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I. INTRODUCTION

The 2015 analysis by the Planck collaboration has provided significant constraints on many

inflationary scenarios [1]. One scenario that is still favored by the data is Starobinsky inflation,

in which inflation is driven by an R2 term in the gravitational Lagrangian [2, 3]. The analysis

also provided [4] a revised constraint on the dark energy equation of state parameter w = pde/ρde,

namely w = −1.006± 0.045. This is, of course, consistent with a cosmological constant (w = −1).

But it weakly favors phantom dark energy ( w < −1), which can lead to a future singularity. For

example, a big rip singularity occurs if w < −1 is a constant [5].

Predictions of the existence of final singularities are usually made based on solutions to the

classical Einstein equations with various dark matter sources for which w < −1. The existence of

singularities usually indicates the breakdown of classical general relativity, which must be replaced

by a quantum theory of gravity such as string theory or loop quantum gravity. While the full

quantum theory of gravity is as yet unknown, there is a semiclassical approximation which should

be valid, at least in many cases, when spacetime curvatures are smaller than the Planck scale.

In semiclassical gravity, renormalization inevitably predicts the existence of an α0R
2 term in the

gravitational Lagrangian [6].

In this paper, we undertake an investigation of quantum effects on future singularities of types

I-IV and on little rip models, all of which are defined below. The dark energy which causes these

singularities is assumed to be a perfect fluid with equation of state pde = pde(ρde). We consider the

effects of conformally invariant free quantum fields in the conformal vacuum state, and in one case

we consider the effects of free massive conformally coupled scalar fields. We restrict our attention

to semiclassical gravity along with an α0R
2 term in the gravitational Lagrangian because it is both

the most conservative way and the most developed way to take quantum effects into account. Some

of the terms in the stress-energy tensors for the quantum fields have the same form as those from

the α0R
2 term. This results in an effective coefficient for the R2 term which we call α. Details are

given in Sec. II. We consider all values of α but emphasize the values which are compatible with

Starobinsky inflation.

One serious limitation of semiclassical gravity is that the solutions are not expected to be re-

liable once the spacetime curvature reaches the Planck scale. However, if Starobinsky inflation

occurred, then α ∼ 109 [7], which is large enough that quantum effects can be important when

the spacetime curvature is well below the Planck scale. As we shall show, even if quantum effects

are important that does not guarantee that a final singularity will be removed by backreaction
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effects. Nevertheless it can still be of some interest to investigate the predictions of the semiclas-

sical approximation regarding the final singularity. This is exactly what is done when studying

singularities in classical general relativity. In the semiclassical case, such an approach was taken

in [8] for CGHS theories in (1+1) dimensions in cases where black holes formed from collapse. In

cases where the singularities are not removed, we study the singularity structure of the solutions to

the semiclassical backreaction equations to determine if the classical singularity has been altered,

and whether it has been weakened or strengthened.

A. Types of final singularities

Previously, several types of possible final singularities have been identified and studied. Big

rip singularities, in which the scale factor and its derivatives (and hence the energy density and

pressure) approach infinity in a finite proper time, were discussed in [5]. As the singularity is

approached, tidal forces become arbitrarily large, and all bound objects are torn apart. Sudden

singularities, in which the scale factor and its first derivative (and hence the energy density) are

finite and higher derivatives diverge in a finite proper time, were discussed in [9, 10]. Examples

of other types of future singularities are found in [11–14]. One can also consider cases such as the

little rip [15], in which there is no singularity because the scale factor and its derivatives approach

infinity only at an infinite proper time in the future. However, at finite times, tidal forces become

arbitrarily large, and bound objects are torn apart.

The classification of final singularities that we use is given in [16]. For type I singularities,

also known as big rip singularities, the scale factor and the spacetime curvature diverge at a finite

proper time. For types II-IV the scale factor is finite at the singularity, which occurs at a finite

proper time. For type II singularities, also known as sudden singularities, the energy density and

the first derivative of the scale factor are finite, but the pressure and the second derivative of the

scale factor diverge. For type III singularities the first derivative of the scale factor, the energy

density, and the pressure diverge. Type IV singularities are the weakest, with only the derivative

of the pressure and the third derivative of the scale factor diverging. Even milder singularities

in which the lowest order derivative of the scale factor that diverges is four or larger can also be

considered, and are sometimes categorized as type IV. However, we will restrict the definition of

type IV to only include singularities in which the first two derivatives of the scale factor are finite

and the rest diverge. Other classification schemes have also been discussed [17–20].
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B. Previous work relating to quantum effects on final singularities

Work has been done regarding the effects of quantum cosmology on final singularities [21–35]

as well as the effects of F (R), F (G), and similar theories [36–45]. However, as mentioned above,

our focus in this paper is on quantum effects on final singularities due to semiclassical gravity. The

question of whether quantum effects due to semiclassical gravity can remove these singularities has

been addressed in two ways. The first and easiest way is to compute 〈Tab〉 for various quantum

fields in a given background spacetime with a final singularity and compare it with the stress-energy

of the dark energy which is responsible for the singularity. One expects semiclassical backreaction

effects to be unimportant if the stress-energy of the dark energy is much larger in magnitude than

that of the quantum fields. The second way is to actually solve the semiclassical backreaction

equations when conformally invariant quantum fields are present.

Background field calculations have been done in spacetimes with type I and type II singu-

larities for conformally invariant fields, the massless minimally coupled scalar field, and massive

conformally and minimally coupled scalar fields. For type I singularities the effects of conformally

invariant scalar, spinor, and vector fields in spacetimes with constant values of w were investigated

in [46]. Comparing the stress-energy of the quantized fields with that of the dark energy, it was

found that the results vary depending on the value of w and on the values of the renormalization

parameters for the fields. For values of w that are realistic for our universe, they found that quan-

tum effects seem to strengthen the singularity. In [47] it was shown that the energy density of

one conformally invariant scalar field remains small compared to the dark energy up to the Planck

scale for values of w that are realistic for our universe.

The effects of particle production due to a massless minimally coupled scalar field on type I

singularities with constant values of w was investigated in [48] using a state for which Bunch and

Davies [49] had previously computed the stress-energy tensor. It was found that the energy density

of the created particles never dominates the dark energy density. For this case an approximation to

the full stress-energy tensor, which also includes vacuum polarization effects, was computed in [50].

It was found that quantum effects are important if you go close enough to the final singularity. The

same conclusion was reached in [47] using the exact energy density which Bunch and Davies had

computed for their state [49]. It was also found that for a single scalar field quantum effects are not

important before the Planck scale is reached. The energy density was computed for an arbitrary

fourth order adiabatic state, and it was shown that the state found by Bunch and Davies is an

attractor in the sense that the energy density for all other fourth order adiabatic states approaches
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the energy density for Bunch and Davies’ state as the final singularity is approached.

Both the number density of created particles and the stress-energy tensor for a conformally

coupled massive scalar field were computed for the case w = −5
3 in [51]. Backreaction effects

were found to be unimportant for masses much smaller than the Planck mass and times which are

early enough that the time until the Big Rip occurs is greater than the Planck time. The energy

densities of conformally and minimally coupled massive scalar fields in big rip spacetimes with

constant w were numerically computed for specific values of w and specific states of the quantum

fields in [47]. For conformal coupling it was found in each case considered that at late times the

energy density approaches that of the conformally invariant scalar field. For minimal coupling it

was found in every case considered that at late times the energy density approaches that of the

massless minimally coupled field in the state found by Bunch and Davies.

For type II singularities the effects of conformally invariant fields in certain cases using a back-

ground field approach were investigated in [52]. It was found that whether the singularity is

strengthened or weakened depends on the sign of one of the renormalization parameters. In [53]

the effects of particle production in models with sudden singularities when a massless, minimally

coupled scalar field is present were investigated. It was found that particle production effects are

never important near the singularity, because the stress-energy of the produced particles remains

small in comparison with that of the dark energy. The effects of particle production due to a

massive conformally coupled scalar field near a sudden singularity were investigated in [54]. Using

an approximate calculation for the energy density of the produced particles, it was found that

particle production effects are never important near the singularity.

To date, the only semiclassical backreaction calculations that have been done which are related

to final singularities have been for conformally invariant fields. Calculations for type I singularities

have been done in [12, 16, 37, 55–61]1. They have been done for type II singularities in [12, 16,

60, 62, 63] and for type III singularities in [16, 60]. It was found that backreaction effects can be

significant, often resulting in the avoidance or softening of singularities.

1 We agree with the finding of [57] that in certain cases quantum effects can eliminate the big rip singularity.
However, one of our proofs in Sec. VII states that if the big rip singularity is removed by backreaction effects from
conformally invariant fields and an R2 term in the gravitational Lagrangian, then what happens instead is that it
undergoes a bounce. This is contrary to the suggestion in [57] and also in the review article [45] that if the big rip
singularity is removed, the de Sitter solution to the semiclassical backreaction equations replaces it.
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C. Overview of the work done in this paper

In spite of the significant amount of work that has been done on the effects which semiclassical

gravity has on final singularities, a complete and comprehensive study of them has not yet been

given. In this paper we make significant progress towards that goal by investigating the behaviors of

solutions to the semiclassical backreaction equations for conformally invariant free quantized fields

and an α0R
2 term in the gravitational Lagrangian when the dark energy is modeled as a perfect

fluid and the spacetime is homogeneous, isotropic, and spatially flat. We consider cases in which

solutions to the classical Einstein equations with the dark energy as a source consist of spacetimes

with little rips or with future singularies of type I - IV. In each case we develop model-independent

proofs of the behaviors of solutions to the equations.

In addition we find analytical and numerical solutions to the semiclassical backreaction equa-

tions for certain specific models of the dark energy. These are used to illustrate the proofs and, in

some cases, to compare with numerical solutions that we also obtain for the order reduced semi-

classical equations for which the higher derivative terms have been eliminated. The order-reduced

semiclassical equations are discussed in more detail below.

We use the background field method to numerically investigate the behaviors of the energy

densities of massive conformally coupled scalar fields in a spacetime with a type III singularity.

We also use this method to analytically investigate the energy densities for conformally invariant

fields in all spacetimes with little rips or with future singularities of type I - IV.

In many cases our results confirm those of previous authors.

