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Cosmic microwave background limits on accreting primordial black holes

Yacine Ali-Häımoud and Marc Kamionkowski
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA

Interest in the idea that primordial black holes (PBHs) might comprise some or all of the dark
matter has recently been rekindled following LIGO’s first direct detection of a binary-black-hole
merger. Here we revisit the effect of accreting PBHs on the cosmic microwave background (CMB)
frequency spectrum and angular temperature/polarization power spectra. We compute the accretion
rate and luminosity of PBHs, accounting for their suppression by Compton drag and Compton
cooling by CMB photons. We estimate the gas temperature near the Schwarzschild radius, and
hence the free-free luminosity, accounting for the cooling resulting from collisional ionization when
the background gas is mostly neutral. We account approximately for the velocities of PBHs with
respect to the background gas. We provide a simple analytic estimate of the efficiency of energy
deposition in the plasma. We find that the spectral distortions generated by accreting PBHs are too
small to be detected by FIRAS, as well as by future experiments now being considered. We analyze
Planck CMB temperature and polarization data and find, under our most conservative hypotheses,
and at the order-of-magnitude level, that they rule out PBHs with masses & 102 M� as the dominant
component of dark matter.

I. INTRODUCTION

The idea of primordial black holes (PBHs) was first put
forward by Zel’dovich and Novikov in the sixties [1]. De-
veloping it further, Hawking argued that early-Universe
fluctuations could lead to the formation of PBHs with
masses down to the Planck mass [2]. Chapline was the
first to suggest that PBHs could make the dark mat-
ter (DM) [3]. Though this class of DM candidate has
taken a back seat to the notion that DM is a new el-
ementary particle [4–8], the idea of PBH dark matter
was recently rekindled [9, 10], following the first detec-
tion of two merging ∼ 30M� black holes by LIGO [11].
Given the increasingly constraining null searches for par-
ticle DM, PBHs and their observational consequences are
worth reconsidering [12, 13].

The abundance of PBHs is constrained by a vari-
ety of observations in several mass ranges (for a com-
prehensive review see Refs. [12, 13]). To cite only a
few constraints, null microlensing searches exclude com-
pact objects with masses . 10M� [14, 15], and wide-
binary surveys exclude those with masses & 102M�
[16, 17]. For PBHs more massive than ∼ 1M�, strong
constraints were derived by Ricotti, Ostriker, and Mack
[18] (hereafter ROM) from the cosmic microwave back-
ground (CMB) frequency spectrum and temperature and
polarization anisotropies. The basic idea behind these
limits is that PBHs accrete primordial gas in the early
Universe and then convert a fraction of the accreted mass
to radiation. The resulting injection of energy into the
primordial plasma then affects its thermal and ioniza-
tion histories [19], and thus leads to distortions to the
frequency spectrum of the CMB and to its tempera-
ture/polarization power spectra. ROM estimate that
CMB anisotropy measurements by WMAP [20] and lim-
its on CMB spectral distortions by FIRAS [21] exclude
PBHs with masses M & 1M� and M & 0.1M�, respec-
tively, as the dominant component of dark matter. Using
ROM’s results, Ref. [22] strengthened these constraints

with Planck data. Here we re-examine in detail CMB
limits to the PBH abundance, building on and expand-
ing the work of ROM.

It is notoriously difficult to estimate from first princi-
ples and self-consistently the accretion rate onto a central
object and the corresponding radiative efficiency (see,
e.g., the discussion in Chapter 14 of Ref. [23]). In this
work, we strive to estimate the minimum physically-
plausible PBH luminosity in order to set the most conser-
vative constraints to the PBH abundance. The bounds
we derive are significantly weaker than those of ROM:
using Planck temperature and polarization data [24], we
find that only PBHs with masses M & 102M� can be
conservatively excluded as the dominant component of
the dark matter. Moroever, we find that CMB spectral-
distortion measurements, both current and upcoming, do
not place any constraints on PBHs.

The single largest difference between our work and
ROM’s lies in the adopted radiative efficiency ε ≡ L/Ṁc2

to convert the mass accretion rate Ṁ to luminosity L.
For masses M . 104M�, both ROM and this work
conservatively assume a quasi-spherical accretion flow.
Shapiro [25] provided a first-principles estimate of the
radiative efficiency for this problem. This shows that
ε ∝ ṁ ≡ Ṁc2/LEdd, where LEdd is the Eddington lu-
minosity. While ROM assume a fixed ε/ṁ = 0.011 for
ṁ ≤ 1, we generalize Shapiro’s calculation, in partic-
ular accounting for Compton cooling by ambient CMB
photons, and explicitly compute ε/ṁ as a function of
PBH mass and redshift. We find that ε/ṁ never exceeds
∼ 10−3 (corresponding to Shapiro’s result for accretion
from an HII region), and can be as low as ∼ 10−5 after
recombination (corresponding to Shapiro’s result for ac-
cretion from an HI region), or even lower at high redshifts
and for large PBH masses for which Compton cooling is
important. A few other differences moreover contribute
to lowering the mass accretion rate with respect to that
derived by ROM, as detailed in the remainder of this
article.
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The rest of this paper is organized as follows. The core
of our calculation is laid out in Section II: there we com-
pute the accretion rate and luminosity of an accreting
black hole in the early Universe. We discuss the local
feedback of this radiation in Section III. In Section IV
we estimate the efficiency with which the energy injected
by PBHs is deposited into the plasma. We then estimate
the effect of PBHs on CMB observables and derive the re-
sulting constraints in Section V. Finally, we conclude in
Section VI. To keep the calculation tractable analytically
we must make several approximations and assumptions.
In order to not disrupt the flow of the calculation, we de-
fer the verification of these assumptions to Appendix A.
In Appendix B we compare our analytic approximation
for the efficiency of energy deposition in the plasma to
existing studies.

II. ACCRETION ONTO A BLACK HOLE IN
THE EARLY UNIVERSE

A. General considerations and calculation outline

The first aspect to consider is the geometry of the ac-
cretion. If the characteristic angular momentum of the
accreted gas (at the Bondi radius) is smaller than the an-
gular momentum at the innermost stable circular orbit,
the accretion is mostly spherical. Otherwise, an accretion
disk forms. Disk accretion is typically much more effi-
cient than spherical accretion at converting accreted mass
into radiation. Indeed, while in the latter case the dom-
inant source of luminosity is bremsstrahlung radiation
from the hot ionized plasma near the event horizon, in the
former case the large viscous heating required to dissipate
angular momentum leads to radiating a significant frac-
tion of the rest-mass energy [23]. It is difficult to estimate
the angular momentum of the gas accreting onto PBHs,
as it requires knowledge of the PBH-baryon relative ve-
locity on scales of the order of the Bondi radius, which is
much smaller than any currently observed cosmological
scale. A correct estimate of this relative velocity would
moreover require accounting for the (non-linear) cluster-
ing of PBHs. Following our philosophy to derive the most
conservative and physically-motivated accretion rate and
luminosity, we shall therefore adopt a spherical accretion
model, expanding on the classic work of Shapiro [25]. We
note that this is also the underlying assumption made in
ROM for PBH masses M . 103− 104M� (see their Sec-
tion 3.3).

Another difficulty is that of local feedback. The ra-
diation emanating from the accreting PBH may indeed
ionize and/or heat the accreting gas, which would in
turn affect the radiative output. We show in Appendix
III A that thermal feedback is negligible for all masses
and redshifts considered (consistent with ROM’s Section
4.2.1 results). We will also see in Section III A that the
Strömgren radius is always significantly smaller than the
Bondi radius (consistent with our luminosity being sig-

nificantly lower than that of ROM, who find that the
photoionized region is marginally smaller than the Bondi
radius). Hence one can assume that in the outermost
region of the accretion flow, the ionization fraction is ap-
proximately equal to the background value. Close enough
to the black hole, the gas eventually becomes fully ion-
ized, either through photoionizations by the outgoing ra-
diation field, or collisional ionizations, or both. We will
see in Section III A that neither ionization process clearly
prevails. To circumvent a complex self-consistent calcu-
lation of the luminosity and ionization profile, we shall
consider the two limiting cases where one of the two ion-
ization processes is dominant, and quote our results for
both. In the first case, we shall completely neglect any
radiative feedback, and assume that the ionization frac-
tion xe is equal to the background value xe, until the
temperature of the gas reaches ∼ 104 K, at which point
the gas gets collisionally ionized. In our second limiting
case, we assume that the radiation from the PBH pho-
toionizes the gas up to a radius beyond that at which
T ∼ 104 K (so collisional ionizations are not relevant),
yet inside the Bondi radius. In all figures we refer to the
former case by collisional ionization and the latter by
photoionization. The correct result (within our overall
model) lies somewhere between these two limiting cases.
The difference between the final results in the two lim-
its illustrates the relatively large theoretical uncertainty
associated with this calculation.

