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We present new (3+1) dimensional numerical relativity simulations of the binary neutron star
(BNS) mergers that take into account the NS spins. We consider different spin configurations,
aligned or antialigned to the orbital angular momentum, for equal and unequal mass BNS and
for two equations of state. All the simulations employ quasiequilibrium circular initial data in
the constant rotational velocity approach, i.e. they are consistent with Einstein equations and in
hydrodynamical equilibrium. We study the NS rotation effect on the energetics, the gravitational
waves (GWs) and on the possible electromagnetic (EM) emission associated to dynamical mass
ejecta. For dimensionless spin magnitudes of χ ∼ 0.1 we find that both spin-orbit interactions
and spin-induced–quadrupole deformations affect the late-inspiral–merger dynamics. The latter is,
however, dominated by finite-size effects. Spin (tidal) effects contribute to GW phase differences
up to ∼ 5 (20) radians accumulated during the last eight orbits to merger. Similarly, after merger
the collapse time of the remnant and the GW spectrogram are affected by the NSs rotation. Spin
effects in dynamical ejecta are clearly observed in unequal mass systems in which mass ejection
originates from the tidal tail of the companion. Consequently kilonovae and other EM counterparts
are affected by spins. We find that spin aligned to the orbital angular momentum leads to brighter
EM counterparts than antialigned spin with luminosities up to a factor of two higher.

PACS numbers: 04.25.D-, 04.30.Db, 95.30.Lz, 97.60.Jd

I. INTRODUCTION

With the detection of the first gravitational wave
(GW) signals GW150914 [1] and GW151226 [2] the era of
GW astronomy has begun. Beside black hole binaries, bi-
nary neutron stars (BNS) are one of the expected sources
for future detections with the advanced GW interferom-
eters [3]. The theoretical modeling of the GW signal is
crucial to support future GW astronomy observation of
BNS. BNS mergers are also expected to be bright in the
electromagnetic (EM) spectrum. Possible EM counter-
parts of the GW signal are short gamma-ray bursts [4–6],
kilonovae [7–10] (also referred to as macronovae) and ra-
dio flares [11]. Detailed models of EM counterparts will
help the development of multimessenger astronomy.

Modeling BNS mergers requires to cover the entire pa-
rameter space of BNSs, including the stars’ rotational
(spin) effects. Although observations suggest that most
neutron stars (NSs) in binary systems have comparable
individual masses ∼ 1.35M� and relatively small spins
[12, 13], this conclusion might be biased by the small
number of observed BNS. The BNS parameter space
could be much richer, in particular population synthe-
sis models predict a wider range of masses and mass ra-
tios [14, 15]. Recent observations of compact binary sys-
tems with mass ratios of q ≈ 1.3 suggest that BNSs with
a significant mass asymmetry can exist [16, 17]. As far
as spins are concerned, pulsar data indicate that NS can
have a significant rotation even in binary systems. Some
of these NS in binaries approach the rotational frequency

of isolated milli-second pulsars.

For example, the NS in the binary system PSR
J1807−2500B has a rotation frequency of 239Hz [13, 18],
so far it is unclear whether its companion is a light NS
or a massive white dwarf, and one of the double pulsar
components (PSR J0737−3039A) has rotational a fre-
quency of 44Hz [19]. There is also evidence that dynami-
cal capture and exchange interactions involving NSs are a
frequent occurrence in globular clusters [20]; during this
process exotic objects, such as double millisecond pulsars
might form [21].

The only possibility to study the dynamics and wave-
forms in the time period shortly before and after the
merger of BNS systems is to perform numerical relativ-
ity (NR) simulations that include general relativistic hy-
drodynamics (GRHD). Despite the large progress of the
field during the last 10 years, spin effects in BNS merg-
ers have been investigated in few works. A main rea-
son was the lack of consistent and realistic initial data
for the simulations, a crucial prerequisite for NR evo-
lutions. General-relativistic quasi-equilibrium configura-
tions of rotating NSs of circular binary system can be now
computed within the constant rotational velocity (CRV)
approach [22, 23]. These data are neither corotational
nor irrotational, and permit, for the first time, the NR-
GW modeling of realistic BNS sources with spins. (See
Sec. I of [24] for a discussion). Alternative NR evolutions
of spinning BNS were presented in [25–27] employing con-
straint violating initial data, and in [28–30] employing
constraint satisfying data which however do not fulfill-
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ing the equations for hydrodynamical equilibrium. Spin-
ning BNS were also considered with a smooth particle
hydrodynamics code under the assumption of conformal
flatness, e.g. [31].

Evolutions of CRV initial data have been considered
in [15, 24, 32]. We have presented the first evolutions cov-
ering the last 3 orbits and postmerger for a BNS systems
described by polytropic equations of state [24]. That
work proposed an analysis of the conservative dynamics
in terms of gauge-invariant curves of the binding energy
vs. angular momentum and a very preliminary analysis
of the spin effects on the waveform. In [15] we have made
significant improvements in the way we construct CRV
initial data, which allows us to investigate BNS merg-
ers in an extended parameter space, and presented pre-
liminary evolutions of generic mergers (i.e. with preces-
sion). Ref. [32] presented an independent implementation
of CRV initial data and preliminary evolutions, but did
not cover the final merger and postmerger phases.

Several important questions remain open. A detailed
understanding of the role of spin interactions will be fun-
damental for building analytical models of the inspiral–
merger phase. Thus, it is important to further explore
the BNS dynamics with long simulations and spanning a
larger parameter space than previously considered. The
influence of the NS spins on the GW phase evolution dur-
ing the last orbits and up to merger is not fully under-
stood but is very relevant for GW data analysis [33, 34].
Understanding the spin influence on the merger remnant
might be relevant for both GW and EM observations.
Also, the role of the NSs rotation on the dynamical ejecta
and on the EM counterparts has not been explored.

In this article, we investigate rotational (spin) effects
in multi-orbit BNS merger simulations with different
mass-ratio and propose the first answers to the questions
above. Our simulations cover ∼ 12 orbits to merger and
postmerger for mass ratios q = 1, 1.25, 1.5, two differ-
ent equations of state (EOSs), and spin aligned or anti-
aligned to the orbital angular momentum. These simu-
lations are the first of their kind, and will support the
development of analytical models of the GWs and of the
EM emission from merger events. This paper extends the
results of Ref. [35] (hereafter Paper I) that was limited
to irrotational configurations and focused on the effect of
the mass ratio. Our goal is to cover a significant part of
the BNS parameter space.

The article is structured as follows: In Sec. II, we de-
scribe briefly the numerical methods and some analysis
tools. In Sec. III we present the configurations employed
in this work. Section IV summarizes the dynamics of the
merger process, where the spin evolution of the individ-
ual stars and the energetics during the inspiral and post-
merger are discussed. In Sec. V-VII dynamical ejecta,
the GW signal, and possible electromagnetic (EM) coun-
terparts are studied. We conclude in Sec. VIII.

Throughout this work we use geometric units, setting
c = G = M� = 1, though we will sometimes include
M� explicitly or quote values in cgs units for better un-

derstanding and astrophysical interpretation. Spatial in-
dices are denoted by Latin letters running from 1 to 3
and Greek letters are used for spacetime indices running
from 0 to 3.

II. SIMULATION METHODS

A. Initial configurations

Our initial configurations are constructed with the
pseudospectral SGRID code [15, 36–38]. We use the con-
formal thin sandwich equations [39–41] together with the
CRV approach [22, 23] to solve the constraint equations.
We construct quasi-equilibrium configuration in quasi-
circular orbits, assuming a helical Killing vector. We
follow exactly the same setup as in Paper I to which we
refer for more details.

In order to construct BNS with different spins the ap-
proach of [15, 38] is adopted. The CRV method does not
allow to prescribe the spin (or the dimensionless spin)
directly; only the rotational part of the four-velocity can
be specified as free data. We use Eq. (C3) of Ref. [15] to
obtain an estimate for the four-velocity corresponding to
a given dimensionless spin of χ = 0.1, which corresponds
to a rotational period of 4ms up to 8ms depending on the
EOS and mass of the individual star. Once the rotational
velocity is fixed, we compute a single NS with the same
baryonic mass as the one in the binary and measure its
ADM angular momentum. This gives the dimensionless
spin of one component of the binary. The procedure is
repeated for the other component.

For binary configurations in quasi-equilibrium, the de-
scribed procedure gives consistent results between the
ADM angular momentum of the spinning and irrota-
tional BNS. In particular the difference between the
JADM of the spinning and irrotational BNS is consistent
with the sum of the spin estimates, ∆JADM ∼ (SA+SB),
up to 10−2; fractional errors are always . 0.3%. Those
small differences might also be caused by small differ-
ences in the initial orbital frequency.

The properties of the initial BNS configuration are
summarized in Tab. I, and discussed in more detail in
Sec. III.

B. Evolutions

Dynamical simulations are performed with the BAM
code [42–44], employing the Z4c scheme [45, 46] and the
1+log and gamma-driver conditions for the gauge sys-
tem [47–49]. The GRHD equations are solved in conser-
vative form by defining Eulerian conservative variables
from the rest-mass density ρ, pressure p, internal en-
ergy ε, and 3-velocity vi with a high-resolution-shock-
capturing method [42] based on primitive reconstruction
and the Local-Lax-Friedrichs central scheme for the nu-
merical fluxes. The primitive reconstruction is performed
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TABLE I. BNS configurations. The first column defines the configuration name. Next 9 columns describe the physical properties
of the single stars: the EOS, the gravitational masses of the individual stars MA,B , the baryonic masses of the individual stars
MA,B
b , the stars’ spins SA,B , and dimensionless spins χA,B . The last 5 columns define the tidal coupling constant κT2 , the

mass-weighted spin χmw, the initial GW frequency Mω0
22, the ADM-Mass MADM, and the ADM-angular momentum JADM.

