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Twisted geometries are understood to be the discrete classical limit of Loop Quantum Gravity. In
this paper, SU(2) flat connections on (decorated) 2D Riemann surface are shown to be equivalent to
the generalized twisted geometries in 3D space with cosmological constant. Various flat connection
quantities on Riemann surface are mapped to the geometrical quantities in discrete 3D space. We
propose that the moduli space of SU(2) flat connections on Riemann surface generalizes the phase
space of twisted geometry or Loop Quantum Gravity to include the cosmological constant.
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I. INTRODUCTION

There has been significant development recently on
implementing cosmological constant in Loop Quantum
Gravity (LQG) [1–7]. A new covariant formulation of
LQG has been developed, and presented a nice rela-
tion between LQG in 4D and Chern-Simons theory on
3-manifolds. As one of the key results in the new for-
mulation, the new LQG spinfoam amplitude constructed
by using Chern-Simons theory reproduces correctly the
4D (discrete) Einstein-Hilbert action with cosmological
constant in the semiclassical limit.

It is interesting to understand the relation between
the new covariant formulation and canonical LQG (see
e.g.[8–10] for reviews on canonical LQG). This paper
makes the first step toward this direction. In this work
we formulate a new phase space of LQG, which suitably
generalizes the LQG phase space to the situation with
cosmological constant. Given that the covariant LQG
in 4D has been related to Chern-Simons theory on 3-
manifold, the new LQG phase space defined on the 3D
spatial slice relates to the phase space of Chern-Simons
theory, which is the moduli space of flat connections on
2D Riemann surface.

A useful geometrical parametrization of the phase
space underlining LQG1 is known as twisted geometry
[14–20]. The twisted geometry variables are coordinates
of LQG phase space, which are interpreted as (discrete)
geometrical quantities of 3D space. The twisted geome-
try is a classical geometry defined on a 3D triangulation
(or cellular decomposition), or equivalently on a graph
dual to the triangulation. As the main difference from
3D Regge geometry, the twisted geometry only has the
area-matching but doesn’t force the shape-matching in
gluing a pair of flat tetrahedra (or polyhedra). In ad-
dition, there is a twist angle ξ appearing in the gluing,

1 The phase space used for LQG on the continuum is discussed
in [11]. The truncated phase space for LQG on a fixed graph is
proposed in e.g.[12, 13].

which relates to the extrinsic curvature of the space (the
hyper-dihedral angle between the pair of tetrahedra).

A natural question to ask is whether the new phase
space of LQG with cosmological constant also admits a
geometrical parametrization, which relates to the twisted
geometry. The answer is surely positive. Indeed the new
phase space relates to a generalized twisted geometry
in presence of cosmological constant. The generalized
twisted geometry is made by tetrahedra with constant
curvature2. As a key point, since the new LQG phase
space relates to flat connections on Riemann surface,
what we derive in this work is understood as the rela-
tion between flat connection on 2D surface and twisted
geometry in 3D physical space.

This work generalizes the result in [22], where the au-
thors find the relation between SU(2) flat connections on
4-holed sphere and constant curvature tetrahedron ge-
ometries 3.

The main results of this paper are summarized as fol-
lows: The truncated LQG phase space or twisted geom-
etry is defined on a graph dual to 3D triangulation. We
define in Section II A an 1-to-1 correspondence between
a graph and a Riemann surface S with certain decora-
tion. The new LQG phase space is defined to be the
moduli space of SU(2) flat connection on S, denoted by
Mflat(S,SU(2)) 4.

2 Tetrahedra with constant curvature are discussed in e.g.[21] in
the non-twisted-geometry context.

3 A proposal using different group is developed in [23, 24] for the
hyperbolic tetrahedron geometry.

4 Mflat(S, SU(2)) is the space of SU(2) connections A on S
with vanishing curvature FA = 0, quotient by SU(2) gauge
transformations. Mflat(S, SU(2)) is in general finite dimen-
sional. Flat connections inMflat(S,SU(2)) can be parametrized
by holonomies along loops in S. Fixing the base point of
a loop, the continuous deformation of the loop doesn’t af-
fect the loop holonomy, since the connection is flat. So
the loop holonomy only depends on the homotopy class of
loops. Therefore Mflat(S, SU(2)) is isomorphic to the space
of loop holonomies over the fundamental group π1(S), quo-
tient by gauge transformations. Namely Mflat(S,SU(2)) '
Hom(π1(S), SU(2))/gauge, where Hom(π1(S), SU(2)) is the set
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The Riemann surface S considered here is generally
made by gluing a number of 4-holed spheres. On each
4-holed sphere, the flat connection is dual to a constant
curvature tetrahedron geometry ([22], reviewed in Sec-
tion II B). The (curved) tetrahedron closure condition
is imposed by the flatness of connections. So the new
LQG phase space and twisted geometry in this paper are
already at the level of gauge invariant twisted geometries.

When the 4-holed spheres are glued to form S, we de-
fine a longitude holonomy Gab of flat connection, which
travels from one 4-holed sphere to another (see FIG.1).
It is shown in Section II C that Gab can be written in the
following form

Gab = Mabe
ξabτ3M−1

ba , (1)

In its geometrical interpretation, Mab,Mba ∈ SU(2) ro-
tate ẑ = (0, 0, 1) to the unit normals of a pair of glued
faces from two tetrahedra, by the relation between flat
connection on 4-holed spheres and constant curvature
tetrahedra. The above form of Gab closely resembles the
geometrical interpretation of the link holonomy in the
usual twisted geometry. Here ξab plays the role of the
twisted angle. The above formula suggests the close rela-
tion between SU(2) flat connection on Riemann surface
and the generalized twisted geometry with cosmological
constant, provided that the tetrahedra are of constant
curvature in the present context.

Indeed the relation is made precise in Section II D,
where we also identify the triangle area from the flat con-
nection, and point out that a generalized area-matching
condition is satisfied here.

In Section III, we derive the relation between flat con-
nection variables on Riemann surface and 3D geomet-
rical variables of interest in LQG, in particular, fluxes
and holonomies of Ashtekar-Barbero connection. Firstly,
We show in Section III A that in presence of cosmologi-
cal constant, the usual LQG flux is naturally replaced by
an exponentiated flux, which is the proper variable for a
curved triangle face. The exponentiated flux is identified
to the meridian holonomy Hab of the flat connection on
the Riemann surface.

