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Abstract

Certain models with rank-3 tensor degrees of freedom have been shown by Gurau and
collaborators to possess a novel large N limit, where g2N3 is held fixed. In this limit the
perturbative expansion in the quartic coupling constant, g, is dominated by a special class of
“melon” diagrams. We study “uncolored” models of this type, which contain a single copy
of real rank-3 tensor. Its three indices are distinguishable; therefore, the models possess
O(N)3 symmetry with the tensor field transforming in the tri-fundamental representation.
Such uncolored models also possess the large N limit dominated by the melon diagrams.
The quantum mechanics of a real anti-commuting tensor therefore has a similar large N
limit to the model recently introduced by Witten as an implementation of the Sachdev-Ye-
Kitaev (SYK) model which does not require disorder. Gauging the O(N)3 symmetry in
our quantum mechanical model removes the non-singlet states; therefore, one can search
for its well-defined gravity dual. We point out, however, that the model possesses a vast
number of gauge-invariant operators involving higher powers of the tensor field, suggesting
that the complete gravity dual will be intricate. We also discuss the quantum mechanics of
a complex 3-index anti-commuting tensor, which has U(N)2 × O(N) symmetry and argue
that it is equivalent in the large N limit to a version of SYK model with complex fermions.
Finally, we discuss similar models of a commuting tensor in dimension d. While the quartic
interaction is not positive definite, we construct the large N Schwinger-Dyson equation for
the two-point function and show that its solution is consistent with conformal invariance.
We carry out a perturbative check of this result using the 4− ε expansion.



1 Introduction

An important tool in theoretical physics is the study of certain models in the limit where

they have a large number of degrees of freedom. Several different broad classes of such “large

N limits” have been explored. Perhaps the most tractable large N limit applies to theories

where the degrees of freedom transform as N -component vectors under a symmetry group. A

well-known example is the O(N) symmetric theory of N scalar fields φa in d dimensions with

interaction g(φaφa)2 (for reviews see [1,2]). It is exactly solvable in the large N limit where

gN is held fixed, since summation over the necessary class of bubble diagrams is not hard to

evaluate. Another famous class of examples are models of interacting N ×N matrix fields,

so that the number of degrees of freedom scales as N2; here one can introduce single-trace

interactions like g trφ4. A significant simplification occurs in the ’t Hooft large N limit where

gN is held fixed: the perturbative expansion is dominated by the planar diagrams [3]. While

such planar matrix theories are exactly solvable in some special low-dimensional cases [4],

the problem does not appear to be solvable in general.

In view of these classic results, it is natural to study theories with rank-m tensor degrees

of freedom φa1...am , where each index takes N values so that the net number of degrees of

freedom scales as Nm [5–7]. Since the complexity of taking the large N limit increases from

m = 1 to m = 2, one might expect that the tensor models with m > 2 are much more

difficult than the matrix models. However, Gurau and collaborators [8–13] have discovered

that, by adjusting the interactions appropriately, it is possible to find models with m > 2

where a large N limit is solvable. The perturbative expansion is then dominated by a special

class of “melon diagrams” (for some examples with m = 3 see figures 1).

Figure 1: Some melonic contributions to the free energy.

Gurau’s original example [8] was a so-called colored tensor model where complex fermionic

tensors ψa1...amA carry an additional label A which takes m + 1 possible values 0, 1, . . .m. In

the smallest non-trivial case m = 3 this model has the interaction

gψabc0 ψade1 ψfbe2 ψfdc3 + c.c. (1.1)

The label A may be thought of as corresponding to the 4 different vertices of a tetrahedron.
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Each pair of fields has one pair of indices in common, just as every pair of vertices of a

tetrahedron is connected by one edge. The interaction (1.1) has U(N)6 symmetry, where

each U(N) corresponds to one of the edges of the tetrahedron. Including the quadratic piece

ψabcA ψ̄abcA and integrating over the fermionic tensors with interaction (1.1) generates a sum-

mation over a particular class of 3-dimensional intrinsic geometries made out of tetrahedra.

Apart from this interpretation, this model is of much interest because it exhibits a novel type

of large N limit, where the coupling constant is scaled so that g2N3 is held constant, and

the theory has N3 degrees of freedom.1 Thus, it is interesting to try generalizing Gurau’s

construction2 from the d = 0 tensor integral case to d-dimensional quantum theories. An

important step in this direction was recently made by Witten [19], who studied a quantum

mechanical model of colored anti-commuting tensors and observed that its large N limit is

similar to that in the Sachdev-Ye-Kitaev (SYK) model [20–23].

The quantum mechanical model introduced by Witten uses, in the m = 3 case, real

fermionic tensors ψabcA and possesses O(N)6 symmetry. The action of this model is

SGurau−Witten =

∫
dt
( i

2
ψabcA ∂tψ

abc
A + gψabc0 ψade1 ψfbe2 ψfdc3

)
, (1.2)

It was shown [19, 24] that, in the large N limit of this model only the “melonic” Feynman

graphs survive, just as in the SYK model. Very importantly, gauging the O(N)6 symmetry

gets rid of the non-singlet states. This removes a crucial conceptual obstacle in the search

for the gravity dual of this model, in the spirit of the AdS/CFT correspondence for gauge

theories [25–27].

