—e 'n (21)
l—e (22)
k— ek (23)
B—e (24)
Q. — Q, (25)
k—e N(R+7(R)) . (26)

o Bkl .
The extrinsic curvature tensors, Béb’n’ ’ ), and their com-

ponents (expansion and shear), transform like h, k,n,(,
respectively.

A second symmetry arises from rescaling o by an arbi-
trary positive function of R and of the angular position,
while holding h, n, and R fixed. This requires taking
I — e7Tl, and by Eq. (1), k& — e'k. The remaining
screen parameters transform as!

Note that the combination

Qo = hPq,Veny, (31)
= —2aQ + Dy — aD,f. (32)

is invariant under the gauge symmetry.

Again, it is possible to gauge-fix this symmetry. For
example, we can insist that @« = —1 everywhere, or that
9 = —1. Below we find that different choices are conve-
nient in different applications. However, the most general
evolution equations we display in the next section will be
invariant under any of the above transformations.

III. DYNAMICS AND OBSERVER
DEPENDENCE

A holographic screen is a codimension-one hypersur-
face in spacetime. Hence, it must obey the constraint
equations of General Relativity,

Gapn® = 8nTyn’ . (33)

These four equations are usually expanded in a 3+ 1 for-
malism, as one energy constraint plus three momentum
constraints on the 3-metric and 3-extrinsic curvature.

Here we are dealing with a hypersurface of indefinite

a— ela (27) signature, but with the additional structure of a 241 de-
B—eTh (28) composition, the foliation into leaves. Thus it is natural
. to express Eq. (33) in terms of the kinematic quantities
k= ~k+T (29) defined in the previous section, which are adapted to this
Qo — Q. +D,T . (30) foliation. One finds
J

oLy, + 7)ID + DO = 8nTpnh® + B Bl (34)

(Lp + 0M)Q, — Doit + aDOY = 87T,ynq" — D, B (35)

—%R +a0,Q% - aD,Q" — 20°Dya + D, D% = 87Tynk’ + Bo') ol . (36)

where we have used () = 0 to simplify the equations. Recall that Qa is not an independent variable but given by
Eq. (32). Here R is the Ricci scalar associated with the leaf metric, ¢,p. In addition, there is a dynamical equation

for the metric on the leaves,

Lingab = B((I’Z) . (37)

I Note that (,Qq) transform like (Ag, A), the electric and mag-
netic potential, under a gauge transformation I'. It would be
nice to relate this to a shift by I" in the phase of a nonrelativis-

tic wavefunction v [33-35] that is part of the quantum gravity
theory on the screen.



The evolution operator Eh acts on the tensors which are purely tangent to the leaf as [25]
»ChAab...c = q: qbb e qcc ‘ChAa/b’...c’ ) (38)

where we consider £, as an operator on H.

This system of equations is invariant under the symmetries described in Sec. ITC. We have displayed intrinsic
quantities associated with the screen on the left side. Extrinsic quantities that act like sources appear on the right
hand side. We will now describe three ways in which one might interpret this system of equations, using different
gauge choices.

A. Viscous Fluid Analogy

We begin by regarding both the spacetime M and the screen H as fixed. In this case we are merely expressing the
3D intrinsic and extrinsic curvatures of H as the evolution of 2D screen variables along H. This may nevertheless
be interesting if it throws new light on the system. In fact, the evolution equations bear some similarity to fluid
equations. We will identify a number of problems with the fluid interpretation, however.

To obtain fluid-like equations, we will set « = —1 to gauge-fix the U(1) symmetry. We do not gauge-fix the screen
parameter R. Equations (34-37) become

(L + 00" + (7 — 0"y — BU B + DO = 8aTynh? (39)
(L +09)Q0 = De(i = 6M) + Dy BM® = 87Tupnq] (40)

%R — Q,0° + D% — B0 ot = 8 Tuynk" (41)

Lingap = Bff;) . (42)

We expand the extrinsic curvature terms using Egs. (11) and (12), to obtain?

