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We establish purely geometric or metric-based criteria for the validity of the separate universe
ansatz, under which the evolution of small-scale observables in a long-wavelength perturbation is
indistinguishable from a separate Friedmann–Robertson–Walker cosmology in their angle average.
In order to be able to identify the local volume expansion and curvature in a long-wavelength
perturbation with those of the separate universe, we show that the lapse perturbation must be
much smaller in amplitude than the curvature potential on a time slicing that comoves with the
Einstein tensor. Interpreting the Einstein tensor as an effective stress energy tensor, the condition
is that the effective stress energy comoves with freely falling synchronous observers who establish
the local expansion, so that the local curvature is conserved. By matching the expansion history
of these synchronous observers in cosmological simulations, one can establish and test consistency
relations even in the nonlinear regime of modified gravity theories.

I. INTRODUCTION

In the separate universe approach, the impact of
a long-wavelength cosmological perturbation on local,
short-wavelength observables is modeled as a change in
the background cosmology. This technique has proven
very useful both conceptually and as a practical tool
for constructing consistency relations between observ-
ables that hold nonlinearly. Separate universe arguments
provide insights into relations between N -point functions
[1, 2], the evolution of isocurvature fluctuations in mul-
tifield models [3–6], shifts in baryon acoustic oscillations
[7], super sample power spectrum covariance [8, 9], posi-
tion dependent power spectra [10–12], CMB lensing co-
variance [13], and dark matter halo bias [14–17].
In all of these studies, general relativity is assumed

from the outset and so the Einstein equations allow the
validity of the separate universe to be established through
a mix of conditions on the metric and the stress-energy
of the matter such that a local observer will see a con-
stant comoving local curvature [18–21], which is the es-
sential requirement for the construction to work. In the
following, we elucidate purely geometric conditions for
the validity of the separate universe ansatz, with an eye
toward extending these applications to non-Einsteinian
gravity theories.
Previous works on this question have focused on the

infinite wavelength limit, where the perturbed metric is
matched exactly to a separate Friedmann–Robertson–
Walker (FRW) cosmology [22] or have tested the ansatz
in the context of specific models [23–26] and parameter-
izations [27–31] of modified gravity. Since the scale at
which the separate universe ansatz ceases to hold deter-
mines where observational violations of consistency rela-
tions occur, e.g. scale dependent halo bias and squeezed
N -point functions [32, 33], we seek to establish conditions
under which the separate universe ansatz approximately
holds. In doing so, we also clarify the role of anisotropic
stress, real or effective, and shear in the expansion in
these conditions.

The outline of the paper is as follows. In §II we con-
sider the geometric correspondence between perturba-
tions in the Einstein tensor and the local expansion and
curvature. We establish the comoving lapse condition for
the validity of the separate universe ansatz and relate it
to conservation of curvature for synchronous and comov-
ing local observers in §III. In §IV, we discuss the scales
associated with validity of the separate universe ansatz
and discuss these results in §V.

II. LOCAL EXPANSION AND CURVATURE

In this section, we establish the relationship between
metric perturbations and the local expansion and cur-
vature, utilizing the geometric interpretation of the Ein-
stein tensor and its covariant conservation. These associ-
ations can be made in any gauge and any metric theory
of gravity. However absorbing the perturbations into a
local FRW expansion requires further restrictions that
highlight special choices of time slicing for §III. We work
in the mostly plus metric convention throughout.

A. Background Geometry

Given a background FRW spacetime with line element,

ds2 = a(η)2(−dη2 + γijdx
idxj), (1)

where γij is a 3-metric of constant comoving curvature
K, the Einstein tensor is

G0
0 = −3

(

H2 +
K

a2

)

= −3H2 −
R(3)

2
, (2)

Gi
j −G0

0

δij
3

= −
2

a2

(

ä

a
− a2H2

)

δij = −
2

a

d2a

dt2
δij ,

where overdots denote derivatives with respect to the
“0”, conformal time component, η =

∫

dt/a, and H ≡
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d ln a/dt. Here R(3) = 6K/a2 is the 3-Ricci scalar and
defines the physical curvature scale, |R(3)|−1/2, that co-
moves with the expansion. The combination of 00 and ii
components characterizes the acceleration of the expan-
sion. To avoid an overly cumbersome notation, we omit
overbars to denote these background values since per-
turbations are always designated as such below. When
referring to the resummed local background, we use the
subscript W for the locally windowed average below.

B. Metric Perturbations

Let us perturb the metric in an arbitrary gauge follow-
ing Ref. [18, 19]. The most general metric perturbation
we can write is of the form

δg00 = −a2(2A),

δg0i = a2Bi,

δgij = a2(2Eij). (3)

It is convenient to decompose these metric perturba-
tions in two ways. First we Hodge decompose the vector,
Bi, and tensor, Eij perturbations:

Bi = ∇iB + BT
i , (4)

Eij = ELγij +

(

∇i∇j −
1

3
γij∇

2

)

ET +∇(iE
T
j) + ETT

ij ,

where the vectors, BT
i , E

T
j are divergence free, and the

tensor ETT
ij is transverse and traceless. We are interested

in absorbing the scalar metric perturbations into a local
background and drop the divergence free and transverse
traceless pieces from consideration hereafter.

Second, it is helpful to make a harmonic decomposition
of the scalar components of the metric. The harmonics
themselves are the complete and orthogonal set of eigen-
modes of the spatial Laplace operator

∇2Q(x) = −k2Q(x). (5)

Orthogonality, or more fundamentally the homogeneity
and isotropy of the background, means that we can con-
sider each eigenmode independently for linear perturba-
tions. Because we consider one eigenmode at a time,
we omit the k index for clarity. These eigenmodes are
plane waves when K = 0, Q = eik·x, and in this case our
treatment reduces to the usual Fourier decomposition of
a general spatial perturbation, examined one mode at a
time. For details of the decomposition in the K 6= 0
cases, see Ref. [34]. To build the scalar component of Bi

and Eij it is useful to introduce

Qi(x) ≡ −k−1∇iQ(x),

Qij(x) ≡

(

k−2∇i∇j +
1

3
γij

)

Q(x), (6)

whose indices are raised and lowered by γij , which also
defines the covariant spatial derivative ∇i. Our normal-
ization conventions for Qi and Qij are established to keep
the harmonic space representation of metric perturba-
tions dimensionless. We then obtain for a single scalar
eigenmode

A(x, η) = A(η)Q(x),

Bi(x, η) = B(η)Qi(x),

Eij(x, η) = HL(η)Q(x) +HT (η)Qij(x), (7)

or equivalently kB(x, η) = −B(η)Q(x), EL(x, η) =
HL(η)Q(x) and k2ET (x, η) = HT (η)Q(x). In order to
relate these metric perturbations to the local expansion
and curvature we next consider their implications for the
Einstein tensor.