Secondly, we shown in Section III B that the longi-
tude holonomy Gab on Riemann surface is identified with
the LQG holonomy GAB of Ashtekar-Barbero connec-
tion along a link traveling from the interior of one tetra-
hedron to another. The Ashtekar-Barbero connection
Aiα = Γiα + γkiα contains the extrinsic curvature kiα. The
4D hyper-dihedral angle ΘAB between a pair of neigh-
boring tetrahedra, as the discrete version of kiα, turns
out to be proportional to the twist angle ξab in Eq.(1),
i.e. ξab = γΘAB where γ is the Barbero-Immirzi param-
eter.

of group homomorphisms from π1(S) to SU(2) given by the loop
holonomies.

Gab

Hab Hba

FIG. 1: Two 4-holed spheres Sa and Sb glued together.

As an consequence from the curvature of tetrahedroa
and tetrahedron faces, the area-normal description of
each constant curvature tetrahedron involves a choice of
base point among the tetrahedron vertices, where the
face normals are located. Different choices of tetrahe-
dra’s base points lead that the path of GAB is non-unique
from one tetrahedron to another, in contrast to the sit-
uation of flat tetrahedra. This subtlety is discussed in
Section III C. It turns out that different choices of paths
of the LQG holonomy GAB are in 1-to-1 correspondence
to the paths of Gab of the flat connection on the Riemann
surface.

In Section IV, we discuss the symplectic structure of
the new LQG phase space Mflat(S,SU(2)) from SU(2)
flat connection on Riemann surface. We show that the
natural symplectic structure Ω on Mflat(S,SU(2)) (de-
rived from Chern-Simons theory) results in that the tri-
angle area and twist angle ξab are the canonical conju-
gate variables5, resembling the symplectic structure of
twisted geometry. Combining the canonical variables
of flat connection on 4-holed sphere dual to the curved
tetrahedron in [22], it shows the symplectic structure Ω
on Mflat(S,SU(2)) generalizes from the usual LQG to
the situation with cosmological constant Λ. As the limit
of Λ → 0, twisted geometry variables with flat tetrahe-
dra and the symplectic structure are recovered from the
symplectic coordinates of Mflat(S,SU(2)) and their ge-
ometrical interpretations.

Finally, we carry out the quantization of
Mflat(S,SU(2)) in Section V. The discussion here
mainly focuses on the quantization of the symplectic
coordinates which correspond to twisted geometry
variables6. Quantizing the twisted geometry variables
is shown to be the same as a quantum torus. Both
the triangle area and twisted angle are quantized and
have discrete spectra. The cosmological constant gives a
cut-off to the area spectrum. Given the relation between

5 They relate to the famous Fenchel-Nielsen coordinates of flat
connections, see Appendix A for explanation.

6 More complete discussions on quantizing Mflat(S, SU(2)) are
given in e.g. [25, 26].
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A B

FIG. 2: An example of graph. Two 4-valence vertices A and
B are connected by a link.

FIG. 3: The Riemann surface made by connecting two 4-holed
spheres.

twist angle ξab and extrinsic curvature, the discreteness
of ξab leads to the discreteness of the hyper-dihedral
angle ΘAB at the quantum level. It might relate to the
discreteness of time in LQG, as proposed in [27].

II. FLAT CONNECTION ON RIEMANN
SURFACE AND TWISTED GEOMETRY

A. From Graph to Riemann Surface

As the first step to build a bridge between twisted ge-
ometries on graphs and generalized twisted geometries on
Riemann surfaces, we define a bijection between graphs
and Riemann surfaces.

A graph contains a collation of links and vertices, while
vertices are the end-points of links. Naively one can de-
fine a map ρ from the set of graphs to the set of Riemann
surfaces as follows: Firstly we relate each n-valent vertex
to a 2D-sphere with n holes. Then we relate each link to
a cylinder connecting a pair of holes on different n-holed
spheres. By doing so we promote a graph to a surface,
which defines ρ. However, the map ρ is surjective but
not injective.

The Riemann surface made by two n-holed spheres
connected by a cylinder is topologically equivalent to a
(2n-2)-holed sphere which means, its pre-image in ρ may
be either a graph with a single (2n-2)-valence vertex or a
graph with two n-valence vertices connected by one link.
So ρ−1 is not single-valued.

For example, assuming we have a graph made by a pair
of 4-valence vertices connected by a link as it is showed in
FIG.2, ρ maps this graph to a Riemann surface as FIG.3.

However, since FIG.3 is topologically equivalent to a 6-
holed sphere, the graph contains a single 6-valence vertex
like FIG.4 also maps to FIG.3 by ρ. So the pre-image of
FIG.3 is nonunique. ρ is not a bijection.

But we can construct a map ρ̂ between graphs and
Riemann surfaces as a bijection by decorating Riemann

A

B

FIG. 4: An alternative graph relating to FIG.3 by ρ

FIG. 5: A Riemann sur-
face decorated by two base
points and a meridian.

FIG. 6: A Riemann surface
decorated by a base point.

surfaces. Namely ρ̂ is a map between the set of graphs
and the set of decorated Riemann surfaces. More con-
cretely, the idea of constructing ρ̂ is nearly the same as
ρ, except that ρ̂ relates a link to a cylinder decorated
with a meridian, and relates a n-valence vertex to a n-
holed sphere decorated with a base point located on it.
The identical Riemann surfaces with different decorations
(meridians and base points) are understood as different
decorated Riemann surfaces.

As for the map ρ̂−1, the graph is uniquely recovered
by connecting all base points on decorated Riemann sur-
face with links, under the condition that each decorated
meridian should only intersect one link.

So ρ̂maps FIG.2 to a decorated Riemann surface FIG.5
and maps FIG.4 to a different decorated surface FIG.6.
It eliminates the ambiguity we mentioned before by dis-
tinguishing different decorations.

The inverse of the map brings FIG.5 and FIG.6 to
FIG.7 and FIG.8 respectively without any ambiguity.

Although the naive map ρ is not a bijection between
graphs and Riemann surfaces, ρ̂ is a bijection between
graphs and decorated Riemann surfaces. Twisted geome-
tries are defined on a cellular decomposition of 3D space.
The cellular decomposition is dual to a graph. Because
of the bijection between graphs and decorated Riemann
surfaces. The cellular decomposition, where twisted ge-
ometries live, is equivalently understood as dual to a dec-
orated Riemann surface. Therefore we are able to use

FIG. 7: A graph recov-
ered from Riemann surface
FIG.5.

FIG. 8: Graph recov-
ered from Riemann surface
FIG.6.
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FIG. 9: Path on tetrahedron, where point 4 is a base point
and edge 2-4 is a special edge.

decorated Riemann surface to study twisted geometries
on discrete 3D space.

Because all Riemann surfaces are decorated in the fol-
lowing discussion, in the rest part of the paper, we use
the term “Riemann surface” to refer to the decorated
Riemann surface.