In what follows we split the calculation of the hydro-
dynamical and thermal state of the gas accreting onto a
BH into three regions. First, in Section II B, we study
the outermost region where we assume a constant free-
electron fraction xe equal to the background value xe. We
solve for the steady-state fluid and heat equations, as well
as the accretion rate, accounting for Compton drag (as in
Ref. [26]). We also include, for the first time in this con-
text, for Compton cooling by CMB photons. Secondly,
in Section II C we consider the (re)ionization of hydrogen
in the collisional ionization case, if the background gas is
already partially neutral. We assume that hydrogen gets
collisionally ionized once the gas reaches a characteristic
temperature Tion ∼ 104 K, and that this ionization pro-
ceeds roughly at constant temperature. Thirdly, in Sec-
tion II D we study the innermost region where the gas is
fully ionized and adiabatically compressed. We account
for the change of the adiabatic index once electrons be-
come relativistic. The final outcome of this calculation is
the gas temperature near the event horizon, which, along-
side the accretion rate, determines the luminosity of the
accreting BH, as we shall see in Section II E. Figure 1
illustrates the temperature profile in the various regions
considered. We conclude this Section by considering the
effect of PBH velocities.
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FIG. 1. Schematic temperature profile for the gas accreting
onto a BH. If Compton cooling is efficient (γ � 1), the gas
temperature remains close to the CMB temperature down to
r ∼ γ−2/3rB, where rB is the Bondi radius. The temper-
ature then increases adiabatically as T ∝ ρ2/3 ∝ 1/r. If
photoionizations can be neglected, and if the background gas
is partially neutral, the gas gets collisionally ionized at nearly
constant temperature once it reaches Tion ≈ 1.5 × 104 K.
Once the gas is fully ionized, the temperature resumes in-
creasing adiabatically as T ∝ 1/r until electrons become rel-
ativistic, at which point the change in the adiabatic index
implies T ∝ ρ4/9 ∝ r−2/3. If the luminosity of the accreting
PBH is large enough, the gas is photoionized instead of col-
lisionally ionized. In that case the gas temperature reaches
larger values near the black hole horizon.

B. Outermost, constant-ionization-fraction region

1. Setup

We consider spherical accretion of a pure hydrogen1

gas onto an isolated point mass M , bathed in the quasi-
uniform CMB radiation field (we check the validity of
the isolated-PBH assumption in Appendix A 1). In gen-
eral, one should solve for the time-dependent fluid, heat
and ionization equations, all of which are coupled. For
simplicity we shall assume a constant ionization fraction
xe = xe in the outermost region, equal to the background
value. As long as the characteristic accretion timescale is
much shorter than the Hubble timescale, one can make
the steady-state approximation. Ref. [26] showed that
this is the case for M . 3 × 104M�, so we shall limit
ourselves to this mass range. In this outermost region,
far from the BH horizon, a Newtonian treatment is very
accurate.

We denote by v ≡ vr < 0 the peculiar radial veloc-
ity (i.e. the velocity with respect to the Hubble flow) of

1 Accounting for helium is conceptually straightforward but would
add unneeded complications for the order-of-magnitude calcula-
tion presented here.

the accreted gas. The steady-state mass and momentum
equations for the fluid are

4πr2ρ|v| = Ṁ = const, (1)

v
dv

dr
= −GM

r2
− 1

ρ

dP

dr
− 4

3

xeσTρcmb

mpc
v, (2)

where the pressure P is

P =
ρ

mp
(1 + xe)T, (3)

and the last term in the momentum equation is the drag
force due to Compton scattering of the ambient nearly
homogeneous CMB photons with energy density ρcmb

[26], σT being the Thomson cross section. Note that we
have neglected the self-gravity of the accreted gas, which
is valid for M . 3 × 105M� [26]. Consistent with our
steady-state approximation, we also neglected the Hub-
ble drag term Hv, which is of the same order as the
neglected partial time derivative ∂v/∂t.

The fluid equation must be complemented by the heat
equation. For simplicity we shall only consider Compton
cooling by CMB photons [27] as a heat sink in this region.
The steady-state heat equation is then

vρ2/3 d

dr

(
T

ρ2/3

)
=

8xeσTρcmb

3mec(1 + xe)
(Tcmb − T ), (4)

where Tcmb is the temperature of CMB photons. Since
we only consider PBH masses for which the accretion
timescale is shorter than the Hubble timescale, when-
ever Compton cooling becomes relevant to the accretion
problem, it is even more important for the background
temperature evolution, and enforces T∞ = Tcmb.

If Compton drag and cooling were negligible, one
would recover the the classic Bondi accretion problem
[28], the characteristic velocity, length and timescales of
which are

vB ≡
√
P∞/ρ∞, rB ≡

GM

v2
B

, tB ≡
GM

v3
B

, (5)

where P∞ and ρ∞ are the gas pressure and density far
from the point mass (ρ∞ = ρb, the mean baryon density).

It is best to rewrite the problem in terms of dimension-
less variables x ≡ r/rB, u ≡ v/vB, ρ̂ ≡ ρ/ρ∞, T̂ ≡ T/T∞.
We also define the dimensionless constants

λ ≡ Ṁ

4πρ∞r2
BvB

, (6)

β ≡ 4

3

xeσTρcmb

mpc
tB, (7)

γ ≡ 8xeσTρcmb

3mec(1 + xe)
tB =

2mp

me(1 + xe)
β � β. (8)

We show in Fig. 2 the dimensionless Compton drag and
cooling rates β and γ, as a function of redshift and PBH
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mass. In terms of these variables the problem to solve is

ρ̂x2|u| = λ, (9)

u
du

dx
= − 1

x2
− 1

ρ̂

d

dx
(ρ̂T̂ )− βu, (10)

uρ̂2/3 d

dx

(
T̂

ρ̂2/3

)
= γ(1− T̂ ), (11)

with asymptotic conditions ρ̂→ 1 and T̂ → 1 at x→∞.

Before moving on, let us note that the PBH mass does
not grow significantly in a Hubble time [29]. Indeed,

Ṁ

HM
=

4πλρb(GM)2

HMv3
B

=
4πλGρbtB

H
=

3

2
λ
ρb
ρtot

HtB,(12)

where in the last equality we used Friedman’s equation
for the Hubble rate H. Therefore, provided the steady-
state approximation is valid (i.e. tB � H−1), we see that

Ṁ � HM .

10
2 M�

1
M

�

10
4 M

�

��� ��� ���� ���� ���
�����

�����

�����

�

��

���

����

�

β

10
2 M�

1
M

�

10
4 M�

��� ��� ���� ���� ���
�����

�����

�����

�

��

���

����

�

γ

FIG. 2. Characteristic dimensionless Compton drag rate β
[Eq. (7), upper panel ] and Compton cooling rate γ [Eq. (8),
lower panel ], as a function of redshift, and for PBH masses
M = 1, 102 and 104 M�, from bottom to top. Both are evalu-
ated for a standard recombination and thermal history, with
the substitution vB → veff as described in Section II F.

2. Solution for β � γ � 1

When both Compton drag and cooling are negligible,
we recover the classic Bondi problem [28] for an adiabatic

gas, with T̂ = ρ̂2/3. In this case the momentum equation
can be rewritten as a conservation equation

1

2
u2 − 1

x
+

5

2
(ρ̂2/3 − 1) = 0. (13)

Using Eq. (9) and multiplying by 2x, we get

xu2 +
5λ2/3

(xu2)1/3
= 5x+ 2. (14)

The left-hand-side reaches a minimum at xu2 =
(5/3)3/4λ1/2, with value 4(5/3)3/4λ1/2. For a solution
to exist for all x, this has to be less than 2, the minimum
of the right-hand-side, implying2 λ ≤ λad ≡ 1

4 (3/5)3/2.
Though all solutions with sub-critical λ ≤ λad are a priori
acceptable3, we shall assume, like Bondi, that the physi-
cally realized solution is that of maximum accretion, i.e.
that

λ = λad ≡
1

4

(
3

5

)3/2

≈ 0.12. (15)

Combining Eqs. (13) and (9) one can show that the
asymptotic behaviors of fluid variables for x� 1 are

u(x) ≈ − 1√
2
x−1/2, (16)

ρ̂(x) ≈
(

3

10

)3/2

x−3/2, (17)

T̂ (x) ≈ 3

10
x−1. (18)

3. Solution for β � 1 and γ � 1

If γ � 1 Compton cooling efficiently maintains T̂ ≈ 1
down to x ∼ γ−2/3 � 1. At that point pressure forces
are negligible relative to gravity, and the temperature is
no longer relevant to the other fluid variables. We may
therefore first solve the isothermal Bondi problem for the
fluid variables, and deduce the temperature profile from
them. For the isothermal Bondi problem with T̂ = 1, the
conserved quantity is now

1

2
u2 − 1

x
+ ln(ρ̂) = 0. (19)

2 The difference of our maximum value of λ and the usually quoted
value of 1/4 comes from our normalization of velocities with
vB rather than the adiabatic sound speed at infinity, which is
(5/3)1/2vB.

3 This is not the case for the Bondi problem with adiabatic index
< 5/3, for which sub-critical solutions have a velocity that tends
to zero near the origin, which is unphysical.
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Here again one can show that there exists a maximum
value of λ for which the problem has a solution. For sub-
critical λ, however, the velocity tends to zero towards
the origin and the density diverges unphysically as e1/x.
Therefore the physically valid solution is that with the
critical accretion rate

λ = λiso ≡
1

4
e3/2 ≈ 1.12. (20)

It is sensible that the accretion rate is larger in the
isothermal case than in the adiabatic case. Indeed,
the temperature is larger in the adiabatic case, provid-
ing a larger pressure support counterbalancing gravity.
For x � 1 the velocity reaches the free-fall solution
u(x) ≈ −

√
2/x and the density is then ρ̂(x) ∝ x−3/2.

Inserting these asymptotic forms into the heat equation,
we get

√
2

x3/2

d

dx
(xT̂ ) = γ(T̂ − 1). (21)

One can write an explicit integral solution to this equa-
tion. In particular we find the asymptotic limit for
x� γ−2/3,

T̂ (x) ≈
(

4

3

)1/3
Γ(2/3)

γ2/3x
≈ 1.5

γ2/3x
, (22)

where Γ is Euler’s Gamma function.

4. Solution for β � 1 and arbitrary γ

For arbitrary values of γ (while β � 1) the momentum
equation can no longer be rewritten as a conservation
equation and one must solve explicitly the coupled fluid
and heat equations, and determine the accretion “eigen-
value” λ numerically.

