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Abstract

We consider unitarity and causality in a higher-derivative theory of infinite order, where propaga-

tors fall off more quickly in the ultraviolet due to the presence of a transcendental entire function of

the momentum. Like Lee-Wick theories, these field theories might provide new avenues for address-

ing the hierarchy problem; unlike Lee-Wick theories, tree-level propagators do not have additional

poles corresponding to unobserved particles with unusual properties. We consider microscopic

acausality in these nonlocal theories. The acausal ordering of production and decay vertices for

ordinary resonant particles may provide a phenomenologically distinct signature for these models.
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I. INTRODUCTION

One path to addressing the hierarchy problem is to consider extensions of the standard

model that lessen the degrees of divergence of loop integrals. Historically, supersymmetry

has been the most popular approach of this type. Loop diagrams involving the supersym-

metric partners of ordinary particles cancel the quadratic divergence of the Higgs boson

squared mass that would otherwise be present. The surviving dependence on any high mass

scales in the theory is only logarithmic, so that extreme fine tuning is avoided. In Lee-Wick

theories [1], in particular the Lee-Wick Standard Model [2], more convergent loop diagrams

are assured by the introduction of higher-derivative kinetic terms that yield propagators that

fall off more quickly with momentum. However, a propagator whose inverse is a higher-order

polynomial in the momentum will have additional poles. This fact is reflected in an auxil-

iary field formulation of Lee-Wick theories in which higher-derivative terms are absent, but

additional field are present that correspond to these Lee-Wick partner states [2]. Diagrams

involving the Lee-Wick partner particles serve to cancel unwanted quadratic divergences,

and hence play a role similar to the partner particles in supersymmetric theories.

Among the scenarios with partner particles that address the hierarchy problem, Lee-Wick

theories are particularly unusual. The partner states in Lee-Wick theories have wrong-sign

kinetic and mass terms, requiring special rules to be applied so that the theory has a chance

at a sensible interpretation [3]. However, such states need not appear in all theories with

with higher-derivative quadratic terms [4]. Given the possibility of applications in addressing

the hierarchy problem [5], it is well motivated to consider higher-derivative theories in which

the complications of Lee-Wick theories might be avoided altogether.

As an example of the type of theory of interest here, consider

L = −1

2
φ F̂ (�)−1(�+m2)φ− λ

4!
φ4 , (1.1)

where φ is a real scalar field, � ≡ ∂µ∂
µ and the momentum-space propagator is given at

tree-level by

D̃F (p) =
i F̂ (−p2)

p2 −m2 + iǫ
. (1.2)

If F̂ (−p2) is an entire function, then there will be no additional poles in Eq. (1.2), aside

from the one at p2 = m2. If F̂ is a transcendental function (rather than a polynomial, which

is also entire), then we can find forms that drop off at large momentum. In particular, we

2



will focus on the simple choice

F̂ (�) = exp(−η �
n
) , (1.3)

where η > 0 is a coupling constant, and n is a positive, even integer. (We restrict ourselves to

even n so that F̂ provides a convergence factor in either Euclidean or Minkowski space.) This

theory is nonlocal. The consequences of nonlocal modifications of the quadratic terms in the

Lagrangian were discussed as early as the 1950’s [6], but have periodically met a resurgence

of interest [5, 7–16]. Motivated by the infinite-derivative Lagrangians obtained in string field

theory [17] and p-adic string theory [18], nonlocal theories of the general type of interest

here were studied as possible models of inflation [7]. More recently, the possibility that

such nonlocal quadratic terms could provide an avenue for quantizing gravity has also been

discussed [8–13]. Of particular motivation here is the work of Ref. [5] which applies nonlocal

modifications of the quadratic terms to parts of the standard model itself and considers some

aspects of the phenomenology. A more extensive list of background references on nonlocal

field theories and their applications can be found in that work.

Ref. [5], like most phenomenological studies of proposed modifications to the standard

model, ultimately focuses on scattering processes, which reflect the overlap of asymptotic

states defined in the far past and far future. In the context of Lee-Wick theories, it was

pointed out by Grinstein, O’Connel and Wise (GOW) that the distinctive acausal features of

the theory could be studied by considering the time-dependence of the scattering processes

via a wave-packet analysis conducted in the semi-classical limit [19], as we discuss in more

detail later. The trajectories of wave packets can be used to define the apparent production

and decay points of an exchanged resonance, and the dependence of the amplitude on the

ordering of these events evaluated. GOW worked with a theory of real scalar fields with

O(N) symmetry, where the unitarity of the theory could be demonstrated to all orders in

perturbation theory in the large N limit. As argued by Coleman [20], the existence of a

unitary S-matrix implies that observable acausality does not lead to logical paradoxes in

scattering experiments, since there is a unitary evolution of initial states to final states. The

question that we wish to study in the present work is how the approach and conclusions of

GOW are modified if one instead assumes a theory with an infinite-derivative modification of

the quadratic terms, one that does not introduce additional poles with wrong-sign residues

in the propagator at tree-level.
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We proceed largely by analogy, first addressing the issue of unitarity in a specific nonlocal

extension of the O(N) model studied by GOW. Unitarity in nonlocal theories has been

discussed in a more general context in Refs. [8, 16, 21] and in a different context in Ref. [15].

What we gain by working in the large N limit of the O(N) model is that unitarity can be

studied in explicit detail, to all orders in perturbation theory, via a one-loop calculation.

In addition, the intermediate steps and final conclusions can be readily compared to those

of Ref. [19]. The reader who is familiar with the phenomenological work of Ref. [5] will

recall that the authors define their nonlocal theory via Euclidean correlation functions that

are analytically continued in their external momentum to Minkowski space. If one were to

attempt to quantize the theory in Minkowski space directly, one would find that unitary is

violated. The calculation that we present in Sec. II will make clear why this is the case.