In work subsequent to [8] it was shown that the “coloring” is not necessary for obtaining

a large N limit where the melon graphs dominate, and theories of just one complex bosonic

tensor were shown to have this property [13, 28–30]. More recently, a model of a single

real rank-3 tensor with O(N)3 symmetry was studied by Carrozza and Tanasa and shown

to possess a melonic large N limit [31]. We will study such a theory of one real rank-m

fermionic tensor with interaction ψm+1. For m = 3 the interaction assumes explicit form

Vuncolored =
1

4
gψa1b1c1ψa1b2c2ψa2b1c2ψa2b2c1 (1.3)

1The N3 scaling of the degrees of freedom is also found for 6-dimensional CFTs on N coincident M5-
branes [14, 15]. An interpretation of this scaling in terms of M2-branes with three holes attached to three
different M5-branes, thus giving rise to tri-fundamental matter, was proposed in section 5.2 of [16]. One
may wonder if there is a precise connection between theories on M5-branes and tensor models.

2The random tensor models also have connections with the “holographic space-time” approach to quantum
gravity [17,18].
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The three indices are distinguishable, and the theory has O(N)3 symmetry under

ψabc →Maa′

1 M bb′

2 M cc′

3 ψa
′b′c′ , M1,M2,M3 ∈ O(N) . (1.4)

Thus, the real field ψabc transforms in the tri-fundamental representation of O(N)3. Such

an uncolored fermionic model does not work in d = 0 because the invariant quadratic term

vanishes, ψabcψabc = 0, but in d = 1 there is a non-trivial model with the kinetic term
i
2
ψabc∂tψ

abc. We will also consider analogous bosonic models where the anti-commuting field

in (1.3) is replaced by a commuting one, φabc. Then in d = 0 we may add the quadratic

term φabcφabc, while in d > 0 the standard kinetic term 1
2
∂µφ

abc∂µφabc. While the bosonic

potential is generally not positive definite,3 the model may still be studied in perturbation

theory. One may hope that, as in the matrix models, the restriction to leading large N limit

can formally stabilize the theory.

In section 2 we study the index structure of the expansion of the path integral in g and

demonstrate that the large N limit is dominated by the melon diagrams. 4 The argument,

which applies to both the uncolored fermionic and bosonic models, contains a new ingredient

compared to other models. In uncolored models with complex tensors, which were studied

in [13], each index loop necessarily passed through an even number of vertices, but in models

with real tensors a loop can also pass through an odd number of vertices. However, the

diagrams dominant in the large N limit do not contain any index loops that pass through 3

vertices.

In section 3 we show that the uncolored fermionic theory with interaction (1.3) is equiv-

alent to the SYK model in the large N limit. We comment on the spectrum of operators

in the gauged tensor models, pointing out that it appears to be vastly bigger than the “sin-

gle Regge trajectory” which has been studied in the SYK model so far [32–35]. In section

3.1 we write down a U(N)2 ×O(N) symmetric quantum mechanical model with a complex

fermionic 3-tensor. We study the large N limit of this model and derive the scaling dimen-

sions of two-particle operators. We argue that this model is related in the large N limit to

the generalization of SYK model which contains complex fermions [36, 37]. In section 4 we

study the large N limit of the uncolored bosonic model with O(N)3 symmetry. We derive the

Schwinger-Dyson equation for the two-point function and obtain its solution which is consis-

tent with conformal invariance. It gives scaling dimension ∆φ = d
4

+O(1/N). We also derive

3We thank E. Witten for pointing this out to us.
4We constructed the argument before the existence of [31] was pointed out to us, so it may provide an

independent perspective on the O(N)3 theories.
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the Schwinger-Dyson equation for the four-point function and find the scaling dimensions of

two-particle operators. In section 4 we also mention models with only one O(N) symmetry

group and matter in the fully symmetric and traceless or anti-symmetric representations. In

these cases we have checked the melonic dominance at large N up to order g7, but a general

proof seems harder to construct. In section 4.1 we check this result by a perturbative cal-

culation in 4− ε dimensions at large N . In section 5 we discuss various possible extensions

of our results, including supersymmetric models with quartic superpotentials for 3-tensor

superfields.

2 Melonic Dominance in the O(N)3 Symmetric Theo-

ries

The arguments in this section, which are analogous to those in [31], apply to the uncolored

models with O(N)3 symmetry, both in the fermionic and bosonic cases and for any d. We

will ignore the coordinate dependence and just focus on the index structure.

a
b
c

a
b
c

Figure 2: The resolved propagator 〈φabcφa′b′c′〉 = δaa
′
δbb

′
δcc

′
.

The propagator of the φabc field has the index structure depicted in figure 2. The three

colored wires (also called “strands” in the earlier literature) represent propagation of the

three indices of the φabc field. In spite of this coloring, the model is “uncolored” in the

standard terminology, since it contains only one tensor field. The vertex has the index

structure depicted in the figure 3. There are three equivalent ways to draw the vertex; for

concreteness we will use the first way. ”Forgetting” the middle lines we obtain the standard

matrix model vertex as in figure 4.

Figure 3: Three equivalent ways to represent the resolved vertex.

Let us consider the vacuum Feynman diagrams. Examples of melonic and non-melonic

diagrams with their resolved representations and fat (double-line) subgraphs are depicted in
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Figure 4: The standard matrix model vertex obtained after “forgetting” the middle lines.

figures 5 and 6.

Figure 5: A melonic second-order diagram and all its fat subgraphs.

Figure 6: A non-melonic third-order diagram and all its fat subgraphs.