1. General analytic proofs

The specific assumptions in our proofs regarding solutions to the semiclassical backreaction

equations are as follows: We work in spatially flat, homogeneous, and isotropic spacetimes. We

include conformally invariant quantum fields in the conformal vacuum state. We include an α0R
2

term in the gravitational Lagrangian. The only classical matter we include is the dark energy which

we assume is a perfect fluid. We investigate all equations of state of the dark energy which result

in solutions to the classical Einstein equations with future singularities of type I, II, III, and IV,

or which result in spacetimes in which a little rip occurs. For all values of the effective coefficient

α defined in Sec. II, we give analytic proofs which describe the behaviors of the corresponding

solutions to the semiclassical backreaction equations in all cases in which the equation of state of
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the dark energy results in one of these final behaviors. In this way we are able to make definitive

predictions regarding the effects of quantum fields and the α0R
2 term on these singularities.

We restrict our attention to spatially flat spacetimes, because the spatial curvature will not have

any significant influence on the behavior of solutions near a final singularity or at late times in a

spacetime ending in a little rip. We do not include any regular classical matter or radiation in our

calculations, nor do we include a cosmological constant, because the energy density and pressure

of the dark energy will dominate over all of these near a final singularity. For conformally invarant

fields in any homogeneous and isotropic state other than the conformal vacuum state there is an

extra term in the stress-energy tensor which is of the same form as that of classical radiation. This

term will be unimportant near a final singularity.

One reason we include only conformally invariant quantum fields is the evidence discussed in

Sec. IV A that the energy density for the conformally coupled massive field approaches that of

the massless one near the singularity. We expect that this will be true for spin 1
2 and spin 1

massive fields as well. To see why, note that if one uses point splitting [64, 65] the renormalization

counterterms contain higher derivative terms which are not multiplied by any power of the mass.

Therefore they exist for both massive and massless fields. Near the final singularity the higher

derivative terms in the stress-energy tensor tend to dominate. Most fields in the standard model

of particle physics or in various grand unified theories with or without supersymmetry are either

spin 1
2 or spin 1. In the massless limit when interactions are ignored, these become conformally

invariant. We are ignoring minimally coupled fields, because it is likely there is only a small number

of them compared to the large number of conformally coupled fields. In fact, the only two likely

candidates are the Higgs field, if it is a massive minimally coupled scalar field, and the graviton

field. The latter in a Robertson-Walker universe in a particular gauge can be modeled as two

massless minimally coupled scalar fields [76, 77].

We include an α0R
2 term in the gravitational Lagrangian in part because one is required for

renormalization of the quantum fields [6]. Further, as mentioned above, such a term is necessary

for Starobinsky inflation to occur. The other unique term necessary for renormalization is a Weyl

squared term, but this gives a vanishing contribution to the semiclassical backreaction equations

in any homogeneous and isotropic spacetime. As discussed above, our approach is a relatively

conservative one, so we do not include the effects of other higher order terms that could be present

in the gravitational Lagrangian, and we restrict our attention to semiclassical effects rather than

the full quantum gravity effects that occur in string theory or loop quantum gravity.

The results from our analytic proofs regarding the behaviors of solutions to the semiclassical
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backreaction equations are mixed. If the universe underwent Starobinsky inflation (α > 0) then,

as was shown in [71], there are no bounce solutions and thus the universe cannot avoid a final

singularity if one is present classically. We find that if there is a classical little rip, it is turned

into a big rip singularity and that a classical big rip singularity always remains a big rip singular-

ity. Depending on the properties of the dark energy, type III singularities either remain type III

singularities or are softened to type II or type IV singularities. Type II and IV singularities are

weakened to the point that they are effectively removed, since at least the first three derivatives

of the scale factor remain finite at the singularity. However, for type II the fourth and all higher

derivatives of the scale factor diverge and for type IV the fifth and all higher derivatives of the

scale factor diverge.

For α < 0, if there is classically either a big rip singularity or a little rip, then it will always be

avoided by a bounce, in which the universe reaches a finite maximum size and starts to contract.

The results for type III singularities are model dependent. In some cases we find that the singularity

is always avoided by a bounce. In others it can be avoided by a bounce, but if this does not happen

then it is weakened to a type II or type IV singularity. If classically there is a type II or type IV

singularity, then it can also be avoided by a bounce. If this does not happen then, as for the case

α > 0, quantum effects will effectively remove these singularities.

2. Specific analytic and numerical calculations

The assumptions for the analytic proofs also apply to the specific analytic and numerical cal-

culations that we have done. For those calculations, in addition it was necessary to choose specific

equations of state for the dark energy. The equation of state we chose is given in Eq. (3.2). It

has three parameters. The classical Einstein equations can be solved to determine which ranges of

values of these parameters result in spacetimes with either a little rip, or a final singularity of type

I, II, III, or IV. The details are given in Sec. III.

The background field calculations that we do for massive conformally coupled scalar fields

involve the computation of the full renormalized energy density in a specific spacetime containing

a type III singularity. This is done for fields with various masses, including m = 0. For each mass

the field is in a particular fourth order adiabatic state. This is described in detail in Appendix B. We

find that at late times the energy density approaches the value it has in the massless case. This is

the same type of calculation with the same result as that done for the massive conformally coupled

scalar field in [47]. A different type of calculation was done in [54] for this field in a spacetime
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with a type II singularity. The result was that particle production effects are not important as the

singularity is approached. These results for type I and III singularities (with supporting evidence

from the results for type II singularities) provide evidence that massive conformally coupled scalar

fields become effectively conformally invariant near final singularities in the sense that the terms

in the energy density which depend on the mass are subdominant as the singularity is approached.

This means we can treat them as massless, so the number of effectively massless fields near a

singularity can be large.

As discussed above we investigate the effects of backreaction on various types of final singularities

by solving the semiclassical backreaction equations when conformally invariant quantum fields are

present. The dimensionless parameter α, which multiplies terms in the semiclassical backreaction

equations due both to the quantum fields and the R2 term in the gravitational Lagragian, must

be of order 109 in order for Starobinsky inflation to occur [7]. This large value, along with the

large number of effectively massless quantum fields present, implies that below the Planck scale

quantum effects due to the gravitational field can be ignored to leading order.

Having a large value for |α| and a large number of effectively conformally invariant fields near the

final singularity means that quantum effects will be important at much lower values of the spacetime

curvature than was found in [47], where the effects of a single scalar field were considered. In their

response [66] to a comment on their paper [58] the authors of [47] pointed out that the backreaction

solutions found in [58], in which the big rip singularity is avoided, vary on time scales comparable

to or less than the Planck scale. However, for values of |α| comparable to those necessary for

Starobinsky inflation, the types of solutions found in [58] will vary on time scales substantially

longer than the Planck scale.

Even though a large value of |α| results in solutions for which quantum effects are important on

scales well below the Planck scale, there are still at least two potential problems. One is that the

semiclassical approximation may become invalid at scales well below the Planck scale. This has

been discussed [67] in the context of a large N expansion, with N the number of identical quantum

fields. The main reason is that in the effective field theory approach [68] there is an infinite series

of higher order terms in the gravitational Lagrangian, and this expansion is generally thought to

break down when these terms become comparable to each other. Of course it is possible that the

coupling constants for the other terms are very small compared with |α|. So there might be a

region where that term is large and the others are still small.

The second potential problem is that the presence of an R2 term in the gravitational Lagrangian

and the presence of quantum fields results in the appearance of higher derivative terms in the
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semiclassical backreaction equations. These terms lead to a much larger number of solutions than

occur for classical general relativity. In many cases they also lead to solutions which may follow a

solution to the classical Einstein equation for some time but are unstable and eventually deviate

substantially from it, usually by going into a period of extremely rapid expansion or contraction.

It has been shown [69, 70] that in cosmology such solutions can be eliminated if one follows a

procedure called order reduction, in which the the semiclassical backreaction equations are reduced

to second order equations. This is not always desirable. For example, if order reduction is used,

then Starobinsky inflation does not occur [70].

We study numerically the behaviors of the order-reduced equations in special cases and compare

them to numerical solutions to the full semiclassical backreaction equations in those cases. We find

that, once quantum effects become important, a solution to the order-reduced equation generally

deviates significantly from the corresponding solution to the full semiclassical backreaction equa-

tions and that if the order-reduced solutions are continued into the regions near the singularity, in

many cases they have a qualitatively different effect on that singularity than the solutions to the

semiclassical backreaction equations. Thus solutions to the order-reduced equations are often not

very useful for studying quantum effects near final singularities.

3. Content Summary

In Sec. II we review the computation of the stress-energy tensor for a quantized scalar field

in a spatially flat Robertson-Walker spacetime. Then we give the stress-energy tensor for any

conformally invariant free quantized field in these spacetimes and discuss the ambiguity in one of

the renormalization parameters. We also discuss the semiclassical backreaction equations when

conformally invariant fields are present and the way in which the higher derivatives can be elimi-

nated using the method of order reduction. In Sec. III we discuss the models of the dark energy

that we are using and the results when the classical Einstein equations are solved. In Sec. IV we

investigate quantum effects on the final singularities using the background field method, where the

stress-energy tensor for the quantum fields and the terms coming from an R2 term in the grav-

itational Lagrangian are evaluated in the classical spacetime geometry. In Sec. V we discuss the

types of semiclassical backreaction effects that can occur and the ways in which they can remove,

avoid, or change the nature of a final singularity. Sec. VI contains our backreaction results for

the case α > 0, Sec. VII contains our backreaction results for α < 0, and Sec. VIII contains our

backreaction results for α = 0. These results are summarized in Sec. IX. In Appendix A the form
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we use for the stress-energy tensor for a massive conformally coupled scalar field is derived, and

in Appendix B our method of choosing a state for this field is discussed. Throughout we use units

such that ~ = c = G = 1, and our conventions are those of Misner, Thorne, and Wheeler [72].

II. STRESS-ENERGY TENSOR FOR QUANTUM FIELDS

As mentioned in Sec. I, the effects of quantum fields on final singularities can be investigated

using background field calculations of the stress-energy tensor and by solving the semiclassical

backreaction equations. In this section we review the computation of the stress-energy tensor

for conformally coupled massive scalar fields and conformally invariant fields in a spatially flat

Robertson-Walker spacetime. We also write down the semiclassical backreaction equations for

such a spacetime when conformally invariant fields along with an R2 term in the gravitational

Lagrangian are present.