Name EOS MA MB MA
b MB

b SA SB χA χB κT2 χmw Mω0
22 MADM JADM

q
=

1
.0

0 ALF2-137137(00) ALF2 1.375008 1.375008 1.518152 1.518152 0.0000 0.0000 0.000 0.000 125 0.000 0.0360 2.728344 8.1200

ALF2-137137(↑↑) ALF2 1.375516 1.375516 1.518152 1.518152 0.1936 0.1936 0.102 0.102 125 0.102 0.0360 2.729319 8.4811

ALF2-137137(↑↓) ALF2 1.375516 1.375516 1.518152 1.518152 0.1936 -0.1936 0.102 -0.102 125 0.000 0.0360 2.729333 8.1240

ALF2-137137(↑0) ALF2 1.375516 1.375008 1.518152 1.518152 0.0000 0.1936 0.102 0.000 125 0.051 0.0360 2.728816 8.2997

q
=

1
.0

0 H4-137137(00) H4 1.375006 1.375006 1.498528 1.498528 0.0000 0.0000 0.000 0.000 188 0.000 0.0348 2.728211 8.0934

H4-137137(↑↑) H4 1.375440 1.375440 1.498528 1.498528 0.1892 0.1892 0.100 0.100 188 0.100 0.0348 2.729056 8.4508

H4-137137(↑↓) H4 1.375440 1.375440 1.498528 1.498528 0.1892 -0.1892 0.100 -0.100 188 0.000 0.0349 2.729067 8.0983

H4-137137(↑0) H4 1.375440 1.375006 1.498528 1.498528 0.1892 0.000 0.100 0.000 188 0.050 0.0348 2.728643 8.2711

q
=

1
.2

5 ALF2-122153(00) ALF2 1.527790 1.222231 1.707041 1.334040 0.0000 0.0000 0.000 0.000 127 0.000 0.0357 2.728212 7.9556

ALF2-122153(↑↑) ALF2 1.528484 1.222602 1.707041 1.334040 0.2430 0.1521 0.104 0.102 127 0.103 0.0357 2.729255 8.3300

ALF2-122153(↑↓) ALF2 1.528484 1.222602 1.707041 1.334040 0.2430 -0.1521 0.104 -0.102 127 0.013 0.0358 2.729256 8.0479

ALF2-122153(↑0) ALF2 1.528484 1.222231 1.707041 1.334040 0.2430 0.0000 0.104 0.000 127 0.058 0.0357 2.728907 8.1895

q
=

1
.2

5 H4-122153(00) H4 1.527789 1.222228 1.683352 1.318080 0.0000 0.0000 0.000 0.000 193 0.000 0.0349 2.728675 8.0248

H4-122153(↑↑) H4 1.528365 1.222546 1.683352 1.318080 0.2329 0.1499 0.100 0.100 193 0.100 0.0349 2.729567 8.3899

H4-122153(↑↓) H4 1.528365 1.222546 1.683352 1.318080 0.2329 -0.1499 0.100 -0.100 193 0.011 0.0349 2.729585 8.1135

H4-122153(↑0) H4 1.528365 1.222228 1.683352 1.318080 0.2329 0.0000 0.100 0.00 193 0.056 0.0349 2.729250 8.2491

q
=

1
.5

0 ALF2-110165(00) ALF2 1.650015 1.100016 1.862057 1.189870 0.0000 0.0000 0.000 0.000 133 0.000 0.0356 2.728542 7.6852

ALF2-110165(↑↑) ALF2 1.650924 1.100296 1.862057 1.189870 0.2919 0.1223 0.107 0.101 133 0.105 0.0355 2.729669 8.0732

ALF2-110165(↑↓) ALF2 1.650924 1.100296 1.862057 1.189870 0.2919 -0.1223 0.107 -0.101 133 0.024 0.0355 2.729677 7.8475

ALF2-110165(↑0) ALF2 1.650924 1.100016 1.862057 1.189870 0.2919 0.0000 0.107 0.000 133 0.064 0.0355 2.729404 7.9599

q
=

1
.5

0 H4-110165(00) H4 1.650017 1.100006 1.834799 1.176579 0.0000 0.0000 0.000 0.000 209 0.000 0.0350 2.729385 7.81991

H4-110165(↑↑) H4 1.650752 1.100242 1.834799 1.176579 0.2745 0.1204 0.101 0.099 209 0.100 0.0350 2.730283 8.18713

H4-110165(↑↓) H4 1.650752 1.100242 1.834799 1.176579 0.2745 0.1204 0.101 -0.099 209 0.021 0.0350 2.730267 7.96085

H4-110165(↑0) H4 1.650752 1.100006 1.834799 1.176579 0.2745 0.0000 0.101 0.000 209 0.061 0.0350 2.730050 8.07357

with the 5th order WENOZ scheme of [50]. The GRHD
system is closed by an EOS. We work with two EOSs
modeled as piecewise polytropic fits [35, 51] and include
thermal effects with an additive pressure contribution
pth = (Γth−1)ρε [52, 53] setting Γth = 1.75. The Berger-
Oliger algorithm is employed for the time stepping [54]
and we make use of an additional refluxing algorithm to
enforce mass conservation across mesh refinement bound-
aries [55, 56] as in previous works [35, 44, 57]. Restriction
and prolongation between the refinement levels is per-
formed with an average scheme and 2nd order essentially
non-oscillatory scheme, respectively.

We employ the same grid setup as the “shell” setup
in Paper I, i.e. the numerical domain is made of a hier-
archy of cell-centered nested Cartesian grids, where the
outermost level is substituted by a multipatch (cubed-
sphere) grid [46, 58–60]. In total we have used 4 different
grid setups summarized in Tab. II.

Considering that this article focuses on the spin effects
in BNS mergers, we want to point out that the overall
angular momentum for the employed resolution is con-
served better than 0.1%. We further refer to Appendix
A of Paper I for accuracy measures considering our nu-

TABLE II. Grid configuration: name, EOS, finest grid spac-
ing hL−1, radial resolution inside the shells hr, number of
points n (nmv) in the fixed (moving) levels, radial point num-
ber nr and azimuthal number of points nθ in the shells, in-
radius up to which GRHD equations are solved r1, and the
outer boundary rb.

Name EOS hL−1 hr n nmv nr nθ r1 rb

R1 ALF2 0.250 8.00 128 64 128 64 572 1564

R2 ALF2 0.167 5.33 192 96 192 96 552 1555

R1 H4 0.250 8.00 128 72 128 64 572 1564

R2 H4 0.167 5.33 192 108 192 96 552 1555

merical simulations.

C. Simulation analysis

Most of our analysis tools were summarized in Sec. III
of Paper I. They include the computation of the ejecta
quantities, the disk masses, the entropy indicator, the
amount of mass transfer during the inspiral, and the way



4

we extract GWs. Here, we extend the analysis tools by
including a quasi-local measure of the spin of the NSs.
Following a similar approach as in Refs. [32], we evaluate
the surface integral

Si ≈ 1

8π

∫
rs

d2x
√
γ
(
γkjKlk − δjlK

)
njϕ

li, (1)

on coordinate spheres with radius rS around the NSs.
ϕli = εlikxk defines the approximate rotational Killing
vectors in Cartesian coordinates (ϕl1, ϕl2, ϕl3), Kij de-
notes the extrinsic curvature, γij the inverse 3-metric,
and ni = (xi − xNS

i )/r the normal vector with respect
to the center of the NS. The center is given by the min-
imum of the lapse inside the NS1. Differently from [32]
we do not determine the center of the coordinate sphere
by the maximum density and we do not use comoving
coordinates in our simulations.

Let us discuss the interpretation of Equation (1). For
equilibrium rotating NS spacetimes, Eq. (1) in the limit
rS →∞ reproduces the ADM angular momentum of the
(isolated) NS, see Appendix A. In dynamical BNS evo-
lutions, Eq. (1) allows us to measure the spin evolution
and spin direction. We stress that, in the BNS case, the
spin measure has some caveats: (i) no unambiguous spin
definition of a single object inside a binary system ex-
ists in general relativity; (ii) Eq. (1) is evaluated in the
strong-field region although it is only well defined at spa-
tial infinity; (iii) the rS spheres are gauge dependent.

III. BNS CONFIGURATIONS

We consider BNS configurations with fixed total mass
of M = MA + MB = 2.75M�, and vary EOS, mass-
ratio, and the spins. The spins are always aligned or an-
tialigned to the orbital angular momentum. The EOSs
are ALF2 and H4; both support masses of isolated NSs
above 2M� and are compatible with current astrophysi-
cal constraints. We vary the mass ratio,

q :=
MA

MB
≥ 1 , (2)

spanning the values q = (1.0, 1.25, 1.5). For every EOS
and q, we consider four different spin configurations:

(00) none of the stars is spinning;

(↑↑) both spins are aligned with the orbital momentum;

(↑↓) the spin of star A is aligned, the other star spin is
anti-aligned;

1 While this paper has been written also [61] implemented the
exactly same method as proposed here to measure the spin of
the single NSs during BNS inspirals. Both implementations have
been compared and give similar results.

(↑ 0) the spin of star A is aligned to the orbital angular
momentum and the other NS is considered to be
irrotational,

where the dimensionless spin magnitude

χ :=
S

M2
(3)

of each star is either χ = 0 or χ ∼ 0.1. The properties of
the considered BNSs are summarized in Tab. I.

A BNS configuration is determined by its EOS, individ-
ual masses (or mass ratio), and the two spins. Focusing
on the GWs, we parametrize this configuration space as
follows. Spin effects are described by the mass-weighted
spin combination,

χmw :=
MAχA +MBχB

(MA +MB)
, (4)

which is used for phenomenological waveforms models
and during GW searches, e.g. [62, 63]. The mass-
weighted spin is related to the effective spin χφ, which
captures the leading order spin effects of the phase evo-
lution via

χφ = χmw −
38ν

113
(χA + χB) , (5)

with the symmetric mass ratio ν = MAMB/(MA +
MB)2. For the setups presented here χmw ≈ χeff , which
is the reason why we restrict us to the more commonly
used χmw.