Each resolved Feynman diagram consists of loops of three different colors and is propor-

tional to N ftotal , where ftotal is the total number of index loops. Suppose we “forget” all

wires of some particular color in our diagram, as in the pictures 5 and 6. Then we get a

double-line fat graph (ribbon graph) of the kind one finds in matrix models. One can count

the number of all index loops f in this fat graph using the Euler characteristic χ

f = χ+ e− v , (2.1)

where e is the number of edges and v is the number of vertices. In our theory we obviously

have e = 2v, therefore f = χ + v. We can forget red, blue or green wires, and in each case

we get a fat graph made of the remaining two colors. If we forget, say, all red wires, then

using the formula (2.1) we find fbg = χbg + v, where fbg = fb + fg is the number of blue and

green loops and χbg is the Euler characteristic of this blue-green fat graph. Analogously we

get frg = χrg + v and fbr = χbr + v. Adding up all these formulas we find

fbg + frg + fbr = 2(fb + fg + fr) = χbg + χbr + χrg + 3v . (2.2)
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Thus, the total number of loops is

ftotal = fb + fg + fr =
3v

2
+ 3− gbg − gbr − grg , (2.3)

where g = 1− χ/2 is the genus of a graph. Because g > 0 we obtain

ftotal 6 3 +
3v

2
. (2.4)

Now the goal is to show that the equality ftotal = 3 + 3v/2 is satisfied only for the melonic

diagrams. We will call the graphs which satisfy ftotal = 3 + 3v/2 the maximal graphs. Thus

we should argue that maximal graphs are necessarily melonic. We note that, due to (2.3),

each double-line fat subgraph of a maximal graph has genus zero.

Now let us classify all loops in our graph according to how many vertices they pass

through (a loop can pass the same vertex twice). Let us denote by Fs > 0 the number of

loops, which pass through s vertices. For a maximal graph

ftotal = F2 + F3 + F4 + F5 + . . . = 3 +
3v

2
, (2.5)

where we set F1 = 0 because we assume that there are no tadpole diagrams. Since each

vertex must be passed 6 times, we also get

2F2 + 3F3 + 4F4 + 5F5 + · · · = 6v . (2.6)

Combining these two equations we find

2F2 + F3 = 12 + F5 + 2F6 + . . . . (2.7)

Now our goal is to show that F2 > 0 using this formula (in fact, F2 > 6, but all we will need

is that it is non-vanishing).

Let us first argue that a maximal graph must have F3 = 0. To have F3 > 0 we need a

closed index loop passing through 3 vertices. Without a loss of generality we can assume

that this loop is formed by the middle lines in each vertex (blue lines). The only possibility

with a closed loop of an internal (blue) index, which passes through three vertices, is shown

in fig. 7 a). After ”forgetting” the color of this loop we get a fat graph in fig. 7 b), which is

non-planar due a twisted propagator. So, a graph with F3 > 0 cannot be maximal. Thus,

setting F3 = 0 in (2.7), we deduce that a maximal graph should have F2 > 0.
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Figure 7: a) Local part of a graph with a middle index loop passing through 3 vertices. b)
The same figure where the middle index has been “forgotten.”

Finally, we need to show that the graphs with F2 > 0 are melonic. To do this we will

follow Proposition 3 in [12]. Without a loss of generality we assume that the loop passing

through 2 vertices is formed by the middle lines in each vertex (blue lines). The only such

possibility is shown in fig. 8 a). After ”forgetting” the color of this loop we get a fat graph

in fig. 8 b).

v1 v2 v1 v2

Figure 8: a) Local part of a graph with a middle index loop passing through two vertices v1
and v2. b) The same figure where the middle index has been “forgotten.”

Now we uncolor the lines in our fat graph and cut and sew two edges as in figure 9. We

cut two edges but did not change the number of loops; therefore, the Euler characteristic of

the new graph is χ = 4. This is possible only if we separated our original graph into two

genus zero parts. Therefore, our graph is two-particle reducible for the internal and external

couples of lines. Thus, the whole unresolved graph looks like figure 10. Then, if graphs G′

and G′′ are empty we get a second-order melon graph as in figure 5. If they are not empty

one can argue (see [12]) that they are also maximal graphs. So, we can recursively apply the

same above argument to them, implying that the complete diagram is melonic.

v1 v2 v1 v2

Figure 9: Cutting and sewing lines.
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G′

G′′
v1 v2

Figure 10: General structure of the maximal graph.

3 Uncolored Quantum Mechanics and the SYK Model

Using the interaction (1.3) we will now consider an “uncolored” quantum mechanical model

with real anti-commuting variables ψabc(t) and the action

S =

∫
dt
( i

2
ψabc∂tψ

abc +
1

4
gψa1b1c1ψa1b2c2ψa2b1c2ψa2b2c1

)
. (3.1)

It has 1/4 of the degrees of freedom of the colored Gurau-Witten model (1.2). We will argue

that the uncolored model (3.1) is equivalent to the SYK model in the large N limit.

We recall that ψabc are the N3 anticommuting fields and the indices, each of which runs

from 1 to N , are treated as distinguishable. The Fermi statistics implies

ψa1b1c1ψa1b2c2ψa2b1c2ψa2b2c1 = −ψa1b2c2ψa1b1c1ψa2b1c2ψa2b2c1 . (3.2)

After relabeling b1 ↔ c2 and b2 ↔ c1 we get the relation

ψa1b1c1ψa1b2c2ψa2b1c2ψa2b2c1 = −ψa1c1b1ψa1c2b2ψa2c2b1ψa2c1b2 . (3.3)

This demonstrates the vanishing of the interaction term in the O(N) symmetric theory with

a fully symmetric or fully anti-symmetric fermionic tensor. Fortunately, in the theory with

general 3-index fermionic tensors the interaction is non-trivial.