We re-write the system (10)-(11) in the form
(
u− 5

3

T̂

u

)
du

dx
=

10

3

T̂

x
− 1

x2
− γ 1− T̂

u
, (23)

dT̂

dx
= −2

3

T̂

u

du

dx
− 4

3

T̂

x
+ γ

1− T̂
u

. (24)

The boundary conditions at large radii are u(x) =

−λ/x2, T̂ (x) = 1. We see that the system is singular
at the point x∗ where the velocity reaches the local adi-
abatic sound speed,

u∗ = −
√

5T̂∗/3, (25)

unless this condition is met simultaneously with

10

3

T̂∗
x∗
− 1

x2∗
− γ 1− T̂∗

u∗
= 0, (26)

so that the right-hand-side of Eq. (23) vanishes, lead-
ing to a finite derivative. There is a single value λ∗ for

-� -� -� � � � �
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�����[γ]

λ

�iso ⇡ 1.12

�ad ⇡ 0.12

FIG. 3. Dimensionless accretion rate λ as a function of the di-
mensionless Compton cooling rate γ. Black circles are our nu-
merical results and the purple line is our analytic fit, Eq. (27).

which these two conditions are satisfied simultaneously:
larger λ lead to a singularity while for lower values du/dx
changes sign before the singularity, and the velocity un-
physically tends to zero at the origin. We find λ∗ by
bisection: starting with λmin ≡ 0 < λ∗ < λmax ≡ 2, we
set λ = (λmin + λmax)/2 and integrate the system nu-
merically from x = 100 towards x = 0, until either the
singularity or du/dx = 0 is reached. In the former case,
we set λmax = λ at the next step, and in the latter case,
we set λmin = λ, so that λmin < λ∗ < λmax at each step.
We do so until the fractional difference between λmax and
λmin is less than a small error tolerance, typically 10−6.
We show the resulting function λ(γ) in Fig. 3. We find
that the following analytic expression is a good fit to the
numerical results:

λ(γ;β � 1) ≈ λad + (λiso − λad)

(
γ2

88 + γ2

)0.22

. (27)

While it is relatively simple to obtain a very precise
value of λ numerically, obtaining a precise asymptotic
limit of T̂ (x) at x → 0 proved to be more challeng-
ing. Keeping in mind that this calculation is an order-
of-magnitude estimate, we simply assume the following
expression, interpolating between the adiabatic case (18)
and the quasi-isothermal case (22):

τ ≡ lim
x→0

(xT̂ ) ≈ 1.5

5 + γ2/3
. (28)

Inserting T ≈ τ/x, u ≈ −ω/x1/2, ρ ∝ x−3/2 in the mo-
mentum equation (10), we find ω =

√
2− 5τ . In sum-

mary, the asymptotic values of the temperature, velocity



6

and density fields are

T̂ (x) ≈ τ

x
, (29)

u(x) ≈ −
√

2− 5τ

x
, (30)

ρ̂(x) ≈ λ√
2− 5τ

x−3/2. (31)

5. Solution for 1 . β � γ

When Compton drag is significant (β & 1), there is
no longer any conserved quantity, even in the quasi-
isothermal case. We can simply determine the asymp-
totic value of λ for β � 1 by considering the momen-
tum equation at x � 1, where the pressure force is
negligible with respect to gravity. In this regime we
find u ≈ −1/(βx2), implying that λ → β−1 for large
β. Physically, the drag force balances the gravitational
force, i.e. the velocity reaches the terminal velocity. Once
x . β−2/3 � γ−2/3, the advection term u(du/dx) be-
comes dominant over the drag term −βu and the velocity
reaches the free-fall solution u ≈ −

√
2/x. Since this oc-

curs at a radius much larger than γ−2/3, the asymptotic
behavior or T̂ , is still given by Eqs. (29) and (28). The
effect of Compton drag is therefore only to change the
accretion rate.

Ref. [26] find the following analytic approximation for
λ(β), valid for all values of β (but for γ � 1 only, as they
consider isothermal accretion):

λ(γ � 1;β) ≈ exp

[
9/2

3 + β3/4

]
1

(
√

1 + β + 1)2
. (32)

For general γ and β we may use the following approxi-
mation for the dimensionless accretion rate:

λ(γ, β) =
λ(γ;β � 1)λ(γ � 1;β)

λiso
. (33)

This approximation is well justified since β � γ. As a
consequence, either β � 1 or γ � 1.

The dimensionless accretion rate λ is the first main re-
sult of this Section. We show its evolution as a function
of redshift for several PBH masses in Fig. 4. While ROM
do account for Compton drag following the analysis of
Ref. [26], they implicitly assume that γ � 1 at all times.
In other words, they do not account for the factor of ∼ 10
decrease of λ at low redshift when Compton cooling be-
comes negligible and the accretion becomes mostly adia-
batic. Figure 4 also shows the evolution of the accretion
rate normalized to the Eddington rate, ṁ ≡ Ṁc2/LEdd.

C. Collisional ionization region

If the emerging radiation field is too weak to photoion-
ize the gas, it eventually gets collisionally ionized as it is

10 2
M
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M
�

10
4 M�

�iso

�ad
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1 M�

104 M�
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��-�
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�����
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FIG. 4. Characteristic dimensionless accretion rate λ (upper
panel) and accretion rate normalized to the Eddington value

ṁ ≡ Ṁc2/LEdd (lower panel) as a function of redshift, for
PBH masses 1, 102 and 104 M�. These quantities are evalu-
ated with substitution vB → veff as described in Section II F.

compressed and heated up. We assume that this proceeds
roughly at constant temperature T ≈ Tion ≈ 1.5 × 104.
Indeed, if ionization proceeds through collisional ioniza-
tions balanced by radiative recombinations, the equilib-
rium ionization fraction only depends on temperature,
with a sharp transition at T ≈ 1.5× 104 K (for instance,
using Eq. (2) or Ref. [30], we get xe = (0.01, 0.5, 0.99) at
T = (1.1, 1.5, 2.5)× 104 K, respectively).

Getting back to dimensionful variables, we found in
the previous section that at small radii,

T (r) ≈ τT∞
rB

r
, (34)

where τ is a dimensionless constant at most equal to 3/10,
and smaller when Compton cooling is important. The
effect of the ionization region is only relevant once the
global free-electron fraction xe falls significantly below
unity, i.e. for T∞ . 3000 K � Tion. Therefore we expect
the ionization region to be reached deep inside the Bondi
radius, where the asymptotic behavior (34) is accurate.
The ionization region therefore starts at radius

rstart
ion ≈ τ T∞

Tion
rB, (35)
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where the density is, from Eq. (31)

ρstart
ion ≈ λ√

2− 5τ
ρ∞

(
Tion

τT∞

)3/2

. (36)

We assume that ionization proceeds through collisions of
neutral hydrogen atoms with free electrons. This process
only redistributes the internal energy of the gas, i.e. does
not generate any net heat. However it does lead to a tem-
perature decrease as the number of free particles increase
and some of their energy is used to ionize the gas. If the
temperature is to remain constant through the ionization
region, this effect must be compensated by the tempera-
ture increase due to the adiabatic compression of the gas.
In equations, we write the first law of thermodynamics:

∆

(
3

2
(1 + xe)T − (1− xe)EI

)
= −(1 + xe)Tρ∆(1/ρ),(37)

where the second term in the internal energy on the left-
hand-side accounts for the binding energy EI = 13.6 eV
of neutral hydrogen atoms. Assuming the temperature
remains constant throughout the ionization region we ar-
rive at the simple relation between changes in density and
ionization fraction:

∆ ln ρ =

(
3

2
+

EI

Tion

)
∆ ln(1 + xe). (38)

Therefore the ratio of the density at the end of the ion-
ization region to that at its beginning is

ρend
ion

ρstart
ion

=

(
2

1 + xe

) 3
2 +

EI
Tion

≈
(

2

1 + xe

)12

, (39)

where we took Tion ≈ 1.5 × 104 K. Assuming that ρ ∝
r−3/2 throughout the region, we get

rend
ion

rstart
ion

≈
(

1 + xe
2

)8

. (40)

We see that the ionization region may extend by a fac-
tor of ∼ 300 in radius if xe � 1. This is consistent
with Shapiro’s results [25], who finds an ionization re-
gion extending over a factor ∼ 103 in radius for accretion
from a neutral gas. Note that we have neglected the heat
loss due to collisional excitations followed by radiative
decays, as they cannot be simply included in our basic
treatment. We have also neglected Compton cooling by
CMB photons, which may become relevant again once the
ionization fraction increases. Accounting for these cool-
ing mechanisms would imply a larger density contrast
ρend/ρstart hence a more extended ionization region, and
an overall larger suppression of the temperature near the
PBH horizon.