We then turn to the issue of causality in Sec. III. It is generally expected that the nonlocal

theories having the form shown in Eq. (1.1) have field commutators that do not vanish

at space-like separation [16]. We show that this is indeed the case in the specific O(N)

model defined in Sec. II by an explicit calculation. What our consideration of unitarity

and causality demonstrate up to this point is that the theory of interest may show signs of

acausality in scattering experiments without logical inconsistency, in the sense discussed by

Coleman. To address this further, we turn to the scattering of wave packets in the latter

half of Sec. III, and show that there is a non-vanishing amplitude for acausal orderings of

production and decay vertices for exchanged resonances. Unlike the Lee-Wick case, where

the resonance is a Lee-Wick partner with wrong-sign kinetic and mass terms, the resonances

in this case are ordinary particles. In Sec. IV we summarize our conclusions.

The explicit calculations that we present in this work, as well as the discussion of the

nonlocal O(N) model and the detailed application of the approach of Ref. [19] to simi-

lar theories, have not appeared in the literature previously. These may serve as a useful

complement to more formal treatments that anticipate the qualitative features of some of

our results. Moreover, the explicit examples and calculations that we present may resonate

with a wider audience of model-builders who are interested in phenomenological applications

relevant to TeV-scale physics, an exploration that has been quite limited thus far [5].
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II. UNITARITY

A. Preliminaries

In the absence of higher-derivative modifications, we work with a theory of N real scalar

fields with the Lagrangian density

L =
1

2
∂µφ

a∂µφa − 1

2
m2 φaφa − 1

8
λ0(φ

aφa)2 . (2.1)

This theory has an O(N) global symmetry, with the index a running from 1 to N . The

theory has a sensible N → ∞ limit, i.e., there are no Feynman diagrams that grow as

positive powers of N , if the coupling λ0 scales as 1/N . (For a pedagogical discussion, see

Ref. [22].) It is convenient to redefine the coupling λ0 ≡ λ/N , so that the N dependence of

a given amplitude is explicit. Following Ref. [19], the theory in Eq. (2.1) is equivalent to

L =
1

2
∂µφ

a∂µφa − 1

2
m2 φaφa +

N

2λ
σ2 − 1

2
σφaφa , (2.2)

where σ is an auxiliary field; this can be verified by substitution of the auxiliary field’s equa-

tion of motion into Eq. (2.2). The advantage of working with the auxiliary field formulation

is that it makes counting of powers of N transparent, since each σ propagator scales as

1/N . For example, the self-energy function for the σ field, Σ0(p
2), receives it’s leading order

contribution from a φa loop, and scales as N . Following the sign conventions of Ref. [19],

the full σ propagator is given by

D̃(p2) =
i

1/λ0
+

i

1/λ0
(iΣ0)

i

1/λ0
+

i

1/λ0
(iΣ0)

i

1/λ0
(iΣ0)

i

1/λ0
+ · · · , (2.3)

which can be re-summed to

D̃(p2) =
λ

N

i

1 + λΣ(p2)
, (2.4)

where Σ0(p
2) ≡ N Σ(p2), so that the N -scaling of Eq. (2.4) is explicit. All corrections to

Σ(p2) that are higher than one-loop are suppressed by additional factors of 1/N , by virtue of

the additional σ propagators. Hence, if one is interested in only the leading-order behavior

of Σ(p2), one only needs to compute a one-loop diagram1.

1 At leading order there is also a one-loop σ tadpole diagram, but it can be eliminated by a shift in the

auxiliary field and a redefinition of the φa mass [22].
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At leading order in 1/N , two-into-two scattering in the auxiliary field formulation cor-

responds to the s-, t- and u- channel exchanges of the auxiliary field, with the dressed

propagator given by Eq. (2.4). All other loop corrections to the scattering amplitude in-

volve additional σ propagators and are sub-leading in the 1/N expansion. It follows that

the scattering amplitude is given by

M(ab→ cd) = − λ

N

[

δabδcd
1 + λΣ(s)

+
δacδbd

1 + λΣ(t)
+

δadδbc
1 + λΣ(u)

]

, (2.5)

where s, t and u are the usual Mandelstam invariants. As reviewed in Ref. [19], Eq. (2.5)

can be used to demonstrate the unitarity of the theory at leading order in 1/N and at all

orders in perturbation theory.

Our present interest is how this calculation is altered when there is a nonlocal modification

to Eq. (2.1), of either the form

L = −1

2
φa F̂ (�)−1(�+m2)φa − 1

8
λ0(φ

aφa)2 , (2.6)

or

L = −1

2
φa (�+m2)φa − 1

8
λ0

[

(F̂ 1/2φa)(F̂ 1/2φa)
]2

. (2.7)

Here F̂ is the differential operator defined in Eq. (1.3), with η > 0 and n and even positive

integer, and F̂ 1/2 ≡ exp(−1
2
η �

n
). We choose n even so that the factors of F̂ lead to im-

proved convergence of loop integrals in momentum space, regardless of whether we assume

a Euclidean or Minkowski metric. We compare each possibility in the following subsection,

for the simplest choice of n = 2, which we assume henceforth. Eqs. (2.6) and (2.7) are

related by a nonlocal field redefinition and give the same results for scattering amplitudes.

Working with Eq. (2.7), the factors of F̂ 1/2 acting on internal lines reproduce the momentum

dependence of the propagator that one obtains from Eq. (2.6); the factors of F̂ 1/2 acting on

external lines each give a factor of exp(−η m4/2), matching the wave function renormaliza-

tion factors in the scattering amplitudes obtained from Eq. (2.6). For definiteness, we will

examine the case where a = b 6= c = d so that only the s-channel amplitudes is relevant.

Then the scattering amplitude takes the form

M = − λ

N

e−2ηm4

1 + λΣ(s)
δabδcd , (2.8)

where the constant exponential factor is due to the higher-derivative operator acting on the

external lines, and where Σ(s) now includes the effects of F̂ on the φa propagator.
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B. Minkowski Space

We show in this section that the theory defined in Minkowski space by Eq. (2.7) violates

unitarity. The self-energy function Σ(p2) is given by

Σ(p2) = − i

2

∫

d4k

(2π)4
exp{−η (k + p/2)4} exp{−η (k − p/2)4}

[(k − p/2)2 −m2 + iǫ][(k + p/2)2 −m2 + iǫ]
. (2.9)

Unitarity implies the operator relation i(T † − T ) = T †T , where the T -matrix is related to

the S-matrix by S = 1+ iT . One can derive a condition on scattering amplitudes by taking

matrix elements of both sides of this expression and including an appropriate insertion of

a complete set of intermediate states. Working at leading order in the 1/N expansion, this

procedure was carried out in the O(N) model in Ref. [19], and the derivation is not altered

by the presence of the additional momentum space suppression factors in the numerator of