Let us return, therefore, to the theory (3.1) with O(N)3 symmetry, where the three

indices are distinguishable. The symmetry may be gauged by the replacement

∂tψ
abc → (Dtψ)abc = ∂tψ

abc + Aaa
′

1 ψa
′bc + Abb

′

2 ψ
ab′c + Acc

′

3 ψabc
′
, (3.4)

where Ai is the gauge field corresponding to the i-th O(N) group. In d = 1 the gauge fields

are non-dynamical, and their only effect is to restrict the operators to be gauge singlets.

There is a sequence of such operators of the form

On
2 = ψabc(Dn

t ψ)abc , (3.5)
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where n is odd. This set of operators is analogous to the “single Regge trajectory” [32,33,35]

found in the Sachdev-Ye-Kitaev (SYK) model [20–23].

b2

a1

b1 a4

b4a2
c3

c1
b2

b3
a3

c4

c2a1 b1 a2

c1

c2

O4 O6 O8

a1 b1 a2 b3

b2
a3

c3

c1

c2

Figure 11: Graphical representation of different operators

We should note, however, that theory (3.1) contains an abundance of additional “single-

trace” O(N)3 symmetric operators. A large class of them contains an even number of ψ

fields without derivatives and with all indices contracted. One of such ψ4 operators is the

interaction term in the action, which is related by the equation of motion to ψabc(Dtψ)abc.

Another type of ψ4 operator is

O4 = ψa1b1c1ψa1b1c2ψa2b2c1ψa2b2c2 , (3.6)

and there are similar operators where the second and third or the first and third indices have

pairwise contractions (however, in the theory where the O(N)3 symmetry is gauged such

operators vanish because they are squares of the gauge symmetry generators). Moving on

to the higher operators we can try writing down the following ψ6 operator:

O6 = ψa1b1c1ψa1b2c2ψa2b1c3ψa2b3c1ψa3b2c3ψa3b3c2 . (3.7)

Due to the fermi statistics this operator actually vanishes, but an operator with ψ fields

replaced by scalars φ is present in the bosonic model that we study in section 4. The

following ψ8 operator does not vanish in the fermionic model:

O8 = ψa1b1c1ψa1b2c2ψa2b3c3ψa2b4c4ψa3b1c3ψa3b3c1ψa4b2c4ψa4b4c2 . (3.8)

All such operators can be represented graphically with ψ-fields corresponding to vertices and

index contractions to edges (see figure 11). These representations are similar to the Feynman

diagrams in φ3 theory. A feature of the latter two operators is that each pair of ψ-fields has

either one or no indices in common. We expect to find an infinite class of operators of this

type – they should correspond to some number of tetrahedra glued together. Since there
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is no parametrically large dimension gap in the set of operator dimensions, the holographic

dual of this theory should be highly curved.

Let us study some of the diagrammatics of the uncolored quantum mechanics model

(3.1). We will study the ungauged model; the effect of the gauging may be imposed later by

restricting to the gauge invariant operators. The bare propagator is

〈T (ψabc(t)ψa
′b′c′(0))〉0 = δaa

′
δbb

′
δcc

′
G0(t) = δaa

′
δbb

′
δcc

′ 1

2
sgn(t) . (3.9)

The full propagator in the large N limit receives corrections from the melonic diagrams

represented in figure 12. Ressumation of all melonic diagrams leads to the Schwinger-Dyson

. . . . . .

Figure 12: Diagrams contributing to the two point function in the leading large N order.
The line with the gray circle represents the full two point function. Each simple line is the
bare propagator.

equation for the two-point function

G(t1 − t2) = G0(t1 − t2) + g2N3

∫
dtdt′G0(t1 − t)G(t− t′)3G(t′ − t2) , (3.10)

represented graphically in figure 13. This is the same equation as derived in [32, 33, 35] for

the large N SYK model. The solution to (3.10) in the IR limit is

G(t1 − t2) = −
( 1

4πg2N3

)1/4 sgn(t1 − t2)
|t1 − t2|1/2

. (3.11)

To uncover the spectrum of the bilinear operators in the model, we need to study the 4-point

Figure 13: The graphical representation of the Schwinger-Dyson equation for the two-point
function.

function 〈ψa1b1c1(t1)ψa1b1c1(t2)ψa2b2c2(t3)ψa2b2c2(t4)〉. Its structure is again the same as in the
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large N SYK model [32,33]:

〈ψa1b1c1(t1)ψa1b1c1(t2)ψa2b2c2(t3)ψa2b2c2(t4)〉 = N6G(t12)G(t34) + Γ(t1, . . . , t4) , (3.12)

where Γ(t1, . . . , t4) is given by a series of ladder diagrams depicted in fig 14.

t1 t3

t2 t4

. . . . . . . . .

Figure 14: Ladder diagrams contributing to Γ(t1, . . . , t4)

Resumming the diagrams in fig. 14 one finds a contribution to Γ(t1, . . . , t4) as a series of

diagrams in terms of the full propagators, see fig. 15

t1 t3

t2 t4

. . .