C. Einstein Tensor Perturbations

With the decomposition (7), the perturbation to the
Einstein tensor can be written as

δG0
0 = GρQ,

δG0
i = GvQi,

δGi
j − δG0

0

δij
3

= GpQδij + GπQ
i
j , (8)

where the individual components are given by

Gρ = −
2

a2
(k2 − 3K)

(

HL +
HT

3

)

+ 6H2A− 6
H

a

(

ḢL +
kB

3

)

, (9)

Gv =
2k

a2

[

aHA−

(

1−
3K

k2

)

(

ḢL +
ḢT

3

)

−
3K

k2

(

ḢL +
kB

3

)

]

, (10)

Gp =
2

a2

[

(

2
d(aH)

dη
+ aH

d

dη
−

k2

3

)

A−

(

d

dη
+

ȧ

a

)(

ḢL +
kB

3

)

]

, (11)

Gπ = −
1

a2

[

k2
(

A+HL +
HT

3

)

+

(

d

dη
+ 2

ȧ

a

)

(kB − ḢT )

]

. (12)
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Each of these G components of the Einstein tensor con-
tain up to second derivatives of the metric potentials.

D. Gauge

The general decomposition of the scalar components
of the metric and Einstein tensor perturbations in the
previous sections applies to any gauge. However, the
values of the individual components of course depend on
the gauge and we shall see below there are special gauges
for which the association of a local FRW background is
the closest.
Under a gauge transformation, or diffeomorphism,

xµ 7→ xµ + ξµ, the scalar metric perturbations transform
as

δξA = −H(aT )′

δξB = aH

(

L′ +
k

aH
T

)

,

δξHL = −
k

3
L− aHT,

δξHT = kL, (13)

where we have split the diffeomorphism parameter as
ξµ = (T, LQi). Here and throughout when highlight-
ing scalings, we employ dimensionless e-fold derivatives
′ ≡ d/d ln a = (aH)−1d/dη. The variables T and L de-
fine the change in the time slicing and threading of the
gauge, respectively. Between any two gauges that are
fully fixed, T and L are uniquely defined.
Despite the fact that the metric potentials, as compo-

nents of a tensor, manifestly transform under a diffeo-
morphism, and therefore take different numerical values
in each gauge, we use the same symbols {A,B,HL, HT }
or {Gρ,Gv,Gp,Gπ} to parameterize the metric and Ein-
stein tensor in any gauge. For example the lapse per-
turbation, A, in a gauge that is completely fixed is a
perfectly well defined geometric quantity when viewed as
a spacetime object in its own right but is not equal to
the lapse perturbation in a different gauge.
To avoid confusion, when we specify relations that ap-

ply only to a specific gauge below, we will assign spe-
cial variables to the components; for example we call the
lapse perturbation in comoving gauge ξ = A|com below.
Since a gauge transformation between two fixed gauges is
a one-to-one transformation that uniquely defines T and
L, a perturbation in one gauge may always be written
as a unique combination of the variables in a different
gauge, e.g.

ξ = A−H [aT (A,B,HL, HT )]
′

, (14)

where T is specified in this case by Eq. (51) below. Com-
binations of variables of this type are often called “gauge
invariant” or “Bardeen” variables in the literature. Since
the gauge-fixed and Bardeen variables, thought of as

scalar functions in the spacetime, represent the same geo-
metric objects—and take on the same numerical values—
we use the same special symbols for both, e.g. ξ in the
example above. We simply give T and L from which the
Bardeen representation can be obtained with Eq. (13).

E. Local Expansion and Curvature

We would now like to assign a geometric interpreta-
tion to the components of the Einstein tensor in the 3+1
decomposition. In order to do this, we note that the co-
variant derivative of a unit timelike vector can in general
be decomposed with the help of the induced metric

Pµν = gµν + nµnν , (15)

into the expansion

θ ≡ ∇µn
µ, (16)

vorticity

ωµν ≡ P α
µ P β

ν (∇βnα −∇αnβ), (17)

shear

σµν ≡
1

2
P α
µ P β

ν (∇βnα +∇αnβ)−
θ

3
Pµν , (18)

and acceleration

aµ ≡ (∇αnµ)n
α (19)

of the vector field such that

∇νnµ ≡ ωµν + σµν +
θ

3
Pµν − aµnν . (20)

For the particular vector nµ = (−a(1 +AQ),0) which
is normal to constant time surfaces, ωµν = 0, σ00 = σ0i =
0 = a0 with (see e.g. [19])

σij = a2HΣQij ,

ai = −kAQi,

θ = 3H(1−AQ) + 3HδN ′Q, (21)

where the amplitude of the shear is

Σ = H ′

T −
k

aH
B, (22)

and we isolate particular terms in the expansion

δN ′ = H ′

L +
k

aH

B

3
= H ′

L +
H ′

T

3
−

Σ

3
, (23)

for reasons that we will now make clear [4].
We can now use these relations to interpret the com-

ponents of the perturbed Einstein tensor, starting with
Gρ. In an FRW background the Gρ component represents
the metric side of the Friedmann equation. In order to
generalize this to the perturbed case, we must define the
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local Hubble rate. Geometrically, the local volume ex-
pansion in an isotropic universe is the fractional change
per unit proper time, τ , of the cube of the local scale
factor, d ln a3W /dτ , seen on the worldline of an observer
at fixed spatial coordinates. Therefore, we should define
the local Hubble rate in a perturbed universe, HW , using
the expansion rate of the volume on spatial slices as

HW ≡
d ln aW

dτ
≡

1

3
θ = H + δHQ, (24)

where we have defined

δH = (δN ′ −A)H. (25)

Here and below the subscript “W” denotes a local win-
dowed average on scales much smaller than the wave-
length of the perturbation. Note that this expression
takes the form of the background Hubble parameter,
plus a perturbation. The term proportional to A comes
from the conversion from proper time of the local ob-
server through conformal time to cosmic time dτ =
a(1 + AQ)dη = (1 + AQ)dt. The remaining piece can
be attributed to the change in the difference between the
e-folds of the local and global expansion,

ln aW = ln a+ δNQ, (26)

per unit cosmic time. Note that Eq. (23) defines ln aW
only up to a constant, which just amounts to choosing a
normalization epoch for the local scale factor. We choose
this constant so that aW = a at some suitable initial
epoch.
By defining HW in this more general way utilizing the

volume expansion we also allow shear or anisotropic per-
turbations, even though they do not exist in the FRW
case. Conversely, in these cases the separate universe
ansatz is taken to mean that angle-averaged local observ-
ables are indistinguishable from those in the separate uni-
verse. Furthermore, note that the observers that define
the local expansion in this section need not be geodesic
observers, though in §III we use geodesic observers to
define the separate universe condition.
Next we consider the perturbation to the scalar Ricci

3-curvature on this slicing

δR(3) =
4

a2
(k2 − 3K)

(

HL +
1

3
HT

)

