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Dynamical Dark Matter (DDM) is an alternative framework for dark-matter physics in which the
dark sector comprises a vast ensemble of particle species whose Standard-Model decay widths are
balanced against their cosmological abundances. Previous studies of this framework have focused
on a particular class of DDM ensembles — motivated primarily by Kaluza-Klein towers in theories
with extra dimensions — in which the density of dark states scales roughly as a polynomial of the
mass. In this paper, by contrast, we study the properties of a different class of DDM ensembles
in which the density of dark states grows exponentially with mass. Ensembles with this Hagedorn-
like property arise naturally as the “hadronic” resonances associated with the confining phase of a
strongly-coupled dark sector; they also arise naturally as the gauge-neutral bulk states of Type I
string theories. We study the dynamical properties of such ensembles, and demonstrate that an
appropriate DDM-like balancing between decay widths and abundances can emerge naturally —
even with an exponentially rising density of states. We also study the effective equations of state
for such ensembles, and investigate some of the model-independent observational constraints on
such ensembles that follow directly from these equations of state. In general, we find that such
constraints tend to introduce correlations between various properties of these DDM ensembles such
as their associated mass scales, lifetimes, and abundance distributions. For example, we find that
these constraints allow DDM ensembles with energy scales ranging from the GeV scale all the way
to the Planck scale, but that the total present-day cosmological abundance of the dark sector must
be spread across an increasing number of different states in the ensemble as these energy scales are
dialed from the Planck scale down to the GeV scale. Numerous other correlations and constraints
are also discussed.

I. INTRODUCTION

Dynamical Dark Matter (DDM) [1, 2] is an alterna-
tive framework for dark-matter physics in which dark-
matter stability is not required. Instead, the dark sector
within the DDM framework comprises a vast ensemble
of individual constituent particles exhibiting a variety of
different masses, lifetimes, and cosmological abundances.
The phenomenological viability of such a dark sector is
then ensured through a non-trivial balancing between
cosmological abundances and Standard-Model (SM) de-
cay widths across the ensemble. Indeed, under this bal-
ancing, those ensemble constituents with shorter lifetimes
must have smaller cosmological abundances, while states
with longer lifetimes may have larger cosmological abun-
dances. As a result, the dark sector in such a scenario is
dynamic: states in the dark sector are continually decay-
ing into visible-sector states throughout the evolution of
the universe — not just in previous epochs but even at
the present time and into the future. Quantities such as
the total energy density ΩCDM and the effective equation-
of-state parameter weff are thus time-dependent quanti-
ties, and it is only an accident that these quantities hap-
pen to take particular values at the present time. Many
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methods have been developed for testing this framework,
spanning from collider signatures [3, 4] to signatures in
direct-detection [5] and indirect-detection [6–8] experi-
ments.

Of course, many of the constraints on such DDM en-
sembles depend on model-specific details associated with
the ensemble in question, such as the specific particle
nature of the individual dark constituent fields and the
precise form of their decays into SM states. By contrast,
other phenomenological properties of (and constraints
on) these DDM ensembles depend simply on the man-
ner in which the lifetimes and abundances of ensemble
constituents scale with respect to each other, and thus
have a greater degree of model-independence. For exam-
ple, the effective equations of state for these ensembles
are governed in large part solely by these scaling rela-
tions. As a result, all phenomenological/observational
constraints on the equations of state of the dark sector
are essentially constraints on the types of balancing rela-
tions that DDM ensembles may exhibit. These are thus
model-independent constraints which can be placed on
such ensembles simply as a result of their inherent scal-
ing relations.

One general class of DDM ensembles consisting of large
numbers of dark particle species exhibiting suitable scal-
ing relations between lifetimes and cosmological abun-
dances are those whose constituents are the Kaluza-Klein
(KK) modes of a gauge-neutral bulk field in a theory
with extra spacetime dimensions in which cosmological
abundances are established through misalignment pro-
duction [1]. Indeed, explicit realizations of DDM ensem-
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bles of this type have been constructed [2, 9]. Although
many aspects of these ensembles depend on the details of
the particular fields under study, certain general proper-
ties are common across all such ensembles in this class.
One of these is that the cosmological abundance of each
component scales as a power of the lifetime of that com-
ponent. Likewise, the density of states within such en-
sembles is either insensitive to mass or scales roughly
as a polynomial function of mass across the ensemble.
For these reasons, most phenomenological studies of the
DDM framework have focused on ensembles exhibiting
polynomial scaling relationships.