Figure 15: Ladder diagrams contributing to Γ(t1, . . . , t4)

If we denote by Γn the ladder with n rungs, so Γ =
∑

n Γn and we have

Γ0(t1, . . . , t4) = N3(−G(t13)G(t24) +G(t14)G(t23)) . (3.13)

For the next coefficient one gets

Γ1(t1, . . . , t4) = 3g2N6

∫
dtdt′

(
G(t1 − t)G(t2 − t′)G(t− t′)2G(t− t3)G(t− t4)− (t3 ↔ t4)

)
,

(3.14)

and one can check further that

Γ2(t1, . . . , t4) = −3g2N3

∫
dtdt′

(
G(t1 − t)G(t2 − t′)G(t− t′)2Γ1(t, t

′, t3, t4)− (t3 ↔ t4)
)
.

(3.15)

So in general one gets exactly the same recursion relation as in the SYK model

Γn+1(t1, . . . , t4) =

∫
dtdt′K(t1, t2; t, t

′)Γn(t, t′, t3, t4) , (3.16)
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where the kernel is

K(t1, t2; t3, t4) = −3g2N3G(t13)G(t24)G(t34)
2 . (3.17)

In order to find the spectrum of the two-particle operators On
2 , following [33, 35] one has to

solve the integral eigenvalue equation

v(t0, t1, t2) = g(h)

∫
dt3dt4K(t1, t2; t3, t4)v(t0, t3, t4) , (3.18)

where

v(t0, t1, t2) = 〈On
2 (t0)ψ

abc(t1)ψ
abc(t2)〉 =

sgn(t1 − t2)
|t0 − t1|h|t0 − t2|h|t1 − t2|1/2−h

, (3.19)

is the conformal three-point function. Then the scaling dimensions are determined by the

equation g(h) = 1. To find g(h) one can use SL(2) invariance to take t0 to infinity and just

consider eigenfunctions of the form

v(t1, t2) =
sgn(t1 − t2)
|t1 − t2|1/2−h

. (3.20)

It is not hard to find g(h) using two basic integrals∫ +∞

−∞
du

sgn(u− t1) sgn(u− t2)
|u− t1|a|u− t2|b

= l+a,b
1

|t1 − t2|a+b−1
,∫ +∞

−∞
du

sgn(u− t2)
|u− t1|a|u− t2|b

= l−a,b
sgn(t1 − t2)
|t1 − t2|a+b−1

,

l±a,b = β(1− a, a+ b− 1)± (β(1− b, a+ b− 1)− β(1− a, 1− b)) , (3.21)

where β(x, y) = Γ(x)Γ(y)/Γ(x + y) is the Euler beta function. Plugging (3.20) into (3.18)

and using (3.21), we find [33,35]

g(h) = − 3

4π
l+3
2
−h, 1

2

l−
1−h, 1

2

= −3

2

tan(π
2
(h− 1

2
))

h− 1/2
. (3.22)

The scaling dimensions are given by the solutions of g(h) = 1. The first solution is exact,

h = 2; this is the important mode dual to gravity and responsible for the quantum chaos in

the model [32–34,38–41]. The further solutions are h ≈ 3.77, 5.68, 7.63, 9.60 corresponding

to the operators ψabc(Dn
t ψ)abc with n = 3, 5, 7, 9. In the limit of large n, hn → n+ 1

2
. This is
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the expected limit n+ 2∆, where ∆ = 1
4

is the scaling dimension of the individual fermion.

3.1 Models with a Complex Fermion

Here we consider two quantum mechanical models of a complex 3-tensor ψabc. One of them

is an uncolored version of the colored quantum mechanical model recently studied by Gurau

[24]:

S =

∫
dt
(
iψ̄abc∂tψ

abc +
1

4
gψa1b1c1ψa1b2c2ψa2b1c2ψa2b2c1 +

1

4
ḡψ̄a1b1c1ψ̄a1b2c2ψ̄a2b1c2ψ̄a2b2c1

)
,

(3.23)

which again has O(N)3 symmetry. Another possibility is the model

S =

∫
dt
(
iψ̄abc∂tψ

abc +
1

4
gψa1b1c1ψ̄a1b2c2ψa2b1c2ψ̄a2b2c1

)
, (3.24)

where the symmetry is enhanced to U(N)× O(N)× U(N) because the transformations on

the first and the third indices of the tensor are allowed to be U(N). Models of this type have

been studied in d = 0 [28–30]. Gauging this symmetry in the quantum mechanical model

restricts the operators to the singlet sector, allowing for the existence of a gravity dual. The

gauge invariant two-particle operators have the form

On2 = ψ̄abc(Dn
t ψ)abc n = 0, 1, . . . , (3.25)

which includes ψ̄abcψabc. There is also a variety of operators made out of the higher powers

of the fermionic fields similarly to the operators (3.6), (3.7), (3.8) in the O(N)3 symmetric

model of real fermions. As established in [28–30], the large N limit of the complex uncolored

model (3.24) is once again given by the melon diagrams (the arguments are easier than in

2 since each index loop passes through an even number of vertices). The large N limit of

this model appears to be related to the variant of SYK model where the real fermions are

replaced by the complex ones [36,37].