B. Flat Connection on Riemann Surface and
Curved Tetrahedron

Given a 4-holed 2D-sphere denoted by Sa, according
to [1, 2, 4, 22], there is a bijection between a flat SU(2)
connection defined on Sa and a convex constant curva-
ture tetrahedra geometry as far as the non-degenerate
geometry is concerned.

The 4-holed sphere is considered as a decorated Rie-
mann surface which has a base point. Denote by Hi the
SU(2) holonomy along the loop which starts from the
base point of the sphere, goes around the i-th hole7 on
the sphere, and returns to the base point, we have∏

i

Hi = e. (2)

On the other hand, if we have a convex tetrahedra, by
choosing a base point and a special edge we can define
the closed paths along the boundary of each face. More
specifically, if the base point is contained in the boundary
of the face8, the path will start from the base point, go
around the face and end at the base point. If the base
point is not contained in the boundary of the face9 the
path will start from the base point, go along the special
edge, move around the face, return back to base point
through the special edge again. See FIG.9.

The spin-connection holonomies of those paths will
obey the relation ∏

i

U∂fi = e, (3)

which is identical to Eq.(2) of the SU(2) flat connection
holonomies. It suggests an identification between the flat
connection holonomies Hi on Sa and the spin-connection
holonomies U∂fi on tetrahedron.

7 i, which is a number from 1 to 4, labels 4 holes on the sphere
8 Like the face (1, 2, 4), (2, 3, 4) and (1, 2, 4) in FIG9.
9 Like face (1, 2, 3) in FIG.9.

Furthermore, [2] also shows that for the constant cur-
vature tetrahedron whose faces are of vanishing extrinsic
curvature, U∂fi relates to the area Ai and normal Ni of
the face fi by

Hi = U∂fi = exp

(
Λ

3
AiN

iτi

)
∈ SU(2), (4)

where Ni is the unit surface normal located at the base
point, and τi = − i

2σi (σi is the i-th Pauli matrix).
It turns out that (2) or (3) is the closure condition

for the constant curvature tetrahedron. Namely given
the data Ai, Ni satisfying (2) or (3), a unique convex
tetrahedron of constant curvature Λ can be reconstructed
[2, 22]. As Λ tends to be small, (2) reduces to the usual
closure condition of the flat tetrahedron∑

i

AiN
i = 0. (5)

C. Gluing 4-holed Spheres

We expect that if we have a Riemann surface made by
connecting two 4-holed spheres Sa, Sb by a 2D-cylinder,
the flat connection on this surface have a geometry inter-
pretation as gluing two curved tetrahedra.

FIG.1 showed an example. The middle dash line im-
plies the decoration-meridian. Hab stands for the holon-
omy around a hole on Sa. Hba goes around the corre-
sponding hole on Sb which is glued to the hole on Sa. Gab
is the holonomy connecting two base points. We consider
the flat SU(2) connection on the Riemann surface. The
flatness implies

Hab = GabHbaG
−1
ab . (6)

all Hab, Gab, Hba belong to SU(2).
Hab can be digonalized as

Hab = Mab

(
xab 0
0 x−1

ab

)
M−1
ab (7)

Similarly for Hba

Hba = Mba

(
xba 0
0 x−1

ba

)
M−1
ba (8)

Both of the matrices Mab,Mba belong to SU(2).
As a consequence of Eq.(6), the eigenvalues of Hab and

Hba are identical

xab = xba. (9)

Inserting Eqs.(7) and (8) into (6) shows that the com-
bination M−1

ab GabMba commutes with diag(xab, x
−1
ab ). It

implies M−1
ab GabMba is diagonal

M−1
ab GabMba =

(
e−iξab/2 0

0 eiξab/2

)
, (10)
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which means

Gab = Mabe
ξabτ3M−1

ba . (11)

Here we note that the parameter ξab is not uniquely
determined by Gab. In Eqs.(7) and (8), xab is invariant

under the “gauge transformation” Mab → Mabe
α′τ3 and

Mba →Mbae
α′′τ3 . As a result, there is a gauge parameter

α = α′ − α′′ appearing in equation (10) so that ξab →
ξab − α. Eq.(11) becomes

Gab = Mabe
(ξab−α)τ3M−1

ba . (12)

It turns out that lnxab and ξab are a pair of symplectic
coordinates of SU(2) flat connections on Riemann sur-
face. The freedom of α corresponds to the freedom in
choosing the ξab = 0 in the coordinate system. The de-
tails are given in Appendix A.

D. Relation with Twisted Geometry

The equation (11), coming from the SU(2) flat con-
nection on Riemann surface, suggests a relation with the
twisted geometry in 3-dimensions.

As it is introduced in [14], the twisted geometry defined
on a graph Γ has the phase space S2⊗S2⊗T ∗S1 on each
link. The phase space can be parametrized by the col-
lection of variables (N, Ñ, j, ξ). N = nτ3n

−1 = N iτi and

Ñ = ñτ3ñ
−1 = Ñ iτi indicate the unit normals N i, Ñ i

of the 2-face dual to the link. N i, Ñ i associates to the
two ends of the link. n, ñ are the rotations transforming
ẑ = (0, 0, 1) to the vectors N i, Ñ i. j is the area of the
2-face. The twist angle ξ relates to the link holonomy g
by

g = neξτ3 ñ−1. (13)

which shares the similarity with Eq.(11)
The SU(2) flat connection on each of the pair of 4-

holed spheres Sa, Sb relates to the geometry of a constant
curvature tetrahedron. Gluing Sa, Sb and obtaining the
Riemann surface FIG.1 suggest the topological gluing of
two tetrahedra through a common face as FIG.10. Eq.(4)
relates Hab to the geometry of a face of the tetrahedron
associated to Sa. Then Eq.(7) implies that

xab = exp

(
− iΛ

6
Aab

)
, N i

abτi = Mabτ3M
−1
ab (14)

where Aab is the area of the face. N i
ab is the unit nor-

mal of the face located at the tetrahedron base point.
The SU(2) matrix Mab is thus the rotation transforming

ẑ = (0, 0, 1) to ~Nab, playing precisely the same role as n
in twisted geometry. A similar interpretation is valid for
Hba. Mba plays the same role as ñ. The angles α′, α′′ are
the freedom of rotations in the plane perpendicular to
~Nab, ~Nba As a result, the relation Eq.(11) of Gab on Rie-
mann surface resembles the twisted geometry equation

(13). Gab relates the two unit normals ~Nab, ~Nba of the

gluing interface, where ~Nab ( ~Nba) is located at the base
point of the left (right) tetrahedron. Gab again presents

a twist angle ξab between ~Nab, ~Nba, in the same way as
the twisted geometry.