—~ 1 ~
Lo 492 — _zph) 4 §e(h)2 + o.((lZ)a.(n)ba — D, + 87T, hon® (43)
~ 1
L+ 00, = D(7) — Dyo™e — 51)69“” + 87T yn . (44)
1
_57% +Q,0% — DO = 87 T,,nk® + 601(:;)0?,?) , (45)
~ 1
Loy = 59(h)qab + ofl’;) . (46)
With the definitions
1
n.= - 8—(20 momentum density  (47)
T
1
e= —oM energy density (48)
8T
P = i(f-”» — M) pressure (49) (= 1 bulk viscosit (51)
ST ~ 167 Y
_ o 1
Qc = ch heat current (50) nE oo shear viscosity (52)
fo= —Tund external force density  (53)
q= T,pn®ht external heat source  (54)

2 The equations appear slightly simpler than in Ref. [25-27] due
to a difference in conventions. There, the evolution vector h
satisfies hq!® =1 (in our notation). This convention is not well-
defined when 8 = 0, i.e., at points where the screen changes
signature. The convention we adopt in this subsection, hok® =1,
is everywhere well-defined; this follows from the area theorem [2].



Eq. (44) resembles the Navier-Stokes equation for the momentum density
LpIl, + M, = — DoP + pDao™® + (D™ + f, ; (55)
and Eq. (43) resembles an equation governing the flux of the internal energy:

Lpe+0Me=—Po" 4 oMo 4 uaé}g)a(”)ba - D,Q%+¢q (56)

First, let us note that the bulk viscosity is positive.
This contrasts with the negative (hence unstable) bulk
viscosity of the event horizon fluid in the membrane
paradigm of Price and Thorne [36]. This is simply be-
cause we absorbed an addition term proportional to (")
into the definition of the pressure. With an analogous
definition of pressure, one would also find a positive bulk
viscosity in [36]. We do not regard this as a success, how-
ever. Rather, the fact that pressure and bulk viscosity
terms cannot be uniquely identified is a first sign that the
fluid analogy fails. We will discuss additional problems
below.

Note that Refs. [25-27] also obtain a positive bulk ve-
locity, but for a different reason: by defining the pressure
to be &, and taking (" rather than 6(™ to be the ex-
pansion rate relevant to the bulk viscosity. However, the
same tensor should define both the expansion and the
shear. Since ¢(™ appears in the shear viscosity term of
Eq. (55), we require that (™), and not ("), appear in
the bulk viscosity term. Yet, this requirement, too, ap-
pears inconsistent, since the expansion that controls the
dilution of the energy and momentum densities is ("),

These ambiguities and contradictions lead us to recog-
nize that the viscous fluid analogy has multiple, serious
shortcomings:

e There is no equation of state that would determine
the pressure % from other dynamical parameters
intrinsic to the fluid.

e There is no dynamical equation for the number den-
sity or mass density of fluid particles, analogous to
the continuity equation.

e Therefore, there is no well-defined velocity vector
field (“v®7).

e Therefore, the rate of shear and expansion cannot
be computed from the dynamical equations (via

J

(

“D,v?”). Rather, these rates are an arbitrary ex-
ternal input variable.
e The dissipation term ucf;}g)a(”)b“ in Eq. (56) corre-
sponds neither to a Newtonian, nor properly to a
non-Newtonian fluid. o—gg) is entirely independent

n . .
of aéb), so the viscous stresses are not a function of

fluid variables alone.

Some of this criticism also applies to the fluid description
of event horizons in the membrane paradigm [36, 37], as
has also been noted by Strominger and collaborators [38].

Finally, it is not clear what the interpretation of the
remaining Eqgs. (45) and (46) is, in the fluid picture.
They state that not all external input parameters are
completely independent, such as O'C(LIZ) and agz), Qap and
T,k. Alternatively we may regard Eq. (45) as a constraint
equation determining the parameter .

To conclude, we do not find the interpretation of screen
evolution as fluid dynamics to be plausible. Moreover,
the above analysis, with M and H fixed, actually ignores
a crucial degree of freedom, as we shall see next.

B. Observer-Dependence

An instructive way to think about the evolution equa-
tions is to consider only the 4D spacetime M as given.
Our task is to construct a holographic screen, H. Once
we have started, the equations tell us how to find the
(infinitesimally) next leaf.

This task is ambiguous, because each leaf is associated
with a null slice, there are many ways of picking a null
foliation of M. We can regard a < 0 as a free parameter
that determines a choice of a null foliation (for a fixed,
arbitrary choice of null vector field [ at every leaf). There
is no equation determining «, because it is a genuine
ambiguity, corresponding to the “observer-dependence”
of holographic screens.