Most of the NS structure and EOS information is en-
coded in the tidal polarizability coefficient [64, 65]

κT2 := 2

(
q4

(1 + q)5

kA2
C5
A

+
q

(1 + q)5

kB2
C5
B

)
(6)

that describes at leading order the NSs’ tidal interactions.
κT2 depends on the EOS via the quadrupolar dimension-
less Love number k2 of isolated spherical star configura-
tions, e.g. [66], and the compactness C of the irrotational
stars (defined as the ratio of the gravitational mass in
isolation with the star’s proper circumferential radius).
As a further parameter we choose the mass ratio, since
the dynamics of nonspinning black hole binary is entirely
described by q.

The 3D parametrization (q, χmw, κ
T
2 ) is a (possible)

minimal choice for the description of BNS GWs. The
binary total mass M , in particular, scales trivially in ab-
sence of tides and its dependency in the tidal waveform
is hidden in the κT2 , to leading order. It should be noted,
however, that (q, χmw, κ

T
2 ) are not independent variables

and some degeneracies exists [κT2 and χmw depend on q
for instance]. Furthermore, we note that the intrinsic NS
rotation can also influence tidal effects during the evo-
lution. In this work, we use for consistency (q, χmw, κ

T
2 )

to study the parametric dependency of other quantities
than GWs, like ejecta and EM luminosity.
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FIG. 1. The (q, χmw, κ
T
2 ) parameter space coverage. Differ-

ent colors refer to the EOS ALF2 (orange) and H4 (green).
Different markers correspond to different spin configurations:
circles (00), triangles pointing down (↑↓), triangles pointing
right (↑ 0), and triangles pointing up (↑↑).

The (q, χmw, κ
T
2 ) parameter space coverage of our work

is shown in Fig. 1. In total we are considering 24 BNSs.
The irrotational configurations were already presented
in Paper I, but 36 new simulations were performed for
the scope of this paper. Every configuration is simulated
with two different resolutions R1 and R2, see Tab. II.
This allows us to present error estimates for our results.
While for the GW phase evolution and energetics before
the merger the difference between the two resolutions R1
and R2 can be seen as a conservatively estimated error,
see [67, 68]. The difference between resolution R1 and
R2 is only a rough error estimate after the merger.

IV. DYNAMICS

A. Qualitative discussion

Our simulations span Norb ∼ 10 − 12 orbits (20-24
GW cycles) to merger, the number of orbits increases
(decreases) for spin aligned (antialigned) to the orbital
angular momentum. In this regime, spin effects typically
contribute up to ∆NSpin ∼ ±1 orbits. The spin effect
is comparable to the effect of the EOS variation and of
the mass ratio, ∆NEOS ∼ ∆Nq ∼ ∆NSpin. BNS with
stiffer EOS and/or larger q take fewer orbits to merge for
a fixed initial GW frequency2.

Figure 2 shows the rest-mass density profile inside the
orbital plane for the configurations employing the H4
EOS with resolution R2. The snapshots are taken at the
moment of merger, i.e., at the time where the amplitude
of the GW has its maximum.

2 Recall that for our configurations the H4 EOS is stiffer than the
ALF2 EOS.

Although the initial orbital frequency is almost iden-
tical for all systems with the same mass-ratio and EOS,
cf. Tab. I, the “orbital phase” at the moment of merger
differs due to the spin of the individual stars. In gen-
eral, if a NS has spin aligned to the orbital angular mo-
mentum, the binary dynamics is less bound leading to
a slower phase evolution with respect to the irrotational
case. Contrary, if a NS has anti-aligned spin the binary
is more bound leading to a faster phase evolution and an
earlier moment of merger, i.e. at lower frequencies (see
Sec. VI). This spin-orbit (SO) effect has a solid analyt-
ical basis [69], and was already reported in both BBH
simulations [70] (“orbital hang-up” effect) and in BNS
setups [15, 24–26].

In the BNS configurations with (↑↓) and equal masses
(q = 1) the SO effect is zero at leading order, cf. Eq. (12)
and discussion below. Notably in these cases, the effects
of the spin-spin interactions (SS) are observed in our sim-
ulations. Comparing the irrotational BNS (00) with the
(↑↓) configuration, the latter has a faster phase evolution,
i.e. merges at lower frequencies.

After merger, the simulations are continued for about
∼ 30ms. All the BNS considered in this work form a hy-
permassive neutron star (HMNS). The presence of spin
influences the angular momentum of the remnant HMNS.
Configurations with (↑↑), for example, have additional
angular momentum support and the HMNS has a longer
lifetime. Spin effects influence the HMNS’s rotation law
and its dynamical evolution [see Sec. VI B for a detailed
discussion]. Overall, spin effects are observed in the rem-
nant and ejecta, but better resolved during the early part
of the simulations.

B. Spin Evolution

The evolution of the quasi-local spin computed by
Eq. (1), is shown in Fig. 3 for the representative case H4-
137137(↑↓). We find that, within our uncertainties, the
spins magnitudes remain roughly constant up to the ac-
tual collision of the two stars. When the two stars finally
merge, there is a single surface integral, and Eq. (1) esti-
mates the orbital angular momentum of the merger rem-
nant. Our results are consistent with what was observed
in [32], although the latter do not extend to merger. They
are also consistent with BBH simulations in which spins
remain roughly constant up to the formation of a com-
mon horizon [71–73]. However, comparing with [32] our
results have larger uncertainties, whose origin we discuss
in the following.

Fig. 3 shows that, during the evolution, the spin
magnitude of the NS with spin aligned to the orbital
angular momentum seems to be larger by ∼ 20%
compared to the other. This happens despite the fact
that the rotational velocities (and initial spin values)
are initially of the same magnitude. A similar effect
was shown in [32], but it is more pronounced in our setup.
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FIG. 2. Rest-mass density profile inside the orbital plane for simulations employing the H4 EOS and using the R2 grid setup. The
snapshots represent the moments of merger. The panels refer to (from top to bottom) mass ratios q = 1.00, q = 1.25, q = 1.50
and (from left to right) spin configurations (00), (↑↓), (↑ 0), (↑↑). The rest-mass density ρ is shown on a logarithmic scale from
blue to red. The rest-mass density of unbound material is colored from brown to green. Most material gets ejected from the
tidal tails of the NS inside the orbital plane.

We argue this is caused by the fact that we are using
coordinate spheres in a non comoving coordinate system.
As a result, our setup does not capture accurately the
(approximate) rotational symmetry around each star, the
latter being numerically entangled with the orbital mo-
tion. The spin magnitudes are, consequently, overesti-
mated. For the same reason we observe a drift of the
spin magnitude that increases the closer the merger is.
We believe this effect is partially related to numerical
accuracies. Note finally that for irrotational BNSs we
measure a residual spin S ∼ 10−2. The value is consis-
tent with the accuracy level of the initial data, see also
our results on isolated stars in App. A.

C. Energetics

We now discuss the BNS dynamics at a quantitative
level by considering the gauge invariant curves of the

binding energy vs. orbital angular momentum [75] as
well as the binding energy and angular momentum de-
pendency on the orbital frequency.

The specific binding energy is given by

Eb =
1

ν

[
MADM(t = 0)− Erad

M
− 1

]
, (7)

where Erad is the energy emitted via GWs, as computed
from the simulations (cf. Sec. V of Paper I). The specific
and dimensionless orbital angular momentum is

` =
L(t = 0)− Jrad

νM2
, (8)

where Jrad denotes the angular momentum emitted by
GWs. L is the orbital angular momentum, a quantity
that is not of direct access in our simulations. Thus, we
approximate L(t = 0) by [15, 24]

L(t = 0) = JADM(t = 0)− SA − SB , (9)
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FIG. 3. Quasi-local measurement of the individual spin of
the two NSs for H4-137137(↑↓). The gray dashed dotted lines
in the diagram represent the value computed from the initial
data solver and given in Tab. I. Different colors refer to differ-
ent radii of the coordinate spheres. The increasing quasi-local
spin is most likely caused by the choice of the center of the in-
tegration surface and by using a coordinate sphere not taking
tidal deformations into account.

where JADM(t = 0) is the ADM-angular momentum and
SA,B the spins of the NSs measured in the initial data.
We further assume that spins are approximately constant
during the evolution, cf. Sec. IV B and [32].

In addition to the Eb(`) curves we consider the binding
energy and angular momentum as functions of the dimen-
sionless parameter x = (MΩ)2/3, where Ω is the orbital
frequency. The latter can be unambiguously calculated
from the simulation as [65]

MΩ =
∂Eb
∂`

. (10)

This quantity can be also used to characterize the post-
merger dynamics as we do in Sec. IV C 2.

1. Energetics: late inspiral–merger

The Eb(`) curves probe in a direct way the conserva-
tive dynamics of the binary [75]. In [24] we have pro-
posed a simple way of analyzing energetics during the
inspiral–merger that relies on extracting the individual
contributions of the binary interactions, i.e. spin-orbit
(SO), spin-spin (SS) and tidal (T). Our new simulations
allow us to improve that analysis by extracting more ac-
curately the SO and SS interaction contributions.

Motivated by the post-Newtonian (PN) formalism and
building on [15, 24] we make the additive ansatz for the
binding energy [we omit hereafter the subscript “b”]

E ≈ E0 + ET + ESO + ES2 + ES↔S , (11)

where E0 is a orbital (point-particle) term, ET the
tidal term, ESO the SO term, ES2 a SS term due self-
coupling of the spin of the single star, i.e. a change of the

quadrupole moment due to the intrinsic rotation, and
ES↔S an SS interaction term due to the coupling of the
stars’ spins. Each of the above contributions corresponds
to a term in the PN Hamiltonian. At leading order (LO)
we have at 1.5PN

HSO ≈
2νL

r3
Seff (12)

with the effective spin

Seff =

(
1 +

3

4

MB

MA

)
S̄A +

(
1 +

3

4

MA

MB

)
S̄B (13)

and at 2PN

HS2 ≈ − ν

2r3

(
CQA

MB

MA
S̄2
A +

CQB
MA

MB
S̄2
B

)
, (14)

and

HS↔S ≈ −
ν

r3
S̄AS̄B , (15)

with CQ describing the quadrupole deformation due to
spin, e.g. [76] and Appendix B, and S̄A = qχA, S̄B =
χB/q.