Let us briefly discuss summing over melonic graphs in the model (3.24) at large N . The

two-point function has the structure

〈T (ψ̄abc(t)ψa
′b′c′(0))〉 = δaa

′
δbb

′
δcc

′
G(t), (3.26)

and G(t) = −G(−t). We find the same Schwinger-Dyson equation as (3.10); its solution is

13



again (3.11) indicating that the fermion scaling dimension is ∆ = 1/4. Now we need to study

the 4-point function 〈ψ̄a1b1c1(t1)ψa1b1c1(t2)ψ̄a2b2c2(t3)ψa2b2c2(t4)〉. It leads to the same integral

eigenvalue equation as (3.18), but now it is possible to have not only the antisymmetric

eigenfunctions as in (3.20), but also the symmetric ones

v(t1, t2) =
1

|t1 − t2|1/2−h
. (3.27)

This can be justified by noticing that the three point function now is 〈On2 (t0)ψ
abc(t1)ψ̄

abc(t2)〉.
We see that for odd n it is antisymmetric under t1 ↔ t2, while for even n it is symmetric.

Substituting ansatz (3.27) into the integral equation (3.18), and using the integrals (3.21),

we find

gsym(h) = − 3

4π
l−3
2
−h, 1

2

l+
1−h, 1

2

= −3

2

tan(π
2
(h+ 1

2
))

h− 1/2
. (3.28)

The scaling dimensions of the operators On2 with even n are given by the solutions of

gsym(h) = 1. The first few values are h ≈ 1.22, 2.86, 4.72, 6.65, 8.62 corresponding to

the operators with n = 0, 2, 4, 6, 8 respectively. The scaling dimension h0 ≈ 1.22 of operator

ψ̄abcψabc lies in the range 1 < h0 < 3/2; therefore, this operator can dominate the infrared

dynamics [39]. For large n the scaling dimensions approach n+ 1
2

as expected. The numerical

results are in good agreement with the asymptotic formula [33]

hn = n+
1

2
+

3

πn
+O(n−3) (3.29)

for n > 2. For On2 with odd n the spectrum is the same as for the two-particle operators

(3.5) in the model with O(N)3 symmetry.

4 Uncolored bosonic tensors

In this section we consider the d-dimensional field theory of a real commuting tensor field

φabc(x) with distinguishable indices a, b, c = 1, . . . , N :

S =

∫
ddx
(1

2
∂µφ

abc∂µφabc +
1

4
gφa1b1c1φa1b2c2φa2b1c2φa2b2c1

)
, (4.1)

This is the bosonic analogue of the uncolored fermionic theory with interaction (1.3); it

again has O(N)3 symmetry. A feature of this theory is that the interaction potential is not
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bounded from below for N > 2. For N = 2 the potential may be written as a sum of squares,

but for N > 2 we have explicitly checked that there is a negative direction. Nevertheless,

we may consider formal perturbation theory in g.

The argument in section 2 that the melonic diagrams dominate in the large N limit

applies both to the fermionic and bosonic version of the theory in any dimension d. We may

therefore resum all such diagrams and derive the exact Schwinger-Dyson equation similar to

that in [8–11, 42]. Let us explain this using a simple example of the two-point function in

the theory (4.1).

We have for the bare propagator

〈φabc(p)φa′b′c′(−p)〉0 = G0(p)δ
aa′δbb

′
δcc

′
=

1

p2
δaa

′
δbb

′
δcc

′
. (4.2)

In the large N limit one gets the same Schwinger-Dyson equation for the full two-point

function as in (3.10), which we can write in the momentum space as

G(p) = G0(p) + λ2G0(p)Σ(p)G(p) , (4.3)

where we introduced the coupling λ = gN3/2, which is held fixed in the large N limit and

Σ(p) =

∫
ddkddq

(2π)2d
G(q)G(k)G(p+ q + k) . (4.4)

One can rewrite (4.3) as

G−1(p) = G−10 (p)− λ2Σ(p) . (4.5)

In the IR limit we can neglect the bare term G0(p) and get

G−1(p) = −λ2
∫
ddkddq

(2π)2d
G(q)G(k)G(p+ q + k) . (4.6)

Using the integral∫
ddk

(2π)d
1

k2α(k + p)2β
=

1

(4π)d/2
Γ(d/2− α)Γ(d/2− β)Γ(α + β − d/2)

Γ(α)Γ(β)Γ(d− α− β)

1

(p2)α+β−d/2
(4.7)
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it is not difficult to show that the solution to the equation (4.6) is

G(p) = λ−1/2
((4π)ddΓ(3d

4
)

4Γ(1− d
4
)

)1/4 1

(p2)
d
4

. (4.8)

Alternatively, one can work in the coordinate representation and use the Fourier transform∫
ddx

eikx

(x2)α
=
πd/2Γ(d/2− α)

22α−dΓ(α)

1

(k2)d/2−α
(4.9)

to find the solution of the equation G−1(x) = −λ2G3(x):

G(x) = λ−1/2
( dΓ(3d

4
)

4πdΓ(1− d
4
)

)1/4 1

(x2)
d
4

. (4.10)

If one works with the cutoff regularization, then the UV divergence, which arises in the

integrals can be absorbed into mass renormalization. Remarkably, the Schwinger-Dyson

equation (4.6) was originally studied in 1964, and its d = 3 solution (4.8) was found [43].5

To find the spectrum of two-particle operators, we must solve for the eigenvalues gbos(h)

and eigenvectors vh of the kernel [32,33,35]∫
ddx3d

dx4K(x1, x2;x3, x4)vh(x3, x4) = gbos(h)vh(x1, x2) , (4.11)

where the kernel is6

K(x1, x2;x3, x4) = 3λ2G(x13)G(x24)G(x34)
2 . (4.12)