Let us define an effective stress tensor

81 Tap = 81Tay + kako B BY + laly B BLY (57)

0
= 8T + kokp (2 + O'&%O’g}) + lalbgcg)gig) . (58)

This takes a form similar to the effective stress-energy of gravitational radiation in linearized gravity. In general no
local definition of energy can be given for gravitational degrees of freedom, but here the holographic screen provides



additional structure analogous to a preferred background. Thus, Ty, can be interpreted as incorporating stress energy
associated with gravitational radiation crossing the leaf orthogonally.?

Thus Eqgs. (34-36) become

a(Ly + 70D + Dy(—2a80% + D — aD®B) = 87Tyn®h? (59)
(Zh + H(h))Qc — D.ii + aD Y = SWTabnaqg — DaBgn)a (60)
—%R +a,0% — aD,Q% — 20° Dy + Dy D% + 8taT,pk®lb = 87Tk K (61)

Eq. (37) is trivial from this viewpoint, so we have not
listed it again.

Geometrically, we can think of the role of a and
by considering the forward evolution of the screen by an
infinitesimal “time” step dR (see Fig. 1). In order to
find the next leaf after o(R), we transport the leaf o(R)
infinitesimally along ol to a nearby surface (R+dR). In
general this surface will not be marginally trapped, but
it does define a new null slice, N(R + dR), generated by
the k-lightrays orthogonal to (R + dR). Then we find
the cut with #*) = 0 on N(R+ dR). This gives the new
leaf o(R + dR).

Eq. (61) can be regarded as a constraint equation that
allows us to short-circuit this construction. It can be
solved for 3, because the generic condition of Refs. [2, 3]
requires that

Tupk®k> >0 . (62)

Then o(R+dR) can be obtained directly, by transporting
the surface o(R) along the vector h = al + Sk. Thus,
the parameter ( tells us how far to slide up or down
N(R + dR) to get from the “wrong” surface 6(R + dR)
to get to the correct new leaf (R + dR).

The remaining Eqgs. (59) and (60) describe the evo-
lution of the vector fields k and I which are linked by
the condition k%, = —1. They provide additional struc-
ture beyond the given spacetime M, associated with the
screen H. As shown in Appendix A, the failure of k and
! to be parallel-transported into themselves along H by

J

(

h is captured by k, a, 3, and the vector field €2.:

hPVyka = Fka + Do — a2, (63)
WOVl = =kl + Doff + Q4 (64)

Note that both #) and its derivative are fully determined
by the arbitrary choice of the “length” of [ at each leaf.
Here we take the “length” of [ as input, so Eq. (59) acts as
a constraint that determines %. [Alternatively, we could
specify % and thus fix the length of [ via Eq. (59).] Finally,
Eq. (60) is a dynamical evolution equation for Q..

C. Background-Free Description

Finally, we consider an interpretation where neither M
nor H are given. Then we may regard Eqs. (34-37) as
a nonrelativistic system evolving with the time variable
R. The advantage of this viewpoint is that it makes no
reference to the spacetime that the screen is embedded
in, or even to an induced 2+1 metric on the screen. This
minimal approach may be appropriate if we regard the
screen as a (partially) pre-geometric object that arises
from an underlying quantum gravity theory in an appro-
priate regime. It may be natural for the screen to be
constructed as a first step, before reconstructing the en-
tire 4D geometry and fields. Eqs. (34-37) constrain this
construction.

In this case it is convenient to choose a gauge in which
0") = —1, so that Eqgs. (34-37) reduce to

—aik — D, [aﬁ (29” + D%log g) = 81 Tpn®h? (65)

Q. — aQ. — Do + %Dca = SWTabn“qg — Daagn)a (66)

a Q2,09 = D,Q% —29%D, log o — % + a_lDaD“a- = 87 T,pnk? (67)
Qa_b = _%Qab +ac) + g (68)

We have replaced the Lie-derivatives with dots, singe in
this v?ewpoli)nt ﬁley are s?mpfe time der%vatﬁlves. E%f]zects

3 In [39], Hayward derives a stress tensor for the gravitational ra-



such as k, [, h,n are now considered to emerge in the re-
construction of the geometry. For example, the length of
integral curves of h is related to the evolution parameter
R by (dL/dR)?> = —2af3, where positive values corre-
spond to a spacelike signature. Similarly, £ and 2 allow
us to reconstruct the null vector fields k£ and [ by inte-
gration of Egs. (63) and (64). None of these geometric
concepts are intrinsic to the above equations, but they
can be reconstructed from them.