Polynomial scaling relations also emerge in other
(purely four-dimensional) contexts as well. For example,
under certain circumstances, thermal freeze-out mecha-
nisms for abundance generation can also lead to appropri-
ate polynomial inverse scaling relations between lifetimes
and abundances [10]. In fact, such inverse scaling rela-
tions can even emerge statistically in contexts in which
the dynamics underlying the dark sector is essentially
random [11].

There are, however, other well-motivated theoretical
constructions which do not give rise to dark sectors with
polynomial scaling relations. One example is a dark
sector consisting of a set of fermions (dark “quarks”)
charged under a non-Abelian gauge group G which be-
comes confining below some critical temperature Tc. At
temperatures T . Tc, when the theory is in the confin-
ing phase, the physical degrees of freedom are composite
states (dark “hadrons”). Another well-motivated type of
DDM ensemble consists of the bulk (i.e., closed-string)
states in Type I string theories. Such bulk states are
typically neutral with respect to all brane gauge symme-
tries, and interact with those brane states only gravita-
tionally. As such, from the perspective of brane-localized
observers, these bulk states too are dark matter.

At first glance, these two latter types of ensembles may
seem to have little in common with each other. Indeed,
many aspects of the detailed phenomenologies associated
with these ensembles will be completely different. How-
ever, they nevertheless exhibit certain underlying model-
independent commonalities which are relevant for their
viability as DDM ensembles. Indeed, these features are
identical to those which characterize the “visible” sector
of ordinary hadrons, namely

• mass distributions which follow linear Regge trajec-
tories (i.e., α′M2

n ∼ n where α′ is a corresponding
Regge slope), and

• exponentially growing (“Hagedorn-like”) degenera-

cies of states (i.e., gn ∼ e
√
n ∼ e

√
α′Mn).

These features — especially the appearance of an expo-
nential scaling of the state degeneracies with mass — rep-
resent a behavior which is markedly different from that
exhibited by DDM ensembles with polynomial scaling re-
lations. For example, as a result of their exponentially
growing densities of states, such ensembles have a critical

temperature [12] beyond which their partition functions
diverge.

In this paper, we shall study the generic properties
of DDM ensembles which exhibit the two features item-
ized above. We shall calculate the effective equations of
state weff(t) for such ensembles, and subject these ensem-
bles to those immediate model-independent observational
constraints that follow directly from these equations of
state. We shall therefore be able to place zeroth-order
model-independent bounds on some of the quantities that
parametrize these features, such as the effective Regge
slope as well as the rate of exponential growth in the state
degeneracies. Our primary motivation is to understand
the phenomenology that might apply to strongly-coupled
dark sectors in their confined (“hadronic”) phase, imagin-
ing nothing more than that our DDM ensemble resembles
the visible hadronic sector in the two respects itemized
above. However, the results of such analyses might also
be useful in constraining the bulk sector of various classes
of string theories, since these bulk sectors also give rise
to ensembles of dark-matter states which share these two
grossest features. We shall therefore aim to keep our dis-
cussion as model-independent as possible, subject to our
assumption of the above two properties itemized above.
In this way, our analysis and the constraints we obtain
can serve as useful phenomenological guides in eventually
building realistic dark-matter models of this type.