Eq. (2.9). One finds [19]

2 ImM (k1, a; k2, b→ k′1, c; k
′
2, d) =

∑

e,f

Ie,f

∫

d3q1
(2π)3

d3q2
(2π)3

1

2E1

1

2E2

(2π)4δ(4)(q1 + q2 − p)

M(k1, a; k2, b→ q1, e; q2, f)M∗(k′1, c; k
′
2, d→ q1, e; q2, f) , (2.10)

where the identical particle factor Ie,f = 1/2 if e = f and 1 otherwise. The left-hand-side of

this expression follows immediately from Eq. (2.8):

LHS =
λ2

N

[

2 e−2 ηm4

Im Σ(s)
] 1

|1 + λΣ(s)|2 δabδcd . (2.11)

The right-hand-side of Eq. (2.10) includes only two-particle intermediate states, which pro-

vide the leading contribution in the large N limit. After substitution of Eq. (2.8), the

necessary integral evaluation is identical to that of the two-body Lorentz-invariant phase

space factor. The result is

RHS =
λ2

N

[

1

16π
e−4 ηm4

√

1− 4m2

s

]

1

|1 + λΣ(s)|2 δabδcd . (2.12)

When η = 0, the quantities in brackets in Eqs. (2.11) and (2.12) coincide, as can be seen

either from an elementary one-loop calculation [19], or by examining the η → 0 limit of the

numerical calculation that we are about to describe. When η 6= 0, these quantities differ.

After exploring the source of the discrepancy, we show how it is avoided by defining the

theory as an analytic continuation of correlation functions defined in Euclidean space.
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It is easiest to see that Eqs. (2.11) and (2.12) do not agree when η 6= 0 by showing that

Im Σ(p2) no longer has a functional form proportional to
√

1− 4m2/s. To confirm this

claim most quickly, we simply evaluate the imaginary part of Eq. (2.9) numerically, working

in the center-of-mass frame, where ~p = 0; we perform the k0 integral exactly along the real

axis with ǫ finite and evaluate the limit as ǫ→ 0. Note that the imaginary part of the loop

integral is finite, even when η is vanishing. It is convenient to write Eq. (2.9) in the following

form:

Im Σ = − 1

4π3

∫ ∞

0

dk

∫ ∞

0

dk0
{

k2g(k0, k)
f+(k

0, k)f−(k
0, k)− ǫ2

[f+(k0, k)2 + ǫ2] [f−(k0, k)2 + ǫ2]

}

, (2.13)

where k ≡ |~k|,
f±(k

0, k) ≡ (k0 ± p0/2)2 − k2 −m2 , (2.14)

and

g(k0, k) ≡ exp{−η[(k0 + p0/2)2 − k2]2 − η[(k0 − p0/2)2 − k2]2} . (2.15)

The integration can be performed using symbolic mathematics code (we used MAPLE [23]),

provided care is taken in dealing with the points on the real k0 axis that would be singularities

in the ǫ → 0 limit. For ǫ small but non-zero, the growth of the integrand around these

points are taken into account by singularity handling routines in MAPLE that are invoked

automatically by breaking up the region of k0 integration into intervals that are terminated

at these points. We then have no difficulty obtaining numerically convergent results. In

Fig. 1, we show the result for Im Σ as a function of the center-of-mass energy, working in

units where m = 1, for η = 0 and an example where η 6= 0. The line with long dashes shows

the expectation for Im Σ following from the analytic result of the one-loop calculation in

the η = 0 case,

Im Σ(s) =
1

32π

√

1− 4m2

s
θ(s− 4m2) , (2.16)

where θ is the Heaviside step function. This agrees with the numerical result for η = 0,

given by the open circular points in Fig. 1. However, the results are not proportional to

the same functional form in s for the case where η 6= 0. One would not suspect that the

disagreement is the result of a numerical artifact, since the extra exponential factor in the

integrand in the case where η 6= 0 is smooth and serves primarily to truncate the domain of

integration.
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FIG. 1: Imaginary part of the self-energy functions Σ(s) as a function of
√
s. The open circular

points indicate the results of the direct numerical evaluation of Eq. (2.9), for the cases where η = 0

and η = 0.3. The long dashed line gives the η = 0 expectation, proportional to (1− 4m2/s)1/2 for

s > 4m2. The solid points are the result of Eqs. (2.29), after a numerical evaluation of the second

term, as discussed in the text.

To further verify this result, let us now do the calculation in a different way. Imagine we

evaluate the k0 integral in Σ by closing a semi-circular contour in the lower-half complex

plane. In ordinary, local quantum field theories, the integral along the semi-circular contour

would vanish as the radius of the contour is taken to infinity. In the present theory, this is

not the case; the numerator of the loop integral becomes exp[−2 η (k0)4] far from the origin,

which blows up in directions where Re (k0)4 < 0. Hence, let us decompose

Σ = Σp − IC and 2 ImΣ = 2 ImΣp − 2 Im IC , (2.17)

where Σp is −2πi times the residues of the poles contained within the contour and IC is the

clockwise integral along the semi-circular portion. Since

Σp(p
0) =

1

2

∫

d3k

(2π)3
1

2E~k p
0

[

N(k0 = E~k − p0/2)

2E~k − p0
− N(k0 = E~k + p0/2)

2E~k + p0

]

, (2.18)

where N represents the numerator of the integrand of Eq. (2.9) and E2
~k
≡ |~k|2 + m2, it is

clear for 0 < p0 < 2m on the real axis that Σp(p
0) = Σp(p

0∗)∗. Since Σp is an analytic
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function of p0 off the real axis, this can be analytically continued, from which it follows that

DiscΣp = 2 i ImΣp(p
0 + iǫ) , (2.19)

where the discontinuity is about a cut on the real p0 axis,

DiscΣp = lim
ǫ→0

[

Σp(p
0 + iǫ)− Σp(p

0 − iǫ)
]

. (2.20)

We may express

Σp(p
0 + iǫ) =

1

8π2

∫

dE~k
|~k|

p0 + iǫ

×
[

N(k0 = E~k − p0/2− iǫ/2)