The resemblance between twisted geometry and SU(2)
flat connection on Riemann surface may be summarized
by the following:

n↔Mab, ñ↔Mba,

j ↔ lnxab, ξ ↔ ξab.
(15)

It suggests that the twisted geometry can be general-
ized to the situation with constant curvature tetrahedron.
The generalized twisted geometry relates naturally to the
SU(2) flat connection on Riemann surface. The twist an-
gle ξ in the usual twisted geometry has been interpreted
as the extrinsic curvature of the spatial slice, when g is
the holonomy of the Ashtekar-Barbero connection along
the link [15, 16]. A similar interpretation can be obtain
for ξab from Gab on Riemann surface, which is discussed
in the next section.

The identification xab = xba is a generalization of the
area-matching condition in twisted geometry. There is
a key subtlety in comparing xab = xba and the usual
area-matching. xab relates Aab via an exponential. The
periodicity restricts Aab ∈ [0, 12π

|Λ| ]. However there is no

restriction to guarantee that the constant curvatures Λ
are the same from the pair of tetrahedra. It may happen
that the first tetrahedron corresponding to Sa is spherical
(Λ > 0), while the second tetrahedron corresponding to
Sb is hyperbolic (Λ < 0). Due to this subtlety, xab =
xba doesn’t restrictively implies the area matching Aab =
Aba, but rather contains an ambiguity. More precisely, it
implies that

Aab = Aba or
|Λ|
3
Aab = 2π − |Λ|

3
Aba. (16)

The source of this ambiguity is the proper interpreta-
tion of tetrahedron face area from the closure condition
Eq.(3). The details can be found in [2, 22] 10.

At the quantum level, in the spinfoam model with cos-
mological constant [1], xab relates to the spins jab ∈ N/2
by xab = exp( 2πi

k jab), where the integer k is the Chern-
Simons level. So xab = xba implies jab = jba which is the
same identity as the spin-network. The above ambiguity
of area-matching comes from the ambiguity in interpret-
ing the spins jab as areas at the level of constant curvature
tetrahedron. However the ambiguity Eq.(16) is resolved
dynamically in the semiclassical limit of spinfoam ampli-
tude, which exhibits more constraints than the twisted
geometry, and implies the gluing of tetrahedra with both
area and shape matchings of their faces [1].

10 In the case of small area Aab, Aba � |Λ|−1, the second possibility
cannot hold, which resolves the ambiguity.
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In the present paper, we work at the level of twisted ge-
ometry, and admit that there is an ambiguity Eq.(16) of
area-matching when the twisted geometry is generalized
to curved tetrahedra. The “generalized area-matching
condition” is xab = xba in the present context.

As another important remark, the SU(2) flat connec-
tion on Riemann surface automatically implies the clo-
sure condition Eq.(3). Therefore the twisted geometry
obtained from SU(2) flat connection on Riemann surface
is at the level of the gauge invariant twisted geometry (à
la [14]), in which the tetrahedron closure condition has
been implemented.

III. GEOMETRIC INTERPRETATION OF
TWISTED GEOMETRY

In [16] and [15], a relation between twist angle and
extrinsic curvature has been established for the usual
twisted geometry. The twist angle ξ can be interpreted as
γΘ, where Θ is the hyper-dihedral (boost) angle between
two tetrahedra, and γ is the Barbero-Immirzi parameter.
The hyper-dihedral angle Θ is a discrete version of ex-
trinsic curvature as kαβ . The flux variable X in LQG
is interpreted as jN i where j is the area and N i is the
normal of the face.

In this section, we show that the geometric interpreta-
tion of twisted geometry on graph remains valid in the
generalized twisted geometry from flat SU(2) connection
on Riemann surface.

One of the key difference between a geometry made
piecewise by curved tetrahedra and a traditional Regge
geometry is that, instead of the flatness inside each tetra-
hedra for the usual Regge case, it is curved inside each
of the tetrahedra in our case. Just as the difference be-
tween special relativity and general relativity, we can no
longer directly compare or inner product vectors at dif-
ferent points in space. Comparing vectors at different
points involves a parallel transportation.

Consider in 4D spacetime, a 3D spatial slice triangu-
lated by constant curvature tetrahedra. For each tetra-
hedron, instead of defining a general space-like normal
vector for its surfaces, we have to specify the space-like
normal vector of each surfaces at a certain base point of
the surface. Similarly, the 4D normal of the tetrahedron
should be defined at the base point of the tetrahedron.

A. Exponentiated Flux

The flux X of a face f is used to be defined as
∫
f
e∧e in

the usual context of LQG or twisted geometry. However
it has been suggested in [22, 28], that in the presence of
cosmological constant or constant curvature tetrahedron,
X should be replaced by a suitable version of exponenti-
ated flux.

Indeed we consider the 3D spin connection Γiα deter-
mined by the triad eiα, and define the holonomy of Γiα

A1

A3

A2

A4

B1

B2

B3

B4

FIG. 10: Gluing topologically two tetrahedra through the
interface (1, 2, 3). The topological gluing doesn’t necessarily
identify the geometry of the common face.

along the boundary of each tetrahedron face11. By non-
abelian stokes theorem, we have

U∂f =P exp

(∮
∂f

Γ

)
=P exp

(∫
f

U(x)RU−1(x)

)
,

(17)

where P stands for path ordering in the first line and sur-
face ordering in second line. R is the curvature obtained
from Γiα. A path system has been chosen on f such that
for each point x ∈ f , there is a path px connecting x to
the base point of U∂f . U(x) is the parallel transportation
by Γ along the path px.

Within each tetrahedron, the geometry is of constant
curvature, which implies R = Λ

3 e ∧ e. Therefore

U∂f = P exp

(
Λ

3

∫
f

U(x)(e ∧ e)U−1(x)

)
(18)

= P
∏
x

exp

[
Λ

3
U(x)

(
εαβeαeβδA(x)

)
U−1(x)

]
.

We have discretized the integral in the above. Each point
x is contained in a plaquette whose area is δA(x). Here
U(x) parallel transport εαβeαeβ to the base point of U∂f
along px. Moreover f , as a face of constant curvature
tetrahedron, is a flatly embedded surface (vanishing ex-
trinsic curvature) in 3d constant curvature space. f be-
ing a flatly embedded surface implies that the quantity
Λ
3U(x)

(
εαβeαeβ

)
U−1(x) (located at the base point) is

independent of x [1].
At the base point, the wedge product of two orthonor-

mal frame vectors along the interface gives the surface

normal ~N which in SU(2) representation is N iτi. So
equation (18) reduces to

U∂f = exp

(
Λ

3
AN iτi

)
(19)

11 If the base point is not contained in the face, then the holonomy
will use the special edge to connect the base point and the face
as it is showed in the last picture in FIG.9.
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where A is the area of the surface. In the usual twisted
geometry the flux variable is given by ~X = A ~N where
~N is the normal of a flat tetrahedron face. The new
variable U∂f , which is natural in the present context of
curved tetrahedron, is manifestly an exponentiated flux

variable, with ~N being the face normal at the base point.
This actually proves the equation (4). By the corre-

spondence between constant curvature tetrahedron and
SU(2) flat connection on 4-holed sphere [22], U∂f is iden-
tified with the holonomy Hab of flat connection.