This paper is organized as follows. In Sect. II, we begin
by reviewing the properties that we shall assume for the
mass spectrum and density of states of our DDM dark
“hadron” ensemble. We shall also discuss the physical
interpretations of these properties in terms of a variety
of underlying flux-tube models and string theories. This
section will also serve to establish our conventions and
notation. Then, in Sect. III, we discuss how the required
balancing between lifetimes and abundances naturally
arises for such DDM ensembles. In particular, we exam-
ine the mechanism through which primordial abundances
for these hadron resonances are generated, and we deter-
mine how these abundances scale across the ensemble as a
function of the hadron mass. We also discuss the scaling
behavior of the decay widths that characterize the decays
of the hadronic ensemble constituents to SM states, as
well as the assumptions that enter into such calculations.
In Sect. IV, we then derive expressions for the total abun-
dance Ωtot(t), the tower fraction η(t), and the effective
equation-of-state parameter weff(t) for these DDM en-
semble as functions of time. As discussed in Refs. [1, 2]
and reviewed in Sect. IV, these three functions character-
ize the time-evolution of DDM ensembles and allow us to
place a variety of general, model-independent constraints
on such ensembles. In Sect. V, we then present the results
of our analysis of the phenomenological viability of such
DDM ensembles, identifying those regions of the corre-
sponding parameter space which lead to the most promis-
ing ensembles and uncovering generic phenomenological
behaviors and correlations across this space. One of our
key findings is that these DDM ensembles can satisfy our
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constraints across a broad range of energy scales ranging
from the GeV scale all the way to the Planck scale, but
that the present-day cosmological abundance of the dark
sector must be distributed across an increasing number of
different states in the ensemble as the fundamental mass
scales associated with the ensemble are dialed from the
Planck scale down to the GeV scale. Finally, in Sect. VI,
we summarize our results and discuss possible avenues
for future work.

II. DDM ENSEMBLES OF DARK HADRONS:
FUNDAMENTAL ASSUMPTIONS

As discussed in the Introduction, in this paper we are
primarily concerned with the properties of DDM ensem-
bles whose constituents are the “hadronic” composite
states or resonances of a strongly-coupled dark sector.
As has been well known since the 1960’s, many of the at-
tributes of such an ensemble can be successfully modeled
by strings. These attributes include linear Regge trajec-
tories, linear confinement, an exponential rise in hadron-
state degeneracies, and s- and t-channel duality. It is
not a complete surprise that there is a deep connection
between hadronic spectroscopy and the spectra of string
theory. Hadronic resonances (particularly mesons) can
be viewed as configurations of dark “quarks” linked to-
gether by flux tubes. The spectrum of excitations in such
a theory therefore corresponds to the spectrum of fluctu-
ations of these flux tubes. However, it is well known that
these flux tubes can be modeled as non-critical strings.
Thus string theory can provide insight into the properties
of such collections of composite states.

In what follows, we shall use this analogy between
hadronic physics and string theory to motivate our
parametrization for the mass spectrum and for the den-
sity of states of our dark-“hadronic” DDM ensembles.
We shall also make recourse to modern string tech-
nology, when needed, for refinements of our basic pic-
ture. Throughout, however, we shall attempt to keep
our parametrizations as general as possible so that they
might apply to the widest possible set of DDM ensembles
sharing these properties. As discussed in the Introduc-
tion, this will allow our analysis and eventual constraints
to serve as useful guides in future attempts to build re-
alistic models exhibiting these features.

A. The mass spectrum: Regge trajectories

The first feature that we shall assume of our hadronic
dark sector is a mass spectrum consistent with the ex-
istence of Regge trajectories. The existence of such tra-
jectories follows directly from nothing more than our as-
sumption that our dark-sector bound states can be mod-
eled by dark quarks connected by the confining flux tube
associated with a strong, attractive, dark-sector inter-
action. Taking meson-like configurations as our guide

and temporarily assuming massless quarks, it can eas-
ily be shown that the mass Mn associated with a rel-
ativistic rotating flux tube scales with the correspond-
ing total angular momentum n as n ∼ α′M2

n, where α′

is the so-called Regge slope. In the visible sector, this
successfully describes the so-called leading Regge tra-
jectory of the observed mesons, with α′ ∼ 1 (GeV)

−2

appropriate for QCD. Moreover, there also exist sub-
leading (parallel) Regge trajectories of observed mesons
which have the same Regge slope but different intercepts:
n ∼ α′M2

n + α0.
Regge trajectories of this form, both leading and sub-

leading, also emerge in string theory. For example, the
perturbative states of a quantized open bosonic string
have masses M and spins J = 0, 1, ..., Jmax which sat-
isfy Jmax = α′M2 + 1 where α′ is now the Regge slope
associated with string theory [typically assumed to be
∼ (MPlanck)−2]. The states with J = Jmax thus sit along
the leading Regge trajectory, while those with smaller
values of J sit along the subleading Regge trajectories.
Similar results also hold for superstrings and heterotic
strings.