. (27)

In this sense HL + HT /3 is the potential for curvature
fluctuations.
Combining the expressions for the perturbed Hubble

parameter and the perturbed 3-curvature, we can write
Gρ as

Gρ = −6HδH −
1

2
δR(3), (28)

which combined with the background, Eq. (2), takes the

locally resummed form −3H2
W − R

(3)
W /2. Defining the

local curvature by KW = a2WR
(3)
W /6 we can write the

local Einstein tensor as

G0
0

∣

∣

W
= −3

(

H2
W +

KW

a2W

)

, (29)

where the local curvature is given explicitly by

KW =
(aW

a

)2

K +
a2W
6

δR(3)Q

≡ K + δKQ, (30)

which defines the local curvature fluctuation to linear
order as

δK =
2

3
(k2 − 3K)

(

HL +
HT

3

)

+ 2δNK. (31)

Note the last term is non-zero only ifK 6= 0 and is asso-
ciated with the difference between a non-zero background
curvature that comoves with the global or local expan-
sion. If we take k2 ≪ 3|K|, both δN and HL + HT /3,
which we would consider a curvature potential in the op-
posite limit, are themselves curvature perturbations, i.e.
fractional changes to the background curvature, K. In
Ref. [22], this association was exploited to map a k = 0
fractional change in the background curvature, K, onto
the Newtonian gauge potentials (see §IVB) in order to
relate the dynamics of the perturbations for k2 ≪ 3|K| to
that of the background. Since we seek to define the local
expansion for wavelengths that are larger than the hori-
zon but smaller than the curvature scale, we do not uti-
lize this approximation here. Where no ambiguity should
arise, we occasionally use the shorthand convention of the
literature and call the curvature potential perturbation
HL+HT /3 a curvature perturbation even for k2 ≫ 3|K|.
If the local expansion for a given slicing behaves as a

separate FRW universe, then the local curvature of this
slicing is constant, K ′

W = δK ′ = 0. However the geomet-
ric correspondence (29) holds regardless of slicing or the
validity of the separate universe ansatz. The form simply
reflects geometric labels that we put on the components
of the Einstein tensor.
Note that according to Eq. (23), the curvature poten-

tial changes if the e-folding rate, δN ′, is not spatially uni-
form or if there is shear in the expansion Σ. If the shear
is negligible then the change in the curvature potential
can be computed from the change in e-folds, a technique
that is known as the δN formalism, often employed in
the context of inflation [4].
Next let us interpret the Einstein tensor component

Gv. It has no analogue in a background FRW spacetime
but using Eq. (31) for the local curvature perturbation,
we can rewrite it as

Gv

H2
= 2

k

aH

(

A−
3

2

δK ′

k2

)

. (32)

Gv takes δK ′, the evolution of the local curvature on
the slicing, and combines it with the lapse perturbation
A. We shall see below that comoving gauge sets Gv =
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0 to obtain a conservation law for the comoving gauge
curvature potential.
Gp is related to the perturbation to the local accelera-

tion of the expansion. From the long wavelength limit

lim
k→0

Gp =
4

a2
d(aH)

dη
A+

2H

a
Ȧ−

2

a2

(

d

dη
+

ȧ

a

)

˙δN, (33)

we can see that

Gi
j −

1

3
G0

0δ
i
j

∣

∣

∣

∣

W

≈ −
2

aW

d2aW
dτ2

δij . (34)

Note that the limit in Eq. (33) involves dropping the k2A
term in Gp. If the lapse A is set to zero by a gauge choice,
as in synchronous gauge, then there is no restriction on
k. More generally, a sufficient condition for (33) to be
true is

∣

∣

∣

∣

d lnA

d ln a
+ 2

d ln(aH)

d ln a

∣

∣

∣

∣

≫
1

3

(

k

aH

)2

. (35)

The anisotropic Gπ term, like the Gv term, does not
exist for an FRW cosmology. At the perturbative level,
it takes the form

Gπ

H2
= −

(

k

aH

)2(

A+HL +
HT

3

)

+Σ′ +

(

3 +
H ′

H

)

Σ.

(36)
It is non-zero if there is a shear in the expansion, Σ, or—
should the shear be set to zero as in Newtonian gauge
below—if the lapse perturbation is not equal and oppo-
site to the curvature potential.
As alluded to above, when fixing a gauge we will typi-

cally do it by specifying that one of these geometric quan-
tities vanishes. It is therefore useful to give their gauge
transformation properties explicitly

δξ

(

HL +
HT

3

)

= −aHT,

δξ(δN
′) = −(aHT )′ +

1

3

k

aH
kT,

δξ

(

δK ′

k2

)

= −
2

3
(aHT )′ +

2

3

KT

aH
,

δξΣ = −
k

aH
kT,

δξ

(

δH

H

)

= −

[

H ′

H
+

1

3

(

k

aH

)2
]

aHT, (37)

and

δξ

(

Gρ

H2

)

= 6

[

H ′

H
−

K

a2H2

]

aHT,

δξ

(

Gv

H2

)

= 2
k

aH

(

aH ′ −
K

aH

)

T,

δξ

(

Gp

H2

)

= 2
(H2 +HH ′)′

H2
aHT,

δξ

(

Gπ

H2

)

= 0. (38)

Notice that these quantities, along with the lapse per-
turbation, A, whose gauge transformation is given in
Eq. (13), depend only on the time slicing. Therefore
gauge conditions on these quantities define the time slic-
ing through T and generally no more than one of these
quantities may be set to zero by a gauge choice.

F. Effective Stress Tensor

Many relationships in the literature for how the cur-
vature potential evolves assume general relativity and
therefore are expressed in terms of the total stress energy
of the matter. In order to connect with this language but
remove the assumption of general relativity, it is useful
to also relabel the Einstein tensor as an effective stress
tensor

Tµν ≡
1

8πG
Gµν , (39)

so that at the background level T 0
0 = −ρ and T i

j = p
whereas for the most general scalar perturbations

δT 0
0 = −δρQ,

δT 0
i = (ρ+ p)(v −B)Qi,

δT i
j = δpQδij + p π Qi

j . (40)

Note that this reinterpretation does not require that the
Einstein equations hold, it is merely a convenient way
of organizing the geometric object that is the Einstein
tensor.
On the other hand, in general relativity these com-

ponents correspond to familiar quantities in the actual
stress tensor of all matter species, with δρ the energy
density fluctuation, (ρ+p)(v−B) the momentum density,
p the pressure fluctuation, and p π the scalar anisotropic
stress.
For modified gravity theories, where the Einstein equa-

tion does not hold, we can view these effective stress en-
ergy components as simply a convenient relabeling of the
G linear combinations of the metric perturbations and
their derivatives, leading to a dual set of interpretations
of their values as effective stress-energy components