If the radiation field from the accreting PBH is intense
enough, it may photoionize the gas beyond rion, in which
case there is no collisional ionization region. To group

both cases we define ρend
ion = ρstart

ion in that case, so that in
general

ρend
ion

ρstart
ion

= χ ≡





(
2

1+xe

)8

(collisional ionization),

1 (photoionization).
(41)

D. Innermost adiabatic region

Once the gas is fully ionized, it resumes adiabatic com-
pression (we justify in Appendix A 2 that free-free cool-
ing can neglected for the mass range considered). The
thermal energy density of the ionized plasma is

u =
3

2
ne
(
1 + f(T/mec

2)
)
T, (42)

where the dimensionless function f accounts for the fact
that electrons are potentially relativistic, and has asymp-
totic limits f(X � 1) = 1 and f(X � 1) = 2. The
pressure remains unchanged P = 2neT , and the first law
of thermodynamics can then be written

3

2
[1 + f(X) +Xf ′(X)]

dT

T
= 2

dρ

ρ
, X ≡ T

mec2
. (43)

This can be integrated to give

ρ2

ρ1
=

3

4

∫ X2

X1

[1 + f(X) +Xf ′(X)]
dX

X
. (44)

We have computed the function f explicitly and find that
it is well approximated by the simple functional form

f(X) ≈ 1 +
X

X + 0.73
. (45)

With this simple analytic form Eq. (44) can be integrated
analytically to obtain ρ2(T2). We invert this relation nu-
merically and obtain the following approximation, valid
for T1 � mec

2 and arbitrary T2:

T2

mec2
≈ F

(
T1

mec2

(
ρ2

ρ1

)2/3
)
, (46)

F(Y ) ≡ Y
(

1 +
Y

0.27

)−1/3

. (47)

This recovers the expected asymptotic behaviors T ∝
ρ2/3 for T . mec

2 and T ∝ ρ4/9 for T & mec
2 and more-

over gives an accurate result for arbitrary temperatures.
We may now finally compute the gas temperature near

the Schwarzschild radius rS. The velocity there nears the
speed of light, |v| ≈ c, so the density is

ρS =
λ

(c/vB)(rS/rB)2
ρ∞ =

λ

4(vB/c)3
ρ∞

=
λ

4

(
mpc

2

(1 + xe)T∞

)3/2

ρ∞. (48)
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At the end of the ionization region, the temperature is
Tion and, from Eqs. (36) and (41), the density is

ρend
ion = χ

λ√
2− 5τ

(
Tion

τT∞

)3/2

ρ∞, (49)

Using Eq. (47) with T1 = Tion and ρ1 = ρend
ion , we finally

obtain the temperature TS at the Schwarzschild radius:

TS = mec
2F(YS), (50)

where F is given by Eq. (47) and

YS ≡
Tion

mec2

(
ρS

ρend
ion

)2/3

= χ−2/3

(
2

1 + xe

)
τ

4

(
1− 5

2
τ

)1/3
mp

me
. (51)

It is interesting to compare this result to those of Shapiro
[25], who did not consider Compton cooling (i.e. τ =
3/10), assumed that photoionizations are negligible (in
which case we have χ−2/3 ≈ [(1 + xe)/2]8), and only
studied the cases xe = 1 or 0. In the former case, we find

YS ≈
3

40
4−1/3mp

me
≈ 102 � 1 (52)

and as a result electrons are relativistic at the
Schwarzschild radius, with temperature

TS ≈ mec
20.271/3Y

2/3
S ≈ 0.08(mpc

2)2/3(mec
2)1/3

≈ 0.7× 1011K, (53)

in excellent agreement with Shapiro’s result (see also
[23]). In the case of a neutral background, taking Tion =
1.5×104 K, YS is a factor ∼ 2−7 smaller, i.e. YS ≈ 0.7, so
electrons are marginally relativistic at the horizon, with
TS ≈ 0.4 mec

2 ≈ 2.5 × 109 K. This is a factor of ∼ 2
higher than Shapiro’s result, consistent with our neglect
of collisional excitations in the ionization region.

Equations (51), (47), (41) and (28) constitute the sec-
ond main result of this Section. They give the gas tem-
perature near the BH horizon, accounting for Compton
cooling and an arbitrary background ionization fraction,
in the two limiting cases of collisional ionization or pho-
toionization. We show the temperature TS as a function
of redshift and PBH mass in Fig. 5. At high redshift, the
temperature is suppressed by the strong Compton cool-
ing. In the collisional ionization case, once the Universe
becomes neutral, some thermal energy is used in ionizing
the gas, lowering TS by a factor up to ∼ 300, correspond-
ing to the radial extent of the ionization region.

E. Luminosity of an accreting black hole

The luminosity of the accreting BH arises mostly
from Bremsstrahlung (free-free) radiation near the
Schwarzschild radius. We show in Appendix A 3 that

collisional ionization

photoionization

10 2
M

�

1 M�

10 4
M

�

�� ��� ��� ���� ���� ���
���

���

����

����

�

� �
(�
)

FIG. 5. Characteristic temperature of the accreting gas near
the Schwarzschild radius, evaluated with the substitution
vB → veff as described in Section II F.

free-bound radiation is negligible with respect to free-free
radiation.

The frequency-integrated emissivity (in ergs/s/cm3) of
a fully-ionized thermal electron-proton plasma can be
written in the general form (see e.g. Ref. [31])

jff = n2
e αcσTT J (T/mec

2), (54)

where α is the fine-structure constant and J (X) is a
dimensionless function. Ref. [32] provide a simple fitting
formula for the e − p free-free emissivity, accurate to a
few percent, and Ref. [33] provide a sub-percent accuracy
code for the e− e free-free emissivity. We fit the sum of
the two within a few percent by the following analytic
approximation, generalizing that of Ref. [32]:

J (X) ≈





4
π

√
2/πX−1/2

(
1 + 5.5X1.25

)
, X < 1,

27
2π

[
ln(2Xe−γE + 0.08) + 4

3

]
, X > 1,

(55)

where γE ≈ 0.577 is Euler’s Gamma constant. Assuming
the plasma is optically thin (which we show explicitly
in Appendix A 4), the luminosity is then obtained by
integrating the emissivity over volume, L =

∫
4πr2drj.

Let us note that this purely Newtonian expression does
not properly account for relativistic effects which become
relevant near the horizon [25]; they results in order-unity
corrections which are below our theoretical uncertainty.

Near the Schwarzschild radius the gas is in free-fall,
|v| ≈ c

√
rS/r, and the electron density results from the

mass-conservation equation:

ne =
Ṁ

4πmpr2|v| =
Ṁ

4πmpr2
Sc

(r/rS)−3/2. (56)

The radial dependence of the temperature near the hori-
zon depends on T/mec

2. For the range of temperature
considered we find that 0.8 . −d ln(TJ )/d ln r . 1.1.
Approximating TJ (T ) ∝ r−1, we therefore get

L ≈ α TS

mpc2
J (TS)

Ṁc2

LEdd
Ṁc2, (57)
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FIG. 6. Radiative efficiency ε ≡ L/Ṁc2 divided by the di-

mensionless accretion rate ṁ ≡ Ṁc2/LEdd, evaluated with
the substitution vB → veff as described in Section II F.

where we recall that the Eddington luminosity is

LEdd ≡
4πGMmpc

σT
. (58)

With this we see that the radiative efficiency ε ≡ L/Ṁc2

is proportional to ṁ ≡ Ṁc2/LEdd, with

ε

ṁ
≈ α TS

mpc2
J (TS). (59)

The highest temperature, hence efficiency, is achieved
when Compton cooling is negligible and the background
is fully ionized, in which case we find TS ≈ 1011 K and
ε/ṁ ≈ 0.0015. This is nearly one order of magnitude
below the value ε/ṁ = 0.011 assumed in ROM, and is
further suppressed at most times, as we show in Fig. 6.

F. Accounting for BH velocities

All of the calculations so far assume perfectly
spherically-symmetric accretion. In practice, the accret-
ing PBHs are moving with respect to the ambient gas
with some velocity v.

It is not at all clear what the best way is to ac-
count for the black hole peculiar velocity without per-
forming a full time-dependent hydrodynamical simula-
tion. Bondi and Hoyle [34] studied analytically accretion
on a point mass moving highly supersonically, and found
Ṁ ≈ 2.5π(GM)2ρ∞/v3. Inspired by this result, Bondi
[28] suggested substituting the sound speed at infinity

cs by
√
c2s + v2 in the accretion rate, which, he argued,

ought to give the correct order of magnitude for the re-
sult. Though this provides a prescription for the accre-
tion rate, it is not clear how to self-consistently account
for relative velocities in the estimate of the gas temper-
ature. For definiteness, and lacking a better theory, we
shall approximate the effect of relative velocities by sub-
stituting v2

B → v2
B + v2 throughout the calculation. This

is equivalent to substituting T∞ → T∞ +mpv
2/(1 + xe).

The same route was followed in ROM.

The relative velocity v is comprised of two pieces: a
Gaussian linear contribution on large scales, vL, whose
power spectrum and variance can be extracted from lin-
ear Boltzmann codes, and a small-scale contribution due
to non-linear clustering of PBHs, vNL. We shall not con-
sider the latter here, but point out that it would further
suppress the effect of PBHs on the CMB.

If PBHs make up the dark matter, the linear veloc-
ity vL is nothing but the relative velocity of baryons and
dark matter. After kinematic decoupling at z ≈ 103,
dark matter and baryons fall in the same gravitational
potentials on scales larger than the baryon Jeans scale
and hence vL ∝ 1/a, independent of scale [35]. Before
then, however, the relative velocity has a more complex
time and scale-dependence since baryons undergo acous-
tic oscillations while the dark-matter overdensities grow.
Ref. [36] explicitly compute 〈v2

L〉 as a function of time
and find that it is mostly constant for z & 103 (see their
Fig. 1). Since, as we shall see, most of the effect of accret-
ing PBHs on the CMB takes place after decoupling, we
need not have a very precise estimate of vL before then,
and assume the following simple redshift dependence:

〈v2
L〉1/2 ≈ min

[
1, z/103

]
× 30 km/s. (60)

Let us point out that the relative velocity adopted in
ROM is quite different from what we use here (see their
Fig. 2); in particular they under-estimate it for z & 200,
leading to an over-estimate of the accretion rate.

As we saw in Section II E, the BH luminosity is
quadratic in the accretion rate, and therefore, in the stan-
dard Bondi case, proportional to (v2

B + v2
L)−3. The total

energy injected in the plasma is obtained by averaging
the BH luminosity over the Gaussian distribution of rel-
ative velocities. We define4 veff ≡ 〈(v2

B + v2
L)−3〉−1/6. It

has the following approximate limits:

veff ≈
{√

vB〈v2
L〉1/2, vB � 〈v2

L〉1/2
vB, vB � 〈v2

L〉1/2
(61)

We show vB, 〈v2
L〉1/2 and veff in Fig. 7. Figures 2, 4, 5

and 6 where all obtained by setting vB → veff , in order to
illustrate the characteristic accretion rate and radiative
efficiency. The final result of this Section is the luminos-
ity of accreting PBHs, averaged over the distribution of
relative velocities, which we show in Fig. 8. We empha-
size that to obtain 〈L〉, we have replaced vB →

√
v2

B + v2
L

throughought the calculation, and then averaged the lu-
minosity over the three-dimensional Gaussian distribu-
tion of vL.