Given these observations, in this paper we shall assume
that the states of our dark “hadronic” DDM ensemble
have discrete positive masses Mn of the general form

M2
n = nM2

s +M2
0 . (2.1)

where n is an index labeling our states in order of in-
creasing mass. Here Ms ≡ 1/

√
α′ is the corresponding

“string scale”, while M0 represents the mass of the light-
est “hadronic” constituent in the DDM ensemble. In-
deed, since we do not expect to have any tachyonic states
in our DDM ensemble, we shall assume throughout this
paper that M2

0 ≥ 0. We shall avoid making any further
assumptions about the nature of the dark sector by treat-
ing both Ms and M0 as free parameters to be eventually
constrained by cosmological data.

Our choice of sign for M2
0 perhaps deserves further

comment. For the visible sector, most hadrons lie along
Regge trajectories with M2

0 ≥ 0. While there do ex-
ist Regge trajectories with M2

0 < 0, the lowest states in
such trajectories are of course absent. In string theory, by
contrast, all Regge trajectories have M2

0 < 0. However,
just as in the hadronic case, all tachyonic states which
might result for small n are ultimately removed from the
string spectrum by certain “projections” which are ulti-
mately required for the self-consistency of the string. In
other words, for Regge trajectories with M2

0 < 0, one
could equivalently relabel our remaining states by shift-
ing n→ n−1 and thereby obtain an “effective” M2

0 ≥ 0.
This is not normally done in string theory because in
string theory the index n is correlated with other physi-
cal quantities such as the spin of the state. However we
are making no such assumption for the states of our dark
sector, and are treating the index n as a mere labelling
parameter. Our assumption of a tachyon-free dark sector
then leads us to take M2

0 ≥ 0.
There is also another motivation for taking M2

0 ≥ 0.
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All of the above results which treat n as an angular mo-
mentum assume massless quarks at the endpoints of the
flux tube. However, while such an approximation holds
well for the lightest states in the visible sector, we do not
wish to make such an approximation for our unknown
dark sector. We shall therefore assume M2

0 ≥ 0 in what
follows, recognizing that this parameter may in princi-
ple also implicitly include the positive contributions from
dark quark masses as well.

B. Degeneracy of states: Exponential behavior

The second generic feature associated with hadronic
spectroscopy is the well-known exponential rise in the
degeneracies of hadrons as a function of mass: gn ∼ e

√
n.

This behavior was first predicted and observed for
hadrons (both mesons and baryons) in Ref. [12], and also
holds as a generic feature for both bosonic and fermionic
states in string theory [13].

In general, we can understand this behavior as follows.
If we model our hadrons as quarks connected by flux
tubes, the degeneracy gn of hadronic states at any mass
level n can be written as the product of two contribu-
tions: one factor κ representing a multiplicity of states
due to the degrees of freedom associated with the quarks
(such as the different possible configurations of quantities
like spin and flavor), and a second factor ĝn representing
the multiplicity of states due to the degrees of freedom
associated with the flux tube. We thus have

gn ≈ κ ĝn . (2.2)

While κ is a constant which is independent of the par-
ticular mass level n, the remaining degeneracy factor ĝn
counts the rapidly increasing number of ways in which a
state of given total energy n can be realized as a combi-
nation of the vibrational, rotational, and internal excita-
tions of the different harmonic oscillators which together
comprise a quantized string. It is this quantity which
grows exponentially with mass, and in string theory the
leading behavior of ĝn for large n generally takes the
form [13]

ĝn ≈ An−BeC
√
n as n→∞ , (2.3)

where A,B,C are all positive quantities which depend on
the particular type of string model under study. Indeed,
for any B and C, it turns out that the proper normaliza-
tion for ĝn in string theory is given by

A =
1√
2

(
C

4π

)2B−1

. (2.4)

Thus our asymptotic degeneracy of states is parametrized
by two independent quantities B and C, and we shall
assume that this continues to be true in our dark sector
as well.