For a pair of tetrahedra topologically glued as in
FIG.10, their interface f = (1, 2, 3) has two exponenti-

ated fluxes U∂f and Ũ∂f associated to two different tetra-
hedra. They relate respectively to two different normals
~Nab and ~Nba located at the base points of tetrahedra A
and B.

In the reconstruction of constant curvature tetrahe-
dron geometry from flat SU(2) connection on Sa or Sb,
all the resulting face normals of tetrahedron A and tetra-
hedron B are located at their base points respectively.

B. Twist Angle and Extrinsic Curvature

Take Figure.10 as an example of gluing two tetrahedra,
tetrahedron A is gluing with tetrahedron B through the
interface labeled by (1, 2, 3), which means the point A1
identifies with B1 after the gluing, so do the points A2,
A3 and B2, B3.

We firstly consider a simple case: We set tetrahedron
A and tetrahedron B share the same base point at A1 as
well as B1. In the following, this point is often mentioned
as point 1 for abbreviation, and the interface (1, 2, 3) will
be denoted as fAB .

In order to discuss the extrinsic curvature k and its
relation with the twist angle ξab, we consider a Regge ge-
ometry on the spatial slice, which is made by tetrahedra
with constant curvature Λ. We zoom into a pair of glued
tetrahedra as FIG.(10). In the present situation, both of
the 4D (timelike) normals of two tetrahedra are defined
at the common base point 1, so does the derivative of 4D
normals. Although in the usual Regge geometry the ex-
trinsic curvature is smeared on the entire interface [16],
it is reasonable now to regulate the smeared extrinsic
curvature in a neighborhood at the base point, since the
extrinsic curvature is the derivative of 4D normal. It is
also consistent with the semiclassical geometry emerged
from spinfoam [1], in which the discrete extrinsic curva-
ture is defined at the base point, instead of being defined
at the common face.

By the above argument, the discrete extrinsic curva-
ture is given by

kαβ(x) = ΘAB

∫
fε

Nα(x)Nβ(x)δ3(x, fε(σ))d2σ, (20)

fε is the neighborhood of point 1 on face fAB . Nα(x)
is the 3D normal vector field on fAB . Nα is not a con-

1

ε

FIG. 11: The dash circle stands for a small open sphere
around point 1. The link ε is at the vicinity of the base point
of tetrahedra.

stant since the face is curved. kαβ only has the com-
ponent normal to fAB because it describes the change
of 4D normals across fAB . The plane where 4D nor-
mal rotates is orthogonal to fAB . ΘAB is the boost an-
gle (hyper-dihedral angle) between the 4D-normals of the
two tetrahedra [15, 16].

We define a holonomy GAB of Ashtekar-Barbero con-
nection Aiα = Γiα + γkiα traveling within a small neigh-
borhood at the common base point. GAB is along an
infinitesimal link ε which intersect fAB transversely.

GAB = P exp

∫
ε

dεα(Γiα + γeβikαβ)τi, (21)

eαi is a triad defined in the neighborhood.

At the vicinity of the base point, we can choose
a smooth triad field eiα in tetrahedron A and extend
smoothly to tetrahedron B. The 3D spin connection Γiα
determined by eiα is a smooth field when crossing fAB

12.
Thus in GAB , the contribution from the spin connection
Γiα is tiny since ε is infinitesimal. The main contribution
comes from the extrinsic curvature. Combing (20), we
have

GAB ' P exp

∫
fε

∫
ε

γeβiΘABNαNβδ
3(x, fε(σ)))τi dε

αd2σ

= exp
(
γΘABN

iτi
)

(22)

where N i = eβiNβ is located at the intersection between
ε and fε. As the limit ε→ 0, the intersection approaches
to the common base point (point 1).

We are free to perform a gauge transformation at one
end of ε on the tetrahedron B side. The gauge trans-
formation is written as V = Mab(Mbae

ατ3)−1 where the
notions Mab,Mba, α are explained in a moment. After

12 The 3D curvature of Γiα is smooth except at each internal edge.
The internal edge is the hinge of 3D deficit angle.
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4 5

32

1

FIG. 12: Two tetrahedra with their vertices labeled by num-
bers through 1 to 5.

the gauge transformation GAB → GABV is written as13

GAB = Mabe
γΘABM

−1
ab N

iτiMabe−ατ3M−1
ba

'Mabe
(γΘAB−α)τ3M−1

ba

(23)

As the limit ε→ 0, Mab ∈ SU(2) has been set to be the

rotation transforming ẑ to ~N . ~N ≡ ~Nab is understood
as the normal of fAB at the base point of tetrahedron
A. Mba ∈ SU(2) rotations the local frame in tetrahedron

B, and rotation ẑ to a new vector ~Nba, understood as
the normal of fAB at the base point of tetrahedron B
(as the limit ε → 0). Namely Mab,Mba have the same
geometrical meaning as the ones interpreted previously
in Eq.(11). The angle α is again the rotation freedom in
the plane perpendicular to the face normal.

Comparing Eqs.(23) and (12), we find the flat connec-
tion holonomy Gab on Riemann surface can be identi-
fied with the (infinitesimal) holonomy GAB of Ashtekar-
Barbero connection in 3D space discretized by constant
curvature tetrahedra. It relates the twist angle ξab to the
hyper-dihedral boost angle ΘAB by

ξab = γΘAB . (24)

C. More General Choices of base points

The path ε of GAB being infinitesimal is an artifact
from assuming tetrahedra A and B to share the same base
point. If two tetrahedra have different base points, GAB
will be not infinitesimal. Consequently, we also need to
take the different shapes of the path into consideration.

In general, GAB is defined as the holonomy of
Ashtekar-Barbero connection along the path connecting
two base points of two tetrahedra. When two points co-
incide, the path of GAB is defined un-ambiguously as in
previous section. However when two base points doesn’t
coincide, the path connecting them may be non-unique.

Consider again two tetrahedra glued together. For con-
venient, we label the vertices by the number through 1
to 5 as it is showed in FIG.12.

13 The periodicity of γΘAB on the exponential reflects the compact-
ness of the space of SU(2) Ashtekar-Barbero connection.