Focusing on the equal mass configurations and apply-
ing the ansatz above to the binding energy of each con-
figuration, we write

E(00) ≈ E0 + ET , (16)

E(↑↓) ≈ E0 + ET + E
(↑↓)
S↔S + E

(↑↓)
S2 , (17)

E(↑0) ≈ E0 + ET + E
(↑0)
SO + E

(↑0)
S2 , (18)

E(↑↑) ≈ E0 + ET + E
(↑↑)
SO + E

(↑↑)
S↔S + E

(↑↑)
S2 . (19)

We have omitted the superscript for the individual sim-
ulations for the E0 and ET contribution since we assume
that they are the same for all setups. Using the simula-
tion data we extract each contributions as follows. First,
we consider an equal mass, non-spinning BBH-simulation
to provide E(BBH) ≈ E0

3. Then, we use the relations

E
(↑↑)
SO ≈ 2E

(↑0)
SO , E

(↑↑)
S2 ≈ 2E

(↑0)
S2 , (20)

E
(↑↑)
S2 ≈ E(↑↓)

S2 , E
(↑↑)
S↔S ≈ −E

(↑↓)
S↔S , (21)

that come from the LO expressions of the PN Hamilto-
nian above Eqs. (12)-(14)-(15) and from the fact that the
stars have the same mass (MA = MB) and spin magni-
tudes (SA = SB). This way, based on the five different
cases, the individual contributions read

ET ≈ E(00) − EBBH (22)

E
(↑↑)
SO ≈ −2E(00) − E(↑↓) + 4E(↑0) − E(↑↑), (23)

E
(↑↑)
S2 ≈ E(↑↓) − 2E(↑0) + E(↑↑), (24)

E
(↑↑)
S↔S ≈ E

(00) − 2E(↑0) + E(↑↑). (25)

3 The BBH Eb(`) curve is computed with the SpEC code [77] and
corresponds to SXS:BBH:0066 of the public catalog, see also [78].
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FIG. 4. Binding energy vs. specific angular momentum curves E(`) for the equal mass configurations (upper panels). The
circles mark the moment of merger for all configurations. We also include a non-spinning BBH configuration from the public
SXS catalog, see text for more details. The bottom panels show the individual contributions to the binding energy, Eq. (11),
we present the SO (green), S2 (orange), S ↔ S (blue) configurations obtained from the NR data as solid lines. For those
contributions we also include 3.5PN (App. B) estimates as dashed lines. The tidal contributions are shown as cyan lines. We
also include the SO contribution from the EOB model of [74]. We mark the difference between resolution R2 and R1 as a

colored shaded region. The vertical gray areas correspond to the merger of the ALF2-137137(↑↓) (left) and the H4-137137(↑↓)

configuration (right).

All contributions are shown in Fig. 4 for the ALF2
EOS (left) and the H4 EOS (right). For comparison we
include as a shaded region the difference between reso-
lutions R1 and R2 for the individual components. The
plot clearly shows the repulsive (attractive) character of
the SO (tidal) interaction and quantifies each term for a
fixed value of the orbital angular momentum. The plot
indicates that, although poorly resolved, SS interactions
might play a role close to merger. The ES2 terms, in
particular, are rather large for ` . 3.6 and contribute to
the merger dynamics with an effect opposed to the one
of the SO interaction (note the negative sign of ES2 in
the plots). Summing up all the spin effects, we find that
spin contributions are of the same order as tidal effects.
This demonstrates the importance of including spins in
analytical models of BNS.

On top of our numerical results we plot 3.5PN esti-
mates for SO, and SS interactions as dashed lines (see
Appendix B for their explicit expressions) and the SO
effective-one-body (EOB) estimate of [74] as dot-dashed
lines. The SO term extracted from the NR data shows
significant deviations from the EOB analytical results for
` . 3.6 − 3.7, which correspond to GW frequencies of
Mω22 ∼ 0.073− 0.083 (compare with merger frequencies
in Tab. IV). The EOB model is closer to the numerical
data than the PN model, but underestimate (in absolute
value) the magnitude of the SO term during the last 2-3
orbits. The PN description of SO couplings shows devia-
tions already at ` . 3.8, and it is very inaccurate for the

description of the S2 SS effects4. These findings suggest
that, already at the level of the Hamiltonian, more ana-
lytical work is needed to describe the very last orbits of
BNS.

Interestingly however, we note that the “cumulative”
spin contribution SO+SS can be reasonably approxi-
mated by the considered EOB SO model solely (for the
considered dynamical range). The reason for this might
be that the attractive character of the SS interaction
partially “compensates” the effect of the missing an-
alytical information5. Let us consider the sum of all
spin contributions, ESpin, and assume it can be formally
parametrized as the LO SO interaction (lowest order in
spin)

ESpin ≈ 2νSeffESpin . (26)

Consequently, Eq. (11) simplifies to

E ≈ E0 + ET + 2νSeffESpin , (27)

and, by subtracting the non-spinning binding energy
curves from the curves for spinning configurations, we

4 Note, however, that the ansatz in (11) might be inaccurate
at high-frequency, and that our analysis might break close to
merger. Furthermore, higher resolved simulations are needed to
reduce the uncertainties extracting SS contributions.

5 Let us also point out that extracting ESpin is effected by smaller
numerical uncertainties since only two different BNS configura-
tions have to be considered, instead of four setups for ESO.
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FIG. 5. Quantity ESpin for different EOS and the same mass
ratio (q = 1.0) in the top panel and for the same EOS (ALF2),
but mass ratios q = 1.0 and q = 1.5 in the bottom panel. The
colored shaded regions mark the difference between the results
for resolution R2 and R1. Notice that for an unequal mass
merger also the (↑↓) configuration contains SO-contributions
and therefore could be included for q = 1.5 although the late
time behavior is dominated by the SS-interactions. The ver-
tical gray areas correspond to the moment of merger for H4-
137137(↑0) (upper panel) and ALF2-110165(↑↓) (lower panel).
We also include the 3.5PN SO contribution as a dashed line
and EOB ESpin as present in the EOB model of [74] as a
dashed dotted line.

calculate ESpin. Figure 5 presents our results. For this
analysis we also include unequal mass configurations for
which it was not possible to extract the individual con-
tributions to the binding energy as done above for the
equal mass cases. Notice that for an unequal mass sys-
tem also (↑↓) configurations contain SO-interactions, see
cyan line. In the top panel we compare simulations for
different EOS. The quantity ESpin is the same for all sim-
ulations independent of the EOS. The bottom panel of
Fig. 5 shows the effect of the mass ratio on ESpin, where
again up to the merger all estimates agree. The EOB SO
curve for ESpin are closer to the NR data in this cases
than in the one presented in Fig. 4.

We finally discuss the curves Eb(x) and `(x), i.e., com-
pare BNS energetics at fixed orbital frequency Ω. Fig-
ure 6 summarizes the equal mass results for ALF2 EOS
(left) and the H4 EOS (right). The figure shows that
once we consider systems with the same orbital frequency
tidal contributions to the binding energy are larger than
spin contributions. This becomes more visible in Fig. 7
for which we have extracted the individual components
following Eq. (22)-(25).

Figure 7 also shows that the individual contributions
to Eb(x) and Eb(`) have opposite signs. This can be
understood by considering ` ∝ Ωr2 and E ∝ −r−1.

Let us first focus on tidal effects comparing a BBH and
a BNS system. Because of the attractive nature of tidal
effects Eb,BBH > Eb,BNS (but |Eb,BBH| < |Eb,BNS|) for
fixed angular momentum. Consequently ΩBBH < ΩBNS,

which explains the inverse ordering of Eb(x) and Eb(`).
Another approach is to consider the `(x) curves for a
fixed frequency for which `BNS > `BBH and rBNS >
rBBH. Therefore, the system is less bound, i.e. Eb,BNS >
Eb,BBH, which is reflected in the E(x) curves. In analogy
it is possible to explain why ESO and other spin depen-
dent contributions have opposite signs if Eb(x) and Eb(`)
are compared.

This also shows that while Eb(`) curves can be directly
used to understand the effect of individual components
on the conservative dynamics, the interpretation of Eb(x)
is more subtle, but will be useful for the phase analysis
of the system presented in Sec. VI.

2. Energetics: postmerger

Binding energy vs. specific angular momentum curves
can be used also to study post-merger dynamics [65].
The frequency MΩ = ∂Eb/∂`, in particular, gives the
rotation frequency of the HMNS merger remnant, and
matches extremely well half the postmerger GW fre-
quency. Spins effects are clearly visible at merger [24]
but also in the postmerger Ω, especially in cases in which
the merger remnant collapses to a black hole.

In Fig. 8 Eb(`) and MΩ are presented for all config-
urations employing the H4 EOS. When the postmerger
Eb(`) are approximately linear, the rotational (and emis-
sion) frequency Ω remains steady for several milliseconds.

Comparable masses BNS remnant collapse to black
hole within the simulated times (left panels) and Ω in-
creases continuously up to the collapse. The continuous
evolution of Ω (a “post-merger chirp” [35, 65]) is caused
by the increasing compactness and rotational velocity of
the remnant. Spins aligned to orbital angular momentum
increase the angular momentum support of the remnant
that, therefore, collapses later in time and at smaller val-
ues of `. The remnant of configuration (↑↓) has a very
similar dynamics to the one of (00).

The remnants of q = 1.5 BNS instead do not collapse
during the simulated time. Interestingly, Ω shows a sharp
jump right after merger and then remains approximately
constant. The jump is only present in the q = 1.5 mass
ratio setups. It originates from the secondary star whose
core “falls” onto the primary star, after a partial tidal
disruption. Consequently, the the rotational frequency
of the merger remnant experience a rapid increase over a
short time.