We may regard «, 3, K, 2., and the 2D metric g, as in-
trinsic quantities of the holographic screen, but they are
highly underdetermined. It is not clear whether ‘7((1]1?1) and
T,pn® are best regarded as input (which happens to corre-
spond to the matter stress tensor and gravitational waves
in the reconstructed 4D spacetime); or rather whether
the above equations should be viewed as determining cer-
tain components of the stress tensor and the shear, given
arbitrary input for the screen quantities «, 3, K, {2.. One
parameter (most naturally «) is associated with a null
foliation of the 4D spacetime. For each leaf of the screen,
microscopic data should determine the quantum state on
the associated null slice.

IV. EXAMPLES OF HOLOGRAPHIC SCREENS

In this section, we work out a number of detailed
examples of physical interest. Several of the holo-
graphic screens we will construct are spherically sym-
metric. Therefore, we will begin by listing general results
that apply to all spherical screens, before specializing fur-
ther.

A. Implications of Spherical Symmetry

Consider a screen H embedded in a spacetime M, such
that both are invariant under spherical symmetry. In
this case we shall choose the area radius as the evolution
parameter R,

A=47R? . (69)
We shall further choose the convention that
a=-1, (70)

which can be regarded as gauge-fixing the rescaling sym-
metry of [. The metric ¢, is of the form

ab = RQSab (71)

diation in a “quasi-spherical” approximation. We do not work
in this approximation, but we not that his result takes the same
form as our definition in Eq. (58).

where s, is the metric on the unit two-sphere. Using the
above conventions of R and «, one finds

—ilogA:—z . (72)

o) — g(n) — _g(h) —
dR R

The shears and the normal one form would break spher-
ical symmetry and so must vanish,

k,lh,n
gBthm —o 0, =0, (73)

Since h®h, = 23, the induced 3-metric on H is
ds?; = 2BdR* + R*dQ? ; (74)

Again, this is only well-defined piecewise on portions with
definite sign of 8, and we will not consider this metric
further.

The only nontrivial intrinsic quantities associated with
screen evolution are the slope, 8, and the acceleration,
k. They are determined entirely by certain stress tensor
components and by R, since Egs. (34) and (36) reduce to

k= 4nR Typnh® (75)
(8TR?) ™! — T,klb
p= Topkokb ' (76)

We have used R = 2/R?. The former equation is some-
what reminiscent of a first law, if we write it as

= d(A/4)
21 dR

= 7( d*9\/q Tupynh® . (77)

The equation for 8 can also be written as a constraint
linking the radius to a stress tensor component:

1 a
W = Tabn kb . (78)

B. Expanding Universe

Let M be a flat Friedmann-Robertson-Walker universe
with fixed equation of state p = wp, —1 < w < 1; see
Fig. 2. The stress tensor is

Tap = ptaty + p(gab + tats) - (79)
The metric is
ds® = —dt* + a*(t) (dr® + r*dQ?) (80)
with
a(t) =t (81)
and
=3 (2)

To generate a null foliation of M, we consider the
past light-cone of each point on the worldline » = 0; see
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FIG. 2. Penrose diagrams for a spatially flat FRW universe dominated by matter (left) and radiation (middle). The right
diagram is an approximation to de Sitter spacetime; it contains a fluid with positive energy and equation of state close to that
of vacuum energy. To construct a past holographic screen H, we consider the past light-cones (dotted lines) of a comoving
observer at r = 0 (left edge). The surfaces of maximum area on each of these light cones (black dots) are the leaves of the
screen H (blue curve). Note that H approaches the event horizon (red line) at late times, in the near-de Sitter case. We find
that the surface gravity x approaches that of de Sitter space in the limit.