Gρ ≡ −8πGδρ,

Gv ≡ 8πG(ρ+ p)(v −B),

Gp ≡ 8πG(δp+ δρ/3),

Gπ ≡ 8πGpπ. (41)

Since ∇µGµν = 0 by virtue of the Bianchi identities, we
can use the implied conservation equations ∇µTµν = 0

[a3 δρ]′

a3
+ 3δp = −(ρ+ p)

(

kv

aH
+ 3H ′

L

)

,

aH

k

[a4(ρ+ p)(v −B)]′

a4
= δp−

2

3

(

1−
3K

k2

)

p π

+(ρ+ p)A (42)
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as dynamical relations between the metric components.
These are “conservation” equations for the effective stress
components. Substituting their metric definitions from
Eqs. (9)–(12) and (41), we see that these relations are
indeed identities and are automatically satisfied for the
set of metric fluctuations {A,B,HL, HT } in any gauge.
To move between gauges, it is useful to note that the

effective stress components—or equivalently the respec-
tive metric combinations, G—transform as

δξ(δρ) = −ρ̇T,

δξ(δp) = −ṗT,

δξv = L̇,

δξπ = 0. (43)

Note that π is gauge invariant in the full sense that the
anisotropic stress takes the same value for all slicings and
threadings. These transformation properties also apply
to any component of real stress energy in the universe
as they follow from the transformation properties of a
tensor.
Likewise if there is a real component “a” of stress en-

ergy that is separately covariantly conserved, ∇µT
µν
a =

0, then its energy and momentum densities obey the con-
servation laws (42). In particular it will be useful in the
next sections to consider a component of non-relativistic
matter initially at rest with respect to the expansion. In
an arbitrary gauge, its conservation equations become

δ′m = −
kvm
aH

− 3H ′

L,

[a(vm −B)]′ =
k

H
A, (44)

where δm = δρm/ρm, pm = 0 and π = 0. Note that this
component need not be associated with real matter in the
universe. It could be a fictitious trace component with
T µν
m → 0 that has no impact on the expansion. Such a

trace component simply defines a set of local observers.
In this sense, all of our constructions here and in the
next section are the same whether the metric is cast in
Jordan or Einstein frame of a modified gravity theory
or whether the true matter is minimally coupled to the
metric. In Einstein frame, where e.g. cold dark matter
no longer falls on geodesics of the metric, the component
m is purely a device to establish a coordinate system of
geodesic observers.

III. SEPARATE UNIVERSE AND CURVATURE

CONSERVATION

In this section, we establish the conditions under which
local angle-averaged observables in a perturbed universe
are to good approximation those of a separate FRW uni-
verse defined by the local expansion and curvature—
which we call the separate universe ansatz. These condi-
tions take on various forms in various time slicings since

in an exact FRW expansion the preferred slicing is simul-
taneously synchronous, comoving, uniform density, uni-
form e-folding and zero shear whereas in the perturbed
universe, no single slicing can satisfy all of these proper-
ties simultaneously.

The primary condition, as discussed in §III A, is that
the local curvature for synchronous observers initially
at rest with respect to the expansion is conserved. In
§III B, we show that this occurs when synchronous and
comoving gauge approximately coincide, satisfying the
condition that the comoving lapse perturbation is much
smaller than the curvature potential. In §III C, we dis-
cuss the relationship between these equivalent conditions
and the conservation of curvature on slicings of constant
density or constant e-folding.

A. Synchronous Gauge

Local geodesic observers that are initially at rest
with respect to the background expansion define a syn-
chronous coordinate system. We use these observers to
define the local FRW expansion. Conservation of the lo-
cal curvature in this synchronous gauge is therefore the
primary condition for the validity of the separate universe
ansatz.

In a synchronous gauge, the time reparameterization
freedom is used to fix A = 0 and the spatial gauge free-
dom is utilized to set B = 0. This is the coordinate
system defined by a set of geodesic observers that syn-
chronize their clocks. There is residual gauge freedom
in defining which observers establish the synchronous co-
ordinates. As discussed in §II F, we can take this set of
observers to be tracer particles of non-relativistic matter,
m, initially at rest with respect the expansion and pos-
sessing spatially uniform density. They subsequently fall
on geodesics of the local metric and hence obey Eq. (44).
Over a distance that is short compared with the wave-
length of the mode, synchronous coordinates coincide
with comoving Fermi normal coordinates for an isotropic
configuration (see e.g. [21]).

From an arbitrary gauge, we can reach this syn-
chronous gauge with

T =
vm −B

k
, L̇ = −vm, (45)

and Eq. (44), leaving a non-dynamical constant freedom
in L that is fixed by demanding that the spatial coordi-
nates are unperturbed initially.

Using these relations in the gauge transformation equa-
tions allows us to represent the synchronous gauge per-
turbation variables in terms of the variables in an arbi-
trary gauge, i.e. the Bardeen representation. In particu-
lar, the matter velocity in this gauge vanishes vm|synch =

vm + L̇ = 0, but will not in an arbitrary gauge.

Let us give the curvature potential in this synchronous
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gauge a unique symbol

− ηT ≡ HL +
HT

3

∣

∣

∣

∣

synch

, (46)

and define the remaining scalar metric perturbation as
hL ≡ 6HL|synch. From this point on in this section all
quantities are evaluated in this synchronous gauge unless
otherwise specified.
Using Eq. (31), the local curvature that the observers

would define is given by KW = K + δKQ where

δK = −
2

3
(k2 − 3K)ηT +

1

3
KhL. (47)

In order for the separate universe ansatz to hold exactly,
we must have δK ′ = 0. From Eq. (32) we can see that
this condition is equivalent to requiring Gv = 0.
From the association of the momentum term in the

effective stress (41), we see that this condition geomet-
rically means that the effective velocity vanishes, v = 0.
Since this is the gauge where vm = 0, the gauge invari-
ant condition is is that the effective matter comoves with
the synchronous matter: v − vm = 0. In other words,
the validity of the separate universe approximation rests
on whether synchronous gauge and comoving gauge co-
incide. Conversely, the local curvature evolves only if
the effective matter moves away from the geodesics that
define the synchronous observers.
Moving away from this exact statement, we can de-

fine a condition under which the separate universe ansatz
holds approximately, which only requires that the frac-
tional change of δK per e-fold is small: |δK ′| ≪ |δK|, so
that

∣

∣

∣

∣

δK

k2

∣

∣

∣

∣

≫

∣

∣

∣

∣

1

3

aH

k

Gv

H2

∣

∣

∣

∣

=

∣

∣

∣

∣

8πG(ρ+ p)

3H2

aH

k
v

∣

∣

∣

∣

. (48)

When K = 0, this reads

|ηT | ≫

∣

∣

∣

∣

4πG(ρ+ p)

H2

aH

k
v

∣

∣

∣

∣

. (49)

Recall that the effective momentum conservation equa-
tion (42) provides the evolution equation for v

aH

k

[a4(ρ+ p)v]′

a4
= δp−

2

3

(

1− 3
K

k2

)

pπ, (50)

so we see that the conditions (48) and (49) restrict how
much the effective stress gradients are allowed to gen-
erate momentum and move the effective matter off the
synchronous geodesics. We will establish the relation-
ship between this condition and the equivalence of syn-
chronous and comoving gauge next.