V. EJECTA

In Paper I we have pointed out that the amount of
ejected material depends significantly on the mass-ratio
where the ejecta mass increases for higher mass ratios
with a linear behavior in q. In large-q BNSs the mass-
ejection from the tidal tail of the companion (centrifu-
gal effect) dominates the one originating from the cores’



10

−0.065

−0.060

−0.055

−0.050

−0.045

−0.040

−0.035
E ALF2-137137(00)

ALF2-137137(↑↑)

ALF2-137137(↑↓)

ALF2-137137(↑0)

BBH

H4-137137(00)

H4-137137(↑↑)

H4-137137(↑↓)

H4-137137(↑0)

BBH

0.08 0.10 0.12 0.14 0.16

(MΩ)2/3

3.2

3.4

3.6

3.8

4.0

4.2

`

ALF2-137137(00)

ALF2-137137(↑↑)

ALF2-137137(↑↓)

ALF2-137137(↑0)

BBH

0.08 0.10 0.12 0.14 0.16

(MΩ)2/3

H4-137137(00)

H4-137137(↑↑)

H4-137137(↑↓)

H4-137137(↑0)

BBH

FIG. 6. Binding energy (top panels) and specific angular momentum (bottom panels) as a function of the PN parameter x. The
circles mark the moment of merger for all configurations. We also include a non-spinning BBH configuration from the public
SXS catalog as in Fig. 4. We have applied a Savitzky Golay filter on E(x) and `(x) to reduce numerical noise and eccentricity
oscillations.

−0.005

0.000

0.005

0.010

0.015

∆
E

ET

E
(↑↑)
SO

E
(↑↑)
S↔S

E
(↑↑)
S2

0.08 0.10 0.12 0.14 0.16

(MΩ)2/3

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

∆
`

`T

`
(↑↑)
SO

`
(↑↑)
S↔S

`
(↑↑)
S2

FIG. 7. Individual contributions to the binding energy (top
panels) and specific angular momentum (bottom panels) as a

function of the PN parameter x = (MΩ)2/3 for the equal mass
systems employing the H4 EOS. The colored shaded regions
mark the difference between resolution R2 and R1. The initial
oscillations are caused mostly by remaining eccentricity effects
not fully removed after applying the Savitzky Golay filter to
E(x) and `(x). We also include 3.5PN estimates for the bind-
ing energy (App. B) as dashed dotted lines. The vertical gray

line corresponds to the merger point of the H4-137137(↑↓).

collision and the subsequent shock-wave. For the same
reason, stiffer EOS favor larger mass ejection over softer
EOS. The effect of the stars’ rotation (dimensionless
spins χ ∼ 0.1) on the dynamical ejecta are sub-dominant
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FIG. 8. Binding energy vs. specific angular momentum curves
after the merger of the two neutron stars for the H4 setups
with mass ratio q = 1.0 (left) and q = 1.50 (right). The
merger is marked as a circle for all setups. The bottom panels
present the frequency MΩ estimated from the binding energy
curves.

with respect to the mass-ratio and, to some extend, also
to varying the EOS. We find that for configurations with
large mass ratio (q = 1.5) the amount of ejecta is in-
creasing from (↑↓) to (↑ 0), and to (↑↑) due to the pro-
gressively larger angular momentum in the tidal tail of
the companion. We also identify a spin effects on the
unbound material, as discussed below.

Figure 9 shows the most important ejecta quantities
and their dependence on the spin and the mass ratio.
We report the total ejecta mass Mej, the kinetic energy
of the ejecta Tej, and the average velocities inside the or-
bital plane 〈|vρ|〉 and perpendicular to the orbital plane
〈|vz|〉 [see Paper I for more details]. The difference be-
tween resolution R2 and R1 is used as an error estimate
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TABLE III. Ejecta properties. The columns refer to: the name of the configuration, the mass of the ejecta Mej, the kinetic
energy of the ejecta Tej, the average velocity of the ejecta inside the orbital plane 〈|v|〉ρ (not necessarily pointing along the
radial direction), the average velocity of the ejecta perpendicular to the orbital plane 〈|v|〉z, and the average of v2 of fluid
elements inside the orbital plane 〈v̄〉ρ and perpendicular to it 〈v̄〉z, see Paper I for more details. Results stated in the table
refer to resolution R2 and results for R1 are given in brackets.

Name Mej [10−2M�] Tej [10−4] 〈|v|〉ρ 〈|v|〉z 〈v̄〉ρ 〈v̄〉z

ALF2-137137(00) 0.34 (0.20) 0.76 (0.22) 0.17 (0.12) 0.10 (0.11) 0.17 (0.12) 0.22 (0.15)

ALF2-137137(↑↑) 0.16 (0.09) 0.18 (0.31) 0.16 (0.10) 0.05 (0.08) 0.16 (0.10) 0.14 (0.13)

ALF2-137137(↑↓) 0.41 (0.34) 0.31 (0.49) 0.12 (0.15) 0.07 (0.10) 0.12 (0.15) 0.12 (0.16)

ALF2-137137(↑0) 0.20 (0.25) 0.20 (0.20) 0.13 (0.11) 0.05 (0.07) 0.13 (0.11) 0.13 (0.13)

H4-137137(00) 0.34 (0.06) 0.89 (0.10) 0.19 (0.13) 0.10 (0.14) 0.19 (0.13) 0.23 (0.22)

H4-137137(↑↑) 0.20 (0.12) 0.44 (0.23) 0.15 (0.22) 0.07 (0.07) 0.16 (0.24) 0.21 (0.27)

H4-137137(↑↓) 0.15 (0.07) 0.35 (0.12) 0.16 (0.12) 0.10 (0.10) 0.17 (0.12) 0.23 (0.20)

H4-137137(↑0) 0.07 (0.06) 0.13 (0.11) 0.17 (0.14) 0.10 (0.08) 0.17 (0.14) 0.22 (0.20)

ALF2-122153(00) 0.75 (0.97) 2.2 (2.1) 0.17 (0.09) 0.12 (0.10) 0.17 (0.09) 0.23 (0.17)

ALF2-122153(↑↑) 0.67 (0.63) 1.4 (1.7) 0.16 (0.28) 0.08 (0.06) 0.16 (0.32) 0.20 (0.44)

ALF2-122153(↑↓) 0.45 (0.49) 0.94 (0.74) 0.15 (0.14) 0.11 (0.09) 0.15 (0.14) 0.22 (0.18)

ALF2-122153(↑0) 0.55 (1.9) 1.2 (7.8) 0.16 (0.17) 0.13 (0.13) 0.17 (0.18) 0.21 (0.20)

H4-122153(00) 0.66 (0.88) 1.7 (1.7) 0.18 (0.15) 0.11 (0.11) 0.18 (0.16) 0.22 (0.28)

H4-122153(↑↑) 0.78 (1.2) 1.7 (1.6) 0.18 (0.15) 0.11 (0.04) 0.18 (0.15) 0.22 (0.16)

H4-122153(↑↓) 0.41 (0.53) 0.95 (1.1) 0.17 (0.17) 0.09 (0.11) 0.17 (0.18) 0.20 (0.22)

H4-122153(↑0) 0.64 (0.40) 1.8 (1.4) 0.18 (0.25) 0.08 (0.09) 0.19 (0.28) 0.22 (0.20)

ALF2-110165(00) 2.4 (1.5) 4.2 (2.1) 0.17 (0.15) 0.07 (0.08) 0.17 (0.15) 0.18 (0.16)

ALF2-110165(↑↑) 2.4 (3.4) 4.2 (6.5) 0.18 (0.18) 0.04 (0.07) 0.18 (0.19) 0.18 (0.17)

ALF2-110165(↑↓) 1.1 (0.97) 2.0 (1.5) 0.18 (0.17) 0.05 (0.05) 0.18 (0.17) 0.19 (0.18)

ALF2-110165(↑0) 1.4 (1.8) 2.3 (2.5) 0.18 (0.17) 0.04 (0.06) 0.18 (0.17) 0.19 (0.17)

H4-110165(00) 1.6 (2.0) 2.9 (2.9) 0.17 (0.16) 0.05 (0.04) 0.18 (0.16) 0.17 (0.17)

H4-110165(↑↑) 2.7 (3.7) 4.2 (7.1) 0.17 (0.19) 0.02 (0.03) 0.17 (0.19) 0.15 (0.18)

H4-110165(↑↓) 0.95 (1.5) 1.4 (2.5) 0.17 (0.18) 0.03 (0.05) 0.17 (0.18) 0.17 (0.18)

H4-110165(↑0) 1.9 (2.0) 3.1 (3.1) 0.17 (0.17) 0.03 (0.04) 0.17 (0.17) 0.18 (0.21)

and marked as an error bar. In the left panels results for
q = 1.00 are shown and results for q = 1.50 are shown in
the right panels. Different EOSs are colored differently:
ALF2 (orange), H4 (green); and different markers repre-
sent the different spin configurations as in Fig. 1. More
details about the ejecta are given in Tab. III.

For all configurations (independent of the spin) the
ejecta mass is larger for larger mass ratios. A similar
statement is true for the kinetic energy of the ejecta (sec-
ond panel of Fig. 9). The EOS variation considered here
does not show significant differences in the ejecta. Mass
ejection in q = 1 BNS mostly originates from the shock
wave that forms during the core collision, while in q = 1.5
BNS mostly originates form the tidal tail.

The influence of the NS spin is smaller than the effect of
the mass ratio. It is most visible for larger ejecta masses,
i.e. the q = 1.25, 1.5 cases, and is related to the spin of
the companion star (less massive NS). In a Newtonian
system, mass ejection sets in once the fluid velocity is
sufficiently large and the material is not bound by gravi-
tational forces, i.e., once v2 > MNS/RNS. The velocity of
the fluid elements can be approximated by v ∼ vorb +vω.