In a spatially flat Robertson-Walker spacetime, the line element can be written in the form

ds2 = −dt2 + a2(t)d~x2 . (2.1)

For this metric, a massive conformally coupled scalar field can be expanded in terms of a complete

set of modes such that [6]

φ =
1

a(t)

∫
d3k

[
a~ke

i~k·~xψk(t) + a†~k
e−i

~k·~xψ∗k(t)
]
. (2.2a)

The mode functions ψk are solutions to the equation

d2ψk
dt2

+H
dψk
dt

+ ω2
k ψk = 0 , (2.2b)

with

H ≡ ȧ

a
, (2.2c)

ω2
k ≡

k2

a2
+m2 , (2.2d)

where dots denote time derivatives. The solutions are normalized using the Wronskian condition

ψk ψ̇
∗
k − ψ∗k ψ̇k =

i

a
. (2.3)

In a Robertson-Walker spacetime there are two unique components of the stress-energy tensor,

and they are connected by the conservation equation. The full renormalized stress-energy tensor

was written in [73] in terms of a part that usually must be computed numerically along with a part



12

that is known analytically. In Appendix A we use the results of that paper and show that for a

conformally coupled massive scalar field the energy density can be written in the form

〈ρq〉 = 〈T qtt〉 =
1

4π2a2

∫ ∞
0

dk k2
[
|ψ̇k|2 + ω2

k|ψk|2 −
ωk
a

]
+ ρa , (2.4a)

ρa =
1

2880π2

(
−1

6
(1)Htt + (3)Htt

)
+

m2

288π2
Gtt . (2.4b)

Here

Gtt =
3ȧ2

a2
= 3H2 , (2.5a)

(1)Htt = −36ḦH + 18Ḣ2 − 108ḢH2 , (2.5b)

(3)Htt = 3H4 . (2.5c)

Note that the analytic part, ρa, given here is not the same as the analytic part in [73].

If m = 0, the normalized positive frequency solution to the mode equation is

ψk =
1√
2k

exp

[
−ik

∫ t

dt′/a(t′)

]
. (2.6)

Substituting this into (2.4) gives

〈ρq〉 = ρa =
1

2880π2

(
−1

6
(1)Htt + (3)Htt

)
. (2.7)

The massless conformally coupled scalar field is conformally invariant. In a spatially flat

Robertson-Walker spacetime, the stress-energy tensor is known analytically if the fields are in

the conformal vacuum state [6]. The energy density is

〈ρ〉 = −1
6αq

(1)Htt + βq
(3)Htt , (2.8a)

with

αq =
1

2880π2
(
N0 + 6N1/2 + 12N1

)
, (2.8b)

βq =
1

2880π2
(
N0 + 11N1/2 + 62N1

)
. (2.8c)

Here N0, N1/2, and N1 are the numbers of scalar, spin 1
2 , and spin 1 fields respectively.

In a general spacetime, for 〈Tab〉 it is necessary to have an R2 term and a Weyl squared term,

CabcdC
abcd, in the gravitational Lagragian [74].2 The tensors that result from the variations of

2 Because of the Gauss-Bonnet theorem [6], it is also possible to replace the Weyl squared term with a Ricci squared
term, RabR

ab.
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these terms are

(1)Hab = − 1√
−g

δ

δgab

∫
d4x
√
−g R2 = −2gab�R+ 2∇a∇bR− 2RRab + 1

2gabR
2 , (2.9a)

(C)Hab = − 1√
−g

δ

δgab

∫
d4x
√
−g CabcdCabcd = −4∇c∇dCabcd + 2RcdCabcd . (2.9b)

The action which leads to the semiclassical backreaction equations when classical matter and

free quantum fields are present is of the form

S = Scm + Γq +
1

16π

∫
d4x
√
−gR+

1

2

∫
d4x
√
−g
[
α0R

2 + γ0CabcdC
abcd
]
, (2.10)

where Scm is the action for the classical matter fields, Γq is the one loop effective action for the

quantum fields, and α0 and γ0 are dimensionless coupling constants. The semiclassical backreaction

equations are obtained from [6]:

− 2√
−g

δ

δgab
S = 0 , (2.11)

with the result that

Gab = 8π
[
T cab + 〈T qab〉+ α0

(1)Hab + γ0
(C)Hab

]
. (2.12)

Here T cab is the stress-energy tensor for the classical matter, and T qab is the stress-energy tensor

operator for the quantum fields.

In Secs. VI - VIII we solve the semiclassical backreaction equations in the case that conformally

invariant quantum fields plus classical matter in the form of dark energy are present. The justifica-

tion for omitting other types of quantum fields is given below. We focus on solving the time-time

component of the equations. For these fields in a spacetime with the metric (2.1), the contribution

of the term proportional to αq in (2.8a) is of the same form as the term in the time-time component

of (2.12), which is proportional to α0. Thus the effective energy density of the quantum field is

ρqe = 〈ρq〉+ α0
(1)Htt . (2.13)

Then the time-time component of the semiclassical backreaction equations is

H2 =
8π

3
(ρde + ρqe)

=
8π

3

[
ρde + α

(
−36ḦH + 18Ḣ2 − 108ḢH2

)
+ 18βH4

]
. (2.14)

Here ρde is the energy density of the dark energy, and

α ≡ α0 − 1
6αq , β ≡ 1

6βq . (2.15)
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Because α is the effective coefficient of an R2 term in the gravitational Lagrangian, it is the

value of α rather than α0 which affects the behaviors of solutions to (2.14). Note that there

is no contribution to (2.14) from (C)Htt, because all components of the Weyl tensor vanish in a

conformally flat spacetime.

As is seen from (2.8b), the value of αq depends on the number and types of conformally invariant

fields present. However, there is no fundamental way to fix the value of α0 without invoking some

theory of quantum gravity, and since the two contributions combine together, this applies to the

value of α as well. An experimental bound is |α| . 1074 [75]. There is a much stronger bound if

Starobinsky inflation occurred. In this case for the density perturbations in the early universe to

have the correct size it is necessary that α ∼ 109 [7].

As shown in (2.8c) and (2.15), the value of β depends only on the number and types of confor-

mally invariant fields present. Since conformally invariant fields are massless, there is technically

only one such field today, the electromagnetic field. However, conformally coupled massive scalar

fields along with massive fields of spin 1
2 and 1 are effectively conformally invariant if they are

relativistic, as they are in the early universe if the temperature is much larger than the mass, and

if interactions can be neglected. In the late universe, even near the singularity, the fields are not

relativistic. However, if the contribution of the mass terms in the energy density is small compared

with the massless terms, then the field is effectively conformally invariant. This has been shown

to be the case for the conformally coupled massive scalar field in some specific spacetimes with big

rip singularities [47]. It is also shown below for a specific spacetime with a type III singularity.

Thus it is very likely that if interactions don’t contribute significantly to the energy density at

late times, then the massive fields that are present become, from the point of view of their energy

densities, effectively massless, and thus effectively conformally invariant near the final singularity.

The standard model alone has N0 = 4, N1/2 = 45, and N1 = 12, and using these values in (2.8c)

and (2.15) shows that β = 1243
17280π2 . Models such as supersymmetry and grand unified theories have

many more fields. Thus the value of β for our universe is also unknown and could be relatively

large, although probably not nearly as large as the value of α if Starobinsky inflation occurred.

The effect of such large values of α and β is to make it possible for significant backreaction

effects due to ρqe to occur on a scale well below the Planck scale, as they must for Starobinsky

inflation to be viable. Such effects could significantly alter the expansion of the universe near a

final singularity.

One of the issues in solving the semiclassical backreaction equations involves the existence of

higher derivative terms. In particular, the time-time component (2.14) of the equations has up to
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three time derivatives of the scale factor, while the corresponding classical Einstein equation (3.4)

has only one. This means that there are many more solutions to the equations, and that one must

fix the starting value not only of the scale factor a but also of its first two time derivatives. There

are different ways that have been proposed to deal with this problem.

One way is to eliminate the higher derivatives using a method called order reduction. This has

been developed for cosmological spacetimes by Parker and Simon [69]. Here we use an approach

that is equivalent to theirs. One begins by using the classical equation (3.4) and its derivatives

to obtain expressions for H and its derivatives in terms of the dark energy density ρde and its

derivatives. These are then used to compute the terms in the effective energy density for the

quantum fields (2.14), and the result is used to obtain a new expression for H on the left hand side

of (2.14). The result is

H2 =
8π

3

[
ρde + 288π2α (ρde + pde)

(
ρde + pde − 4ρde

dpde
dρde

)
+ 128π2βρ2de

]
. (2.16)

This is then integrated to obtain a(t).

III. MODELS FOR THE DARK ENERGY

Our goal in this paper is to investigate the effects of quantum fields and an α0R
2 term in the

gravitational Lagrangian on spacetimes with little rips and final singularities of types I - IV. To do

so we need to first consider solutions to the classical Einstein equations with the dark energy as

a source. At late times in such universes the dark energy will dominate over all forms of classical

matter as well as classical radiation and a cosmological constant if one is present. Thus we include

no other sources for the classical Einstein equations.

We model the dark energy as a perfect fluid with equation of state pde = pde(ρde). In a spacetime

with metric (2.1) the conservation equation for the dark energy is

dρde = −3 (ρde + pde)
da

a
= −3H (ρde + pde) dt . (3.1)

Integrating this equation allows one to find the energy density ρde as a function of the scale factor

a for any given equation of state.

A. Models used for the analytic proofs

For the proofs in Secs. VI and VII regarding the behaviors of solutions to the semiclassical

backreaction equations, we consider all equations of state which lead to a particular type of singu-
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larity when the classical Einstein equations are solved with the dark energy as a source. In that

sense these proofs are very general.

For little rips and for big rip (type I) singularities, ρde → ∞ in the limit that a → ∞. The

difference is that in the little rip case this happens at an infinite proper time in the future, and

in the big rip case it happens at a finite proper time in the future. While one could go beyond

this condition and distinguish between big and little rips, it is not necessary for the proofs in Sec.

VI and VII. There we simply consider all equations of state for which ρde → ∞ in the limit that

a→∞.

For the rest of the singularities we consider, the scale factor has a finite value at the singularity.

For type III singularities ρde → ∞ as the singularity is approached. For type II singularities, ρde

is finite at the singularity, but pde diverges as the singularity is approached. Finally, for type IV

singularities both ρde and pde are finite at the singularity but dpde/da diverges as the singularity is

approached. These along with the fact that the dark energy is a perfect fluid are the only properties

that we use for our proofs of the behaviors of solutions to the semiclassical backreaction equations

in Secs. VI and VII.