B. Comoving Gauge

Comoving gauge is useful in that the separate universe
condition can be phrased as simple algebraic relations

rather than the pair of synchronous relations, Eq. (49)
and (50). Since Eq. (32) for Gv involves δK ′, taking co-
moving slicing where Gv = 0 gives an evolution equation
for the curvature fluctuation. To get to comoving gauge
from an arbitrary slicing, we apply the time shift

T = −
Gv

2k

(

HH ′ −
K

a2

)

−1

. (51)

In this slicing, the effective momentum density vanishes,
T 0

i = 0, and hence comoves with the coordinates, v = B
(see Eq. 41). Let us give unique symbols for the curvature
potential and lapse which are fully fixed by the slicing

R ≡ HL +
HT

3

∣

∣

∣

∣

com

, ξ ≡ A|com . (52)

From this point on in this section all quantities are eval-
uated on comoving slicing unless otherwise specified.
From Eq. (32) we obtain the curvature evolution equa-

tion

δK ′ =
2

3
(k2 − 3K)R′ + 2KδN ′ =

2

3
k2ξ. (53)

The curvature on comoving slicing is conserved if the
lapse is sufficiently small in comparison

|ξ| ≪ |δK/k2|. (54)

We can alternately express this lapse condition in terms
of the curvature potential by eliminating δN ′ in favor of
the shear

R′ −
K

k2
Σ = ξ. (55)

ForK = 0 this reduces to the simple condition that |ξ| ≪
|R| and we shall below (see Eq. 61) that assuming |ξ| ≪
|R| generically implies |Σ| ≪ |R| above the horizon. We
therefore for convenience refer to the lapse condition as

|ξ| ≪ |R| =⇒

∣

∣

∣

∣

R′

R

∣

∣

∣

∣

≪ 1 (56)

for k2 ≫ |K| and |K| ≪ (aH)2, i.e. for all relevant scales
to be below the background curvature scale. More gen-
erally Eq. (54) is the direct and precise statement and
does not require any condition on K.
The utility of working in comoving slicing is that we

can simply state the condition for curvature conservation
as algebraic relationships between the metric variables.
To further establish the connection with the separate uni-
verse condition, we can specify the threading to fully fix
the gauge, even though it does not enter into the lapse
condition. A convenient choice is “comoving threading,”
so that Gi

0 = 0. In this case v|com = 0 and we can
reach this gauge from a gauge with finite v by a diffeo-
morphism with L̇ = −v. This does not uniquely fix the
threading since it allows an arbitrary time-independent
diffeomorphism L =const. which shifts the coordinates
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by δxi ∝ Qi(x), but we again fix this ambiguity by taking
the coordinates to be unperturbed initially.
When the lapse condition Eq. (56) is satisfied, this

fully-fixed comoving gauge approximately coincides with
synchronous gauge. More explicitly, defining syn-
chronous observers as in §III A, following the same
geodesics as freely falling matter, the synchronous gauge
curvature is given in comoving variables by

− ηT = R−
aH

k
vm, (57)

and matter conservation, Eq. (44), gives

vm =
1

a

∫

da

a

k

H
ξ, (58)

where the condition that the matter is initially at rest
fixes the integration constant. Combining these equa-
tions, we see that the curvatures in the two gauges are
the same, −ηT ≈ R, when the comoving lapse condition
|ξ| ≪ |R| is satisfied.
We emphasize that in general comoving slicing and

synchronous slicing will not coincide, since Gv = 0 and
A = 0 both define the time slicing. However it is pre-
cisely the case where they approximately coincide due to
the comoving lapse condition that the separate universe
ansatz holds.
The condition (56) is nice because it is a purely ge-

ometric test for when the comoving curvature will be
conserved (and hence, when the separate universe ansatz
holds). However, it is sometimes helpful to think in terms
of the effective stresses on the metric, so we can also ex-
press the lapse condition in terms of algebraic constraints
on the effective stress tensor. In particular the momen-
tum conservation equation (42) gives an algebraic rela-
tion for the comoving gauge lapse in terms of the stresses
[18]

(ρ+ p)ξ = −δp+
2

3

(

1−
3K

k2

)

p π. (59)

Thus the small lapse condition can be re-expressed as a
comparison between the curvature perturbation and the
stress perturbations in comoving slicing

R′ = −
δp

ρ+ p
+

2

3

p π

ρ+ p
. (60)

for k2 ≫ 3|K|. In particular, on large scales k/aH ≪ 1,
the comoving curvature is still conserved even if there
is an effective anisotropic stress p π that is of order the
isotropic stress fluctuation δp as long as both are sup-
pressed by powers of k/aH compared with the curvature
(cf. [21]). This also includes any contribution from non
adiabatic pressure, δp− (p′/ρ′)δρ. Furthermore since p π
is the source of shear in the expansion Σ through Eq. (41),
the comoving lapse condition (56) also generally implies

|Σ| ≪ |R| for k ≪ aH. (61)

We shall see next that although the lapse condition (56)
generically implies the shear condition (61) the converse
is not true and leads to another perspective on the con-
servation of curvature above the horizon.

C. Uniform Density Gauge

A related, but fundamentally different, criterion for
the conservation of curvature can be obtained from the
uniform density gauge of a real density component “a”
whose stress energy is separately conserved: ∇µT

µν
a =

0. If this component has a barotropic equation of state
pa(ρa), then choosing a gauge where δρa = 0 sets δpa = 0
as well. The continuity equation (42) then becomes an
evolution equation for the curvature [4].
For simplicity and definiteness let us assume that the

component is the nonrelativistic matter of Eq. (44), a =
m. Again this need not be a component of real matter
that impacts the expansion. It merely establishes the
coordinate system.
The spatially uniform density condition defines the

slicing of the gauge and the gauge transformation from
any other gauge is given by

T =
δρm
ρ̇m

= −
1

aH

δm
3

. (62)

In order to fix the threading of the gauge, we set HT = 0
and call the curvature potential in this gauge ζm, the
lapse perturbation Am, and the shift perturbation Bm.
The curvature in this gauge is related to the curvature
and matter density perturbations in an arbitrary gauge
as

ζm = HL +
HT

3
+

δm
3
. (63)

The curvature potentials only agree for conditions and
gauges where the density fluctuation is already small
compared with the curvature potential. Then the shift to
constant density slicing does not significantly change the
curvature. From this point on in this section all quanti-
ties are evaluated in uniform density gauge unless other-
wise specified.
The benefit of this gauge is that the matter continu-

ity equation (44) provides the evolution equation for the
curvature

ζ′m = −
k

aH

vm
3
, (64)

so that the condition for conservation becomes

|ζm| ≫

∣

∣

∣

∣

k

aH

vm
3

∣

∣

∣

∣

. (65)