The most salient property of the expression in Eq. (2.3)
is that it rises exponentially with

√
n, or equivalently

with the mass Mn of the corresponding state. This rep-
resents a crucial difference relative to the KK-inspired
DDM ensembles previously considered in Refs. [1, 2, 9]
(or even the purely four-dimensional DDM ensembles
considered in Refs. [10, 11]). For example, the KK states
corresponding to a single flat extra spacetime dimension
have degeneracies ĝn which are constant, or which be-
come so above the n = 0 level. The key difference here
is that the degrees of freedom associated with our flux
tube consist of not only KK excitations (if the flux tube
happens to be situated within a spacetime with a com-
pactified dimension), but also so-called oscillator exci-
tations representing the internal fluctuations of the flux
tube itself. It is these oscillator excitations which give
rise to the exponentially growing degeneracies and which
are a direct consequence of the non-zero spatial extent of
the flux tube. As such, they are intrinsically stringy and
would not arise in theories involving fundamental point
particles.

Unfortunately, the asymptotic form in Eq. (2.3) is not
sufficient for our purposes. Although we are interested in
the behavior of all states across the DDM ensemble, it is
the lighter states rather than the heavier states which are
most likely to have longer lifetimes and therefore greater
cosmological abundances. Thus, even though we want to
keep track of all of the states in our ensemble, we need to
be particularly sensitive to the degeneracies of the lighter
states, i.e., the states with smaller values of n. This poses
a problem because the asymptotic expression in Eq. (2.3)
is fairly accurate in the large-n limit but is not especially
accurate in the small-n limit.

Fortunately, for values of B and C which correspond
to self-consistent strings (to be discussed below), the
tools of modern string technology (specifically conformal
field theory and modular invariance) furnish us with a
more precise approximation for ĝn which remains accu-
rate even for very small values of n. This expression is
given by [14–17]

ĝn ≈ 2π

(
16π2n

C2
− 1

) 1
4−B

I|2B− 1
2 |

(
C

√
n− C2

16π2

)
,

(2.5)
where Iν(z) denotes the modified Bessel function of
the first kind of order ν. Use of the approximation
Iν(z) ≈ ez/

√
2πz for z � 1 then reproduces the result in

Eq. (2.3). However, the expression in Eq. (2.5) remains
valid to within only a few percent all the way down to
n = 1, assuming C ≤ 4π (so that the argument of the
Bessel function remains real even for n = 1).

In what follows, we therefore shall adopt the expression
in Eq. (2.5) as our general parametrization for the degen-
eracy of states ĝn for arbitrary values of B and C ≤ 4π
and for all n ≥ 1. For values of B and C corresponding
to bona-fide string theories, this expression yields results
for the state degeneracies which, though not necessarily
integral, are highly accurate for all values of n ≥ 1. An
explicit example of this will be provided below. More
generally, however, this expression is smooth and well-
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behaved for all values of the B and C parameters, and
in all cases exhibits the exponential Hagedorn-like be-
havior whose primary effects we seek to analyze in this
paper. For n = 0, by contrast, we shall define ĝ0 ≡ 1,
representing the unique ground state of our flux tube.

C. Physical interpretation of ensemble parameters

Thus far we have introduced four parameters to de-
scribe our dark “hadron” DDM ensemble: Ms, M0, B,
and C. The first two parameters have immediate inter-
pretations: M0 is the mass of the lightest state in the
DDM ensemble, while Ms parametrizes the splitting be-
tween the states. We would now like to develop analogous
physical interpretations of B and C.

Clearly B and C describe the dynamics of the flux
tube. However, in the case of the ordinary strong in-
teraction, many possible theories governing this dynam-
ics have been proposed. These range from early ex-
amples such as the scalar (Nambu) string [18], the Ra-
mond string [19], and the Neveu-Schwarz (NS) string [20]
to more modern examples such as Polyakov’s “rigid
string” [21], Green’s “Dirichlet string” [22], and the
Polchinski-Strominger “effective string” [23]. Many other
possibilities and variants have also been proposed.