2E~k − p0 − iǫ
− N(k0 = E~k + p0/2 + iǫ/2)

2E~k + p0 + iǫ

]

. (2.21)

There can be poles in the E~k integration that blow up at most as 1/ǫ; hence, we only need

expand what remains to order ǫ. Defining N ′ ≡ ∂N/∂k0, we find

DiscΣp = − 1

8π2
lim
ǫ→0

∫

dE~k
|~k|
p0

{

N(k0 = k0−)

[

1

p0 − 2E~k + iǫ
− 1

p0 − 2E~k − iǫ

]

+N(k0 = k0+)

[

1

p0 + 2E~k + iǫ
− 1

p0 + 2E~k − iǫ

]

+

[−i
2
N ′(k0 = k0−)−

i

p0
N(k0 = k0−)

] [

ǫ

p0 − 2E~k + iǫ
+

ǫ

p0 − 2E~k − iǫ

]

+

[

i

2
N ′(k0 = k0+)−

i

p0
N(k0 = k0+)

] [

ǫ

p0 + 2E~k + iǫ
+

ǫ

p0 + 2E~k − iǫ

]}

(2.22)

where k0± = E~k±p0/2. We can now take the ǫ→ 0 limits of the quantities in square brackets,

using

lim
ǫ→0

[

1

y + iǫ
− 1

y − iǫ

]

= −2πi δ(y) and lim
ǫ→0

[

ǫ

y + iǫ
+

ǫ

y − iǫ

]

= 2πy δ(y) . (2.23)

We see that the third and fourth terms in the curly braces are proportional to (p0±2E~k)δ(p
0±

2E~k), so that they vanish after integration. Since p0 > 0, the surviving term is given by

DiscΣp = i
1

4π

∫

dE~k
|~k|
p0
δ(p0 − 2E~k)N(k0 = E~k − p0/2) (2.24)

It is straightforward to confirm that the same result is obtained by making the conventional

Cutkosky replacements in the original integral for Σp

1

(k ± p/2)2 −m2 + iǫ
→ −2πi δ([k ± p/2]2 −m2) (2.25)
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so that

iDiscΣp =
1

2

∫

d4k

(2π)4
N(k)(−2πi)2δ([k + p/2]2 −m2))δ([k − p/2]2 −m2) . (2.26)

Changing variables, introducing an additional integral, and writing out the numerator factor

N , this is equivalent to

iDiscΣp =

−1

2

∫

d4q1
(2π)4

d4q2
(2π)4

e(−η q
4

1
−η q4

2
) (2π)δ(q21 −m2) (2π)δ(q22 −m2)

(2π)4δ(4)(q1 + q2 − p) ,

(2.27)

which integrates to

iDiscΣp = − 1

16π
e−2 ηm4

√

1− 4m2

s
. (2.28)

From Eqs. (2.17) and (2.19), it follows that we can write the quantity in square brackets

from the left-hand-side of our unitarity relation, Eq. (2.11), as

[

2 e−2 ηm4

Im Σ(s)
]

=
1

16π
e−4 ηm4

√

1− 4m2

s
− 2 e−2 ηm4

Im IC . (2.29)

The first term agrees with the desired form of the quantity in square brackets in Eq. (2.12);

it follows that the violation of unitarity stems entirely from the non-vanishing of the integral

IC along the semi-circular contour.

We can verify that Eq. (2.29) is correct by evaluating the imaginary part of IC and

comparing the result for ImΣ with what we obtained previously in Fig. 1. Notice that if

we were to push all the poles on the real k0 axis to the upper half-plane, then IC would be

given by the negative of the integral along the real axis. Hence, we may identify

IC =
i

2

∫

d4k

(2π)4
N(k)

[

(k0 − p0/2− iǫ)2 −E2
~k

] [

(k0 + p0/2− iǫ)2 −E2
~k

] . (2.30)

The point is that Eq. (2.30) can be evaluated numerically in exactly the same way as the

integral in Eq. (2.9) that we described earlier. The result for ImΣ computed from Eq. (2.29)

using the numerical evaluation of Eq. (2.30) is indicated by the solid points shown in Fig. 1:

they are in complete agreement with our previous direct evaluation of ImΣ in the case where

η 6= 0.

To understand this result, it is useful to consider how the calculation might have pro-

ceeded had we started by evaluating the discontinuity of Eq. (2.9) directly using Cutkosky’s
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formula [24]. It is straightforward to check that the discontinuity computed in this way

would reconcile Eq. (2.11) and Eq. (2.12) only if DiscΣ = 2 i ImΣ. However, this relation is

not justified in the present case since Σ cannot be shown to satisfy the Schwartz reflection

principle Σ(p0) = Σ(p0∗)∗ when η 6= 0. The reflection principle requires that there be a

segment along the real p0 axis over which Σ is purely real; in the case where η 6= 0 it is

not possible to prove that such a region exists and our numerical results shown in Fig. 1

strongly suggest that the opposite is true. In the Appendix, we show in more detail how the

violation of the Scwartz reflection principle can be directly related to the non-vanishing of

contour integrals, like IC , at large radius in the complex plane.

Another starting point [8] for attempts to demonstrate unitarity is the Largest Time

Equation (LTE) [25]. We simply note here that this approach cannot be consistently applied

to the present problem. As discussed by Anselmi [26], derivation of the LTE requires two

assumptions: (1) the vertices of the theory are localized time and (2) the propagator in

position space is of the form θ(x0)g+(x) + θ(−x0)g−(x), where θ is the step function. If

nonlocality appears in the vertices of the theory, then assumption (1) is violated. If a

field redefinition is used to move the nonlocality to the propagators, then assumption (2) is

violated due to the appearance of additional terms in the propagator that are proportional

to derivatives of δ(x0). (The explicit form of the propagator can be found in Ref. [16].) The

subsequent derivation of the LTE described in Ref. [26] fails. Hence, we say nothing further

about this approach.