B. Models used for specific analytic and numerical calculations

In Sec. IV we numerically compute the energy density for conformally coupled massive scalar

fields in a background spacetime with a type III singularity. In Sec. VI and VII we do specific

analytic and numerical calculations to illustrate the analytic proofs of the behaviors of solutions to

the semiclassical backreaction equations. We also numerically solve the order reduced semiclassical

equations and compare the solutions to those of the full equations.

To do these calculations it is necessary to have specific equations of state for the dark energy.

We adopt a model for the dark energy with the equation of state

pde = −ρde −A|ρde − ρs|B . (3.2)

Here A, B and ρs are parameters which can be varied to give different types of late time behaviors

for the universe. This equation of state is identical to the equations of state considered in [16],3

save for the introduction of the absolute value, which allows us to continue the evolution of the

universe beyond the singularity when ρs > 0.

3 Note, however, that their coefficients have different names: our coefficient B corresponds to their β, and our A is
called either B if ρs = 0 or C if ρs > 0.
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Interestingly, there is a scaling symmetry for this particular form of the equation of state which

connects solutions to (2.14) with large values of α and β to those with smaller values. If the various

parameters in the equation along with the time are scaled so that

(α, β, ρ, ρs, A,B, t)→
(
Nα,Nβ, ρ/N, ρs/N,AN

1−B, B, t
√
N
)
, (3.3)

for some constant N , then for every solution to (2.14) with the original values of these variables

there is a corresponding solution with the same type of behavior with the scaled values of these

variables. This scaling is very useful for numerical work.

Note that for B = 1 and ρs = 0 we have an equation of state pde = wρde, with w = −1 − A,

which can represent dust (A = −1), radiation (A = −4
3), or a cosmological constant (A = 0). Since

we are interested in future singularities, we restrict our attention to A > 0. We also restrict our

attention to ρs ≥ 0. As shown below, for ρs = 0 future singularities of type I, type III, or little rip

cosmologies result for all values of B. If ρs > 0, then future singularities of type II occur for B < 0

and type IV for 0 < B < 1
2 . Finally, it should be emphasized that we are only concerned with the

behavior of the universe near the future singularity. For example, the case ρs = 0 and B < 1 is

not expected to apply all the way to ρde = 0 in a realistic model of the universe.

After finding ρde as a function of the scale factor a using the conservation equation (3.1), the

result can be substituted into the time-time component of Einstein’s equations,

H2 =
8π

3
ρde , (3.4)

to find the behavior of the scale factor as a function of time. The values of the parameters that

lead to various types of final behaviors for the universe are discussed in detail in the following

subsections and the results are summarized in Table I.

1. Big rip singularities

We’ll begin with the case ρs = 0. For B = 1,

ρde = ka3A , (3.5)

with k a positive constant. Solving (3.4), one finds

a =
[
A
√

6πk(ts − t)
]− 2

3A
, (3.6a)

ρde =
1

6πA2
(ts − t)−2 . (3.6b)
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Since the scale factor and its derivatives diverge at a finite proper time and the energy density does

as well, this is a big rip or type I singularity.

For ρs = 0 and B 6= 1,

ρde = [3A(1−B) log(a/as)]
1

1−B , (3.7)

where as is a positive constant. Substituting into (3.4) one finds that

a = as exp

{(
3BA

) 1
1−2B

1

1−B

[
(2B − 1)

√
2π(ts − t)

] 2(B−1)
2B−1

}
, (3.8a)

ρde =
[
A(2B − 1)

√
6π(ts − t)

]− 2
2B−1

. (3.8b)

Note that if 1
2 < B < 1, the exponent 2B−2

2B−1 is negative, resulting in a big rip singularity.

2. Little rip

If B < 1
2 , in (3.8b) then there is no future singularity at time t = ts because 2B− 1 is negative.

Instead the divergence occurs in the limit t → ∞, so the universe ends with a little rip. For the

special case B = 1
2 it is straight-forward to show that there is again a little rip.

3. Type III singularities

For B > 1, it can be seen from (3.8b) that in the limit t → ts, a → as and that ρde diverges.

Thus the universe ends with a type III singularity.

4. Type II and IV singularities

If ρs > 0, then

ρde = ρs − sgn(as − a) [3A(1−B)| log(as/a)|]
1

1−B , (3.9)

where as is a positive constant and sgn(as − a) = ±1, depending on the sign of as − a. If B < 0,

there is a divergence in dρde/da and hence in pde at a = as, giving a type II singularity. For

0 < B < 1
2 , the divergence is in d2ρde/da

2, which yields a divergence in dpde/da resulting in a

type IV singularity. Less divergent singularities can be obtained for 1
2 < B < 1. Substituting (3.9)
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Classical

Classification

Equation of State

Parameters

Little Rip

ρs = 0

B ≤ 1
2

Big Rip/Type I 1
2 < B ≤ 1

Type III 1 < B

Type II
ρs > 0

B < 0

Type IV 0 < B < 1
2

TABLE I: Values of the parameters for our particular equation of state (3.2) that are used in the

specific analytic and numerical calculations in Secs. IV, VI, and VII.

into (3.4) and solving near the singularity, one finds

a ≈ as exp

{√
8
3πρs(t− ts) +

1

4− 2B

[
(3ρs)

B/2A
] 1

1−B
[
(1−B)

√
8π|t− ts|

] 2−B
1−B

}
,(3.10a)

ρde ≈ ρs + sgn(t− ts)
[
A(1−B)

√
24πρs |t− ts|

] 1
1−B

. (3.10b)

Here the singularity is at t = ts. As mentioned above, the absolute value sign in (3.2) allows us to

integrate (3.4) through the singularity.

IV. BACKGROUND FIELD CALCULATIONS

As discussed in the Introduction, one way to investigate the effects of quantum fields on final

singularities is to evaluate the stress-energy tensor for the fields in the background spacetime

containing the singularity. We do so here first for the conformally coupled massive scalar field in a

spacetime with a type III singularity and then for conformally invariant fields in spacetimes with

all types of singularities.

A. Massive conformally coupled scalar field

Investigations of the effects of massive scalar fields on type I and type II singularities were done

in [47] and [54] respectively. Here we show the results of the computation of the energy density for

a massive conformally coupled scalar field in a spacetime with a type III singularity. The equation

of state we chose for the dark energy is (3.2) with A = 10, B = 5
4 , and ρs = 0. With this choice,
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Eqs. (3.8) become

a = as exp

{
−2(2π)1/6(ts − t)1/3

31/2 52/3

}
(4.1a)

ρde =
[
15
√

6π(ts − t)
]−4/3

. (4.1b)

We also chose a = 1 at t = 0 and as = 10, which implies ts ≈ 79.1. The state for the field is a

fourth order adiabatic vacuum state which is obtained by setting the initial values equal to those

for a fourth order WKB approximation at time t = 0 [6]. The details are discussed in Appendix B.

In Fig. 1 our results are shown for m = 0, 1
4 , 1

2 , 1, and 2. It is clear that, for the range of

times shown, the energy density for the massless field is always larger than that for a massive one.

However, it is also clear that as the singularity is approached the energy density for a massive field

approaches that for the massless one. Thus the field becomes effectively conformally invariant as

the singularity is approached, in the sense that its energy density approaches that of the massless

scalar field. This is exactly the same type of behavior as was found in [47] for big rip singularities.

The investigation in [54] of the effects of particle production for this field in spacetimes with

type II singularities provides evidence that something similar will happen in this case as well. As

a result, we have evidence that for type I-III singularities the energy density for a conformally

coupled massive scalar field always approaches that for the conformally invariant scalar field as the

singularity is approached.

FIG. 1: Energy density for a conformally coupled scalar field. From top to bottom the curves

correspond to the cases m = 0, 1
4 , 1

2 , 1, and 2.
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B. Conformally invariant fields

We next want to evaluate the quantity ρqe in (2.13) for conformally invariant fields. Since the

values of α and β are unknown, it is useful to separately consider the behaviors of the terms they

multiply, which we’ll denote as ρα and ρβ. From (2.14) one finds

ρα = −36ḦH + 18Ḣ2 − 108ḢH2 , (4.2a)

ρβ = 18H4 . (4.2b)

We can use (3.4) and (3.1) to write these in terms of ρde and its derivatives, with the result that

ρα = 288π2 (ρde + pde)

(
ρde + pde − 4ρde

dpde
dρde

)
, (4.3a)

ρβ = 128π2ρ2de . (4.3b)

Since β > 0, it is clear for big rip, little rip, and type III singularities, where ρde diverges at

the singularity, that ρβ does so as well. This term will become important in the semiclassical

backreaction equations when

ρde ∼
1

128π2β
, (4.4)

which for values of β of order unity is well below the Planck scale, where ρde ∼ 1. However, it

is quite possible for this term to not be important near the singularity for type II and type IV

singularities.

The expression for ρα is more complicated because it depends on the derivatives of ρde. Several

terms in (4.3a) diverge for big rip, little rip, type III, and type II singularities. For type IV

singularities only the term proportional to dpde/dρde diverges at the singularity. In general it is

clear that, unless there are significant cancellations between the diverging terms, ρα should become

comparable to ρde before the Planck scale is reached if |α| & 1, as is the case for Starobinsky

inflation, where α ∼ 109.

V. POSSIBLE EFFECTS OF SEMICLASSICAL GRAVITY ON FINAL SINGULARITIES

Before discussing the details of the different late time behaviors, it is useful to first discuss

whether and how backreaction effects in semiclassical gravity can remove, avoid, or change the

nature of a final singularity.

The key point relating to the possible removal or avoidance of final singularities is the behavior

of the dark energy. As discussed in Sec. III.A, the fact that the dark energy is a perfect fluid means
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that its density, ρde, and hence its pressure is a function of the scale factor, and the form of that

function is determined by the equation of state. Hence if there is a divergence in, for example,

pde, but not ρde at some particular value of the scale factor, a = as, then this will occur for any

spacetime in which the scale factor reaches the value as regardless of whether the scale factor is a

solution to the classical Einstein equations or the semiclassical Einstein equations or a solution to

neither. Therefore it is not possible for final singularities to be removed in semiclassical gravity if

the dark energy is a perfect fluid.