Fig. 6). On each cone, there is a cross-section of maxi-
mal area (since A — 0 as the big bang is approached).
This surface has vanishing expansion, 6(*) = 0, by con-
struction. The relevant spheres lie at (7, t) subject to the
condition [1, 15]

ra(t) — 1= 0. (83)

The proper area radius is R = ra(t). The future-directed
outgoing congruence from any sphere in this geometry is
obviously expanding, so this is a past holographic screen.
Therefore [2], we have o > 0.

In order for the screen to stay centered on the comoving
worldline » = 0, we must take a to be independent of
angle, for example

a=1. (84)

We will make a different, angle-dependent choice in
Sec. IVE below, corresponding to the construction
of a nonspherical screen in the same spacetime (see
Sec. III B).

The null normals &, [ satisfying k%, = —1, () = 2/R

are
(&) () e
) ()

The vectors normal and tangent to the screen are n =
—Il+ Bk and h = [ + Bk with

g L 113w
1T T s 1w

(87)

This implies, for example, that the screen is timelike in
a matter-dominated universe (¢ = 2/3, w =0, 8 = 1/6)

FIG. 3. Penrose diagram for collapsing dust. The dark-
shaded region is the dense region, » < r,. The light shaded
region contains arbitrarily dilute matter to satisfy the generic
condition. We construct a holographic screen H using the
future light-cones (dotted lines) of an observer at » = 0. Note
that H changes signature and approaches the event horizon
(red line) from the inside. We find that k approaches the
Schwarzschild surface gravity there.

and null for a radiation-dominated universe (¢ = 1/2,
w = 1/3, B = 0). For stiffer fluids the screen will be
spacelike.

The screen acceleration is




For example, K = —2/R for the matter dominated uni-
verse. Notably, in the limit as w — —1 (¢ — 00), this
approaches the surface gravity of the de Sitter Killing
horizon: x — 1/R.

C. Collapsing Star

One can model a collapsing star by a finite, spheri-
cal, homogeneous dust ball. This is described by the
Oppenheimer-Snyder solution [40]; see Fig. 3. It can
be constructed as a portion r < r, of a time-reversed
Friedmann-Robertson-Walker cosmology, glued to a por-
tion of the vacuum Schwarzschild solution. However, in
order to satisfy the generic condition, Eq. (62), we will
study the more general collapse of spherically symmet-
ric dust with density p(r). We can take p(r) to become
arbitrarily small outside some characteristic radius r,.

The holographic screens in such collapse scenarios were
computed by Booth et al. in Ref. [31]. Here we reproduce
the relevant analysis and compute the screen quantities
8 and K.

The metric describing the collapse is

R'(1,7)?

2 .2 ; 2 20102 | w242

As” = —~dr? g A R (467 + sin® 646?)
(90)

where 7 is the proper time along the dust particles, and
m(r) = 47r/ dr'r?p(r') . (91)
0

The stress tensor is

rp(r)

Tob = w5 ——
"7 R ()R (r,7)

(d7)ao(dT)yp (92)

The future holographic screen satisfies [31]

R(7,7) =2m(r). (93)
The null normals such that k%I, = —1 and §) = —2/R
are
2m(r) (0 \* 1-2U) /9N
ka1 ) = (2 4
T <87’> * R/(r,r) \or /(94)

1 1 o\ 1 o\
e - — [ — — ] ,(95)
2 /1 _ 2m(r) or 2R!(t,r) \ Or
where 2 means that we impose the constraint Eq. (93)
while evaluating the right hand side. The slope (3, and
the surface gravity x are

~ 1 R -m(r)

b= 2m/(r) 1 —2m(r)/r’ (96)
~ 1 m/(r) [4B%(1 —2m(r)/r)? -1

2 g T A3 sy )
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As an example, we consider the ‘Fermi-Dirac distribu-
tion’ for p(r)
M 1

p\r) = - —rx
( ) _87Tq3L13 <_6T*/q) exp(T) +1

; (98)

where the overall normalization is such that M is the
ADM mass. This reduces to the standard Oppenheimer-
Synder solution in the limit ¢ — 0. In the following, we
fix r., =1 and ¢ = 1/20.

The profile of the mass is shown in Fig. 4. It shows
that the most of the mass is in r < r,. We call this region
dense region.

Fig. 4 also shows the plots of 1/8 and 4m(r)k. Note
that § is negative for small » and then becomes posi-
tive. This implies a change in the signature of the screen.
From the plot of 4m(r)k, we learn that the surface grav-
ity quickly saturates to the Schwarzschild value in the
near-vacuum region:

. (99)
K 4M .