4 5

32

1

FIG. 13: The path 4 → 2 →
1 → 5 which is labelled as
p0

Gab

FIG. 14: The path p̂0 which
is the path corresponds to
the path p0 on a pair of
tetrahedra.

4 5

32

1

FIG. 15: The path p1 con-
structed by adding p0 with
one left-handed winding.

Gab

FIG. 16: The path p̂1 made
by adding p̂0 with a left-
handed winding.

As mentioned in Section.II B, the base point and spe-
cial edge have to be specified on each tetrahedra so that
the tetrahedron geometry relates to a flat connection on
4-holed sphere. Let’s define point 4 and point 5 in FIG.12
as the base point for two tetrahedra respectively and de-
fine edge 4 − 2 and edge 5 − 1 as the respective special
edges.

We may choose the path of GAB to sequentially pass
through 4 → 2 → 1 → 5 as it is showed in FIG.1314.
Let’s denote this path as p0. However, there is another
path passing through 4→ 2→ 3→ 1→ 5 as it is showed
in FIG.17, denoted by p−1. Clearly path p−1 is just path
p0 plus an additional closed winding 1 → 2 → 3 → 1.
Similarly we may add a closed winding 1 → 3 → 2 → 1
to make the path looks like FIG.15, denoted by p1, or
add two more closed windings 1 → 2 → 3 → 1 to p0

to get a path like FIG.19, denoted by p−2. We define
the winding 1 → 2 → 3 → 1 as right-handed and 1 →
3 → 2 → 1 as left-handed. These examples indicate
that (1) the path connecting the base points 4 and 5 is
not unique, and (2) the paths connecting 4 and 5 can be
classified by the number of windings along the boundary
of interface, when the paths contain the special edges
of two tetrahedra. We can make any path by adding
right-handed or left-handed windings to p0. We label the
path between 4 and 5 by pi, where i ∈ Z is the winding

14 For convenience, we set the path of GAB always contain the
special edges when the base points are not on the interface. It
is consistent with the choice of path for Gab on Riemann surface
shown in FIG.9.
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4 5

32

1

FIG. 17: The path 4 → 2 →
3 → 1 → 5 which is labeled
as p−1

Gab

FIG. 18: The path p̂−1

made by adding p̂0 with a
right-handed winding.

4 5

32

1

FIG. 19: The path p−2

made by p0 combining with
two right-handed windings.

Gab

FIG. 20: The path p̂−2

made by adding two right-
handed windings to p̂0

number.
The above paths pi are in 1-to-1 correspondence to the

paths for Gab of the flat connection on Riemann surface.
On a Riemann surface like FIG.7, the holonomy Gab is

along the path connecting two base points of the 4-holed
spheres. The paths is again not unique. With the pair of
base points fixed, the homotopy classes of the paths are
again classified by the windings along the meridian15. For
instance, we may have a path connecting the base points
as it is showed in FIG.14, denoted by p̂0. We may draw
some different paths p̂i by adding p̂0 with right-handed
windings (i < 0) or left-handed windings (i > 0) along
the meridian. FIG.14, FIG.16, FIG.18 and FIG.20 are
the examples of these paths.

As the arrangement of the pictures in previous page
indicates, a bijection can be defined by relating pi, being
the path of GAB on tetrahedra, to p̂i which is the path
of holonomy Gab on Riemann surface.

However, no matter along which path the holonomy
GAB on tetrahedra is defined, the common features are
that (1) the path goes from one tetrahedron to the other,
and (2) the path pass through at least one vertex of the
interface triangle for at least once. So we are able to
choose one vertex P of the interface fAB . The vicinity
of P is understood to contain the intersection between
the path and the interface, as the path travels from one
tetrahedron to the other. More precisely, we perform a
regularization so that the path is not precisely along the
edges of tetrahedra but is rather located slightly inside

15 Within each homotopy class, the paths give the same Gab be-
cause the connection is flat.

the tetrahedra. It has an infinitesimal distance ε from
the tetrahedron edges.

The (regularized) path of GAB can be divided into
three segments. The 1st segment (with holonomy GPB)
connects the base point of tetrahedron B to the vicinity
of the chosen interface vertex P , the 2nd segment is the
infinitesimal link ε in the vicinity of P , and intersects
transversely the interface fAB , the same as the one in
Section III B. The 3rd segment (with holonomy GAP )
connects the vicinity of P to the base point of tetrahe-
dron A16. As it is mentioned in the last paragraph, the
1st and 3rd segments of GPB and GAP are not precisely
along the edges of tetrahedra, but slightly located inside
the tetrahedron B and A.

Denote the separation of GAB as

GAB = GAPGεGPB (25)

Recall GAB is the holonomy of Ashtekar-Barbero con-
nection Aiα = Γiα + γkiα. In the discretization, the ex-
trinsic curvature Eq.(20) is only located at the interface
fAB , and inside the neighborhood fε of the chosen ver-
tex P (So the hyper-dihedral angle ΘAB is defined at P ).
So the extrinsic curvature kiα only contributes Gε, while
GAP , GPB only receive the contribution from the spin
connection Γiα, since they are slightly inside the tetrahe-
dra A and B. Thus GAP or GPB are parallel transports
relating the reference frames at different points inside
tetrahedron A or B. G−1

AP parallel transports the inter-

face normal ~Nab from the base point of tetrahedron A to

the vicinity of P , and GPB parallel transports ~Nba from
the base point of tetrahedron B to the vicinity of P .

Within the vicinity of P , Gε has been computed in Eqs
(22) and (23). As a result, we obtain again

GAB = Mabe
(γΘAB−α)τ3M−1

ba , (26)

Here Mab,Mba is different from the ones in (23) up to the
additional parallel transports GAP , GPB . But the new
Mab,Mba have the right geometrical meaning as the ones
interpreted previously in Eq.(11). Namely Mab (Mba) ro-

tations ẑ to the normal ~Nab ( ~Nba). The normals ~Nab, ~Nba
of the interface fAB are located respectively at the base
points of tetrahedra A and B. ΘAB is the hyper-dihedral
boost angle at P .

Comparing to Eq.(12), identifying Gab to GAB relates
the twist angle to the hyper-dihedral angle

ξab = γΘAB . (27)

There is a useful remark: The above discussion starts
from the flat connection on Riemann surface and pro-
poses the 3D geometrical interpretation to the flat con-
nections. However it may be helpful to consider a reverse

16 When one of the base point is on the interface, we only need to
divide the path of GAB into two segments, the link ε and the
segment connecting to the other base point.
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logic: One may start from the 3D discrete geometry with
constant curvature tetrahedra, and construct the holon-
omy GAB of Ashtekar-Barbero connection, as well as the
exponential flux U∂f . The discussion in Sections III B
and III C shows Eq.(26) for GAB , while the discussion
in Section III A shows Eq.(19) for U∂f . Then Eq.(6) fol-
lows once we identify GAB = Gab and U∂f = Hab. But
Eq.(6) characterizes the flat connection on Riemann sur-
face. Thus the 3D discrete geometry relates to the SU(2)
flat connection on Riemann surface.