4 This is equivalent to the quantity 〈veff〉A in ROM.
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FIG. 7. Characteristic velocities in the problem at hand: the
isothermal sound speed vB (dotted), rms BH-baryon relative

velocity 〈v2
L〉1/2 (dashed) and effective velocity veff defined in

Eq. (61) (solid), used in Figures 2, 4, 5 and 6 to illustrate
characteristic values of intermediate quantities.
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FIG. 8. Luminosity of accreting PBHs as a function of red-
shift, averaged over the Gaussian distribution of large-scale
relative velocities.

III. LOCAL RADIATION FEEDBACK

Before estimating the effect of the PBH radiation on
the global thermal and ionization history, let us first ex-
amine whether it can affect the local accretion flow itself.

A. Local thermal feedback

Throughout the calculation we have neglected local
Compton heating by the radiation produced by the ac-
creting PBH. Here we discuss the validity of this assump-
tion. The rate of energy injection per electron by Comp-
ton scattering with the PBH radiation is

∫
dE

1

4πr2

1

E

dL

dE
〈σ∆E〉 ≈ 0.1

σTL

4πr2
, (62)
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FIG. 9. Estimated maximum fractional importance of local
thermal feedback from Compton heating by the PBH radia-
tion.

where we used the approximation (81) for 〈σ∆E〉. Hence
the rate of Compton heating by the PBH radiation is

ṪCompt,L ≈
2

3

xe
1 + xe

0.1
σTL

4πr2
. (63)

We need to compare this rate to the largest of the Comp-
ton cooling rate by CMB photons and the rate of adia-
batic heating:

ṪCompt,cmb ≡
8

3

xe
1 + xe

σT
ρcmbTcmb

mec
, (64)

Ṫad ≈ T
|v|
r
. (65)

If γ � 1 the latter two rates are approximately equal
at r∗ ≈ γ−2/3rB, adiabatic heating being dominant
for r . r∗ and Compton cooling by CMB photons for
r & r∗ (see Section II B 3). For r < r∗, T ∝ 1/r

and |v| ∝ 1/r1/2 so ṪCompt,L/Ṫad ∝ r1/2. For r > r∗,
ṪCompt,L/ṪCompt,cmb ∝ r−2. Therefore the impact of
thermal feedback is maximized at r ≈ r∗. If γ � 1,
then we only need to compare the Compton heating rate
to adiabatic cooling, at the Bondi radius where this ratio
is maximized. We see that for arbitrary γ the relevant
radius at which to compare Compton heating to adia-
batic cooling is r ≈ rB/(1 + γ2/3), where T ≈ Tcmb in
both cases. After some algebra we arrive at

max

[
ṪCompt,L

Ṫ

]
≈ 0.07

xe
1 + xe

L

LEdd

vB

c

mpc
2

Tcmb

√
1 + γ2/3.

(66)
We show this ratio in Fig. 9, where we see that it is
always less than unity for M ≤ 104M�. We can therefore
safely neglect local thermal feedback for the mass range
we consider.
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B. Local ionization feedback

Througout the paper we have computed all relevant
quantities in both the “collisional ionization” and the
“photoionization” limits. In the former case, we assumed
that the radiation field from the accreting BH does not
affect the ionization state of the gas in the immediate
vicinity of the BH, so the gas gets eventually gets colli-
sionally ionized, which reduces its temperature near the
horizon. In the latter case, we assumed that the neigh-
boring gas is fully photoionized. We now show that nei-
ther case is accurate and that within the adopted model,
the level of feedback is expected to be somewhat inter-
mediate between the two. To do so, we estimate the
extent of the photoionized region (the Strömgren sphere)
around an accreting PBH, in the absence of collisional
ionizations. Following the standard derivation (see e.g.
Ref. [37]),

∫ ∞

0

4πr2drnenpαB(T ) =

∫ ∞

ν0

dν
Lν
hν
, (67)

where ν0 = 13.6 eV/h is the ionization threshold and αB

is the case-B recombination coefficient. This equation
states that the total rate of recombinations is equal to the
emission rate of ionizing photons. Note that it does not
depend on the exact shape of the photoionization cross
section (and in particular also accounts for ionizations by
inelastic Compton scattering at high energies).

Now we assume that the gas is fully ionized up to a
radius R, after which it quickly becomes neutral. We
also approximate αB(T ) ∝ T−q. Finally, in the free-fall
limit, ne ∝ 1/r3/2 and T ∝ 1/r, implying

αB(T ) = αB,ion(r/rion)q, (68)

where αB,ion ≡ αB(Tion) and rion is the radius at which
T = Tion ≡ 1.5× 104 K. Using Eq. (56) we arrive at

∫ ∞

0

4πr2drnenpαB(T ) =
Ṁ2 αB,ion

4π(mpc)2rS

(R/rion)q

q
. (69)

To compute the number of ionizing photons, we assume
an approximately flat spectrum Lν ≈ L/νmax for ν ≤
νmax ≡ TS/h, so that

∫ ∞

ν0

dν
Lν
hν
≈ L

TS
ln(TS/hν0). (70)

Using Eq. (57) for L, we arrive at the following expression
for the radius R, that does not explicitly depend on the
luminosity or the accretion rate, but does depend weakly
on TS, the temperature at the horizon:

R

rion
≈
[
αcσT

αB,ion
J (TS) ln(TS/hν0)

]1/q

. (71)

From Ref. [38] we get αB,ion ≈ 1.8 × 10−13 cm−3 s−1,
with a local power law q ≈ 0.86, hence

R

rion
≈ 2× 10−4 [J (TS) ln(TS/hν0)]

1.16
. (72)

Let us now consider the two limiting regimes once the
background ionization fraction drops significantly below
unity. Assuming the gas is photoionized by the radiation
field rather than collisionally ionized, we found TS ≈ 1011

K at low redshift, implying

R

rion
≈ 0.1 (TS = 1011 K). (73)

Since this is less than unity, this implies that assuming
ionizations proceed exclusively through photoionizations
is not self-consistent, as the radiation from the BH cannot
photoionize the gas all the way to rion. Let us notice that
this implies a fortiori that the photoionized region does
not extend to the outermost region where T ≈ Tcmb, and
that we are hence justified in assuming xe = xe there.

If we instead take the “collisional ionization” limit, for
which TS ≈ 3× 109 K, at low redshift, we get

R

rion
≈ 0.02 (TS = 3× 109 K). (74)

This radius is larger than the innermost edge of the
collisional ionization region, which we found to be ∼
0.003 rion. This implies that it is also not self-consistent
to assume that the gas is exclusively collisionally ionized,
as the photoionization region from the resulting radiation
field would extend inside the collisional ionization region.

We therefore conclude that neither approximation is
self-consistent, and that the actual luminosity (within
our assumed spherical accretion model) is intermediate
between these two limiting cases. We now move on to
compute the global effects of the the PBH luminosity on
the background gas.

IV. ENERGY DEPOSITION IN THE PLASMA

A. Total energy deposition rate

Assuming PBHs make a fraction fpbh of the dark
matter, the volumetric rate of energy injection (in
ergs/cm3/s) by accreting PBHs is

ρ̇inj = fpbh
ρdm

M
〈L〉. (75)

This energy is injected in the form of a nearly flat pho-
ton spectrum (i.e. the free-free luminosity per frequency
interval dL/dν is approximately constant), up to maxi-
mum energy Emax ≈ TS, typically ∼ 0.2 MeV for z . 103

and up to ∼ 6 MeV at higher redshifts.
What is relevant for cosmological observables is the

volumetric rate of energy deposited in the plasma (in the
form of heat or ionizations), which we denote by ρ̇dep.
The two rates are not necessarily equal, unless energy is
deposited on-the-spot.

At the characteristic energies considered, the dominant
photon cooling process is inelastic Compton scattering off
electrons, whether bound or free [39, 40]. In principle, in
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order to obtain the energy deposition rate one should
solve for the time evolution of the photon distribution,
as well as that of the secondary high-energy electrons re-
sulting from Compton scattering. To simplify matters we
shall assume that the latter deposit their energy on-the-
spot, so we only need to follow the photon distribution
NE (in photons/cm3/erg).

The differential scattering cross section for Compton
scattering is [40]

dσ(E)

dE′
=

3

8
σT

mec
2

E2

×
[
E′

E
+
E

E′
− 1 +

(
1 +

mec
2

E
− mec

2

E′

)2
]
,(76)

where E is the initial energy of the photon and E′ is its
final energy, restricted to the range

E′min(E) ≡ E

1 + 2E/mec2
≤ E′ ≤ E. (77)

In principle the photon distribution NE should be ob-
tained by solving an integro-differential Boltzmann equa-
tion. To simplify, we approximate the Boltzmann equa-
tion by the continuity equation5

a−2 d

dt
(a2NE) ≈ 1

E

dρ̇inj

dE
+

∂

∂E

(
Ė(E)NE

)
, (78)

where d/dt ≡ ∂/∂t−HE∂/∂E is the derivative along the
photon geodesics and

Ė(E) ≡ nHc〈σ∆E〉 (79)

is the rate of energy loss due to Compton scattering,
where

〈σ∆E〉 ≡
∫ E

E′
min(E)

dE′
dσ(E)

dE′
(E − E′). (80)

The a2 factors in Eq. (78) ensure that NE ∝ a−2 in
the absence of the source and collision terms, and the
form of the differential operator for Compton scattering
explicitly conserves the number of photons. We show the
ratio 〈σ∆E〉/σTE in Fig. 10. We see that for the range
of energies considered, within a factor of 2 at most,

〈σ∆E〉 ≈ 0.1 σTE. (81)

The factor of 0.1 can be understod as follows. For
E & mec

2, photons lose most of their energy in each scat-
tering event, but the Compton cross-section is suppressed
with respect to the Thomson limit. For E . mec

2, the
Compton cross section tends to the Thomson limit, but
photons only lose a small fraction of their energy in each
scattering event.