Though this condition (65) can be stated independently
of the Einstein equation, its domain of validity in k can-
not without knowing the dynamics that sets the relative
amplitudes of ζm and vm. In this sense it is no different



9

than the analogous synchronous gauge condition (49) or
the comoving lapse condition (56).
To probe the differences with the other conditions, we

can again examine the momentum conservation equation
(44)

vm =
1

a

∫

da

a

k

H
Am +Bm, (66)

so that

ζ′m = −
k

a2H

∫

da

a

k

H
Am −

k

aH
Bm. (67)

For |ζ′m/ζm| ≪ 1, both the lapse, Am, and the shift, Bm,
must be in some sense small. On the other hand, their
amplitudes can be as large as the curvature itself, ζm,
and still allow |ζ′m/ζm| ≪ 1 as k/aH → 0.
This condition on the metric is apparently weaker than

the comoving lapse or synchronous conditions. For ex-
ample in a multi-fluid system with isocurvature modes,
the curvature perturbations, ζa, in the constant density
gauges of each component, a, are conserved outside the
horizon even when the comoving curvature R is not [4].
More explicitly, in our context the conservation of ζm

does not necessarily imply conservation of eitherR or ηT .
To see this, we can take the derivative of Eq. (63) and
use the matter continuity equation (44) in an arbitrary
gauge

ζ′m = −
k

aH

vm
3

+
H ′

T

3

= −
k

aH

vm −B

3
+

Σ

3
. (68)

This equation does not relate the evolution of the curva-
ture perturbation in any other gauge to the evolution of
ζ′m precisely because H ′

L + H ′

T /3 drops out of the right
hand side. Thus, we see that conservation of the curva-
ture in constant density gauge as k/aH → 0 relies on the
condition that the shear is much less than the curvature
in amplitude |Σ| ≪ |ζm|.
In the previous section we showed that the lapse con-

dition generally implied the shear condition above the
horizon. Since the converse is not necessarily true, the
shear condition alone does not establish the separate
universe condition for geodesic observers. For example
when |Σ| ≪ |ζm| but |Am| ∼ |ζm|, the local FRW co-
ordinate system constructed from synchronous observers
would still violate the separate universe criteria. Using
the gauge transformation to synchronous gauge from con-
stant density gauge and the continuity equation (44) we
can obtain the evolution equation for the synchronous
gauge curvature:

−η′T = ζ′m −

[

aH

k
(vm −Bm)

]

′

= ζ′m −Am −H ′

∫

da

a

Am

H
, (69)

so that ηT can evolve significantly even if ζm does not
as k/aH → 0 if |Am| ∼ |ηT |. For the two conditions to
coincide, it must be the case that |Am| ≪ |ζm| which is
again a condition on the lapse rather than on the shear.
In fact, we can interpret and generalize the relationship

between curvature and shear by recalling that Eq. (23)
also provides an evolution equation for the curvature po-
tential in terms of the change in e-folds δN ′ and the shear
in an arbitrary gauge

H ′

L +
H ′

T

3
= δN ′ +

Σ

3
. (70)

Thus in a uniform e-folding gauge, where δN ′ = 0, the
curvature only evolves if there is shear in the expansion.
Uniform density gauge for any matter component with
a barotropic equation of state is a constant e-fold gauge
as k/aH → 0, if the density only evolves because of the
change in the spatial volume rather than the momentum
density of the matter. Observers on fixed spatial coordi-
nates will then see a local expansion that conserves the
local curvature. However, since the shear condition does
not guarantee they are geodesic observers, we do not con-
sider uniform e-folding gauges further.

IV. SEPARATE UNIVERSE SCALE

The comoving lapse condition, or the equivalence of
synchronous and comoving gauge, provides general con-
ditions for the conservation of curvature and the valid-
ity of the separate universe ansatz but does not directly
provide a physical scale above which they are satisfied.
To get further insight on this question, there are two
general approaches one can take. The first is to param-
eterize relationships between the effective stress-energy
and metric which we discuss in §IVA. This has the ben-
efit of generality, as it applies to cases where the matter
is non-minimally coupled and reduces to well-known re-
sults in general relativity when the effective stress-energy
is the actual matter stress-energy. The second, which
we discuss in §IVB, is to parameterize relationships be-
tween the actual stress-energy of matter and the metric,
i.e. the modifications to the Einstein equations applicable
to wide class of modified gravity models [25–31, 35].

A. Comoving Jeans Scale

The separate universe condition (56) expressed in co-
moving gauge is that the lapse perturbation must be
much smaller than the curvature potential. The lapse
itself is directly related to the effective stresses through
Eq. (59). We therefore need to make a connection be-
tween the curvature and the effective stress-energy to
close the system and determine the scale or domain of
validity of the separate universe ansatz. In this section
we express all perturbations in terms of the comoving
gauge quantities.
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Using the Gρ effective stress energy equation (41), we
have for k2 ≫ 3|K| and a2H2 ≫ |K|,

R ≈ 3

(

aH

k

)2(

R′ − δN ′ +
1

2

δρ

ρ

)

=

(

aH

k

)2(

Σ+
3

2

δρ

ρ

)

. (71)

We can eliminate δρ by defining the sound speed on co-
moving slicing as

c2s ≡
δp

δρ
, (72)

and relate it to R′ ≈ ξ by defining an analogous “Jeans”
speed that includes anisotropic stress

c2J ≡
δp− 2pπ/3

δρ
= −

(ρ+ p)R′

δρ
. (73)

Finally, we can eliminate Σ by taking the derivative of
Eq. (71) and using the Gp effective stress energy equation
(41) in the form

Σ′

3
≈

4πG

H2

(

δp+
δρ

3

)

−

(

2 +
H ′

H

)

Σ

3

−

[

H ′

H
−

1

3

(

k

aH

)2
]

R′ (74)

to obtain the equation of motion for R

1

a3

(

a3H ′
R′

c2J

)

′

≈ 3H ′R′

(

1−
c2s
c2J

)

−

(

k

aH

)2

H ′R,

(75)
where the only approximation is a negligible background
curvature: k2 ≫ 3|K| and a2H2 ≫ |K|. In particular
since c2s and c2J are relations for the effective stress, they
supply closure relations in terms of the metric—not the
true matter—and hence do not assume the validity of the
Einstein equations. From this equation, we can read off
the regimes where |R′/R| ≪ 1 is a solution.
For the case of negligible effective anisotropic stress,

c2J = c2s and we can formally integrate Eq. (75) to find

R′ = −
c2s

a3H ′

[

∫

da

a
a3
(

k

aH

)2

H ′R+ const.