The component vorb depends on the orbital motion and is
therefore only indirectly effected by the spins. The com-
ponent vω ≈ ωRNS is the speed of a fluid element in the
frame moving with the center of the star. Considering
the two configurations (↑↑) and (↑↓), one can approxi-
mate the fluid velocity of the secondary star at the points
farthest away from the center of mass as v ∼ vorb + |vω|
for (↑↑), and as v ∼ vorb − |vω| for (↑↓) configurations.
The criterion v2 > MNS/RNS would be fulfilled for the
former configuration but not fulfilled for the latter. This
observation, although based on a Newtonian description,
explains why for q 6= 1 the unbound mass increases with
increasing χB . The observation that more material can
be ejected for aligned configurations was also reported
in [79] for eccentric encounters of NSBH systems using
approximate initial data.

VI. GRAVITATIONAL WAVES

In this section we discuss spin effects on the GW. In
Sec. VI A we present, for the first time, a GW phase anal-
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FIG. 9. Mass of the ejecta (first row), kinetic energy of the
ejecta (second row), ejecta velocities inside the plane (third
row) and orthogonal to it (fourth row) as a function of the
spin of the configurations. Green points represent data for
the H4-EOS, while orange data points correspond to ALF2.
Left panels refer to mass ratio q = 1.00 and right panels to
mass ratio q = 1.50. The markers characterize the spin of
the configurations as in Fig. 1, where circles correspond to
(00) setups, down-pointing triangles to (↑↓), right-pointing
triangles to (↑ 0), and upwards pointing triangles to (↑↑). The
spin of the secondary star influences the amount of ejected
material and the kinetic energy, where aligned spin leads to
larger ejecta. The velocity inside the orbital plane does not
depend notably on q or χeff , and the velocity perpendicular
to the orbital plane decreases for increasing q.

ysis up to merger that quantifies the contributions of spin
and tidal interaction in the dynamical regime covered by
the simulations. We find that spin effects contribute to
phase differences up to ∼ 5 radians in the considered dy-
namical regime (for χ ∼ 0.1). In Sec. VI B we discuss the
postmerger signal and the main emission channels. We
find that aligned spin configurations have a longer life-
time before collapse and therefore influence the spectral
properties of the remnant. However, resolving spin ef-
fects with current simulations in the power spectral den-
sity (PSD) of the GW signal is not possible.

Our notation follows Sec. V of Paper I, and focuses on
the dominant (2, 2) mode of the GW strain. We often

use

ω̂ := Mω22 (28)

for the dimensionless and mass-rescaled GW frequency.
GWs are plotted versus the retarded time u. The (real
part of the) waveforms is plotted in Fig. 10, as an
overview of the different signals. Several important quan-
tities are listed in Tab. IV.

A. Late-inspiral phasing

In order to analyze the phasing of the waves we pro-
ceed as follows. We first fit the quantity ω̂(t) as described
in App. C, eliminating this way the oscillation due the
residual eccentricity in the NR data. We then integrate to
obtain φ(t) and parametrize φ(t(ω̂)) to obtain the phase
as a function of the GW frequency. The integration intro-
duces an arbitrary phase shift, which is set to zero at an
initial frequency ω̂ = 0.04. The phase comparison is then
restricted to the frequency interval ω̂ ∈ [0.04, 0.11], which
corresponds to physical GW frequencies ∼ 470−1292 Hz.

Figure 11 summarized our results. The upper panel
shows the phase of ALF2-137137(00) (blue) and ALF2-
137137(↑↑) (red). The estimated uncertainty of the data
is shown as a shaded region; note that the error bar is
not symmetric. The phase of a non-spinning, equal mass
BBH is included as black curve. The latter is obtained
from the EOB model of [74]. In the bottom panel we
show the accumulated phase due to spin and tidal inter-
action separately. As in the case of the energetics, we
separate the spin and tidal contributions to the phase by
considering the difference between the (↑↑) and (00) con-
figuration (spin) and the difference between the (00) and
the BBH configuration.

This analysis shows that tidal effects contribute to
about 15 to 20 radians, accumulated in the considered
frequency interval of ω̂ ∈ [0.04, 0.11]. This is about 4-5
times the phase accumulated from 10 Hz to ∼ 470 Hz
(i.e. from infinite separation up to ω̂ ∼ 0.04) estimated
with PN methods [81]. Spin effects for χ ∼ 0.1 give an
accumulated phase of ∼ 5 radiants on the same frequency
interval. These results are consistent with EOB predic-
tions included as dashed lines.

Regarding the GW merger frequency (defined as the
frequency at the wave’s amplitude peak), Tab. IV shows
that BNS systems employing a stiffer EOS and/or larger
mass ratios have smaller Mωmrg (cf. Paper I). Spin in-
teractions shift the merger frequency of ∆Mω ∼ ±0.005,
where the exact value depends on the mass ratio and
EOS.

B. Post-merger spectra

We analyze the GW spectrum of the postmerger wave-
form by performing a Fourier transform of the simulation
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FIG. 10. Gravitational wave signal for all considered configurations employing the R2 resolution. Top panels (yellow lines)
refer to the ALF2 EOS, bottom panels (green lines) refer the H4 EOS. The mass ratio from top to bottom is: q = 1.00, q =
1.25, q = 1.50. The columns refer to setups: (00),(↑↓), (↑ 0), (↑↑).

data (cf. Sec. V of Paper I). Figure 12 shows typical spec-
trograms of the postmerger GW. The plot highlights the
continuum character of the GW frequency, which is espe-
cially evident in the cases in which the merger remnant
is close to collapse. This emission mirrors the dynamics
discussed in Sec. IV C 2. Due to the increasing compact-
ness of the remnant, the GW frequency increases until
the system settles to a stable state or collapses to a BH.
As shown in [35, 82], however, most energy is released
shortly after the formation of the HMNS. Therefore most
of the power is at a frequency close to the one at the for-
mation of the merger remnant. Spin effects are clearly
distinguishable in the GW spectrum. For example, the ir-
rotational (00) configuration H4-137137 evolves faster to
the collapse and has slightly lower frequency during the
postmerger than configuration (↑↑). The frequency shift
for H4-110165 is more prominent in the irrotational (00)
configuration than in the (↑↑), indicating the remnant is
closer to the threshold of radial instability (collapse).

The spectrogram plots include a horizontal blue line
indicating the “peak” frequency f2 extracted from the
waveform PSD (see below). They also include as a white
line the dynamical frequency 2MΩ = 2∂Eb/∂` as com-
puted in Sec. IV C 2 and as a black dashed line Mω22.
The two frequencies remarkably agree with each other,
indicating that the emission is dominated by the non-

axisymmetric m = 2 deformation of the rotating rem-
nant.

Figure 13 shows the spectrum of the signal for two
exemplary cases. Some broad peaks can be identified
in the PSD, and we report for completeness some peak
frequencies in Tab. IV. As described in Paper I, the fre-
quencies f1, f2, f3 refer to the dominant frequencies of the
(2, 1),(2, 2),(3, 3)-modes, respectively. Secondary peaks
fs are also present, see [83–86] for a discussion. As we
discussed in Paper I, the fs peak at a frequency close
to the merger frequency is basically absent for high mass
ratio BNS, while a secondary peak with slightly lower fre-
quency as the f2-frequency becomes visible. Here we find
that the secondary peak close to the merger frequency is
enhanced for aligned spin configurations.

In Ref. [24] we reported a shift of the f2 frequency of
about ∼ 200 Hz due to the spin of the NSs. Those sim-
ulations used higher resolutions than the ones presented
here, but were restricted to a simple Γ = 2 EOS. Ref. [31]
found that for more realistic EOS but under the assump-
tion of conformal flatness the frequency shift is smaller.
In our new data we cannot clearly resolve frequency shifts
of . 200 Hz, which is then to be considered an upper
limit for spin effects in BNS with the employed EOSs
and spins χ . 0.1 [see also the discussion in Sec. IV C 2].
Nevertheless, we find in agreement with [24] that aligned
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TABLE IV. Gravitational waveform quantities. The columns refer to: the name of the configuration, the number of orbits up
to merger, the dimensionless frequency at merger Mωmrg, the merger frequency in kHz, the dominant frequencies during the
post merger stage f1, f2, f3 stated in kHz and extracted from the (2,1),(2,2),(3,3)-mode. Results stated in the table refer to
resolution R2 and results for R1 are given in brackets.

Name Norb Mωmrg fmrg f1 f2 f3

ALF2-137137(00) 11.5 (11.0) 0.144 (0.142) 1.69 (1.67) 1.55 (1.46) 2.80 (2.77) 4.30 (4.06)

ALF2-137137(↑↓) 11.3 (10.9) 0.141 (0.138) 1.66 (1.62) 1.42 (1.36) 2.77 (2.65) 4.13 (3.78)

ALF2-137137(↑0) 11.7 (11.3) 0.147 (0.142) 1.73 (1.67) 1.46 (1.35) 2.81 (2.63) 4.08 (3.84)

ALF2-137137(↑↑) 12.0 (11.5) 0.147 (0.144) 1.73 (1.69) 1.45 (1.43) 2.75 (2.75) 4.17 (3.99)

H4-137137(00) 10.7 (10.5) 0.133 (0.127) 1.56 (1.49) 1.27 (1.38) 2.50 (2.58) 3.74 (3.84)

H4-137137(↑↓) 10.6 (10.3) 0.128 (0.126) 1.50 (1.48) 1.38 (1.37) 2.58 (2.61) 4.50 (3.97)

H4-137137(↑0) 11.0 (10.8) 0.133 (0.128) 1.56 (1.50) 1.28 (1.35) 2.50 (2.55) 4.30 (4.23)

H4-137137(↑↑) 11.3 (11.1) 0.136 (0.134) 1.59 (1.57) 1.36 (1.36) 2.54 (2.51) -

ALF2-122153(00) 10.6 (10.1) 0.133 (0.131) 1.56 (1.57) 1.42 (1.44) 2.72 (2.68) 4.11 (4.13)