However, it is possible to avoid a little rip or a type I-IV singularity. This will happen if the

scale factor never reaches the value at which the singularity occurs. There are only two ways in

an expanding universe that the scale factor will never reach some particular value as. Either there

is a bounce at which the scale factor reaches a maximum size which is less than as or there is a

different singularity at a value of the scale factor which is less than as. In both cases the original

singularity is avoided, although in the second case it is replaced by another singularity. In the first

case whether or not the original singularity is replaced by another singularity depends upon the

behavior of the universe after the bounce. In the cases that follow in which a bounce occurs we

do not pursue the question of the subsequent evolution of the universe, as this involves making

assumptions about the matter and radiation content and the states of the quantum fields and is

thus beyond the scope of this paper.

Another possibility which can occur if the singularity is not avoided is that it can be either

strengthened or softened. This is a subtle point. As discussed above, whether or not there is

a divergence at a given value of the scale factor in ρde or some quantity related to it, depends

on the equation of state. In general, the type of divergence determines, through the classical

Einstein equations, which time derivatives of the scale factor diverge when the singularity is reached.

However, if the semiclassical backreaction equations are solved then there are other possibilities.

One is that a divergence in ρqe in (2.14) or one of its derivatives at the singular value of the

scale factor as will be stronger than that of the dark energy and result in the strengthening of a

singularity. For example we shall show below that in some cases little rips are turned into big rip

singularities, because ρqe diverges much more rapidly than ρde for the corresponding solutions to

the semiclassical backreaction equations.

It can also work the other way. A divergence in ρqe at a = as can result in a cancelation of

the divergence in, for example, ρde but no cancelation of the divergence in dρde/da. In this case a

type III singularity is transformed to a type II singularity and the singularity is softened. In some

cases the singularity is softened to the point that the lowest order in which the divergence is not
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canceled is either d3ρde/da
3 or d4ρde/da

4. In these cases we say that the singularity is effectively

removed.

Because it is possible for semiclassical effects to change the nature of a classical singularity,

when solving the semiclassical backreaction equations, we classify the future singularity based

on the behavior of the scale factor and its derivatives, and not on the behavior of ρde and its

derivatives. Therefore if the scale factor and its derivatives diverge only in the infinite proper time

limit we say that a little rip occurs. If they diverge in finite proper time then a big rip or type I

singularity occurs. If a solution to the semiclassical backreaction equations has, at the singularity,

a→ as <∞ and H →∞, then it is a type III singularity. If at as, H is finite but Ḣ diverges then

it is a type II singularity. If instead both H and Ḣ are finite at as but Ḧ diverges then it is a type

IV singularity. And if only some higher derivative of H diverges then we say that the singularity

is so soft that it has been effectively removed.

VI. BACKREACTION EFFECTS FOR α > 0

In this section we consider the case α > 0, which is the sign of α necessary for Starobinsky

inflation to occur. As discussed in the Introduction, we have analytic proofs which describe the

behaviors of solutions to the semiclassical backreaction equations in cases where classical general

relativity predicts the existence of little rips or type I - IV singularities. We also have analytic

and numerical calculations for specific values or ranges of values of the parameters in the equation

of state (3.2). These are used to illustrate the behaviors in the proofs and also to investigate the

solutions to the order-reduced equation (2.16). The pattern we shall follow for particular types of

classical final behaviors is to first give the proof which describes the behaviors of solutions to the

semiclassical backreaction equations in that case and then to discuss the analytic and numerical

calculations for specific examples.

First we give a simple proof which shows final singularities are never avoided if α > 0. The key

element in the proof was first pointed out in [71]. If α > 0, then all the terms on the right side

of (2.14) either vanish or are positive if H = 0, and therefore this equation cannot have H = 0 at

any time. This means that the scale factor will monotonically increase until either a singularity is

reached or it becomes infinite. As discussed in Sec. V, we are modeling the dark energy as a perfect

fluid, and thus ρde = ρde(a). Therefore in cases where classical little rips, big rip singularities, or

type III singularities occur, it is impossible to prevent ρde from diverging. In cases where type II or

type IV singularities occur it is impossible to prevent pde and/or dpde/da from diverging. However,
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as shown below, there are cases in which the singularity is strengthened as well as cases where it

is softened or effectively removed.

A. Classical little rips and big rip singularities

1. Proof that only big rip singularities occur

In this section we show that for all cases in which classically there is either a little rip or a

big rip singularity, all solutions to the semiclassical backreaction equations (2.14) end in big rip

singularities.

First it is useful to make the change of variables [71]

y = a3 , f = (aȧ)3/2 . (6.1)

Then (2.14) takes the form(
f

y

)4/3

=
8π

3

[
ρde − 216α

f5/3

y2/3
d2f

dy2
+ 18β

(
f

y

)8/3
]
, (6.2)

or

d2f

dy2
=

y2/3

216αf5/3
ρde +

β

12α

f

y2
− 1

576παy2/3f1/3
. (6.3)

For both little rips and big rips, H → ∞ as a → ∞. Thus examination of (2.14) shows that

the term on the left which is H2 is much smaller in this limit than the βH4 term on the right. To

find the asymptotic behaviors of solutions one can neglect the former term, which is also the term

on the left in (6.2) and the last term on the right in (6.3). In particular the latter equation then

becomes

d2f

dy2
=

y2/3

216αf5/3
ρde +

β

12α

f

y2
. (6.4)

To study the solutions of (6.4), let us define two new functions c±(y) by the simultaneous equations

f = c+(y)yp+ + c−(y)yp− , (6.5a)

df

dy
= c+(y)p+ y−1+p+ + c−(y)p− y

−1+p− , (6.5b)

where p± are the roots of the equation p2 − p = β/12α, namely

p± =
1

2

(
1±

√
1 +

β

3α

)
. (6.5c)
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We note that p+ > 1 and p− < 0.

From (6.1) it is obvious that f is positive, and if a and H are both becoming large, that f is

growing, so that df/dy > 0. From (6.5a) and (6.5b), we can see that the only way both f and its

derivative can be positive is if c+(y) > 0. If we take the first derivative of (6.5a) and compare it

to (6.5b), we discover that

yp+
d

dy
c+(y) + yp−

d

dy
c−(y) = 0 . (6.6)

If we substitute (6.5b) into (6.4) and use the fact that p2± − p± = β/12α, we find

p+y
p+ d

dy
c+(p) + p−y

p− d

dy
c−(p) =

y5/3ρde
216αf5/3

. (6.7)

Eliminating c−(y) from (6.7) using (6.6), we find

d

dy
c+(y) =

y5/3ρde
216αf5/2yp+ (p+ − p−)

. (6.8)

The point of (6.8) is that c+(y) is an increasing function of y, and we already know it is positive.

As y →∞, it is clear from (6.5a) that the c+ term dominates, so we can approximate

f ≈ c+(y)yp+ . (6.9)

Substituting our definitions (6.1) as well as (6.5c) into (6.9), we can solve for t to find

t =

∫
da

a
√

1+β/3α [c+ (a3)]2/3
. (6.10)

This integral converges as a→∞ for any rising function c+, which means that the universe attains

infinite size in a finite time. Hence we conclude that for all cases in which classically there is either

a little rip or a big rip singularity, all solutions to the semiclassical backreaction equations (2.14)

end in big rip singularities.

If |ρqe| � |ρde| as a → ∞ then the first term on the right in (6.4) can be neglected and (6.5a)

becomes an exact solution to the resulting equation with c± constants. In this case the asymptotic

behavior of the scale factor can be obtained by integrating (6.10) with the result that

a ≈ c(ts − t)1/(1−
√

1+β/3α) , (6.11)

where c and ts are constants. Since the exponent is negative, there is a big rip singularity at time

t = ts.
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2. Specific analytic and numerical calculations

The results of the previous section are in agreement with results previously found for the

equation of state pde = wρde with w a constant and w < −1. Classically there is a big rip, or

type I, singularity in this case and several authors [58–60, 78] have pointed out that a singularity

must remain. However, they did not study the nature of that singularity. We do so next and then

generalize to other cases in which our specific equation (3.2) leads to classical little rips or big rip

singularities.

As shown in Sec. III, if we set ρs = 0 and B = 1 then our specific equation of state is equivalent

to pde = wρde with w = −1 − A. To study the behavior of the solutions to the semiclassical

backreaction equations (6.3) in this case we begin by assuming that |ρqe| � |ρde| as a → ∞ so

that (6.11) gives the asymptotic behavior of the scale factor. We can then evaluate ρqe and ρde to

find out if this condition is satisfied. Substituting (6.11) into (2.14) one finds that the terms in ρqe

are all proportional to (ts − t)−4. Substitution into (3.5) gives

ρde ≈ kc3A(ts − t)3A/(1−
√

1+β/3α) . (6.12)

Comparing the powers, we find that |ρde| is negligible compared to the individual terms in ρqe if

3A < 4
(√

1 + β/3α− 1
)

, which is equivalent to 27A2α + 72Aα < 16β. In this case (6.11) is a

self-consistent solution to (6.3) near the singularity. Since the classical behavior is a power law

given by (3.6a) and the quantum behavior is a different power law given by (6.11), one sees that

the singularity is softened if 27A2α+ 36Aα < 4β and strengthened if the inequality is in the other

direction.

If 27A2α + 72Aα ≥ 16β, then it must be that our original assumption is wrong and therefore

that as the singularity is approached ρde is comparable to the terms in ρqe. We find that if

27A2α+ 72Aα > 16β, the solution takes the form

a ≈

[
32
(
27A2α+ 72Aα− 16β

)
9A4k(ts − t)4

] 1
3A

, (6.13a)

ρde ≈
32
(
27A2α+ 72Aα− 16β

)
9A4(ts − t)4

. (6.13b)

If 27A2α+ 72Aα = 16β, then we find

a ≈
[

16α(3A+ 4)

3A3 k (ts − t)4| ln (ts − t) |

] 1
3A

, (6.14a)

ρde ≈
16α(3A+ 4)

3A3(ts − t)4| ln (ts − t) |
, (6.14b)
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In both cases, comparing with (3.6a) one can see that the singularity is strengthened.

It was shown in Sec. III that for the specific equation of state (3.2), big rip solutions to the

classical Einstein equations occur if ρs = 0 and 1
2 < B ≤ 1 while little rip solutions occur if ρs = 0

and B ≤ 1
2 . In general for B < 1 the behavior of ρde is given by (3.7). Recall that if the condition

|ρqe| � |ρde| is satisfied then the scale factor near the singularity has the behavior (6.11) and

ρqe ∼ (ts − t)−4. In this case substituting (6.11) into (3.7) shows that the condition |ρqe| � |ρde|

is satisfied near the singularity and thus that (6.11) gives the correct behavior of the scale factor

near the singularity. Comparison with the behavior (3.8a) of the scale factor for the solution to the

classical Einstein equation when B < 1 shows that the singularity is always weakened by quantum

effects if 1
2 < B < 1. For B ≤ 1

2 there is classically a little rip which as we have just shown is

turned into a big rip singularity.