It is not hard to check using the integral (4.7) that there is a subset of spin-zero eigenvectors

vh(x1, x2) =
1

[(x1 − x2)2]
1
2
( d
2
−h)

, (4.13)

and the corresponding eigenvalues are

gbos(h) = − 3Γ
(
3d
4

)
Γ
(
d
4
− h

2

)
Γ
(
h
2
− d

4

)
Γ
(
−d

4

)
Γ
(
3d
4
− h

2

)
Γ
(
d
4

+ h
2

) . (4.14)

5 We thank A. Polyakov for pointing this out to us.
6We thank S. Giombi for correcting the sign error in the kernel that was present in an earlier version of

this paper.
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The scaling dimensions h of spin zero two-particle operators are then determined by solving

gbos(h) = 1. In d = 1 the smallest positive solution is h = 2, suggesting the existence of a

gravity dual. We plan to study a more complete set of scaling dimensions in general d in

future work.

We have also studied the effect of replacing in (4.1) the general 3-index tensor by the

completely symmetric and traceless tensor field φabc. Such a theory would have a single

O(N) symmetry under

φabc →Maa′M bb′M cc′φa
′b′c′ , M ∈ O(N) . (4.15)

The corresponding fermionic model would be trivial due to the vanishing of the interaction,

but the bosonic model is non-trivial. The key question is whether the leading contribution

in N comes from the melonic diagrams only. We have checked all the vacuum diagrams up

to order g7 and did not find any violation of this rule (see p.257 in [44] for pictures of all

vacuum diagrams up to order g7), but we have not constructed a proof to all orders yet.

If the O(N) symmetric theory of a symmetric traceless tensor is indeed melonic, then the

derivation of the Schwinger-Dyson equation and its solution goes through just as for the

O(N)3 symmetric theory of a general tensor.

Finally, we may wonder if for theories with a single O(N) group we may consider matter

in other irreducible representations, such as completely antisymmetric or mixed symmetry.

Such theories also appear to be melonic at low orders in perturbation theory, but a general

proof to all orders has not been constructed.

4.1 ε-expansion of a scaling dimension

Let us consider the uncolored bosonic model in d = 4−ε dimension. Introducing renormalized

fields and couplings and using an auxiliary scale µ, we can compactly write the action (4.1)

in the form

S =

∫
ddx
(1

2
(∂µ~φ)2 +

1

4
µεg~φ4 +

1

2
δφ(∂µ~φ)2 +

1

4
µεδg~φ

4
)
, (4.16)

where ~φ = φabc and ~φ4 ≡ φa1b1c1φa1b2c2φa2b1c2φa2b2c1 . The latter is not the only quartic term

allowed by the O(N)3 symmetry. To renormalize the theory at finite N we need to include

two additional operators: the double-trace operator Odouble−trace = (φabcφabc)2 and the “pillow
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operator” [31]

Opillow = φa1b1c1φa1b1c2φa2b2c1φa2b2c2 + φa1b1c1φa2b1c1φa1b2c2φa2b2c2 + φa1b1c1φa1b2c1φa2b1c2φa2b2c2 .

(4.17)

In this section we carry out just the leading large N analysis of operator dimension ∆φ,

where we believe the effects of these additional operators may be ignored.

The bare coupling is related to the renormalized one as

g0 = µεZgZ
−2
φ g , (4.18)

where Zg = 1 + δg/g and Zφ = 1 + δφ. The bare propagator is

〈φabc(p)φa′b′c′(−p)〉0 = δaa
′
δbb

′
δcc

′ 1

p2
. (4.19)

To compute the anomalous dimension of φ we consider the diagram in fig. 16.

Figure 16: Two-loop diagram contributing to the anomalous dimension of the φ field.

We find at d = 4− ε in the large N limit

δφ = − g2N3

2(4π)4ε
, γφ =

g2N3

2(4π)4
. (4.20)

On the other hand for the 4-point function all the one- and two-loop diagrams are subleading

in N . Therefore, the beta-function is defined by the counter-term δφ

g0 = µε(g − 2δφg) = µε
(
g +

g3N3

(4π)4ε
+ . . .

)
. (4.21)

In the large N limit where g2N3 is held fixed, the beta-function is

βg = −εg +
2N3g3

(4π)4
+ . . . . (4.22)
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The theory in 4− ε dimensions has a weakly coupled IR fixed point at

g2∗ =
(4π)4ε

2N3
, (4.23)

where the anomalous dimension at the critical point is

γφ =
ε

4
. (4.24)

This leads to

∆φ =
d− 2

2
+ γφ = 1− ε

4
+O(ε2) , (4.25)

which agrees with the large N scaling dimension d
4

obtained in (4.8). It would be interesting

to extend this perturbative analysis of the melonic φ4 theory to higher orders in ε and to

also include the 1/N corrections.

5 Discussion

The existence of quantum mechanical models without disorder which admit a novel large N

limit dominated by the melonic graphs, such as the colored models explored in [19, 24] and

the uncolored models in section 3, opens new avenues for further research. We have shown

that various aspects of the O(N)3 symmetric uncolored tensor model (3.1) agree in the large

N limit with the SYK model [20–23]. Our uncolored tensor model is similar to the colored

Gurau-Witten model (1.2). In particular, both models possess the same universal “Regge

trajectory” of two-particle operators as has been uncovered in the SYK model [32, 33, 35].