The relation between 3D discrete geometry and SU(2)
flat connection on Riemann surface suggests that in the
presence of cosmological constant, the phase space of
LQG, consisting of the holonomies and fluxes, is equiv-
alent to the moduli space Mflat(S, SU(2)) of SU(2) flat
connections on Riemann surface.

IV. SYMPLECTIC STRUCTURE

The usual twisted geometry phase space P = S1 ⊗
S1⊗T ∗S1 quotient out Z2 and the kernel of the symplec-
tic structure is symplectomorphic to T ∗SU(2), which is
the phase space of LQG on an edge, at the non-gauge-
invariant level. But we still need to pick out the sub-
space fulfilling the closure condition and quotient out
the SU(2)V gauge equivalence which is generated by clo-
sure condition on each tetrahedron. Finally at the gauge-
invariant level, LQG phase space is T ∗SU(2)E//SU(2)V .

However, in this paper we relate the SU(2) flat con-
nection on Riemann surface to the generalized twisted
geometry with curved tetrahedra. The flat connection
on Riemann surface automatically take the closure con-
dition Eq.(2) into account. So the discussion in this paper
is directly at the gauge invariant level.

For a closed Riemann surface S (relating to a closed
graph by ρ̂), the moduli space of SU(2) flat connec-
tionsMflat(S, SU(2)) is a symplectic space, whose sym-

plectic structure is Ω = k
4π

∫
S tr [δ1A ∧ δ2A] (k becomes

Chern-Simons level in quantum theory). Ω can be de-
rived from Chern-Simons theory on S × R. We pro-
pose that in the presence of cosmological constant Λ,
Mflat(S, SU(2)) is a generalization of the LQG phase
space T ∗SU(2)E//SU(2)V base on the graph ρ̂(S). It
is easy to check that they have the same dimension, by
Eq.(15) translating the flat connection variables to twist
geometry variables.

What’s more, the symplectic form Ω can be
parametrized by xab and ξab defined in Section II C,
which have twisted geometry interpretations. The
variables xab and ξab relates to the complex Fenchel-
Nielsen(FN) coordinates of flat connections (see Ap-
pendix A). The FN coordinates are the symplectic coor-
dinates on Mflat(S, SU(2)). As a result, the sympectic
form can be expressed as

Ω = − ik
2π

dξab ∧ d lnxab + · · · (28)

· · · stands for the symplectic coordinates for the flat con-
nection on individual 4-holed spheres Sa, Sb. The co-
ordinates in · · · equivalently parametrizes the shapes of
constant curvature tetrahedra associated to Sa, Sb, which
has been studied extensively in [22].

Geometrically ξab and lnxab relate to the hyper-
dihedral angle Θab and area Aab of the interface fAB .
By using the relation xab = exp( 2πi

k jab), the above sym-
plectic structure Ω, derived from Mflat(S, SU(2)), re-
produces the right Poisson bracket for the twist geometry

{jab, ξab} = 1 (29)

Here 2π
k ∝ |Λ|`

2
P and jab`

2
P is proportional to the area

Aab up to the ambiguity mentioned below Eq.(16).
Other canonical variables in Mflat(S,SU(2)) describe

the shapes of tetrahedra. They has been studied in [22],
and shown to be a proper generalization from the case of
flat tetrahedra.

The above discuss suggests that Mflat(S, SU(2)) is
indeed the right phase space of LQG or twisted geometry
in the presence of cosmological constant.

V. QUANTIZATION

Given that Mflat(S, SU(2)) is the right phase space
for LQG with cosmological constant, we would like to
understand the quantization of the phase space and its
implication to quantum 3d geometry.

The quantization of Mflat(S, SU(2)) has been well-
understood in the development of Chern-Simons theory
with compact gauge group. Mflat(S, SU(2)) is also the
phase space of Chern-Simons theory on S × R. See e.g.
[25, 26] for the results of quantization. However instead of
provide a full exposition of the quantum theory, we rather
focus on quantizing the quantities which have geometrical
interpretations in twisted geometry, e.g. the face area
and twisted angle.

Because the phase space Mflat(S, SU(2)) is compact,
the proper coordinates of the phase space relating the
area Aab and twisted angle ξab are the exponentials xab
and y2

ab = e−iξab (see Appendix A for details). The sym-
plectic structure implies

{lnxab, ln y2
ab} =

k

4π
(30)

In quantum theory, the quantization of xab, y
2
ab ∈ U(1) is

the same as a quantum torus. The prequantum line bun-
dle over U(1)×U(1) has a curvature k

2πd ln y2
ab∧d lnxab.

Weil’s integrality criterion then implies that k ∈ Z. We
choose the xab-polarization such that the wave function
is written as f(lnxab), satisfying both periodicity and in-
variant under Weyl reflection17 f(lnxab) = f(− lnxab) =

17 The Weyl reflection xab → x−1
ab is a redundancy of the coordinate

xab.
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f(lnxab+2πi). The periodicities in both lnxab and ln y2
ab

implies that lnxab can only take k + 1 discrete values
lnxab = 0, iπk ,

2iπ
k , · · · , iπ, i.e.

xab = e
2πi
k jab , jab = 0,

1

2
, · · · , k

2
. (31)

Given the relation between jab and the area Aab. the
above implies the discrete area spectrum with a cut-off
k`2P

2 ∝ |Λ|
−1.

In the same way, in the yab-polarization where the wave
function is f(ln y2

ab), one find ln y2
ab can only take k +

1 discrete values ln y2
ab = 0, iπk ,

2iπ
k , · · · , iπ. Given that

y2
ab = e−iξab , we obtain a discrete spectrum of twist angle
ξab

ξab = 0,
π

k
,

2π

k
, · · · , π (32)

Provided the relation ξab = γΘAB , the quantization im-
plies a discrete spectrum of hyper-dihedral angle ΘAB ,
which is a new phenomena in the presence of cosmolog-
ical constant. It might relate to the discreteness of time
in LQG, as proposed in [27].
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Appendix A: Complex Fenchel-Nielsen (FN)
Coordinate

Consider a Riemann surface S shown in FIG.21, S
may be stretched into a pair 4-holed spheres connected
by a cylinder. The stretching leads to the definition
of a pair of complex Fenchel-Nielsen (FN) coordinates
on Mflat(S,SL(2,C)) the moduli space of (framed) flat
SL(2,C) connections on S [29, 30].