We have numerically solved the semiclassical backreaction equation (2.14) using the model with

equation of state (3.2) for the case B = 1
4 , A = 10−10, which classically gives a little rip. Our

results are shown in Figs. 2, where it can be seen explicitly that the classical little rip is converted

into a big rip singularity. For one of the plots we also include the solution to the order reduced

equation (2.16). As might be expected, when quantum effects are small, the solution to the order

reduced equation is close to that of the exact equation (2.14). However, the behavior of the solution

to the order reduced equation becomes very different when quantum effects become significant. In

fact in this case it has a bounce, which we have shown above is not possible for solutions to the

exact semiclassical equation (2.14) if α > 0.

B. Classical singularities of type III

1. Analytic proofs regarding solutions to the semiclassical backreaction equations

If there is classically a type III singularity, then ρde diverges in the limit a → as for some

as <∞. Thus it is obvious that such a singularity cannot turn into either a big rip or a little rip.

Further, since ρde diverges, at least one other term in (2.14) must diverge for any solution to this

equation. This means that the softest possible singularity that could occur is a type IV, for which

the third derivative of the scale factor diverges but the lower order ones are finite. We find that it

is possible to have a type III singularity either stay a type III singularity or soften into a type II or

type IV singularity. What happens depends on how ρde behaves as a function of the scale factor.

To see the conditions under which each behavior occurs, first note that regardless of whether a
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FIG. 2: Scale factor a(t) for α = 109, β = 108 for a classical little rip model for the equation of

state (3.2) with ρs = 0, B = 1
4 , and A = 10−10. The dashed line denotes the classical solution and

the solid line denotes the solution to the semiclassical backreaction equation (2.14). In the plot

on the left the dotted line denotes the solution to the order reduced equation (2.16). Note that

the solution to the semiclassical equation diverges rapidly, implying that it has a big rip

singularity. The solution to the order reduced equation undergoes a bounce, which is not possible

for solutions to the full semiclassical equation (2.14) when α > 0.

solution to the semiclassical backreaction equations (6.3) has a type II, III, or IV singularity, the

third time derivative of the scale factor will diverge, and hence so will d2f/dy2. Since y approaches

a constant near the singularity and f either approaches a constant or diverges, the third term on

the right hand side of (6.3) cannot diverge at the singularity. Suppose that the dominant term

as the singularity is approached is the second one. The solution is given by (6.5a) with constant

functions c±, and has no divergence at finite y. So this term cannot be the dominant one as the

singularity is approached. That means that near the singularity one must have

d2f

dy2
=

y
2/3
s

216α

ρde
f5/3

, (6.15)

where ys = a3s. Since there are no bounce solutions when α > 0 as the singularity is approached,

f either approaches a positive constant or diverges as y → ys.

First consider the case in which the solution to (6.3) yields either a type II or a type IV

singularity. In these cases fs ≡ f(ys) is finite. Using this condition and integrating (6.15) once we
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find that near the singularity

df

dy
=

y
2/3
s

216αf
5/3
s

I1 , (6.16)

I1 =

∫ y

dy1 ρde(y1) . (6.17)

For a type IV singularity, df/dy is finite at the singularity. Thus the condition for solutions to the

semiclassical backreaction equations to have a type IV singularity is

lim
y→ys

I1 <∞ . (6.18)

For a type II singularity, df/dy diverges at the singularity. So one condition for solutions to the

semiclassical backreaction equations to have a type II singularity is

lim
y→ys

I1 =∞ . (6.19)

Integrating (6.16) once gives near the singularity

f =
y
2/3
s

216αf
5/3
s

I2 , (6.20)

I2 =

∫ y

dy1

∫ y1

dy2ρde(y2) . (6.21)

For f(ys) to be finite it is necessary that

lim
y→ys

I2 <∞ . (6.22)

For a type III singularity, f diverges at the singularity. In this case, integrating (6.3) twice near

the singularity yields

f =
y
2/3
s

216α

∫ y

dy1

∫ y1

dy2
ρde(y2)

f(y2)5/3
. (6.23)

For f to diverge at the singularity it is necessary that

lim
y→ys

I2 =∞ . (6.24)

Note that this is also a sufficient condition because the analysis for type II singularities above

shows that f(ys) is finite if I2 is finite at the singularity.

2. Specific analytic and numerical calculations

We can apply these formulas to our specific models for classical type III singularities. As shown

in Sec. III B 3, classical type III singularities occur for the equation of state (3.2) if ρs = 0 and
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B > 1. Using (3.7), we see that near the singularity, ρde ∼ (as − a)−1/(B−1) ∼ (ys − y)−1/(B−1).

Integrating twice, it is easy to see that (6.21) diverges if B ≤ 3
2 while (6.16) diverges if B ≤ 2.

Thus type III singularities remain type III for 1 < B ≤ 3
2 , convert to type II for 3

2 < B ≤ 2, and

get softened further to type IV for B > 2.

For type III singularities with 1 < B < 3
2 , we find near the singularity, solutions to (2.14) can

be expanded in powers of ts− t, with ts the time at which the singularity is reached. The result to

leading order is

a ≈ as exp [−cγ(ts − t)γ ] , (6.25)

with

γ =
4B − 4

2B − 1
, (6.26a)

cγ = γ−1 [18α(1− γ)(3− γ)]
1−B
2B−1

[
3
4A(2B − 1)

] −1
2B−1 , (6.26b)

ρde ≈ [3A(B − 1)cγ ]
−1
B−1 (ts − t)

−4
2B−1 . (6.26c)

Comparing (3.8a), (6.25) and (6.26a), it is clear that 0 < 2B−2
2B−1 < γ < 1 for 1 < B < 3

2 , so that

ȧ still diverges when including quantum effects, though as a weaker negative power of ts − t. But

comparing (3.8b) and (6.26c), the dark energy density rises as a more negative power of ts − t.

The reason is that the dark energy density is being partially cancelled by the quantum energy

density. We will nonetheless consider this a weakening of the singularity because we will focus

on the behavior of the scale factor a and not the dark energy density. The behavior of the scale

factor for this type of model is exhibited in Fig. 3. Note that, once again, the order reduction

approach leads to a bounce, which cannot occur for solutions to the full semiclassical backreaction

equation (2.14).

If B > 3
2 , and B 6= 2, we find that, near the singularity, solutions to (2.14) can again be

expanded in powers of ts − t, with the result

a = as exp
[
−c1 (ts − t)− c2 (ts − t)2 − cγ(ts − t)γ − · · ·

]
, (6.27)

with c1 and c2 arbitrary constants, and

γ =
3B − 4

B − 1
, (6.28a)

cγ =
1

36αγ(γ−1)(γ−2)

[
3A(B−1)cB1

] −1
B−1 , (6.28b)

ρde ≈ [3A(B−1)c1(ts − t)]
−1
B−1 . (6.28c)
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FIG. 3: Scale factor a(t) for a classical type III singularity with α = 109, β = 108, B = 5
4 and

A = 3000. The classical singularity occurs at a = as = 10. The dashed line denotes the classical

solution, the solid line denotes the solution to the semiclassical backreaction equation (2.14), and

the dotted line denotes the solution to the order reduced equation (2.16). Note that the solution

to the semiclassical backreaction equation remains a type III singularity since ȧ diverges at the

singularity. However, the solution to the order reduced equations undergoes a bounce, which is

not possible for solutions to the full semiclassical equation (2.14) when α > 0.

For 3
2 < B < 2, we find 1 < γ < 2, so that ä is the lowest derivative of a that diverges (type II

singularity), while for 2 < B, 2 < γ < 3, so that
...
a diverges (type IV singularity). Figs. 4a and

4b illustrate how ρtot and ptot remain finite in these two cases. Note that throughout this range,

the leading term in (6.25) is the c1 term, which must be positive, since H > 0 at the singularity

for α > 0. This again represents a softening of the classical type III singularity by quantum

corrections, in this case by converting it to a type II or type IV singularity.

C. Classical singularities of types II and IV

1. Analytic proofs regarding solutions to the semiclassical backreaction equations

If classically there is a type II or IV singularity and the singularity is at a = as < ∞, then

ρde(as) is finite. For a classical type II singularity pde, dρde/da and all higher derivatives of ρde

diverge as a → as. For a classical type IV singularity, pde and dρde/da are finite, but all higher

derivatives of ρde diverge as a→ as.

In Sec. VI B 1 it was pointed out that for a solution to the semiclassical backreaction equa-
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FIG. 4: Classical type III singularity with α = 109 and β = 108. The plot on the left shows the

energy density ρtot = ρde + ρqe for a solution to the semiclassical backreaction equation (2.14) for

the case B = 5
3 and A = 3× 109. The plot on the right shows the pressure ptot = pde + pqe (with

pqe obtained by substituting ρqe into the conservation equation (3.1)) for a solution to the

semiclassical backreaction equations for the case B = 3 and A = 5× 1028. Note that in each case

we are plotting the relevant behavior as a function of −
√
ts − t, illustrating the expected linear

behavior in terms of this quantity near the singularity.

tions (6.3) with a type II singularity, df/dy diverges at the singularity but f is finite. If the

solution has a type IV singularity then d2f/dy2 diverges at the singularity but f and df/dy are

finite.

If classically there is a type II or type IV singularity, the first and third terms in the semiclassical

backreaction equation (6.3) must be finite at the singularity since bounce solutions (for which

f → 0) cannot occur for α > 0 and since ρde is finite at the singularity. Thus the only way for

d2f/dy2 to diverge at the singularity is for f to diverge there. In that case near the singularity (6.3)

has the approximate form

d2f

dy2
=

β

12α

f

y2s
, (6.29)

with ys = a3s. The solutions to this equation are all finite at y = ys. Therefore it is not possible

for d2f/dy2 to diverge at the singularity if there is a classical type II or IV singularity.