In the uncolored model these are operators (3.5), while in the Gurau-Witten model they are

ψabcA (Dn
t ψA)abc. It would be interesting to carry out a more detailed comparison between the

colored and uncolored models. As we have discussed, the uncolored model has a tower of

gauge invariant operators ψn. The same is true for the Gurau-Witten model; for example,

at eighth order we find the operator

O8 = ψa1b1c10 ψa1d1e11 ψa2b1c20 ψa2d1e11 ψa3b2c10 ψa3d2e21 ψf1b2e22 ψf1d2c23 , (5.1)

and similar operators with other choices of colors. The details of the operator spectra are

not the same, however: due to the extra color label the Gurau-Witten model contains more

gauge invariant operators than our uncolored model.
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In the uncolored model, in addition to the quartic operator in the action (3.1) there

are quartic operators of the form (3.6) (however, in the theory where the O(N)3 symmetry

is gauged such operators vanish). These kinds of operators are also present in the colored

model, such as ψabc0 ψfbc0 ψade1 ψfde1 and analogous operators with other choices of the color

labels. In [31] such “pillow operators” were included in the action and shown not to destroy

the melonic dominance in the large N limit. Thus, imposing the O(N)3 invariance appears

to produce a class of quartic quantum mechanical models rather than a unique model. This

is reminiscent of the fact that, in the SU(N) symmetric quantum mechanics of a hermitian

matrix Φ with potential tr Φ4, one can add a double-trace term (tr Φ2)2, which can modify

the free energy even in the leading large N limit [45–47]. The operators (3.6) in the tensor

model seem analogous to the double-trace operators in the matrix model, and their effect

needs to be studied carefully.

Some of the recent interest in the SYK model is related to the fact that it exhibits

quantum chaos [32–34, 39–41]. This was investigated numerically at finite N , providing

further insights [48–50]. Since at large N the tensor quantum mechanical models become

equivalent to the SYK model, one would expect them to be chaotic as well, at least for

sufficiently large N . A numerical investigation of the energy levels and thermal partition

functions in the finite N melonic quantum mechanical models should be possible. The

procedure would be quite different from that in [48, 50] because there is no averaging over

disorder. This may facilitate such a numerical study in the context of tensor quantum

mechanics.

It is also very interesting to ask if there exist quantum field theories in dimensions above

1, which possess such a melonic large N expansion. In section 4 we began to study a bosonic

φ4 tensor model which is renormalizable in d = 4 and by power counting may flow to a CFT

in dimensions below 4. However, such a theory has the potential unbounded from below for

N > 2, so it does not appear to be stable at finite N .

Another interesting possibility is to consider a supersymmetric theory with rank-3 tensor

superfields Φabc and superpotential

W =
1

4
gΦa1b1c1Φa1b2c2Φa2b1c2Φa2b2c1 . (5.2)

A simple setting for such a superspace approach is the supersymmetric quantum mechanics

[51,52], where (see, for example, [53])

Φa1b1c1(t, θ, θ̄) = φa1b1c1(t) + iθψa1b1c1(t)− iψ̄a1b1c1(t)θ̄ + θ̄θF a1b1c1(t) , (5.3)
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so that the degrees of freedom consist of a real bosonic 3-tensor and a complex fermionic

one. The action may then be written as

S =

∫
dtdθdθ̄

(
1

2
|DθΦ

abc|2 +W

)
, (5.4)

and in terms of components it contains the two-boson two-fermion terms, such as∫
dt(gψ̄a1b1c1φa1b2c2ψa2b1c2φa2b2c1 + c. c.) . (5.5)

It also contains the 6-boson interaction term g2φa1b1c1φa1b2c2φa2b1c3φa2b3c1φa3b2c3φa3b3c2 , whose

index structure is the same as that found in operator O6 shown in (3.7); it can be represented

graphically as the prism (see figure 11).

Such a construction may be viewed as a dimensional reduction of the N = 1 supersym-

metric theory in d = 3, where it is renormalizable (the field content is a real scalar φabc and a

two-component Majorana fermion χabc). The interaction becomes relevant in d < 3 so that

the theory may flow to an interacting CFT. Alternatively, we could study a renormalizable

N = 2 supersymmetric theory in d = 3, whose field content is a complex scalar φabc and a

two-component Dirac fermion. Since the R-charge of φ is fixed by the quartic superpotential

(5.2) to be 1/2, we know that its exact dimension is

∆φ =
d− 1

2
R =

d− 1

4
. (5.6)

The dimension of the fermion superpartner is then ∆ψ = ∆φ+ 1
2

= d+1
4

, so that the interaction

term ψ̄a1b1c1φa1b2c2ψa2b1c2φa2b2c1 + c. c. has dimension d. The scalar potential

V = |g|2φa1b1c1φa1b2c2φa2b1c2φ̄a3b3c1φ̄a3b2c4φ̄a2b3c4 (5.7)

is, of course, non-negative. It would also be interesting to study a “colored” supersymmetric

theory with superfields Φabc
A and quartic superpotential

W = gΦabc
0 Φade

1 Φfbe
2 Φfdc

3 . (5.8)

The existence of perturbative expansion using supergraphs suggests that the large N limit is

dominated by melonic diagrams. The quantum properties of these supersymmetric theories

in d < 3 may be studied using both the large N Schwinger-Dyson equations and the 3 − ε
expansion. We hope to address these problems in the future.
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