ALF2-122153(↑↓) 10.4 (9.9) 0.126 (0.123) 1.48 (1.45) 1.46 (1.42) 2.73 (2.74) 3.86 (4.17)

ALF2-122153(↑0) 10.9 (10.4) 0.133 (0.130) 1.56 (1.53) 1.45 (1.38) 2.70 (2.71) 4.33 (4.16)

ALF2-122153(↑↑) 11.2 (10.7) 0.135 (0.133) 1.58 (1.56) 1.43 (1.40) 2.75 (2.70) 4.22 (4.10)

H4-122153(00) 10.7 (10.3) 0.114 (0.115) 1.34 (1.35) 1.28 (1.24) 2.42 (2.38) 3.78 (3.70)

H4-122153(↑↓) 10.7 (10.3) 0.108 (0.106) 1.27 (1.25) 1.38 (1.29) 2.49 (2.47) 4.26 (3.95)

H4-122153(↑0) 11.2 (10.9) 0.112 (0.111) 1.32 (1.30) 1.29 (1.28) 2.51 (2.47) 4.07 (4.12)

H4-122153(↑↑) 11.6 (11.2) 0.115 (0.114) 1.35 (1.34) 1.27 (1.29) 2.49 (2.49) 3.70 (3.79)

ALF2-110165(00) 9.9 (9.6) 0.119 (0.118) 1.40 (1.39) 1.45 (1.32) 2.74 (2.74) 4.17 (4.06)

ALF2-110165(↑↓) 9.7 (9.3) 0.114 (0.113) 1.34 (1.33) 1.44 (1.40) 2.82 (2.79) 4.20 (4.24)

ALF2-110165(↑0) 10.3 (9.7) 0.118 (0.116) 1.39 (1.36) 1.43 (1.33) 2.83 (2.69) 4.05 (4.00)

ALF2-110165(↑↑) 10.6 (10.0) 0.121 (0.120) 1.42 (1.41) 1.42 (1.41) 2.80 (2.80) 4.18 (4.24)

H4-110165(00) 11.0 (10.7) 0.100 (0.098) 1.17 (1.15) 1.27 (1.24) 2.48 (2.43) 3.83 (3.54)

H4-110165(↑↓) 10.6 (10.1) 0.095 (0.095) 1.12 (1.12) 1.29 (1.24) 2.58 (2.50) 3.98 (3.80)

H4-110165(↑0) 11.2 (10.8) 0.098 (0.097) 1.15 (1.14) 1.29 (1.24) 2.56 (2.53) 3.98 (3.77)

H4-110165(↑↑) 11.6 (11.2) 0.100 (0.099) 1.17 (1.16) 1.28 (1.27) 2.54 (2.54) 3.93 (3.78)

spin configurations have higher peak frequencies f2. For
our setups the shift is only on the order of . 50Hz and
therefore can not resolved properly because of the limited
length of the postmerger signal ∼ 20ms and the broad-
ness of the peaks. Longer and higher resolved simulations
will be needed for a further investigation of the f2-shift.

VII. EM COUNTERPARTS

Let us now discuss spin effects in possible EM counter-
parts in the infrared and radio band generated from the
mass ejecta. As a consequence of the results about the
dynamical ejecta, we find that spins effects are subdom-
inant with respect mass-ratio effect, and more relevant
the larger the unbound mass is, i.e. for large q. However,
we identify a clear trend: aligned spins increase the lumi-
nosity of the kilonovae and the radio fluency of the radio
flares and, therefore, favor the detection of EM counter-
parts.

As in Paper I we use the analytical model of [87] to
estimate the peak luminosity, time, and temperature of
the macronovae produced by the ejecta. We also use the

model of [11] to describe radio flares peak fluxes. Our
results are summarized in Tab. V, Fig. 14, and Fig. 15.

As pointed out with previous studies an increasing
mass ratio delays the luminosity peak of the kilonovae
for few days, but leads to an overall larger peak lumi-
nosity. Also, the temperature at peak luminosity de-
creases for larger mass ratios. The effect of the spins
is less strong, but because of the larger ejecta mass for
systems for which the secondary star has spin aligned to
the orbital angular momentum we find a trend towards
delayed peaks, increasing luminosity, and decreasing tem-
perature. This effect is clearly present for larger mass
ratios, see Fig. 14.

We present the bolometric luminosities for the ex-
pected kilonova. The lightcurves are computed following
the approach of [88, 89]. Figure 16 shows the bolomet-
ric luminosity for the H4-165110 setups considering dif-
ferent spin configurations. Because of the larger ejecta
mass for the (↑↑) configuration the bolometric luminos-
ity is larger than for the other setups. Contrary when
the secondary star has antialigned spin the bolometric
luminosity is about a factor of ∼ 2 smaller than for the
aligned setup.
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FIG. 11. Top panel: φ(ω̂) accumulated in ω̂ ∈ [0.04, 0.11] for

ALF2-137137(00) (blue), ALF2-137137(↑↑) (red), and a non-
spinning, equal mass BBH setup (black). Bottom panel: in-
dividual contributions ∆φ(ω̂). We include tidal effects for
ALF2 (orange) and H4 (green) EOS, as well as spin effects
for ALF2 (blue) and H4 (cyan). We also include estimates
from the EOB models of [74] for the spinning contribution
and [80] for the tidal contribution as dashed lines.

Considering the radio flares, we find that systems with
a larger mass ratio are more likely to be detectable than
equal mass setups, Fig. 15. The fluency and the peak
time increase with increasing mass ratio. Our results
suggest that in cases where the less massive star has spin
aligned to the orbital angular momentum the radio flu-
ency increases and happens at later times.

For a more quantitative analysis higher resolution sim-
ulations and better models estimating the kilonova and
radio burst properties are needed. Note also that, since
our simulations are based on simulations not including
microphysics and on simplified models, further simula-
tions are needed to check our results.

VIII. SUMMARY

In this article we studied the effect of the stars’ rotation
on equal and unequal mass binary neutron star mergers
dynamics. Our analysis provides a basis for future models
of spin effects in gravitational waves and electromagnetic
emission. Combined with Paper I ([35]) this work is one
of the most complete investigations of the binary neutron
star parameter space available to date.

Our findings are summarized in what follows.
Energetics: We have considered gauge-invariant bind-

ing energy curves for both fixed orbital angular momen-
tum Eb(`) and fixed orbital frequency Eb(x). The former
are useful to understand the effect of individual terms in
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FIG. 12. Spectrogram of the GW signal for simulations with
H4 EOS and resolution R2. The spectrogram only considers
the dominant (2,2) mode. Horizontal blue dashed lines refer
to the f2 frequency extracted from the entire postmerger GW
signal. Black dashed lines refer to the frequency of the (2,2)-
mode and white lines refer to the frequency extracted from
the binding energy ∂`E (Fig. 8). The spectrograms show the
last part of the inspiral signal (left bottom corners of the
spectrograms) and evolution of the HMNS.

the Hamiltionan; the latter are directly linked to the GW
phase analysis (see below).

Our new analysis of the energetics up to merger indi-
cates that, although the main spin effect is due to spin-
orbit (SO) interactions [24], also spin-spin interaction
might play a role in the very last stage of the merger.
In particular, we argue that a self-coupling of the NS
spin (S2

A (14)) caused by quadrupole deformation of the
star due to its intrinsic rotation contributes during the
last orbits with an attractive effect opposed to the repul-
sive effect of the SO interaction [90]. This illustrates the
importance of including also spin-spin effects in analyti-
cal models of BNS, and poses the challenge of resolving
such effects in NR simulations.

We note that the current best analytical representation
of the SO Hamiltonian (the effective-one-body model,
EOB) shows some significant deviation from the NR data
at small separations, see Fig. 4. Curiously, comparing the
EOB analytical SO model with NR data that include also
the S2 interaction, we find an effective closer agreement
between the two, Fig. 5.

We have used energetics and the dynamical frequency
Ω = M−1∂Eb/∂` also to analyze the postmerger dynam-
ics. Spin effects are clearly visible in cases in which the
merger remnant collapses to black hole, Fig. 8. Spins
aligned to orbital angular momentum increase the angu-
lar momentum support of the remnant, therefore, col-
lapse happens at later times and at smaller values of
`. Spin effects on the frequency evolution of more sta-
ble merger remnant are small and difficult to resolve.
The Ω analysis also shows that in large-mass ratio BNS
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FIG. 13. PSD for the H4-137137 (upper panel) and H4-110165
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(q & 1.5), the rotational frequency Ω has a sharp increase
right after merger due to the collision of the companion’s
core with the primary star (Fig. 8 bottom right panel).
This fact was unnoticed in Paper I where we did not
inspect energetics.

Mass ejection: Spin effects in dynamical ejecta are
clearly observed in unequal mass BNS (and with large
mass ratios, q ∼ 1.3− 1.5), in which mass ejection origi-
nates from the tidal tail for the companion. Spin aligned
to the orbital angular momentum favors the amount of
ejected mass because the additional angular momentum
contributes to unbinding a larger fraction of fluid ele-
ments. This effect is mostly dependent on the spin of the
companion.

Gravitational Waves: We presented the first analysis
of spin effects in the GW phase up to merger. Spin effects
contribute to phase differences up to ∼ 5 radians in the
considered dynamical regime (and for χ ∼ 0.1). This de-
phasing should be compared with the ∼ 20 radiants due
to tidal effects accumulated to the BNS merger (with re-
spect a BBH). The hierarchy of these effects on the phase
mirrors what is observed in the energetics Eb(x), Fig. 6.
Neglecting spin effects would bias the determination of
tidal parameters in GW observations, e.g. [34]. Mainly as
a consequence of spin-orbit interactions, the merger GW
frequency of CRV BNS shift to higher (lower) frequencies
then irrotational BNS if a NS has aligned (antialigned)
spin to the orbital angular momentum.