D. Charged black holes

Next, we consider the Vaidya-Bonnor solution [41, 42],
which describes the formation of a black hole by an ar-
bitrary sequence of charged spherical null shells:

ds? = —f dv® + 2dv dr + r* dQ? (100)
where
2m(v) = e(v)
=1-"——— 4 101
1(r,v) S (101)

and m(v) > |e(v)| are integrable differentiable functions
with
0

m=—

o (102)

>0, m(co) <oo.

An example is shown in Fig. 5. The stress tensor is

1 .
Tup = —=——F(r, ) (dv)o(dv)y + TE

1
8rr (103)

where

1 e2(v
T,EbEM) = T a_ ( ) (gab - 27'2sab)

104
8t rd (104)

is the stress tensor of the point charge of magnitude e(v),
and s is the metric on the unit two-sphere.

The holographic screen, H, consists of marginally
trapped surfaces, with k£ the future and outward directed
null vector. The condition §%%) = 0 implies r = R and
f(R,v) =0, and thus

R =m(v)+ v/m2(v) — e2(v) . (105)



m(r)/M
1.0}

1/8
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4m(r)k

1.0 1F

0.5

FIG. 4. Collapsing dust cloud: plots of the radial mass profile (left), the slope parameter 5 (middle), the surface gravity k
(right), for r. = 1, ¢ = 1/20, and M = 1/100. The region r < 7 is the dense region. The change in the sign of 3 indicates the
change in of signature of H from timelike to spacelike. The surface gravity saturates to 1/4M in the dilute region.

i

FIG. 5. The Penrose diagram for Vaidya solution. We show
the uncharged case, e(v) = 0. The mass function is m(v) = 0
for v < vg and m(v) > 0 for v > vg. The green dashed lines
are the ingoing null shells. The red line is the event horizon.
The blue line is the future holographic screen constructed
from future light-cones centered at r = 0.

The null vectors normal to the leaves are found to be
g a
ov) '’
AN
or)

Their linear combinations tangent and normal to H, h =
—l+ Bk, n =1+ Bk are determined by

k,a

(106)

la

(107)

_dv _ R —m(v)
B= a8~ Rin(o) = e()ef0) - (108)
The acceleration is
L Remw?
= R (Ri(0) — e()e)) (109)
the surface gravity, £/, is
K= m]é;’) - SR—(;’), (110)

Note that this result has the same form as the surface
gravity of a Reissner-Nordstrom black hole with mass m
and charge e. Moreover, let us define an electric potential
in the usual way,

(111)

Then Eq. (77) takes a form similar to the first law of
thermodynamics for a Reissner-Nordstrom black hole:

KA dm
8t dR  dR

de

— 112
& (112)
where we have used Eq. (108) and the chain rule, f=

V'(R)f = f'.

E. Nonspherical Screen in Cosmology

We again consider the expanding universe of Sec. IVB
and specialize to the matter dominated universe: p = 0.
The metric is

ds* = a*(n) (fdn2 + da?® + dy? + sz) , (113)
with
a(n) =1*/9 . (114)
We pick an observer whose worldline is given by
z=wn, (115)

for —1 < v < 1. To construct the past screen, we shoot
past light cones from each point on this worldline, and
find the cross-section of maximal area on each of these
light cones; see Fig. 6. The collection of all these cross-
section, that is the past screen, satisfies the condition

2

2
<z—§n> +x2+y2—%:0. (116)
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FIG. 6. Two past holographic screens in the same expanding universe, associated with two different observers (thick black
worldlines). Left: spherically symmetric screen constructed from a comoving observer at » = 0 (see Sec. IV B). Right: screen
constructed from the past light-cones of a non-comoving observer (Sec. IV E).

We choose to work in the coordinate system

z= gvn—i—rcosﬂ, (117)
x=rsinfcos¢, (118)
y=rsinfsing, (119)
n=n. (120)

In these coordiante system, Eq. (116) simplifies to
r— g =0. (121)

The area-radius of the leaf of the screen is
?