5 One can also think of this equation as a Fokker-Planck equation
without a diffusion term.

Within our set of approximations, the differential en-
ergy deposition rate is

dρ̇dep

dE
≈ Ė(E)NE ≈ 0.1 nHcσTENE . (82)

From Eq. (78) we find that this quantity satisfies the
following equation

a−6 d

dt

(
a6 dρ̇dep

dE

)
≈ 0.1 nHcσT

×
[
dρ̇inj

dE
+ E

∂

∂E

(
dρ̇dep

dE

)]
. (83)

Integrating over energies (and recalling that d/dt =
∂/∂t−HE∂/∂E), we arrive at the following very simple
differential equation for the total energy deposition rate:

a−7 d

dt
(a7ρ̇dep) ≈ 0.1 nHcσT(ρ̇inj − ρ̇dep). (84)

We compare and contrast our results to existing analytic
calculations in Appendix B.

Physically, Eq. (84) implies that ρ̇dep ≈ ρ̇inj (i.e.
that the energy is deposited “on the spot”) as long as
the Compton cooling timescale (0.1cσTnH)−1 is much
shorter than the characteristic timescale over which ρ̇inj

changes. Once this is no longer the case, the deposited
energy rapidly decays as 1/a7. The Compton cooling
timescale becomes longer than the Hubble timescale at
z ≈ 200. However ρ̇inj can change on a timescale signifi-
cantly shorter than a Hubble time, in particular around
recombination (see Fig. 8), so ρ̇dep may deviate from ρ̇inj

even earlier on.
We show the ratio ρ̇dep/ρ̇inj as a function of redshift

for a 102M� PBH in Fig. 11. Note that this is con-
ceptually equivalent to the dimensionless efficiency f(z)
usually computed in the context of dark-matter annihi-
lation (see e.g. Ref. [40]). We see that this ratio goes
to unity at z & 103, and is suppressed for z . 300,
as expected. Interestingly, in the collisional ionization
case, this ratio can actually be larger than unity around
z ∼ 103. This is due to the sharp decrease of the PBH
average luminosity at recombination for M . 102M�
(see Fig. 8), hence of the instantaneous injected energy,
and the non-negligible time-delay between injection and
deposition already present at that redshift.

B. Effect on the thermal and ionization histories

To conclude this Section, we must describe how exactly
the energy is deposited in the plasma. We follow the sim-
ple prescription of Ref. [39], assuming that for a neutral
gas the deposited energy is equally split among heating,
ionizations and excitations, and rescale these fractions
for arbitrary ionization fractions. We only consider the
effect on hydrogen recombination for simplicity. Specif-
ically, we take the following prescriptions for the addi-
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Compton scattering event to σTE, as a function of photon
energy.
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FIG. 11. Ratio of the energy deposition rate to the instanta-
neous energy injection rate (equivalent of the dimensionless
efficiency f(z) usually computed in the context of dark-matter
annihilation), as a function of redshift. We only show the case
M = 102 M� as other cases are very similar.

tional rates of change of gas temperature, direct ioniza-
tions and excitations:

∆Ṫgas =
2

3ntot

1 + 2xe
3

ρ̇dep, (85)

∆ẋdirect
e =

1− xe
3

ρ̇dep

EInH
, (86)

∆ẋ2 =
1− xe

3

ρ̇dep

E2nH
, (87)

where ntot is the total number density of free particles,
x2 is the fraction of excited hydrogen and E2 ≡ 10.2 eV
is the first excitation energy (we assume that all excita-
tions are to the first excited state for simplicity). Note
that in our previous notation xe ≡ xe is the background
ionization fraction and similarly Tgas ≡ T∞.

We implement these modifications in the recombina-
tion code hyrec [41, 42]. We self-consistently account
for the heating of the gas into the PBH luminosity, i.e.
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FIG. 12. Upper panel : global free electron fraction xe(z)
in the standard scenario (lower black curve), and ac-
counting for PBHs with parameters (Mpbh/M�, fpbh) =
(102, 1), (103, 10−2), (104, 10−4), in that order from bottom to
top at low redshift. Lower panel : change in the ionization
history due to accreting PBHs for the same parameters. We
only show the collisional ionization case here.

account for the global feedback of PBHs. We show the
resulting changes in the ionization history in Fig. 12.
Comparing with Fig. 3 of ROM, we see that we obtain a
significantly smaller effect on the ionization history.

V. EFFECT ON THE COSMIC MICROWAVE
BACKGROUND

A. CMB spectral distortions

1. Effect of global heating

Energy deposited in the photon-baryon plasma at red-
shift z . 2× 106 does not get fully thermalized, and re-
sults in distortions to the CMB spectrum. Depending on
when the energy is deposited, the distortion generated
is either a chemical potential (µ-type) or a Compton-y
distortion. Their amplitudes are approximately given by
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(see e.g. [43])

µ ≈ 1.4

∫ 2×106

5×104

d ln(1 + z)
ρ̇heat

dep

Hρcmb
, (88)

y ≈ 1

4

∫ 5×104

200

d ln(1 + z)
ρ̇heat

dep

Hρcmb
. (89)

The relevant ratio is therefore that of the volumetric rate
of heat deposition per Hubble time to the CMB photon
energy density:

ρ̇heat
dep

Hρcmb
≈ 1 + 2xe

3

ρ̇dep

ρ̇inj
fpbh

ρdm

ρcmb

〈L〉
HM

≈ 4× 10−4 1 + 2xe
3

ρ̇dep

ρ̇inj
fpbh

〈L〉
LEdd

(zeq/z)
3

√
1 + zeq/z

,(90)

where zeq ≈ 3400 is the redshift of matter-radiation
equality. In the µ-era z & 5 × 104, we have xe → 1
(neglecting Helium), ρ̇dep = ρ̇inj, and z � zeq, and we
arrive at

µ ≤ 6× 10−8fpbh max
z≥5×104

( 〈L〉
LEdd

)
. (91)

This is always significantly below the sensitivity of FI-
RAS [21], and would be within the reach of proposed
spectral distortion experiments such as PIXIE [44] only
if PBHs radiated near the Eddington luminosity. In prac-
tice, L � LEdd at all times (see Fig. 8), hence we con-
clude that accreting PBHs are not and will never be de-
tectable through µ-type spectral distortions.

The y-parameter integral (89) is dominated by the
lower redshift cutoff z ≈ 200 corresponding to the ther-
mal decoupling of gas and CMB photons. Since the lu-
minosity is a slowly varying function near z ≈ 200 and
ρ̇dep ≈ ρ̇inj, we find

y ≈ 0.02 fpbh
〈L〉
LEdd

∣∣∣
z≈200

. (92)

From Fig. 8, we see that for the mass range considered
M ≤ 104M� this is always below the sensitivity of FI-
RAS [21]. For M = 104M�, the y-parameter may be as
large as y ∼ 2 × 10−7fpbh. This is within the projected
sensitivity of PIXIE for fpbh = 1, but is one order of
magnitude below the expected foreground y-parameter
from the low-redshift intra-cluster medium [45].

UPDATE
To conclude, we find that the global heating of the

plasma due to accreting PBHs does not leave any ob-
servable imprint on CMB spectral distortions, neither for
current instruments, nor for proposed ones.

2. Distortion from local Compton cooling

There is another source of energy injection in the CMB,
which occurs in the immediate vicinity of the PBH: when

Compton cooling is efficient, the volumetric rate of en-
ergy transfer from the gas to the CMB is

dĖ

4πr2dr
= nH

4xeσTρcmb

mec(1 + xe)
(T − Tcmb)

≈ −3

2
nHρ

2/3v
d

dr
(Tcmb/ρ

2/3), (93)

where the second equality is obtained by setting T ≈
Tcmb in the left-hand-side of Eq. (4), which holds as long
as Compton cooling is efficient. Therefore the rate of
energy injection per PBH is

Ė = Tcmb

∫ ∞

rmin

dr4πr2v nH
d(ln ρ)

dr

=
Ṁ

mp
Tcmb log(ρ(rmin)/ρ∞), (94)

where rmin ∼ γ−2/3rB is the radius at which Compton
cooling becomes inefficient, γ being the dimensionless
Compton cooling parameter defined in Eq. (8). With
ρ(rmin) ≈ ρ∞(rmin/rB)−3/2, we arrive at

Ė ∼ Ṁ

mp
Tcmb log(γ). (95)

We therefore get a characteristic distortion amplitude

ρ̇inj

Hρcmb
∼ fpbh

Ṁ

HM

Tcmbρdm

ρcmbmp
log(γ)

∼ fpbh
Ṁ

HM

nH

ncmb
, (96)

where we have used ρdm ∼ ρb and ncmb ∼ ρcmb/Tcmb is
the number density of CMB photons. We see that this
is proportional to the baryon-to-photon ratio nH/ncmb ∼
10−10, and moreover multiplied by H−1Ṁ/M which, as
we discussed near Eq. (12), is always less than unity for
the mass range we consider. Therefore local Compton
cooling by CMB photons does not lead to any observable
spectral distortion.