C. Euclidean Space

We have discussed in the previous subsection how unitarity is violated if we attempt

to formulate the theory of interest directly in Minkowski space. If correlation functions are

defined in Euclidean space and analytically continued in the external momenta to Minkowski

space, unitarity is preserved. This might be expected since the theory quantized via a

Euclidean functional integral automatically satisfies reflection positivity. The way that the

calculation of the previous section is modified is as follows: The Euclidean version of Σ

corresponds to Eq. (2.9) with the k0 integration taken along the imaginary axis, and with

Euclidean external momentum p0 = ip0E . In other words, the starting point is the path that

one would obtain with a Wick rotation if it were justified in a Minkowski-space formulation
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of the theory. Now, close the contour with a semi-circle in the right half plane, so that

2 ImΣ = 2 ImΣp − 2 Im I ′C , (2.31)

where I ′C is the integral over the semi-circular path, and Σp again is determined by the

residues of the poles contained within the closed contour. While Im IC in our previous cal-

culation was non-vanishing, we now show that Im I ′C = 0. Let us write I ′C = −i
∫

dk0X(k0),

where X(k0) is given by Eq. (2.9) with ǫ set to zero and k0 placed on the desired semi-

circle, k0 = ρ exp(iθ) for −π/2 ≤ θ ≤ π/2. In the center-of-mass frame where ~p = 0, it is

straightforward to check that X(k0) is also a function of p0
2
= −p0E

2
, which is real; it follows

immediately that X(k0)∗ = X(k0∗). Since dk0 = ik0dθ,

2 i Im I ′C = I ′C − I ′∗C = lim
ρ→∞

∫ π/2

−π/2
dθ
[

k0X(k0)− k0∗X(k0∗)
]

, (2.32)

which vanishes; this can be seen by changing variables θ → −θ, and noting that k0(−θ) =
k0∗, indicating that the dθ integral is equal to its negative. The surviving term in Eq. (2.31)

is the same function of p0 that reconciled the left- and right-hand-sides of our unitarity

relation in the previous section. By Lorentz invariance, the result holds in any other reference

frame in which the scattering process is measured. Hence, we have verified that the large

N scattering amplitudes of interest in the present context are unitary provided that the

theory is defined as in Ref. [5], via the analytic continuation to Minkowski-space external

momentum of correlation functions defined in a Euclidean field theory. We will assume that

correlation functions are computed in this way in the discussion that follows.

III. CAUSALITY

Nonlocal theories of the type studied here were known long ago to violate causality [6].

In general, the commutator of fields at space-like separation is expected to be non-vanishing

for theories where F̂ is an entire, transcendental function [16]. We demonstrate this in the

case where m = 0 in the unitary theory discussed in the previous section, a limit in which

we can explicitly evaluate the commutator. We will then turn to scalar theories with similar

nonlocal modifications and consider how acausality affects the time-dependence of scattering

amplitudes, following the general approach of Ref. [19].

13



0

0.005

0.01

0.015

0.02

2 4 6 8 10

i 
C

(ρ
)

| ρ |

η = 1

ρ < 0

FIG. 2: The commutator C(ρ) = 〈0|[φ(x), φ(y)]|0〉, as a function of ρ = (x0 − y0)2 − |~x − ~y|2 at

space-like separation ρ < 0, for m = 0 and η = 1.

A. Commutator

The Feynman-propagator DF (x− y) is identified with the two-point correlation function

〈0|Tφ(x)φ(y)|0〉. If we strictly assume that x0 > y0, then we may write the commutator

〈0|[φ(x), φ(y)]|0〉 = DF (x− y)−DF (x− y)∗ (x0 > y0) . (3.1)

Working with the form of the theory in which the higher-derivative operator appears in the

quadratic terms for φ, it follows immediately that2

DF (x− y) =

∫

d4k

(2π)4
i e−η k

4

k2 −m2 + iǫ
e−ik·(x−y) . (3.2)

Because the factor of e−η k
4

blows up in certain directions in the complex k0 plane, as

indicated earlier, the usual procedure of closing the integration contour in the lower half

plane is not useful; instead we directly evaluate the k0 integral along the real axis, deviating

by small semi-circles below and above the poles at k0 = −E~k and +E~k, respectively. Hence,

we may write DF (x−y) = I2C+IPV , where I2C is the result from the semi-circle integrations

2 Since we work here with the lowest-order propagator, our prescription of starting with a Euclidean corre-

lation function and continuing to Minkowski space in the external momentum simply gives us the usual

momentum-space propagator. All subsequent Fourier transforms are, of course, in Minkowski space.
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while IPV is the remaining principal value integral. The latter can be reduced to a one-

dimensional integral in the case m = 0, which we can numerically evaluate. We find

I2C =
1

4π2|~r|

∫ ∞

0

dk sin(k |~r|) cos(k r0) , (3.3)

where we define r = x − y and k = |~k|. The remaining principal value integral is identical

to one considered in the computation of the retarded propagator for this theory in Ref. [6],

and is given by

IPV =
−i
π3

∂

∂ρ

[

sign(ρ)

∫ ∞

0

dy

y
exp(−ηy4/ρ2)

[

K0(y) +
π

2
Y0(y)

]

]

. (3.4)

where ρ = r0
2 − |~r|2. Restricting to the case where r0 < |~r|, it follows from Eqs. (3.1) and

(3.4) that

〈0|[φ(x), φ(y)]|0〉 = 4 i η

π3ρ3

∫ ∞

0

dy y3 exp(−η y4/ρ2)
[

K0(y) +
π

2
Y0(y)

]

, (0 < r0 < |~r|) ,
(3.5)

where K0 and Y0 are Bessel functions. Eq. (3.5) is nonvanishing, as is shown in Fig. 2. We

do not consider the case m 6= 0, since the necessary two-dimensional numerical integration

is much more tedious but no more illuminating.

One might wonder how this calculation of the commutator relates to a similar calculation

in the formulation of the theory where the nonlocality appears only in the interaction terms,

Eq. (2.7). The unstated assumption is that the theory presented in this form results from

a field redefinition starting with the theory in which only the quadratic terms are modified,

Eq. (2.6). With nonlocal interactions arising in this way, operators that correspond to

observables are built out of the “smeared” fields, F̂ 1/2φ(x), and it is the commutator of

these objects that is the physically relevant quantity to evaluate at space-like separation.

This gives precisely the same integral to evaluate as in Eq. (3.2), with a different origin for

the momentum dependence in the numerator.