However, for a classical type II singularity dρde/da diverges as a → as, so by taking one

derivative of Eq. (6.3) it is easy to show that d3f/dy3 does diverge as a → as. This translates to

the divergence of the fourth time derivative of a. Similarly if there is a classical type IV singularity

then d3f/dy3 is finite but by taking two derivatives of Eq. (6.3), it is easily seen that d4f/dy4
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diverges as a → as. This translates to a fifth time derivative of a. Thus in both cases there is a

singularity but the singularity is softened to the point that we say it has been effectively removed.

2. Specific analytic and numerical calculations

In Sec. III B 4 it was shown that classical type II singularities occur for the equation of state (3.2)

if ρs > 0 and B < 0 while there is a type IV singularity if ρs > 0 and 0 < B < 1
2 .

Solutions to (2.14) can be expanded about t− ts with the result

a = as exp
[
−c1 (ts − t)− c2 (ts − t)2 − cγ |ts − t|γ − · · ·

]
. (6.30)

Here

γ = 3 +
1

1−B
, (6.31a)

cγ =
1

36αγ(γ−1)(γ−2)

[
3A(1−B)cB1

] 1
1−B , (6.31b)

ρde ≈ ρs − sgn(ts − t) [3A(1−B)c1 |ts − t|]
1

1−B . (6.31c)

As predicted in Sec. VI C 1, if there is classically a type II singularity, the lowest derivative of

a that diverges is a(4), and if there is classically a type IV singularity the lowest derivative that

diverges is a(5).

The behavior for a type II model is illustrated in Fig. 5. The plots for Type IV models are very

similar.

VII. EFFECTS FOR α < 0

Though Starobinsky inflation requires α > 0, for completeness we also want to consider the

other possibilities. We first note that when α < 0, solutions of (2.14) with H = 0 do exist, and

therefore it is possible for the universe to bounce, i.e. reach a maximum size and recontract, thus

avoiding the singularity. In some cases, avoiding the singularity is inevitable, while in others it is

avoided only by a judicious choice of initial conditions.

A. Classical little rips and big rip singularities

1. Proof that no little rip or big rip singularities occur

For classical big rip cosmologies with pde = wρde when w < −1 is a constant, an argument

was given in [16] that solutions to (2.14) inevitably undergo bounces. A calculation in [37] and
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FIG. 5: Classical type II singularity with α = 109, β = 108 for B = −1, A = 10−30, and

ρs = 5× 10−15. The dashed line denotes the pressure pde for a solution to the classical Einstein

equations. The solid line denotes the total pressure ptot = pde + pqe (with pqe obtained by

substituting ρqe into the conservation equation (3.1)) for a solution to the semiclassical

backreaction equations. Note that for the classical solution the pressure diverges at the

singularity. The time at which the singularity occurs for the solution to (2.14) is denoted by the

vertical dotted line. At this time pde → −∞ and pqe → +∞ in such a way that ptot remains finite

at the singularity. The continuous derivative of ptot at the singularity implies that the singularity

is weaker than a type IV singularity and thus has effectively been removed.

strong arguments in [58–60] bolstered this conclusion. Here we present a proof that formalizes and

generalizes these arguments. The generalization is to arbitrary equations of state pde(ρde) which

lead to classical little rips and classical big rip singularities. As shown in Sec. VII B 1, a similar

proof works for arbitrary equations of state that lead to classical type III singularities. The proof

states that for α < 0, if ρde diverges as a→∞, then all solutions to the semiclassical backreaction

equations (2.14) must have ȧ <∞ at all times, and that when the scale factor grows large enough

there will be a bounce. Thus it is impossible to have solutions with little rips, big rip singularities,

or type III singularities. Instead classical little rips and big rip singularities are always avoided if

α < 0, and instead the universe undergoes a bounce. As shown below, type III singularities are

either avoided by a bounce or softened to type II or type IV singularities.

We begin by deriving an inequality which holds whenever α < 0 and the energy density of the

dark matter becomes large enough. First we rewrite (6.3) in the form

αy
d2f

dy2
=
ρde
216

(
y

f

)5/3

+
β

12

(
f

y

)
− 1

576π

(
y

f

)1/3

. (7.1)
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Using the arithmetic-geometric inequality, 1
2(x + y) ≥ √xy, for the first two terms on the right

in (7.1), it is easy to see that the entire expression on the right is always non-negative if ρde ≥ ρ0,

where

ρ0 =
1

512π2β
. (7.2)

The quantity ρde(a) always diverges as a → ∞ for equations of state which lead to classical

little rips and big rip singularities. In these cases there will be a constant a0 such that ρde ≥ ρ0

for all a ≥ a0. Then for a > a0 we can put some positive lower bound c0 on the right hand side

of (7.1). Keeping in mind that α < 0, we therefore conclude that asymptotically for the classical

little rip case or as the singularity is approached for the classical big rip case,

d2f

dy2
≤ − c0
|α|y

. (7.3)

Integrating this twice, we find

f ≤ − c0
|α|

y log(y) + c1y + c2 , (7.4)

where c1 and c2 are constants of integration.

Examination of (7.4) shows that f and hence ȧ vanishes for any solution to (6.3) which reaches

a large enough value of y and hence a. Therefore if classically there is either a little rip or a big rip

singularity the universe must undergo a bounce which prevents the limit a → ∞ being achieved

and therefore prevents either a little rip or a big rip from occurring. Since there is no singularity

at the bounce, we say that the singularity is avoided. It is possible to investigate what happens

after the bounce, and this has been done for the case pde = wρde with w < −1 in [59–61]. We

do not include such an investigation here because our assumption that ρde is the dominant form

of the classical matter is not valid if the universe contracts to a small enough size. Furthermore,

the properties that we assume for the dark matter only apply in the region of the final singularity.

The dark matter could have a different behavior for smaller values of the scale factor.

2. Specific analytic and numerical calculations

For our specific models with equation of state given by (3.2), we have numerically confirmed

that classical little rips and big rip singularities are avoided by a bounce for a wide variety of

parameters and initial conditions.
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B. Classical Type III Singularities

1. Proof that type III singularities are removed or softened

The proof given in VII A 1, can be easily adapted to the case of equations of state pde(ρde) which

result in classical type III singularities. First recall that in this case the scale factor has the finite

value as at the singularity while ρde diverges in the limit a → as. Thus the conditions leading to

the inequality (7.4) are satisfied as a→ as. The inequality places an upper bound on f = (aȧ)3/2,

so this implies ȧ is also bounded. Hence there are no corresponding solutions to the semiclassical

backreaction equation (2.14) with type III singularities, and also clearly none with little rips or

big rip singularities. Instead, the solutions in this case must either bounce when a < as, in which

case the singularity is avoided, or the singularity at a = as must be softened to a type II or type

IV singularity.

To determine when a bounce must occur, note that the analysis leading to (6.23) still works for

α < 0. Thus if (6.21) diverges as the singularity as as is approached, then f → −∞, since α < 0,

which is a contradiction since f ≥ 0. Thus for any model for the dark energy with a classical type III

singularity for which (6.21) diverges, the corresponding solutions to the semiclassical backreaction

equations (2.14) must bounce before the singularity is reached.

In all other cases there are two possibilities. One is that a bounce can occur for a < as in which

case the singularity is avoided. The other possibility is that a→ as before a bounce occurs. In this

case the analysis in Sec. VI B 1 still works and the singularity is softened. In particular, if (6.21)

is finite but (6.17) diverges, then the singularity becomes a type II singularity, while if both are

finite then the singularity becomes a type IV singularity.

2. Specific analytic and numerical calculations

For our specific equation of state (3.2), recall that classical type III singularities occur if ρs = 0

and B > 1. The integrals I1 and I2 in (6.17) and (6.21) are the same regardless of the values of

α and β. Thus that part of the analysis in Sec. VI B 2 remains the same. There it was found that

both diverge if 1 < B ≤ 3
2 . What is different is that above we have shown that if α < 0 then a

bounce must occur before the singularity is reached if both integrals diverge.

For B > 3
2 , the universe may reach a maximum size and bounce before reaching the singularity,

it may reach the singularity while the universe is still expanding, or with finely tuned initial

conditions, it may reach the singularity just as the universe stops expanding, so that H = 0 at
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the singularity. Singularities where H = 0 were studied in [16, 78], and we will not consider these

further. If H > 0 at the singularity then the analysis in Sec. VI B 2 still holds and the behavior

near the singularity can still be described by (6.27) and (6.28c) with c1 > 0. Thus for B > 3
2 , if a

bounce does not occur before a→ as, then the categorization of the singularities is the same as it

is for α > 0.

C. Classical Type II and IV Singularities

If α < 0 then type II and IV singularities can, again, be avoided if a bounce occurs before the

singularity is reached. If they are not avoided then the analysis in Sec. VI C 1 for α > 0 holds and

the singularities are effectively removed.

For our specific equation of state (3.2) the analysis is similar to that in Sec. VI C 2. If the

singularity is not avoided, then H can either be positive or zero at the singularity. The case where

H = 0 at the singularity was studied in [16, 78], which again we will not consider. If H is positive

then (6.30) and (6.31) remain valid and the singularity is effectively removed.

VIII. α = 0

The final case, α = 0, was studied in [78], where it was found that for a classical big rip model

with pde = wρde, Ḣ diverges at a finite value of the scale factor resulting in a type II singularity.

In the general case, solving (2.14) for H one finds

H2 =
1±

√
1− 512π2βρde

96πβ
. (8.1)

Note that choosing the minus sign gives the proper classical limit H2 = 8
3πρde as ρde → 0. For

ρde < ρ0, where ρ0 is given by (7.2), H2 is a smooth function of ρ, and hence if we have a type II

or type IV singularity with ρs < ρ0, there will be no change in the categorization of the resulting

singularity at ρde = ρs. However, (8.1) becomes complex if ρde > ρ0. At ρde = ρ0, (8.1) implies that

H is still finite, but the derivative of the right hand side of (8.1) diverges, so that Ḣ diverges. Hence

for classical little rip cosmologies and classical big rip and type III singularities, the corresponding

solutions to (2.14) all have type II singularities at a = a0 with ρde(a0) = ρ0. This will also be the

case for type II and type IV singularities with ρs > ρ0.
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IX. CONCLUSIONS

We have considered the effects of both quantum fields and an α0R
2 term in the gravitational

Lagrangian on little rip models of the universe as well as future singularities of type I-IV. Two

methods have been used. One is a background field approach where the effective stress-energy

tensor for a quantum field (and sometimes the α0R
2 term) is computed in the background geometry.

The other involves finding solutions to the semiclassical backreaction equations.