A framed SL(2,C) flat connection on S is an SL(2,C)
flat connection A with a choice of flat section s (called
the framing flag) in an associated flag bundle (1) over
every boundary components of S (the holes) and (2) over
the cylinder connecting the two 4-holed spheres [30, 31].
The flat section s may be viewed as a C2 vector field,
defined up a complex rescaling and satisfying the flatness
equation (d − A)s = 0. Each s from either a boundary
component or the cylinder may be extend to be a flat
section on the entire S by the flatness equation, although
s from different origin result in different flat sections on
S.

FIG. 21: A Riemann surface S is stretched as two 4-holed
spheres connected by a cylinder. γx and γy are the merid-
ian and longitude curves of the cylinder, which is useful in
defining complex FN coordinate. s0,1, s

′
0,1 and s denote the

framing flags associate to the boundaries and cylinder.

Let s be the framing flag on the cylinder in FIG.21.
Obviously s at a point p on the cylinder is the the eigen-
vector of the holonomy H(p) along the meridian curve
γx based at p. The eigenvalue x ∈ C of H(p) defines the
complex FN length variable, i.e.

H(p) = M(p)

(
x 0
0 x−1

)
M(p)−1. (A1)

Here M(p) ∈ SL(2,C) used for diagonalization depends
on the base point p of H(p). The first column of M(p) is
just s(p) up to a normalization.

Although s is defined as the framing flag on the en-
tire cylinder, from the view point of two 4-holed spheres,
we are motivated to define two different framing flags
by choosing two different initial values s(p0) and s̃(p1)
for the flatness equation. The flat sections developed
from s(p0) and s̃(p1) are denoted by s and s̃ respectively.
The two framing flags s, s̃ on the cylinder come from the
two framing flags associated to the two holes of 3-holed
spheres connected by the cylinder. We find that s and
s̃ are only different by a rescaling, which is denoted by
y ∈ C. Indeed, we denote by G(p1, p0) the holonomy
along γy traveling from p0 to p1. Then18

G(p1, p0)s(p0) = ys̃(p1). (A3)

It is clear that the parameter y depends on the choices
and normalizations of s(p0) and s̃(p1).

18 It is easy to observe that G(p1, p0)H(p0) = H(p1)G(p1, p0) by
the flatness of the connection A. By Eq.(A1), we have

M(p1)−1G(p1, p0)M(p0)

(
x 0
0 x−1

)
=

(
x 0
0 x−1

)
M(p1)−1G(p1, p0)M(p0). (A2)

where the first columns of M(p0),M(p1) are s(p0), s̃(p1).
It implies the diagonalization M(p1)−1G(p1, p0)M(p0) =
diag(y, y−1). Eq.(A3) is obtained by restricting the attention
to the first column of M(p)’s.
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As the variable canonical conjugate to x, the complex
FN twist τ is defined in the following way: Consider a
longitude curve γy traveling along the cylinder connect-
ing two points p0, p1 on two different 4-holed spheres (see
FIG.21). Let s0,1, s

′
0,1 be the framing flags for 2 pairs of

boundary components in ∂S, τ is defined by (see e.g.
[30])19

τ =
(s0 ∧ s′0)

(s0 ∧ s)(s′0 ∧ s)
(s1 ∧ s)(s′1 ∧ s)

(s1 ∧ s′1)
. (A4)

where the SL(2,C) invariants s ∧ s′ are evaluated at a
common point after parallel transporting s and s′. With-
out loss of generality, we evaluate the first ratio with
factors (s0 ∧ s′0), (s0 ∧ s), (s′0 ∧ s) at p0, and evaluate the
second ratio with factors (s1 ∧ s), (s′1 ∧ s), (s1 ∧ s′1) at p1.
The evaluation involves both s(p0) and s(p1) at two ends
of γy, while the parallel transportation between s(p0) and
s(p1) depends on a choice of contour γy connecting p0, p1.
Different γy may transform s(p1)→ xs(p1).

One can show that x, τ are canonical conjugate vari-
ables of the holomorphic Atiyah-Bott-Goldman symplec-
tic form Ω =

∫
S tr [δ1A ∧ δ2A], i.e. the reduction of the

symplectic from to x, τ gives [2, 32]

Ω =
dτ

τ
∧ dx

x
+ · · · . (A5)

We evaluate the twist variable τ by evaluating the first
ratio in Eq.(A4) at p0, while evaluating the second ratio
at p1:

τ =
(s0(p0) ∧ s′0(p0))

(s0(p0) ∧ s(p0))(s′0(p0) ∧ s(p0))

(s1(p1) ∧G(p1, p0)s(p0))(s′1(p1) ∧G(p1, p0)s(p0))

(s1(p1) ∧ s′1(p1))

= y2
[ (s0(p0) ∧ s′0(p0))

(s0(p0) ∧ s(p0))(s′0(p0) ∧ s(p0))

(s1(p1) ∧ s̃(p1))(s′1(p1) ∧ s̃(p1))

(s1(p1) ∧ s′1(p1))

]
. (A6)

The quantity in the bracket only depends on the flat
connections and framing flags located in the pair of 4-
holed spheres. The data of framing flags are assumed
a priori. Only the holonomy G(p1, p0) traveling from
one 4-holed sphere to the other has a nontrivial inter-
section with meridian holonomy H, while H essentially
has no intersection with any holonomy located in a sin-
gle 4-holed sphere. Therefore the quantity in the bracket
Poisson commutes with x, so we can rewrite the symplec-
tic structure as

Ω =
dy2

y2
∧ dx

x
+ · · · . (A7)

We introduce on C2 the Hermitian inner product

〈s, s′〉 = s̄1s′
1

+ s̄2s′
2
, and normalize s(p0) and s̃(p1) by

〈s(p0), s(p0)〉 = 〈s̃(p1), s̃(p1)〉 = 1. Under this normal-
ization, we restrict our attention to SU(2) flat connec-
tions as a subspace in Mflat(S,SL(2,C)), and we want
to understand what is the restriction of the variables
x, y. Firstly, it is obvious that x ∈ U(1). The matri-
ces M(p0),M(p1) ∈ SU(2) are written as

M(p0) =

(
s1(p0) −s̄2(p0)
s2(p0) s̄1(p0)

)
,

M(p1) =

(
s̃1(p1) −¯̃s2(p1)
s̃2(p1) ¯̃s1(p1)

)
(A8)

The flat connection being SU(2) implies G(p1, p0) ∈
SU(2), then implies y ∈ U(1). We have written y =
e−iξ/2 in Eq.(10).
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