]

. (76)

There are two generic cases of interest. If the integrand
is growing with a then the integral term will be domi-
nated by the last few e-folds and its contribution to R′

will scale as ∼ (csk/aH)2R. If the integrand receives its
contribution mainly from earlier epochs then the integral
will be constant or at most logarithmically growing with
a and play a role similar to the constant of integration
term.
In both cases, if |c2s/a

3H ′| decreases with a as a−p

with p > 0 then R will be nearly constant over the e-
fold time scale if |csk/aH | ≪ 1. This is the normal case

where the comoving curvature is conserved outside the
sound horizon. If p ≤ 0 then R′ can grow with a, al-
lowing R to change significantly outside the sound hori-
zon. This phenomenon occurs in inflation when the back-
ground is rapidly approaching de Sitter on a nearly flat
potential [36] and violates the separate universe condition
and hence the consistency relation between the power
spectrum and bispectrum [37]. Other cases of a growing
1/a3H ′ were given in Ref. [38] where there is excess ki-
netic energy in the field beyond that expected from the
local slope of the potential on the attractor.

In the case where anisotropic stress dominates, |c2J | ≫
|c2s|. In this situation the first term on the right hand side
of Eq. (76) contributes. If |c2J | ≪ 1 then the arguments
above for conservation of curvature above the sound hori-
zon apply with the generalization to the Jeans horizon.
That is, R is conserved for |cJk/aH | ≪ 1. If |c2J | ≫ 1
then the additional term can be larger and limit the scale
where R is conserved to the horizon, k/aH ≪ 1. In this
case the anisotropic stress dominates and makes the δN ′

and δρ/ρ terms in Eq. (71) negligible in comparison to
R′.

It is also important to note that although c2s and c2J
play the role of closure relations, similar to equations of
state for the matter in general relativity with a single
matter fluid, in general they need not have any corre-
spondence to the true matter equations of state, nor are
they specified by matter content and background alone.
For example even in Einstein gravity c2s is defined as the
ratio of the total pressure perturbation to the total en-
ergy density perturbation on comoving slicing, which is
defined by the total matter. In a multi-fluid case, this
does not correspond to the sound speeds of the individ-
ual components. In the presence of isocurvature modes,
cs defined in this way can be very large, c2s ≫ 1, because
the energy densities of the multiple components can can-
cel, and R can evolve by a significant amount arbitrarily
far outside the horizon.

Another interesting case is that of the cuscuton model,
where the kinetic term of the k-essence field in the
Lagrangian carries no energy density fluctuations [39].
Hence in the time slicing where the field is spatially uni-
form, or equivalently comoving slicing with respect to the
field, the finite pressure fluctuation and zero energy den-
sity fluctuation implies an infinite sound speed. However,
in the presence of other matter components, the sound
speed of the total matter remains finite if there is an ad-
ditional normal matter component and one can again de-
fine a comoving sound horizon above whichR is constant.
The comoving sound horizon therefore grows beyond the
horizon as the universe enters late-time acceleration due
to field domination.

In both the flat roll and cuscuton examples, we can
trace the origin of the violation of the separate universe
condition to the more direct relation (60) and the simple
and general criteria that the lapse perturbation should
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be smaller than the curvature potential Eq. (56). Since

8πG(ρ+ p) = −2HH ′ + 2
K

a2
(77)

the impact of stress fluctuations on the evolution of the
comoving curvature is enhanced if the expansion rapidly
approaches de Sitter at negligible background curvature.
In models where the Einstein equations no longer hold

between the true matter and the metric these definitions
still hold but c2s and c2J depend on the modification to
gravity and hence need not bear any relationship to the
equations of state of the matter components alone.

B. Parameterized Gravity

A second approach to developing a sense of scale for
the separate universe beyond general relativity is to pa-
rameterize modifications through relations between the
true matter stress energy and the metric variables. This
approach usually assumes that the true matter is mini-
mally coupled to the metric and so we restrict ourselves
to minimal coupling in this section alone.
Parameterizations of this type are most commonly

done in conformal Newtonian gauge, so we begin by re-
viewing its properties. In conformal Newtonian gauge we
take a shear-free slicing, Σ = 0, and isotropic threading:
specifically A ≡ Ψ, B = 0, HL ≡ Φ andHT = 0. The dif-
feomorphism parameters to get to conformal Newtonian
gauge from an arbitrary gauge are

T =
aH

k2
Σ, L = −

HT

k
. (78)

From this point on in this section all quantities are evalu-
ated in this conformal Newtonian gauge unless otherwise
specified.
In this gauge the anisotropic component of the Einstein

tensor is

Gπ = −

(

k

aH

)2

(Φ + Ψ). (79)

Consequently, the first parameterized modification to the
Einstein equation, motivated by scalar tensor theories
which change the ratio γ ≡ −Φ/Ψ 6= 1, even in the ab-
sence of matter anisotropic stress, is to allow this rela-
tionship to be general γ(a, k). Note that in the effec-
tive stress language, this means that there is an effective
anisotropic stress that is parameterized in terms of the
metric as

8πGpπ = −

(

k

aH

)2

(1 − γ)Ψ, (80)

which is often called the gravitational slip [35].
This generalization does not in and of itself restrict the

separate universe criteria but rather restricts the evolu-
tion of Φ and Ψ, given γ. To see this, we can write the

comoving curvature in Newtonian gauge variables, where
it takes the form

R = Φ+H2 (Ψ− Φ′)

(

HH ′ −
K

a2

)

−1

. (81)

In a spatially flat (K = 0) background, which we will
assume for the rest of this section, this becomes

R = Φ+
H

H ′
(Ψ − Φ′). (82)

If we now take the curvature to be conserved, R′ = 0, we
obtain a consistency relation between the metric poten-
tials [40]

Φ′′ −Ψ′ −
H ′′

H ′
Φ′ −

(

H ′

H
−

H ′′

H ′

)

Ψ = 0. (83)

Note that the compatibility of gravitational slip with the
separate universe criteria can be seen directly in comov-
ing gauge. Recall that an effective anisotropic stress
π/R ∼ (k/aH)2 did not violate the separate universe
criteria. For example in general relativity, in the radia-
tion dominated epoch γ 6= 1, due to neutrino anisotropic
stress and yet we can take inflationary curvature pre-
dictions at horizon exit as fixed outside the horizon.
Conversely it is not correct to say that the curvature
conservation allows gravitational slip but strictly forbids
anisotropic stress (cf. [21, 22]).
The second parameterization involves the relation-

ship between the true matter variables and the metric.
Consider again the case where the true matter is non-
relativistic, initially at rest with respect to the expansion,
and falls on geodesics of the metric. The matter then de-
fines a synchronous coordinate system and its curvature
can be written in Newtonian variables as

− ηT = Φ−
aH

k
vm. (84)

If the synchronous curvature is conserved, η′T = 0, then
Eq. (83) also holds by differentiating Eq. (84) and em-
ploying momentum conservation of the matter