Using a background field approach, the energy density for conformally coupled massive scalar

fields has been computed for a particular fourth order adiabatic vacuum state in a particular

spacetime with a type III singularity. Similar calculations had previously been done for type I

singularities. In both cases the result is that the terms in the energy density that survive in the

massless limit are the dominant ones near the singularity. In that sense a massive scalar field

becomes effectively conformally invariant near the singularity. An argument was given that this

behavior is likely to generalize to massive fields of spin 1
2 and 1, which are also conformally invariant

in the massless limit, and it is likely to generalize to type II and IV singularities as well as little

rip cosmologies. This greatly increases the number of effectively conformally invariant fields near

a future singularity.

A background field calculation of the energy density for conformally invariant fields and the

effective energy density coming from an α0R
2 term in the gravitational Lagrangian was computed

for spatially flat Robertson-Walker spacetimes that are solutions to the classical Einstein equations

with the dark matter as a source. As discussed in Sec. II, some of the terms in the energy density

for the quantum fields are the same as those for the α0R
2 contribution resulting in an effective

coefficient for this term which we call α. The energy density was expressed in terms of the energy

density and pressure of the dark energy. It was argued that quantum effects should be important

near a future singularity well before the Planck scale is reached if |α| has a value comparable to

that needed for Starobinsky inflation and/or there are enough quantum fields which are effectively

conformally invariant near the singularity.

We next investigated solutions to the semiclassical backreation equation (2.14) with an arbitrary

number of conformally invariant fields together with the α0R
2 term in the Lagrangian. Because

the nature of the dark energy is unknown, we made as few assumptions about it as possible. The

primary one was that it is a perfect fluid with equation of state pde = pde(ρde). We then considered

generic properties for the dark energy that would lead to solutions to the classical Einstein equations

with little rips or final singularities of type I, II, III, or IV. In each case we found general theorems
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which predict how solutions to (2.14) will behave for a given type of classical solution.

If α > 0 (the case in which Starobinsky inflation can occur) the singularity is never avoided

because, as had been found previously, there are no bounce solutions for which the universe stops

expanding and starts contracting. We found that big rip singularities (also known as type I

singularities) and little rip cosmologies always turned into big rip singularities, for which the scale

factor diverges at a finite time in the future. Classical type III singularities, in which the scale

factor a remains finite while its first time derivative ȧ diverges, were modified in a model-dependent

fashion. These singularities remain type III singularities if the dark energy is such that the double

integral in (6.21) diverges. It this integral is finite but the single integral (6.17) diverges, then type

III singularities become type II singularities. Finally, if the single integral (6.17) is finite, then type

III singularities become type IV singularities. Classical singularities of type II, in which a and ȧ are

finite but higher derivatives diverge, are softened to the point that only a(4) and higher derivatives

diverge. Finally, classical singularities of type IV, in which only a(3) and higher derivatives diverge,

are softened to the point that only a(5) and higher derivatives diverge. Thus we say that both type

II and IV singularities are effectively removed.

If α < 0 we found that classical big rip or little rip singularities are always avoided by a bounce.

Type III singularities for which the double integral in (6.21) diverges are also always avoided by a

bounce. All other singularities can be avoided by a bounce, depending on initial conditions. If the

singularity is not avoided, then classical type III singularities for which the double integral (6.21)

is finite but the single integral (6.17) diverges are softened to type II singularities. If both integrals

are finite the singularity is softened to a type IV singularity. Classical type II and IV singularities

are effectively removed in the same way as occurs if α > 0.

Finally, if α = 0, we found that it is impossible for the density of the dark energy to become

infinite as it does classically for little rips and type I and III singularities. Instead a new type II

singularity is created at a finite density ρ0 given by (7.2). The same thing occurs for classical type

II and IV singularities if the energy density ρde at the classical singularity is larger than ρ0. If ρde

at the classical singularity is smaller than ρ0, then type II and IV singularities remain type II and

IV singularities.

To illustrate these results we used the three parameter equation of state of the dark energy given

in (3.2). Different values and ranges of values of the parameters result in different types of final

behaviors for the universe when the classical Einstein equations are solved with the dark matter as

a source. We solved the full semiclassical backreaction equations (2.14) both analytically and, for

certain values of the parameters, numerically. We also solved the order reduced equations (2.16)
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Classical

Classification

Semiclassical Modification Specific Eq. of State

Parametersα > 0 α < 0 α = 0

Little Rip Big Rip/

Type I Bounce

Type II ρs = 0

B ≤ 1
2

Big Rip/Type I 1
2 < B ≤ 1

Type III

Type III 1 < B ≤ 3
2

Type II 3
2 < B ≤ 2

Type IV 2 < B

Type II Effectively

Removed

Type II
ρs > 0

B < 0

Type IV Type IV 0 < B < 1
2

TABLE II: Modifications of various classical singularities due to conformally invariant fields and

an αR2 term in the gravitational Lagrangian. The central columns give model-independent

modifications for the three cases α > 0, α < 0, and α = 0. Note that when α ≥ 0 reaching the

singularity is inevitable; for α < 0 it can always be avoided by a judicious choice of initial

conditions, and for the cases marked “Bounce” the avoidance is guaranteed. The final two

columns give parameter ranges for our particular equation of state (3.2) that exhibit the various

behaviors.

numerically for certain values of the parameters. Not surprisingly, the order reduced method,

which is perturbative in nature, produced effects that differed drastically from the full backreaction

equations. The reason is that the quantum effects become comparable to or even larger than the

classical contributions, so it is not surprising that this approach breaks down. Some of our numerical

results are shown in Figs. 1-5.

All of our backreaction results, including both the general proofs and the calculations for the

specific equation of state (3.2), are summarized in Table II. The first column lists the types of final

behaviors we considered for the solutions to the classical Einstein equations with the dark energy

as a source. The second through fourth columns list the behaviors of the corresponding solutions

to the full semiclassical backreaction equations (2.14). Note that in situations labeled “Bounce,”

the universe must bounce, independent of initial conditions. In the rest of the cases with α < 0,

the singularity might be avoided by a bounce depending on initial conditions. The singularities

appearing in Table I in this case apply only if the initial conditions do not lead to a bounce. The

last two columns give the parameter ranges for our specific model of the dark energy in (3.2) for

which these different types of behaviors occur.
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Appendix A: Renormalized energy density for a conformally coupled massive scalar field

In this appendix we derive the explicit form of the renormalized energy density for a massive

conformally coupled scalar field that is displayed in (2.4). Note that for this field the scalar

curvature coupling constant is ξ = 1
6 . In [73] the energy density for this field is written in the form

〈ρq〉 = 〈ρ〉n + 〈ρ〉an , (A1a)

〈ρ〉n = 〈ρ〉u − 〈ρ〉d , (A1b)

with4

〈ρ〉u =
1

4π2a4

∫ ∞
0

dk k2
[
|ψ′k|2 + (k2 +m2a2)|ψk|2

]
, (A1c)

〈ρ〉d =
1

4π2a4

∫ ∞
0

dk k2
[
k +

m2a2

2k
− m4a4

8k3
θ(k−λ)

]
, (A1d)

〈ρ〉an = ρa −
m4

64π2

[
1

2
+ log

(
m2a2

4λ2

)]
, (A1e)

where θ(k−λ) is the Heaviside function, which introduces an arbitrary infrared cutoff at λ. Note

that ρa is defined in (2.4b), and a prime denotes a derivative with respect to the conformal time

η, which is defined by the relation

dη =
dt

a
. (A2)

To get 〈ρq〉 in the desired form, we use (A2) to convert to the proper time t and use the definition

in (2.2d). Then

〈ρ〉u =
1

4π2a2

∫ ∞
0

dk k2
[
|ψ̇k|2 + ω2

k|ψk|2
]
. (A3)

Next, subtract and add back a term with the integrand proportional to ωk, so that

〈ρq〉 = 〈ρ〉u −
1

4π2a3

∫ ∞
0

dk k2ωk − 〈ρ〉d +
1

4π2a3

∫ ∞
0

dk k2ωk + 〈ρ〉an . (A4)

4 Note that there is a misprint in (9a) of [73]. The term in the third line which is proportional to m2 should be
multiplied by a factor of (ξ − 1

6
).
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Then

−〈ρ〉d +
1

4π2a3

∫ ∞
0

dk k2ωk =
1

4π2a4

∫ ∞
0

dk

[
ak2ωk − k3 −

m2a2

2
k +

m4a4

8k
θ(k−λ)

]
=

m4

64π2

[
1

2
+ log

(
m2a2

4λ2

)]
. (A5)

Substituting (A1e) and (A5) into (A4) gives the result in (2.4).

Appendix B: Adiabatic matching

In this appendix we review the method of adiabatic matching [6] and show how it was used to

specify the states for the massive conformally coupled scalar field that were used in our numerical

calculations.

It is easiest to begin by changing variables to fk = a1/2ψk. Substituting into (2.2b) gives

f̈k +

(
ω2
k −

ä

2a
+

ȧ2

4a2

)
fk = 0 . (B1)

Then a WKB approximation can be obtained with the variable transformation

fk =
1√

2Wk(t)
exp

(
−i
∫ t

0
dt̄Wk(t̄)

)
. (B2)

Substituting into (B1) one finds

W 2 = ω2
k −

ä

2a
+

ȧ2

4a2
− 1

2

(
Ẅ

W
− 3

2

Ẇ 2

W 2

)
. (B3)

Iterating with the zeroth order term given by W
(0)
k = ωk gives for the second order term

W (2) =

[
ω2
k −

ä

2a
+

ȧ2

4a2
− Ẅ (0)

2W (0)
+

3(Ẇ (0))2

4(W (0))2

]1/2
. (B4)

Substituting into (B3) gives

W (4) =

[
ω2
k −

ä

2a
+

ȧ2

4a2
− Ẅ (2)

2W (2)
+

3(Ẇ (2))2

4(W (2))2

]1/2
. (B5)

A fourth order approximation for f evaluated at the time t = 0 is

f
(4)
k =

1√
2W

(4)
k (t)

, (B6)

and one for ḟ is

ḟ
(4)
k = −i

√
W

(4)
k

2
− Ẇ (2)

[2W (2)]3/2
. (B7)
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By setting the exact mode function fk and its derivative ḟk equal to these expressions at time

t = 0, one fixes the state to be a fourth order adiabatic vacuum state and simultaneously provides

starting values for the numerical integration of the mode functions.
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