The Fourier analysis of the postmerger signal indicates
that spin effects are visible in the GW spectrum (cf.
Fig. 13 and 12). Some differences in the GW frequency

TABLE V. Electromagnetic Counterparts. The columns refer
to: the name of the configuration, the time in which the peak
in the near infrared occurs tpeak, the corresponding peak lu-
minosity Lpeak, the temperature at this time Tpeak, the time
of peak in the radio band trad

peak, and the corresponding radio
fluence. As in other tables, we present results for R2 and in
brackets resolutions for R1.

Name tpeak Lpeak Tpeak trad
peak F νrad

peak

[days] [1040 erg
s

] [103 K] [years] [µJy]

ALF2-137137(00) 2.0 (1.8) 2.6 (1.9) 2.5 (2.7) 6.4 (6.1) 41 (7)

ALF2-137137(↑↓) 2.7 (2.2) 2.3 (2.5) 2.5 (2.5) 8.4 (6.7) 8 (20)

ALF2-137137(↑0) 1.8 (2.1) 1.8 (1.8) 2.8 (2.7) 7.2 (8.1) 5 (4)

ALF2-137137(↑↑) 1.5 (1.3) 1.8 (1.2) 2.8 (3.2) 5.2 (10.0) 7 (6)

H4-137137(00) 1.9 (0.9) 2.8 (1.4) 2.5 (3.3) 5.9 (3.5) 58 (5)

H4-137137(↑↓) 1.4 (1.0) 2.0 (1.3) 2.8 (3.3) 5.0 (4.9) 19 (4)

H4-137137(↑0) 0.9 (1.0) 1.5 (1.3) 3.2 (3.3) 3.7 (4.9) 7 (4)

H4-137137(↑↑) 1.7 (1.1) 2.0 (2.0) 2.7 (2.9) 6.8 (3.3) 17 (18)

ALF2-122153(00) 2.9 (4.2) 3.7 (2.9) 2.2 (2.2) 8.0 (17.6) 139 (46)

ALF2-122153(↑↓) 2.4 (2.7) 2.8 (2.7) 2.4 (2.4) 7.6 (8.4) 44 (27)

ALF2-122153(↑0) 2.5 (4.6) 3.3 (5.2) 2.3 (1.9) 6.9 (11.9) 74 (516)

ALF2-122153(↑↑) 3.0 (2.3) 3.2 (4.2) 2.2 (2.2) 8.9 (4.5) 64 (215)

H4-122153(00) 2.7 (3.4) 3.5 (3.5) 2.2 (2.1) 7.3 (9.6) 105 (74)

H4-122153(↑↓) 2.3 (2.5) 2.8 (3.1) 2.4 (2.3) 7.2 (6.9) 48 (61)

H4-122153(↑0) 2.8 (1.9) 3.3 (3.5) 2.2 (2.3) 8.3 (4.6) 99 (149)

H4-122153(↑↑) 3.0 (4.3) 3.7 (3.5) 2.1 (2.1) 7.4 (12.0) 108 (52)

ALF2-110165(00) 5.6 (4.6) 5.0 (4.1) 1.8 (2.0)12.8 (11.4) 190 (83)

ALF2-110165(↑↓) 3.8 (3.6) 3.9 (3.6) 2.0 (2.1) 9.7 (9.5) 96 (65)

ALF2-110165(↑0) 4.3 (4.9) 4.1 (4.4) 2.0 (1.9)10.6 (11.5)106 (104)

ALF2-110165(↑↑) 5.5 (6.5) 5.0 (6.0) 1.8 (1.7)12.5 (12.9)198 (352)

H4-110165(00) 4.6 (5.4) 4.4 (4.5) 1.9 (1.9)11.2 (12.9)133 (109)

H4-110165(↑↓) 3.7 (4.4) 3.4 (4.3) 2.1 (2.0)10.2 (10.6) 53 (116)

H4-110165(↑0) 5.1 (5.3) 4.5 (4.5) 1.9 (1.9)12.5 (12.7)126 (124)

H4-110165(↑↑) 6.2 (6.9) 5.0 (6.0) 1.8 (1.7)14.5 (14.3)160 (352)

evolution are observed in cases the additional angular
momentum support due to aligned spins stabilizes the
merger remnant for a longer time period (cf. discussion
on spin effects on dynamics). Our simulations suggest
that if a BNS has spin aligned to the angular momentum
the spectrum is slightly shifted to higher frequencies up to
∼ 50 Hz (for dimensionless spins χ . 0.1), but more ac-
curate simulations with longer postmerger evolutions will
be needed to resolve the shift properly. Furthermore, we
see an effect of the spin on the secondary peak frequen-
cies, where aligned configurations increase the enhance a
secondary peak shortly after the merger frequency.
Electromagnetic counterparts: For the considered

spin magnitudes the spin effects on the kilonovae and
radio flare properties is subdominant with respect to the
mass ratio and the EOS. Spin effects are more prominent
for larger ejecta masses, where spin aligned (antialigned)
with the orbital angular momentum increases (decreases)
the luminosity of the kilonovae and also increases (de-
creases) the radio fluency of the radio flares. Overall we
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find that aligned spin BNS in combination with larger
mass ratios favor bright electromagnetic counterparts.
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Appendix A: Quasi-local spin measures for isolated
rotating NS

In this appendix we evaluate the accuracy of the quasi-
local measurements for isolated rotating stars in equilib-
rium. Equation (1) converges to the ADM angular mo-
mentum for rS → ∞. This test is important to support
the interpretation of Eq. (1) as a “spin measure”.

Figure 17 shows our findings for a single NS with the
H4 EOS, a mass of M = 1.375 and a dimensionless spin
of χ = 0.10. We compute Eq. (1) for different coordinate
radii centered around the minimum of the lapse. The
black dashed line marks the ADM value computed by
the SGRID solver, i.e. at t = 0. The approximation of
the ADM angular momentum by Eq. (1) improves for
larger radii up to a point where all material is covered
within the coordinate sphere. The continuous decrease of

the spin measure is caused by numerical dissipation, and
it improves at higher resolution, cf. difference between
solid lines (resolution R2) and dash-lines (resolution R1).
This test for a single NS supports our observation that
the main inaccuracies of Eq. (1) for BNS is caused by
the orbital motion of the two stars and our choice of the
integration surface.

Appendix B: Post-Newtonian expressions for E(`)
and E(x)

We report for completeness the expressions for the
3.5PN contributions to E(`) and E(x) used in Sec. IV.
We discard cubic terms in the spin and refer to [76] for
more details. The 4PN binding energy including higher
spin terms can be found in e.g. [91, 92].

The SO contribution is

ESO(x) = νx5/2
(
S̄A + S̄B

)(
−4

3
+ x

(
31ν

18
− 4

)
− x2

(
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+
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+
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The SS S2 contribution is

ES2(x) = ν(S̄A)2x3
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8
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with CQA
≈ aχ2

AM
3
A describing the quadrupole deforma-

tion due to spin and a depending on the EOS ranging
from ∼ 1− 10, see e.g. [90]. The SS S ↔ S contribution
is

ES↔S(x) = ν
S̄AS̄B

x

3(
1 + x

(
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18
+

5

6

))
, (B5)
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Appendix C: Fits of ω̂ and Qω̂ phasing

The phasing analysis of numerical data is usually com-
plicated by residual eccentricity and numerical noise. To
minimize these effects we fit ω̂(t) with the following tem-

plate inspired by the PN theory

ω̂(t) =
1

4
x

(
1 +

N∑
n=1

cnx
n

)
, (C1)

where x = τ−3/8 and τ = ([ν(tc − t)/5]2 + d2)1/2. The
quantities tc and d are determined by the fit, using as an
initial guess for tc the merger time and d = (4ω̂peak)−8/3,
where ω̂peak is the value of the peak of ω̂, right after the
wave’s amplitude peak. We fit on a frequency interval
Iω = [ω̂1, ω̂2] for N = 6. The fit result for an exemplary
case is presented in Fig. 18. The residuals are flat and
show that an eccentricity ∼ 10−2 is “filtered out”.

In this appendix we consider a second phasing analysis
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line we include Qω̂ for a non-spinning, equal-mass BBH setup
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based on the quantity

Qω̂ =
ω̂2

˙̂ω
, (C2)

where ω̂(u/M) and the time derivative is taken with re-
spect the mass-rescaled dimensionless retarded time. In
PN theory Qω̂ is an adiabatic parameter that character-
izes the validity of the stationary phase approximation
e.g. [93]. The phase accumulated between two different
frequencies is given by

∆φ(ω̂1, ω̂2) =

∫ ω̂2

ω̂1

Qω̂ d log (ω̂). (C3)

The use of Qω allows to perform, in principle, a phasing
analysis without manually align the waveforms in time
and phase. In practice, however, the calculation of this
quantity is delicate due to numerical inaccuracies, and a
fit to the frequency needs to be used. We verified as a
further check of our fitting procedure that the total phase
computed with Eq. (C3) is compatible with the phase of
the raw data.

In Fig. 19 we present Qω̂(ω̂) for ALF2-137137(00)

(blue) and ALF2-137137(↑↑) (red) and a nonspinning
q = 1 BBH (black, again given by the EOB model of
[74]). We show as a shaded region an uncertainty esti-
mated as |QR2

ω̂ − QR1
ω̂ |. The largest difference between

Qω̂(ω̂) curves is due to tidal effects, and amount to
∆QTω̂ ∼ 15 − 35. From Eq. (C3) we obtain a dephas-
ing compatible with the analysis of Sec. VI A. Spin ef-
fects for χ ∼ 0.1 and aligned spin give a shift of about

∆QSpinω̂ ≈ 5; i.e. for a given frequency, aligned spins se-

tups have a smaller ˙̂ω. Although difficult to resolve in
this plot, both tidal and spin effects are in agreement
with predictions from the EOB model in the considered
frequency interval. A quantitative Qω̂ analysis beyond
the results stated above will need future simulations with
lower eccentricities and higher resolutions.
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