(avm)′ =
k

H
Ψ. (85)

Of course, these are equivalent because conservation of
either ηT or R implies that synchronous and comoving
gauge coincide. In fact in the modified gravity literature
[27, 29, 31], the curvature on synchronous or matter co-
moving slicing is often denoted R or ζ when radiation is
negligible. With radiation, it is common to employ these
variables as the curvature on comoving slicing of the to-
tal matter [28, 30]. The way the we have defined R here
only coincides with these alternate definitions when the
separate universe condition applies.
Note further that in terms of the effective velocity,

v, the comoving gauge potentials can also be written in
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Newtonian variables as

R = Φ−
aH

k
v,

ξ = Ψ−
H

k
(av)′. (86)

When the separate universe condition holds, v ≈ vm and
so, using Eq. (85), ξ ≈ 0. Any relationship between
the Newtonian potential Ψ and the matter can be made
compatible with the comoving lapse condition (56) as
long as this holds.
Therefore we would like to see under what conditions

v ≈ vm. By definition

v ≡
k

aH ′
(Φ′ −Ψ); (87)

to relate this quantity to vm, let us define the
synchronous—or matter comoving gauge—density per-
turbation ∆m = δm|synch using the Newtonian gauge
density variables

∆m ≡ δm + 3
aH

k
vm. (88)

Combining these equations with the matter conservation
equations, we obtain

vm =
k

aH ′

(

1−
k2

3a2HH ′

)−1(

Φ′ −Ψ+
∆′

m

3

)

.(89)

In order for the separate universe condition to hold, we
must have vm ≈ v. Sufficient conditions for this to be
the case are

k2 ≪ a2HH ′, |Φ′ −Ψ| ≫
1

3
∆′

m, (90)

if the matter is separately conserved. The latter condi-
tion is typically implemented phenomenologically by re-
lating ∆m and Ψ through a “modified Poisson equation”
[29–31, 35]

k2Ψ = −4πGµa2ρm∆m, (91)

where µ(a, k) parametrizes the general relation. In this
case the second condition (90) is generally satisfied if

(

k

aH

)2(
3H2

8πGρmµ

)

max

(

∣

∣

∣
1−

µ′

µ

∣

∣

∣
,
Ψ′

Ψ

)

≪ 1 (92)

unless Φ′ ≈ Ψ. In this sense, conservation of curvature as
k → 0 requires only matter conservation and very mild
assumptions about how matter density sources metric
fluctuations.
Although the µ, γ parameterization is very general,

just like the sound speeds of the effective stress in the
previous section, the functions are in general determined
not just by the background but by the solutions of the
perturbation equations themselves. For example, in the
case where dark energy is an additional scalar field with

a sound horizon, µ(a, k) encodes the effect of its stress
energy on the metric.
There is also a hybrid approach that merges the ef-

fective stress and parametrized gravity approaches. In
this case the effective stress is formally separated into
a “dark energy” component “e” and the normal matter
components “a”

T µν
e ≡ T µν −

∑

a

T µν
a =

Gµν

8πG
−
∑

a

T µν
a . (93)

Though this is fully general for matter whose joint stress-
energy tensor is covariantly conserved, the conservation
equations ∇µT

µν
e = 0 implied by the Bianchi identities

require closure relations to complete. One approach to
these closure relations is to construct them to return µ
and γ for modified gravity [27, 28] or mimic those of an
actual physical component of dark energy [41].
Another approach is to parameterize the modifications

to gravity at the level of the lagrangian of an effective
field theory or ADM formalism for the scalar-tensor per-
turbations [26, 42–46]. In this language, conservation of
the curvature in unitary or uniform scalar field gauge as
k → 0 is enforced by the structure of the lagrangian—or
equivalently, the implied closure relations for the stress-
energy of the effective dark energy component. Unitary
gauge and comoving gauge differ in models with kinetic
braiding [47] but the gauges do coincide for adiabatic
fluctuations as k → 0. We defer a treatment of the scale
associated with these asymptotic behaviors to a future
work [48].
In all cases and parameterizations, the primary con-

sideration for the validity of the separate universe ansatz
is that lapse in comoving slicing is smaller than the cur-
vature or equivalently the effective matter comoves with
synchronous observers.

V. DISCUSSION

We have established purely geometric or metric based
criteria for the validity of the separate universe ansatz.
Based on identifying the local volume expansion and cur-
vature in a long-wavelength perturbation with the global
quantities for the background of a homogeneous sepa-
rate universe, we have shown that the criterion is that
the lapse is much smaller in amplitude than the cur-
vature potential on comoving slicing where the Einstein
tensor G0

i = 0. In this case, the Einstein tensor when in-
terpreted as an effective stress-energy tensor “comoves”
with the freely falling synchronous observers which es-
tablish the local expansion so that the local curvature is
conserved.
In general relativity, this condition reduces to the fa-

miliar notion that the total matter comoves with syn-
chronous observers if only gravitational forces act. The
lapse condition therefore is equivalent to the statement
that comoving gauge and synchronous gauge coincide.
This condition allows anisotropic local expansion of the
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volume or equivalently anisotropic effective stress that is
as large as their isotropic counterparts as long as they
are both smaller than the curvature potential. In this
case, the local universe behaves like a separate universe
for angle-averaged observables.

The comoving lapse condition provides a general pre-
scription for when the evolution of small-scale observ-
ables in the presence of a long-wavelength fluctuation can
be approximated as evolving in a separate FRW universe.
While the long-wavelength mode considered here must
still be in the linear regime, the small-scale observables
do not since this equivalence is holds nonlinearly. As in
the case of general relativity, by matching the expansion
history of the synchronous observers to the background,
we can provide simple and accurate predictions for these
observable effects through small-scale cosmological simu-
lations but now in any modified gravity theory that obeys
this condition.

This equivalence leads to consistency relations between
changes in cosmological parameters and observable re-
sponses to perturbations, for example through the angle-
averaged squeezed N -point correlation functions or the
bias of dark matter halos. It would be interesting to work
out the detailed statements of these relations for certain
gravitational theories. Violation of these consistency re-
lations indicate new physics beyond that encapsulated by
the cosmological background. We have also determined
the scale at which these violations could occur as a func-
tion of the metric perturbations themselves.

Even below the scale at which the separate universe
ansatz fails, observables that respond directly only to the
local expansion history and not the local curvature can
be accurately modeled by matching the former through
“fake” stress energy components designed to mimic the
effects of evolving curvature. These include the squeezed
N -point correlation functions and the halo bias in dy-
namical dark energy models as has been explicitly tested
in simulations [32, 33].
In a modified gravity theory with screening mecha-

nisms on small scales (see, e.g. [49]), the same principles
should hold so long as the inhomogeneity of the long-
wavelength mode does not enter directly through its spa-
tial derivatives. We leave these considerations to a future
work.
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