B. CMB temperature and polarization anisotropies

1. Effect on CMB anisotropy power spectra

The change in the ionization history shown in Fig. 12
affects the visibility function for CMB anisotropies, and
as a consequence the angular power spectra of tempera-
ture and polarization fluctuations. We have incorporated
the modified hyrec into the Boltzmann code class [46].
We show in Fig. 13 the changes in CMB power spectra for
the same parameters used in Fig. 12. The effect is quali-
tatively similar to an increase in the reionization optical
depth: fluctuations are damped on small angular scales
due to scattering of photons out of the line of sight, and
the polarization is enhanced on relatively large angular
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FIG. 13. Fractional change in the CMB temperature (upper
panel) and E-mode polarization (lower panel) power spec-
tra resulting from accreting PBHs. The parameters are
(Mpbh/M�, fpbh) = (102, 1), (103, 10−2), (104, 10−4), in that
order with increasing overall amplitude. We only show the
collisional ionization case here.

scales. The latter are smaller than the scales affected by
reionization, as the effect of PBHs is at larger redshifts.
For small PBH masses, the suppression on small scales
is accompanied by oscillations, resulting from the change
of the redshift of last scattering. Indeed, as can be seen
in Fig. 12, low-mass PBHs affect the recombination his-
tory near the last-scattering surface z ∼ 103 more than
high-mass PBHs, whose effect is mostly on the freeze-out
free-electron fraction.

2. Analysis of Planck data

To analyze the CMB anisotropy data from Planck, one
should in principle run a Monte Carlo Markov Chain
(MCMC), accounting for foreground nuisance parame-
ters (see e.g. [24]). However, this approach is too com-
putationally taxing if we are to set an upper bound on
the abundance of PBHs as a function of PBH mass, as
it would require running a MCMC simulation for every
mass considered. Instead, we performed a simplified yet
accurate data analysis as follows.

We use the Plik lite best-fit Ĉ` and covariance ma-

trix Σ for the high-` binned CMB-only TT , TE and EE
power spectra provided by the Planck collaboration6 [47].
These spectra and their covariance matrix are obtained
by marginalizing over foreground nuisance parameters.
Since they are only provided for multipoles ` ≥ 30, we
moreover assume a prior on the optical depth to reion-
ization τreio = τ0 ± στ ≡ 0.0596± 0.0089 as obtained by
the latest Planck data analysis [48]. This prior on τreio

accounts approximately for the large-scale temperature
and polarization data (see Refs. [49, 50] for an analy-
sis similar in spirit). Given the relatively large effect
of accreting PBHs on low-` polarization (see Fig. 13), a
full data analysis might change the constraints by order-
unity factors; however this is below our theoretical un-
certainty. For a given set of cosmological parameters
~θ = (H0,Ωbh

2,Ωch
2, As, ns, τreio, fpbh) the χ2 is then

χ2(~θ) =
1

2

(
CX` (~θ)− ĈX`

)
(Σ−1)XX

′

``′

(
CX

′

`′ (~θ)− ĈX′

`′

)

+
1

2

(τreio − τ0)2

σ2
τ

, (97)

where we sum over repeated indices, X ∈ (TT, TE,EE),

and the CX` (~θ) are the theoretical power spectra obtained
with our modified hyrec and class. Taylor-expanding

about the best-fit standard cosmological parameters ~θ0

given in Ref. [48] (with fpbh,0 = 0), we rewrite this as

χ2(~θ) ≈ χ2(~θ0) + ∆θi
∂CX`
∂θi

∣∣∣
θ0

(Σ−1)XX
′

``′

(
CX

′

`′ (~θ0)− ĈX′

`′

)

+
1

2
∆θiFij∆θj , (98)

where ∆θi ≡ θi − θ0,i and

Fij ≈
∂CX`
∂θi

(Σ−1)XX
′

``′
∂CX

′

`′

∂θj
+
δi,iτ δj,iτ
σ2
τ

(99)

is the Fisher-information or curvature matrix [51], for
which we have neglected the smaller term linear in

(CX` (~θ0) − ĈX` ). Maximizing this quadratic approxima-
tion of the χ2 allows us to find the best-fit cosmological

parameters ~̂θ, with their covariance given by (F−1)ij .
We have checked that without PBHs this simple analysis
recovers very accurately the best-fit standard 6 cosmo-
logical parameters obtained in Ref. [47], with biases of
at most 0.17σ. The variances we derive match those of
Ref. [24] for H0,Ωbh

2,Ωch
2 and ns and those of Ref. [48]

for As and τreio, as expected since we are using the same
high-` covariance as in the former reference, and the prior
on τreio (strongly degenerate with As) from the latter.

We apply this analysis to derive the best-fit and 1-σ er-
ror on fpbh, as a function of Mpbh. We explicitly checked
that for the limits we obtain, the change in the anisotropy

6 Available at http://pla.esac.esa.int/pla/
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power spectra is indeed linear in fpbh (ROM find an ef-

fect that goes as f
1/2
pbh because they obtain a much larger

effect on the freeze-out free-electron abundance than we
do). Though we consider a limit on the normalization
of a Dirac-function mass distribution, this analysis can
be generalized to any extended mass function [52], by

replacing fpbhL(M)/M →
∫
dM

dfpbh

dM L(M)/M , where
dfpbh/dM is the differential DM-PBH fraction.

For all PBH masses we consider, M ≤ 104M� (as
the steady-state approximation breaks down beyond that

mass), the best-fit f̂pbh is always less than a fraction of
standard deviation7 σfpbh

. We show σfpbh
in Fig. 14,

as a simple proxy for the upper limit on this parame-
ter8. We see that in the collisional ionization limit, CMB
anisotropy measurements by Planck exclude PBHs with
masses M & 102M� as the dominant component of the
dark matter. In the photoionization limit, this thresh-
old is lowered to ∼ 10M�. In either case, our bound is
significantly weaker than that of ROM. The up to two
orders of magnitude difference in the constraint between
the two limiting cases illustrates the level of uncertainty
in the calculation. Nevertheless, we believe our most con-
servative bound is robust and difficult to evade, at least
at the order-of-magnitude level.

VI. DISCUSSION AND CONCLUSIONS

In this work we have revisited and revised existing
CMB limits to the abundance of primordial black holes.
We showed that CMB-anisotropy measurements by the
Planck satellite exclude PBHs as the dominant compo-
nent of dark matter for masses & 102M�. The physical
mechanism involved is that PBHs would radiate a frac-
tion of the rest-mass energy they accrete, heating up and
partially reionizing the Universe. Such an increase in the
free-electron abundance would change the CMB temper-
ature and polarization power spectra. Planck measure-
ments do not allow for large deviations from the standard
recombination history [24], which leads to tight bounds
for large and luminous PBHs.

The constraints we derive are significantly weaker than
the previous result of Ricotti et al. (ROM) [18], so it is
instructive to briefly summarize the differences in our re-
spective calculations. First and foremost, we compute
the radiative efficiency ε ≡ L/Ṁc2 from first principles,
generalizing Shapiro’s classic calculation for spherical ac-

7 The astute reader may wonder why even given several probed
PBH masses, some best-fit f̂pbh do not deviate by more than
one standard deviation from 0; the reason is that the effect of
PBHs of different masses on the CMB is very similar, hence the
best-fit values are expected to be correlated.

8 Strictly speaking, given the prior fpbh ≥ 0, defining the 68%-
confidence interval is a bit more subtle; given the large uncer-
tainties of the calculation, we shall not delve into such technical
details here.

cretion around a black hole [25]. We account for Comp-
ton drag and cooling as well as ionization cooling once
the background gas is neutral. At fixed accretion rate,
the efficiency we derive is at least a factor of ten and up to
three orders of magnitude lower than what is assumed in
ROM for spherically-accreting PBHs. The second largest
difference is in the accretion rate itself. ROM compute
the accretion rate for an isothermal equation of state, as-
suming that Compton cooling by CMB photons is always
very efficient. In fact, for sufficiently low redshift and low
PBH masses Compton cooling is negligle and the gas is
adiabatically heated. In this case the higher gas temper-
ature, and hence pressure, imply an accretion rate that
is lower by a factor of ∼ 10. Since the PBH luminosity is
quadratic in the accretion rate, this translates to a factor
of ∼ 100 reduction in the effect of PBHs on CMB observ-
ables. A third difference is the relative velocity between
PBHs and baryons, which ROM significantly underesti-
mates around z ∼ 103, leading to an over-estimate of the
accretion rate.

There are considerable theoretical uncertainties in the
calculation of the accretion rate and luminosity of PBHs,
as we have illustrated by considering two limiting cases
for the radiative feedback on the local ionization frac-
tion, leading to largely different results. Let us recall the
most critical uncertainties here. First, we have only con-
sidered spherical accretion. Extrapolating the measured
primordial power spectrum to the very small scale corre-
sponding to the Bondi radius, ROM estimated the angu-
lar momentum of the accreted gas; they argued that the
accretion is indeed spherical for PBHs less massive than
∼ 103 − 104M�. However, there is no direct measure-
ments of the ultra-small-scale power spectrum, and all
bets are open for a Universe containing PBHs. If small-
scale fluctuations are larger (for instance due to non-
linear clustering of PBHs), an accretion disk could form,
with a significantly enhanced luminosity with respect to
spherical accretion. On the other hand, non-spherical
accretion could conceivably also lead to complex three-
dimensional flows near the black hole giving rise to a
turbulent pressure that lowers the accretion rate and ra-
diative output. Secondly, we have accounted for the mo-
tion of PBHs with an approximate and very uncertain
rescaling of the accretion rate. Given that dark-matter-
baryon relative velocities are typically supersonic, we ex-
pect shocks and a much more complex accretion flow in
general. Thirdly, we have assumed a steady-state flow,
but have not established whether such a flow is stable,
even for a static black hole. Last but not least, if PBHs
only make a fraction of the dark matter, an assumption
must be made about the rest of it, the simplest one be-
ing that it is made of weakly interacting massive particles
(WIMPs). If so, these WIMPs ought to be accreted by
PBHs, whose mass may grow significantly after matter-
radiation equality [55], and as a consequence increase the
accretion rate of baryons [18, 26]. For the sake of simplic-
ity, and given the added uncertainty associated with the
accretion of collisionless particles, we have not accounted
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FIG. 14. Approximate CMB-anisotropy constraints on the fraction of dark matter made of PBHs derived in this work (thick
black curves). The “collisional ionization” case assumes that the radiation from the PBH does not ionize the local gas, which
eventually gets collisionally ionized. The “photoionization” case assumes that the local gas is ionized due to the PBH radiation,
up to a radius larger than the collisional ionization region, yet smaller than the Bondi radius. The former case is the most
conservative, as collisional ionization leads to a smaller temperature near the black hole horizon, hence a smaller luminosity, and
weaker bounds. The correct result lies somewhere between these two limiting cases. For comparison, we also show the CMB
bound previously derived by ROM (thin dashed curve), as well as various dynamical constraints: micro-lensing constraints
from the EROS [15] (purple curve) and MACHO [14] (blue curve) collaborations (but see Ref. [53] for caveats), limits from
Galactic wide binaries [17], and ultra-faint dwarf galaxies [54] (in all cases we show the most conservative limits provided in
the referenced papers).