B. Acausal Vertex Ordering

The question we now wish to address is how acausality manifests itself in the time-

dependence of scattering processes. We allow ourselves to stray from the O(N) model in

this subsection to consider theories of a single real scalar field with the same modification of
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their quadratic terms as Eq. (2.6), but with different interaction terms. This will allow us

to illustrate the effects of interest most clearly; the generalization to the O(N) model that

we previously considered will be clear by analogy. We consider two examples, following the

general approach of Ref. [19]:

Particle Production by a Source. Consider a local theory of a real scalar field which

includes a coupling to a classical source,

Lint = φ(x)j(x) , (3.6)

where Lint is the interaction Lagrangian. We wish to study 〈ψout|Ω〉, the amplitude for the

source to create an outgoing wave-packet state from the vacuum, where

|ψout〉 =
∫

d4x′g(x′ − y′)φ(x′) |Ω〉 . (3.7)

Here we follow the convections of Ref. [19] where primed coordinates correspond to “out”

states. The function g(x′) is chosen so that the outgoing wave packet is localized about the

space-time point y′ at some time long after the source is turned off, and its four-momentum

is localized about p′. By the choice of this function, we can determine the position of the

wave-packet at any earlier time when the source is turned on. For a source localized within

a small region about the spacetime origin, we first show that the amplitude vanishes if the

wave-packet’s trajectory extrapolates back to the origin at a time substantially earlier than

t = 0, as one would expect for a causal process. We then consider how this conclusion

changes given the chosen nonlocal modification of this theory.

The amplitude 〈ψout|Ω〉 may be written

〈ψout|Ω〉 =

∫

d4x′g∗(x′ − y′)〈Ω|φ(x′)|Ω〉

= i

∫

d4y j(y)

∫

d4p

(2π)4
i

p2 −m2 + iǫ
g̃(p)∗ e−ip·(y

′−y)

≡ i

∫

d4y j(y) I(y′ − y) , (3.8)

where g̃(p) is the Fourier transform g̃(p) =
∫

d4x g(x) eip·x. As we discussed earlier, all

momentum-space correlation functions are defined via analytic continuation from a Eu-

clidean theory; all subsequent calculations, including Fourier transforms, are then performed

in Minkowski space. The integral I(y′−y) can be re-expressed using a Schwinger parameter,

I(∆y) =
1

~

∫ ∞

0

ds

∫

d4p

(2π)4
eis(p

2−m2+iǫ)/~ g̃(p)∗ e−ip·∆y/~ , (3.9)
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where ∆y ≡ y′ − y, and we have temporarily restored the ~ dependence. As in Ref. [19],

if the relevant distance scales (in this case ∆y) are large compared to all characteristic

inverse masses and inverse momenta, then we are justified in using the stationary phase

approximation, since this limit is equivalent to taking ~ → 0 in Eq. (3.9). Evaluating the

d4p integral in this way (and resuming our convention that ~ = 1) yields

I(∆y) =
i

16π2

∫ ∞

0

ds
1

s2
g̃(
∆y

2s
)∗ e−i[∆y

2/(4s)+sm2] . (3.10)

By evaluating the ds integral in the same way one finds

I(∆y) =

√
i

4
√
2π3/2

m1/2

(∆y2)3/4
g̃(m

∆y
√

∆y2
)∗e−im

√
∆y2 , (3.11)

leading finally to

〈ψout|Ω〉 =
1

2

(

i

2π

)3/2 ∫

d4y
m1/2

[(y′ − y)2]3/4
j(y) g̃

(

m
y′ − y

√

(y′ − y)2

)∗

e−im
√

(y′−y)2 . (3.12)

By construction, the function g̃ only has support in the region where

m
(y′ − y)
√

(y′ − y)2
≈ p′ , (3.13)

which limits the possible values of y that contribute to the integral. Let us assume a g̃ in

which ~y ≈ 0 for some y0 ≪ 0. If j(y) is strongly localized about the spacetime origin, for

example a delta function source j(y) ∝ δ(4)(y), the integral in Eq. (3.12) vanishes. The

“production vertex” for the outgoing wave packet, which is identified spatially with the

origin, cannot occur before the time at which the source excites the system.

The conclusion is different if we introduce a nonlocal coupling to the source following our

earlier prescription

Lint = [F̂ 1/2φ(x)]j(x) . (3.14)

This case is simple to understand since we can integrate by parts, and recover a theory of

the original form, but with a “smeared” source,

j(y)s = F̂ 1/2j(y) =

∫

d4x ǫ(y − x) j(x) where ǫ(y − x) =

∫

d4k

(2π)4
e−η k

4/2 eik·(y−x) .

(3.15)

Assuming the example where j(y) = c0 δ
(4)(y), where c0 is a coupling, consider the time-

dependence of j(y)s near the spatial origin

j(y0, ~y = 0)s =
c0
2π3

∫ ∞

0

dk0
∫ ∞

0

dk k2 exp[−η (k02 − k2)2/2] cos(k0y0)

=
c0

8
√
2π3

∫ ∞

0

dk0 k0
3
e−η k0

4/4 cos[k0y0]
[

K1/4(k
04)−K3/4(k

04)
]

, (3.16)
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FIG. 3: Time-dependence of the smeared source function at the origin j(t)s ≡ j(y0 = t, ~y = ~0)s for

η = 1 and c0 = 1.

where Ki is a Bessel function of the second kind, of order i. Unlike the original j(x), this

function is no longer localized in time at t = 0. The second line of Eq. (3.16) can be

evaluated numerically and the results are shown in Fig. 3. This result implies that there is a

common region with y0 ≪ 0 and ~y ≈ ~0 where the functions j and g̃ in Eq. (3.12) both have

support; the overlap 〈ψout|Ω〉 is therefore generally nonvanishing. One concludes that there

is a non-vanishing probability that the wave packet appears to emerge from the position of

a spatially localized source at a time before the system has been excited by the source.

Two-into-two scattering. The previous example is perhaps the simplest illustration of

how the smearing of interaction positions can lead to the apparent acausal ordering of

scattering events. In the more phenomenologically relevant case of two-into-two scattering,

similar results can be obtained. We use the term “apparent” since the spacetime positions

of the production and the subsequent decay of a resonance, for example, are inferred from

the wave packet positions and momenta long before and after the interaction has occurred.