R=ra(n) = 15 (122)

We pick an orthogonal basis for the one-forms tangent tn
the leaf:

o = 3 i;“‘)(dn)a - (dB)a (123)
eP) = (dg)a, (124)

where qabé,(f) =& for i = {1,2}, and éM . ¢ = 0.
Similarly, we pick an orthogonal basis for vectors normal
to the leaf:

o« _ (0 a_3vcos0 2 a+3vsin0 o (125)
X =\ oy T2 or n  \of

a — a ¢
X2 =\ o) -

where q“bxl(’i) = 0 for i = {1,2}, and x(1) - x2) = O.
The null vectors normal to the leaf, normalized such that

(126)

k*l, = —1 and ) = 2/R, are

1
a _ a _ .a 1
k a(n) (X(U X(2)> ) (127)
1
1= —— (x¢ a). 12
2a(n) (X(1) +X(2)> (128)

The tangent and normal vectors to the screen are h® =
al® + Bk® and n® = —al® + Bk®, where

a=1+wvcosh, (129)
8= é (1 —3vcosh) . (130)
The normal one-form and the acceleration are
Q, =0, (131)
G, — 2 53in9 FON (132)
k= —%(1—}-31)0059) . (133)

One can easily combine this construction with that of
Sec. IV B. For example, we can use the worldline r = 0 up
to some conformal time 7, to construct a portion of the
screen which is centered at r = 0. We can then consider
continuing this worldline to that of a moving observer,
by substituting 7 — 7 — 1, in Eq. (116) and below. This
corresponds to choosing « as in Eq. (129), instead of
a =1, for n > n,. We thus obtain a nonspherical screen
(above 7,), corresponding to the fact that the observer’s
worldline (and the associated null foliation) violates the
spherical symmetry, above n,. This illustrates how the
observer-dependence of H is captured by a choice of «,
as advertised in Sec. III B.
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Appendix A: Parallel Transport of Null Vectors

Here we present a derivation of Eq. (63); Eq. (64) can
be derived similarly. We start with the ansatz

h'V ko = Aky + Bly + Cy (A1)

where C, is the projection of h®Vk, onto the leaf. The
constant A is

A=—1""Vik, = &, (A2)

J

14

where we have used Eq. (16). The constant B is

B = —k*h*Vyk, = 0. (A3)

To determine C,, we consider an arbitrary vector field,
¢*, tangent to the leaf, and contract it to our ansatz

$"Cl = ¢*h"Vik, (A4)
= —kaLpnd® + ¢" (Do — afy,) (A5)
where we have used Eq. (15). A consequence of the nor-

malization Eq. (5) is that for every vector field ¢* tangent
to the leaf, £,¢ is also tangent to the leaf [25]

Appendix B: Cross-focusing Equations

Here we derive the cross-focusing equations [22, 29]

1

1
1°V,00F) = —ghgk) _ 573 +0,0% — DO — ZQ°Dya+ = DDy + 87Tk,
6]

1 2 1
£V, 00 + ko = —gWgk) _ 573 +Q.0%+ D%+ 2Q%D, 8 + =DD, 8 + 87Tk,

which will be useful in the derivation of the screen equa-
tions in Appendix C. Note that these equations (unlike
the screen equations) are highly sensitive to how we ex-
tend the null vectors, £* and [?, into a neighborhood of
the holographic screen. We do this by demanding

1’V =0, (B3)
EVpk® = kk®, (B4)
1%, = —1. (B5)

With these extension, Eq. (63) reduces to

1
I°Vyk, = aDaa - Q,. (B6)

J

19V, 0% =19V, (¢**Vik.) ,

08" = 0" = q4Lad" = Lo (A6)
This with the fact that ¢* is arbitrary implies
Cy, = Dya — af)y, . (A7)
Eq. (A1) thus reduces to the desired result
hVyka = fika + Daat — €, . (A8)
: (B1)
(B2)

B B

(

We decompose V,l, and V kp, as

1
Valo = BY + klaly — 1,02 — 1,Q, — GlaDoB (B7)

1
Vaky = BY — wloky + koQp + keQq — —ko Dy (B8)
«

Now using 0%) = ¢*V .k, we get

(B9)
= ¢"V, (1°Vake) — ¢* (Vol®) (Vake) + (1°Vag™) (Voke) + Raveal®q"k®, (B10)
= 0,0 — D, — BYB® — 200D 0 + LDUDya + Rupeal®q k. (B11)

ab (k) o a
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With the help of the Gauss-Codazzi equation for codimension-2 spatial surfaces [43],

1 1
FRA 006" — BY B = 5 Ravcaq"“d"", (B12)
we get
1 2 1 1
19V 0% = —gWgk) _ 3R+ Q0 = D0 — ~0*Doa + —D"Doar + 5Rabqab. (B13)

To get Eq. (B1), we use the Einstein equations
1 1
5Rabqab = (Rab - 2Rgab> k1% = 8T, k10 . (B14)

Eq. (B2) can be derived in a similar fashion.