for this possibility in this work. Given these major quali-
tative uncertainties, we have made several simplifications
leading to additional factors of a few inaccuracies: for in-
stance, our calculation is purely Newtonian, and our an-
alytic treatments of the ionization region and of energy
deposition into the plasma are only approximate. We
have also only explicitly analyzed Planck ’s temperature
and polarization data for multipoles ` ≥ 30, approximat-
ing the effect of large-scale measurements by a simple
prior on the optical depth to reionization. In a nutshell,
the reader should keep in mind that this is a complex
problem and that many simplifying assumptions underly
our results, which we expect to be accurate at the order-
of-magnitude level only.

To conclude, we find that, up to the theoretical un-
certainties aforementioned, CMB anisotropies conserva-
tively rule out PBHs more massive than ∼ 102M� as
the dominant form of dark matter. This bound could
be tighter by up to one order of magnitude if the lo-
cal gas is predominantly photoionized rather than col-
lisionally ionized. Given the recent renewed interest in
the ∼ 10 − 100M� window, it would be very interest-
ing to generalize our accretion model to self-consistently
account for ionization feedback, a task beyond the scope
of this article, and to be pursued in future work. In the
mean time, there are a number of other interesting astro-
physical probes in that mass range. These include future
measurements of the stochastic gravitational-wave back-

ground [56–60] and of the mass spectrum [61], redshift
distribution [62], and orbital eccentricies [63] for future
binary-black-hole mergers; lensing of fast radio bursts by
PBHs [64]; pulsar timing [65, 66]; radio/x-ray sources [67]
or the cosmic infrared background [68]; the dynamics of
compact stellar systems [54]; strong-lensing systems [69];
and perhaps clustering of GW events [70–73]. The con-
clusions of our work suggest that it will be important to
pursue vigorously these alternative avenues.
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Appendix A: Consistency checks

1. Isolated PBH assumption

Our calculation assumes gas accreting on an isolated
BH. This approximation is valid as long as the Bondi ra-
dius is significantly smaller than the characteristic proper
separation r between PBHs. Numerically, we get

rB =
GM

v2
B

≈ 6× 1014cm
M

M�

103

1 + z
(A1)

r =

(
3M

4πfpbhρdm

)1/3

≈ 6× 1017cm

(
M

fpbhM�

)1/3
103

1 + z
, (A2)

where we estimated the Bondi radius for a PBH at
rest and assuming Tgas = Tcmb and xe � 1, valid for
200 . z . 1100. We therefore find that the isolated
PBH approximation holds for

M . 3× 104f
−1/2
pbh M�. (A3)

Given that our conservative bound is fpbh .
(100M�/M)2, PBHs can indeed be considered as iso-
lated for all masses considered.

Note, however, that this estimate only holds for quasi-
uniformly distributed PBHs. In practice PBHs may clus-
ter significantly if they make up a significant fraction of
the dark matter, due to Poisson fluctuations in their ini-
tial clustering [74]. We do not attempt to account for
this effect here.

2. Free-Free cooling

Free-free cooling is efficient when the associated
timescale tff ∼ neT/jff is much shorter than the local
accretion timescale tacc ∼ r/|v|. The ratio of the two
timescales is

tacc

tff
∼ r/|v|
neT/jff

∼ αcσTner

|v| J ∼ αcσTṀ

4πmprv2
J , (A4)

where we have used ne = ρ/mp = Ṁ/(4πmpr
2|v|). In

the innermost region, the gas is in near free-fall, so that
rv2 ∼ GM . Recalling that the Eddington luminosity is
given by Eq. (58), we may rewrite this as

tacc

tff
∼ ṁαJ . (A5)

Therefore, as long as ṁ . a few, we may safely neglect
free-free cooling. This is indeed the case for the mass
range M . 104M� that we consider (see Fig. 4).

3. Free-bound radiation

At low frequencies, near the ionization threshold of hy-
drogen, radiative recombinations also contribute to the
radiation of the plasma [25]. We consider only recombi-
nations to the ground state of hydrogen, for which the
cross-section is well known and has the approximate de-
pendence near threshold

σpi(ν) ≈ σ0

(νI

ν

)3

, (A6)

with σ0 ≈ 6× 10−18 cm2 and νI ≡ EI/h is the threshold
photoionization frequency. Assuming Saha equilibrium,
detailed balance considerations allow us to compute the
corresponding free-bound emissivity (see e.g. Ref. [37]):

jfb
ν = n2

e(3πmeT )−3/2 8πh4ν3

c2
e−h(ν−νI)/Tσpi(ν). (A7)

Therefore the free-bound emissivity near threshold is
nearly independent of frequency9. The ratio of free-
bound to free-free emissivities is

jfb

jff
∼
(

hνI√
mec2T

)3
σ0

ασT
� 1. (A8)

Even though σ0 � ασT, this ratio is largely suppressed
due to the first factor.

4. Optical thickness

In our estimate of the luminosity we have assumed
that the plasma is optically thin. Here we show that the
plasma is indeed optically thin to both Compton scatter-
ing and free-free absorption.

The Compton optical depth is dominated by the dens-
est regions near the horizon. Since the Compton cross
section is lower than Thomson for relativistic photons,
the Compton optical depth is less than

τCom . rSneσT ∼ ṁ, (A9)

where we used Eqs. (56) and (58). Therefore, as long as
ṁ . 1 the plasma is optically thin to Compton scattering
[18].

The free-free absorption coefficient αff
ν (with dimen-

sions of inverse length) is [75]

αff
ν =

jff
ν

Bν(T )
, (A10)

where jff
ν ≈ jff

4πh/T is the emissivity and Bν(T ) is the

Planck function. Since jff
ν ∝ n2

e the total optical depth is

9 This result differs from Shapiro’s assumed free-bound spectrum.
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dominated by the region near the horizon. The optical
depth is then

τff ∼ rSα
ff
ν ∼ rS

jc2

hν4
max

, (A11)

where we approximated jν ∼ j/νmax and Bν ∼ hν3
max/c

2,
where νmax ∼ TS/h. Using Eq. (54), we get

τff ∼ α τTh

(
hc

TS
n1/3
e

)3

. (A12)

The last term is the degeneracy factor: if it is greater
than unity one ought to account for electron degeneracy
pressure. It is easy to check that this term is always much
smaller than unity for all cases considered.

Appendix B: Energy deposition rate: comparison
with the existing literature

Several papers attempt an analytic estimate of the en-
ergy deposition rate as we do in Section IV, as opposed to
a fully numerical treatment as in Ref. [40]. Here we com-
pare and contrast our results to the existing literature.
Reference [76] gives the following integral expression for
the photon density per energy interval [their equation
(2.12), rewritten in our notation]:

NE(t) =

∫ t

dt′
1

E′
dρ̇inj

dE′

(
a′

a

)3

× exp

[
−
∫ t

t′
dt′′n′′Acσtot(E

′′)

]
, (B1)

where E′ ≡ Ea/a′, E′′ ≡ Ea/a′′, nA is the number den-
sity of absorbers and σtot(E) is total cross section for
all the interactions suffered by the DM-sourced photon
and that result in the production of free electrons. This
integral equation is equivalent to the following partial

differential equation:

a−3 d

dt
(a3NE) =

1

E

dρ̇inj

dE
− nAcσtot(E)NE . (B2)

This equation differs from our Eq. (78) in two ways.
First, in the absence of photon sources or sinks, Eq. (B2)
does not recover the correct scaling NE ∝ a−2. Second,
the second term on the right-hand side implies that pho-
tons are destroyed in the ionization process. While this is
the case for direct photoionization events γ+H → p+ e,
it is not the case for ionizations following Compton scat-
tering events γ + H → p + e + γ′, for which part of the
energy of the incoming photon is used for ionizing the
atom, but the photon is not destroyed.

From Eq. (B1), Ref. [77] deduces the energy deposition
rate (correcting a mistake in Refs. [78, 79]). Assuming
σtot(E) ≈ σT (valid for E . mec

2), the resulting energy
deposition rate is (Eq. (4.21) of Ref. [79], corrected in
Appendix B of Ref. [77])

ρ̇dep =

∫ t

dt′e−κ(t,t′)

(
a′

a

)8

n′HcσTρ̇
′
inj (Poulin et al.),

with κ(t, t′) ≡
∫ t

t′
dt′′n′′HcσT. (B3)

Rewriting this as differential equation would lead to

a−8 d(a8ρ̇dep)

dt
= nHcσT [ρ̇inj − ρ̇dep] . (B4)

This differs from our Eq. (84) in two ways. First, the
incorrect scaling ρ̇dep ∝ a−8 instead of a−7 once energy
deposition becomes inefficient is a direct consequence of
the incorrect scaling in Eq. (2.12) of Ref. [76]. Secondly,
our right-hand-side is smaller by an (approximate) factor
0.1. This translates the fact that, even for E . mec

2,
only a small fraction of the energy of Compton-scattered
photons is lost to ionizations, as opposed to the totality
of it as implicitly assumed in Eq. (B2).
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