Nothing meaningful can be said about the system directly at intermediate times, since no

measurements are made during this period. We now consider how the wave-packet analysis of

two-into-two scattering discussed in the context of Lee-Wick theories in Ref. [19] is modified

in the present context.
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We consider the same free theory of a real scalar field φ, and introduce couplings to

two additional real scalar fields ψ and χ, that would otherwise have no higher-derivative

couplings. In this case we assume

Lint =
1

2
gχ(F̂

1/2φ)χ2 +
1

2
gψ(F̂

1/2φ)ψ2 , (3.17)

Again, this is consistent with the assumption that we start with a theory in which the

higher-derivative operators appear in the φ quadratic terms only, and that these terms have

been subsequently put in canonical form by a field redefinition. We do not consider doing

the same for the ψ and χ fields to simplify the analysis; there is no reason to expect that this

choice will affect our conclusions qualitatively. We consider the scattering process χχ→ ψψ.

Setting the problem up in the way that we have is convenient since the nonlocality affects

the propagator but not the external lines, which allows us to immediately carry over most

of the wave-packet analysis of Ref. [19] without modification. Let us briefly recapitulate the

key steps in this approach.

We assume incoming and outgoing wavepacket states given by

|ψin〉 =
∫

d4x1d
4x2f1(x1 − y1)f2(x2 − y2)φ(x1)φ(x2)|Ω〉 , (3.18)

|ψout〉 =
∫

d4x′1d
4x′2g1(x

′
1 − y′1)g2(x

′
2 − y′2)φ(x

′
1)φ(x

′
2)|Ω〉 , (3.19)

where the functions fi and gi define the wavepackets. These are chosen so that in the process

of interest, we can specify well-defined production and decay vertices for the resonance, in

this case associated with the field φ, exchanged in the s-channel. To be more explicit, the

functions fi are chosen so that the initial wavepackets are localized about the space-like

separated points y1 and y2, respectively, and have momenta peaked at p1 = mχv1 and

p2 = mχv2. A production vertex can be defined at point z0, where

z0 − y1
τ1

= v1 and
z0 − y2
τ2

= v2 , (3.20)

with τ 2i ≡ (z0 − yi)
2. Similarly, the functions gi are chosen so that the final wavepackets are

localized about the space-like separated points y′1 and y′2, respectively, and have momenta

peaked at p′1 = mψv
′
1 and p′2 = mψv

′
2. A decay vertex can be defined at point z′0 where

y′1 − z′0
τ ′1

= v′1 and
y′2 − z′0
τ ′2

= v′2 , (3.21)
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with τ ′2i ≡ (y′i − z′0)
2. Defining wµ ≡ z′µ0 − zµ0 , the authors of Ref. [19] determined how the

amplitude 〈ψout|ψin〉 depends on w0 and showed in Lee-Wick theories that the amplitude is

non-vanishing for an acausal ordering of the vertices. The key intermediate steps are these:

the amplitude of interest can be written in the form

〈ψout|ψin〉 =
∫

d4q

(2π)4
F̃ (q)G̃(q)Γ(4)

s (q2) , (3.22)

where Γ
(4)
s (q2) is the momentum-space four-point function for the s-channel process of in-

terest, with propagators truncated from the external lines, and

F̃ (q) =

∫

d4z eiz·q I1(z)I2(z) with (3.23)

Ii(z) =

∫

d4ki
(2π)4

eiki·(yi−z)f̃i(ki)
i

k2i −m2 + iǫ
, (3.24)

where f̃i(k) are the Fourier transforms of the incoming wave packet functions. We do not

display the analogous expressions forG(q), corresponding to the outgoing wave packet states.

In the same limit described in our earlier example involving a classical source, the momentum

and z integrals in Eq. (3.24) can be evaluated in the stationary phase approximation, leading

to a result of the form

〈ψout|ψin〉 ≃
∫

d4q

(2π)4
e−iq·(z

′

0
−z0) F̂ (q) Ĝ(q) Γ(4)

s (q2) , (3.25)

where the functions F̂ and Ĝ have localized support at q ≈ p1 + p2 and q ≈ p′1 + p′2,

respectively. We study the nonlocal theory of interest using Eq. (3.25) as the starting point.

Hence, from Eq. (3.17) it follows that

〈ψout|ψin〉 =
∫

d4q

(2π)4
e−iq·w

[

−i gχ gψ e−η q
4

q2 −m2
φ + imΓ

]

F̂ (q) Ĝ(q) , (3.26)

where Γ is the φ decay width. Defining the Fourier transform

ǫ′(x) =

∫

d4q

(2π)4
e−η q

4

eiq·x , (3.27)

the amplitude can be written as

〈ψout|ψin〉 =
∫

d4x ǫ(x− w)I(x) , (3.28)

where

I(x) =

√
igφgχ
8π3/2

m
1/2
φ

(
√
x2)3/2

e−imφ

√
x2 e−Γ

√
x2/2F̂ (mφ

x√
x2

) Ĝ(mφ
x√
x2

) . (3.29)

20



As in the case of the “ordinary resonance” discussed in Ref. [19], as well as in our previous

example, I(x) is derived by exponentiating the propagator denominator using a Schwinger

parameter and then integrating using the stationary phase approximation. Note that we

cannot apply this approximation to Eq. (3.26) directly since we require that the nonlocal

length scale η1/4 to be comparable to the vertex separation; one cannot then assume that

the real exponential prefactor is a slowly varying function of the momentum relative to the

complex phase factor. Eq. (3.29) coincides with the ordinary resonance result when η = 0,

in which case ǫ′ becomes a four-dimensional delta function. In that limit, the argument of

Ref. [19] is the following: in the center-of-mass frame, F̂ and Ĝ only have support where

x0 = w0 > 0 and ~x = ~w ≈ 0. Hence the amplitude is only nonvanishing for the causal

ordering of the production and decay vertices. (In the Lee-Wick case, the result is the

opposite.) Making the same assumptions here, one concludes only that x0 must be greater

than zero; the amplitude may be nonvanishing, for example, when w0 < 0 and ~w = 0, since

ǫ′(x − w) is no longer a delta function. This can be verified by noting that the function ǫ′

differs from the function ǫ that we have previously studied by the replacement η → 2η. Since

the x integral is dominated by the region where ~x ≈ 0, we can evaluate ǫ(x−w) for the choice
~x = ~w = 0, where ~w = 0 corresponds to the case in which the production and decay vertices

are spatially coincident. Since ǫ′ is non-vanishing for x0 > 0 and w0 < 0 we conclude that

ǫ′, F̂ and Ĝ have common regions of support, so that Eq. (3.28) is generally non-vanishing.