Appendix C: Derivation of Screen Equations

Here we present a derivation of the nontrivial screen equations, (34)-(36). Eq. (36) was derived for the dynamical
horizons in Refs. [21, 23]. The derivation made use of the Gauss Codazzi constraint equations which relate the
extrinsic curvature of a hypersurface with the Ricci tensor of the background spacetime. This can only be done for
a hypersurface with definite signature. Hence, this method does not obviously apply to a holographic screen. In
Sec. (C1), we will present a derivation of Eq. (36) in a way that makes it clear that the signature of H (and indeed,
anything but the 2D leaf) is irrelevant. Eq. (34) was derived in Ref. [26]; in Sec. (C2) , we present a simplified
derivation. In Sec. (C3), we derive Eq. (35), following Ref. [25].

1. T,nk® Equation

We begin by deriving Eq. (36). On the holographic screen, hoV,0%) = 0. Expanding this equation, we get
0=al*V, 0" + pEev, 0% (C1)

Replacing the first term on the right hand side with the cross-focusing Eq. (B1), and the second term with Raychaud-
huri’s equation,

1 .
KV0® = k6% — 290 — oot — SaTuk k", (C2)

we find
—%R +a02,0% — aD Q" — 20°D,a + DyD% = 87Tuyn k" + Boly) ol . (C3)

2. T.yn®h? Equation

Next, we derive Eq. (34). By Eq. (3),
aLpfdV = a?1°V 00 + ok v,00 . (C4)

We replace the second term on the right hand side with the cross-focusing Eq. (B2) and the first term with Raychaud-
huri’s equation

1°V,00) = —%9“)2 — oot — 8nTulol. (C5)
As a result, we get
a(Ly + )0V = —a?BY) B — %aﬂR + aBQ*Qy + aBDLQ" + 209D, 8 + aD*D, 3 + 8maTyyn®ll . (C6)
We eliminate R from this equation by using Eq. (C3)
a(Ly + )0V = D,(2089° — BD% + aDB) + BYY B + 8aTynhl . (C7)

Rearranging the terms and using Eq. (32) lead to Eq. (34).
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3. Tupn® qbc Equations

Here we closely follow the derivation by Gourgoulhon [25]. We start with the identity

Raon®q®. = q.> (VoVy, — VuV4) n®. (C8)

Using n® = —al® 4+ k%, and Eqgs. (B7)-(B8), we get

Vany = BW — klohy + haQy + hpQq +
The first term on the right hand side of Eq. (C8) becomes

0" VaVen® = g hV o+ Q*BY + 60, — 6V Doa+ ¢ Vo BEY) — B <

glal)bﬁ — gk’anOz —yVea+ k) Va0 . (09)

where we have repeatedly use Eqs. (B3)-(B8). Similarly, the second term becomes

Combining these two results, we get

1 1
Rapnq’, = ¢ h*VaQy + Q*BJ) + 0™ Q, — Dofi + aDO" + g Vo B — BLY <D“6 + aD“a) :

By making use of

DaBgn)a _ qcbvaBl(,n)a . Bgn)b (

and

Eq. (C12) reduces to

Finally we use Einstein’s equation to obtain Eq. (35),

%Daﬁ + 1D“a> — D (I°V a0 — k*Vof) |
(6%
(C10)
4. °VyVan® = Do(i) — 0O Do — aD Y — D, (19V4a0 — k*V, ) . (C11)
C12
3 (C12)
Lps+ 1D (C13)
= —Dya

B b o b )
LnQ = ¢,"hV oy + QB | (C14)
Rayn®q®, = LpQe + 0MQ, — D i + aD.6Y + D,BM™* . (C15)
(Lh + 0", — Do+ aDOY = 87T,nq" — D, B . (C16)
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