Hence, there is a non-vanishing amplitude for an acausal ordering of the production and

decay vertices. The effect emerges in a very different way than in the Lee-Wick theories 3.

In that case, a crucial sign flip in the propagator of the Lee-Wick resonance leads to a

change from w0 to −w0 in comparison to the ordinary resonance case. The sign flip affects

the sign of the width appearing in one of the exponential factors in the amplitude, leading

to the interpretation that the exponential decay is happening as the Lee-Wick resonance

propagates backward in time from the decay to production vertex. Here, however, the

form of I(x) corresponds to propagation forward in time over the time-like interval x. The

nonlocality in the theory leads to a spatial smearing of the interaction points so that one

no longer identifies x with the physical spacetime separation of the extrapolated decay and

3 I refer here to Lee-Wick theories of the type described earlier, for example, in Ref. [2]. Other variants

exist in which the acausality may be more analogous to nonlocal theories. See Ref. [27].
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production vertices.

IV. CONCLUSIONS

We have considered unitarity and causality in a theory where quadratic terms are modi-

fied by higher-derivative terms of infinite order, chosen so as not to induce additional poles

in the propagator at tree level. We have studied unitarity at leading order in the large N

limit of the scalar O(N) model for Euclidean and Minkowski space formulations of the the-

ory. We have verified that a unitary theory is obtained from Euclidean correlation functions

that are analytically continued in their external momenta to Minkowski space, but not when

correlation functions are formulated in Minkowski space directly. In the same theory, we

verified the non-vanishing of field commutators at space-like separation by an explicit cal-

culation. We then studied the time-dependence of scattering amplitudes in similar theories

using a wave-packet approach employed by others [19] in studying Lee-Wick theories. We

found that the apparent acausal ordering of decay and production vertices of resonances

was a common feature in these theories. Unlike Lee-Wick theories, this effect would be

present in tree-level resonant exchanges for all the states in the theory that are subject to

modified quadratic terms and would make solutions to the hierarchy problem based on this

idea phenomenologically distinct from others that have been proposed.
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Appendix A: Schwartz Reflection

In the text, we computed the imaginary part of Σ(p0) directly. If one instead were to

compute the discontinuity about the cut along the real axis using the usual Cutkosky cutting

rules, one would obtain a unitary theory only if the relation between the discontinuity and

the imaginary part were determined by Σ(p0) = Σ(p0∗)∗. This property is called the Schwartz

reflection principle. Our numerical results in Sec. IIB suggest that there is no interval along
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FIG. 4: Contours discussed in the Appendix for studying the reality properties of Σ(p0) for real

p0 < 2m and ~p = 0. The contour for IC terminates on the I1 line.

the real p0 axis where this relation is valid. In this appendix, we show that the condition

that Σ(p0) = Σ(p0∗)∗ is identical to the requirement that the relevant k0 loop integral about

a contour at large radius in the complex plane vanishes identically, which is not the case in

the theory defined in Minkowski space.

To illustrate this, consider real p0 < 2m with ~p = 0. Let

I(p0) = − i

2

∫

d3k

(2π)3

∫

dk0

(2π)

B(k0, ~k)
[

(k0 − p0/2)2 − E2
~k

] [

(k0 + p0/2)2 −E2
~k

] , (A1)

where B(k0, ~k) represents the numerator factor in Eq. (2.9). For real p0 < 2m, the usual

Feynman prescription calls for going below the poles at k0 = ±p0/2 − E~k (both in the left

half-plane) and above those at k0 = ±p0/2 + E~k (both in the right half-plane). We achieve

this by evaluating the integral along a contour defined by k0 = ρ ei ǫ, for a real integration

variable ρ, and then taking the limit as ǫ approaches zero. Hence, the integral labelled I1 in

Fig. 4 is identical to the function Σ(p0) discussed earlier. On the other hand, Σ(p0∗)∗ (again

assuming real p0) corresponds to the same integral evaluated along the path k0 = ρ e−i ǫ, but

in the opposite direction due an additional overall minus sign from complex conjugation.

This is the integral I2 shown in the figure.

Integration along either of the the two arcs at large radius shown in Fig. 4 is identically

zero, since the function B is damped as one approaches the real axis, even when the nonlo-

cality parameter η is nonzero. Let us denote the residues of the four poles shown in Fig. 4

by Ri for i = 1 . . . 4 going from left to right. Considering the two closed, wedge-shaped loops
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shown in the figure, it follows from the residue theorem that

I1 + I2 = 2πi (R1 +R2 −R3 − R4) . (A2)

However, using the fact that the function B is even in k0, one may compute the residues

directly and confirm that R1 = −R4 and R2 = −R3. Hence,

I1 + I2 = −4πi (R3 +R4) . (A3)

Next, consider the semi-circular contour in the lower-half plane that terminates on the I1

contour. Clearly, I1 + IC = −2πi (R3 + R4). Combining this with Eq. (A3) it follows that

I1 + I2 = 2(I1 + IC), or using our previous identification:

Σ(p0) + 2 IC(p
0) = Σ(p0∗)∗ . (A4)

In the case where B = 1, the integrand of Eq. (A1) drops off in all directions in the complex

k0 plane. Hence, IC = 0, and the relation Σ(p0) = Σ(p0∗)∗ is obtained; it can then be

analytically continued to complex p0 to relate the discontinuity to the imaginary part. In

the theory studied in Sec. IIB, there is no general reason to expect that IC is nonvanishing

(the integrand grows in certain directions in the complex plane) and it is the same as the

integral IC discussed in that section that was found to be non-zero by direct numerical

evaluation. In this case, it is not justified to analytically continue Σ(p0) = Σ(p0∗)∗ to

determine the relation between the discontinuity and the imaginary part.
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