All of these theories begin by imagining a one-
dimensional line of flux energy (i.e., a string) which
sweeps out a two-dimensional flux-sheet (or worldsheet)
as it sweeps through an external D-dimensional space-
time. Here D is the number of spacetime dimensions
which are effectively uncompactified with respect to the
fundamental energy scale Ms associated with the flux
tube. As such, as it propagates, our string/flux tube
is free to fluctuate into any of the D⊥ ≡ D − 2 spatial
dimensions transverse to the string. We can describe
such fluctuations by specifying D⊥ embedding functions
Xi(σ1, σ2), i = 1, .., D⊥, which are nothing but the trans-
verse spacetime locations of any point on the flux-tube
worldsheet with coordinates (σ1, σ2). As such, these em-
bedding functions may be regarded as fields on the two-
dimensional flux-tube worldsheet. The dynamics of this
system is then governed by the Polyakov action

S ∼ M2
s

∫
d2σ

D⊥∑
i=1

(
∂

∂σα
Xi

)(
∂

∂σα
Xi

)
. (2.6)

Minimizing this action is classically equivalent to mini-
mizing the area of the flux-tube worldsheet.

By itself, the expression in Eq. (2.6) describes the ac-
tion of the so-called D⊥-dimensional “scalar” string. In
some sense this theory provides the simplest possible de-
scription of a strongly-interacting flux tube, with the
term in Eq. (2.6) representing the bare minimum that
must always be present for any flux-tube description.
The various possible refinements of this basic theory then
differ in the extra terms that might be added to this ac-
tion. Some of these theories mentioned above introduce

extra terms which correspond to additional, purely inter-
nal degrees of freedom [e.g., additional fields analogous
to Xi(σ1, σ2) but without interpretations as the coor-
dinates of uncompactified spacetime dimensions] on the
flux-tube worldsheet. By contrast, other theories intro-
duce extra interaction terms for the Xi-fields which alter
their short-distance behavior.

The action in Eq. (2.6) can be interpreted as that of
a two-dimensional (2D) field theory (where the two di-
mensions are those of the flux-tube worldsheet), and we
immediately see that it is endowed with a 2D confor-
mal symmetry. There are good reasons to expect that
the long-distance limit of any self-consistent flux-tube
theory should exhibit such a symmetry, since we ex-
pect the physics of this system to be invariant under
reparametrizations of our flux-tube worldsheet coordi-
nates. As a result, those flux-tube theories that augment
the scalar string by introducing extra purely internal de-
grees of freedom on the flux-tube worldsheet must not
break this conformal symmetry; this requirement con-
strains what kinds of terms can be added. By contrast,
the theories that introduce extra interaction terms for the
Xi fields do break this conformal symmetry, but they do
so only in the short-distance limit. The 2D conformal
symmetry of the long-distance limit is then preserved as
an effective symmetry.

In any 2D conformal field theory, either exact or effec-
tive, the total number of degrees of freedom is encoded
within the so-called central charge c. Each Xi field con-
tributes a central charge c = 1, and thus the minimal
scalar-string action in Eq. (2.6) describes a theory with
central charge c = D⊥. However the introduction of ad-
ditional degrees of freedom on the flux-tube worldsheet
will necessarily increase the central charge, producing a
theory with c > D⊥.

Given a particular action for our flux-tube dynamics,
it is straightforward to quantize the fields in question.
In this way, we can determine the corresponding spec-
trum of the theory at all mass levels. These calculations
are standard in string theory (see, e.g., Ref. [13]), and
ultimately one obtains [15–17] asymptotic state degen-
eracies ĝn of the forms given in Eq. (2.3) or Eq. (2.5).
Remarkably, one finds a relatively straightforward con-
nection between the parameters (B,C) appearing in our
state degeneracies and the parameters (D⊥, c) of our un-
derlying flux-tube theory [14–17]:{

B = 1
4 (3 +D⊥)

C = π
√

2c/3 .
(2.7)

Indeed, for any value of B and C, we may regard the
total central charge c as having two contributions: one
contribution cfluc = D⊥ associated with the degrees of
freedom associated with the transverse uncompactified
spacetime fluctuations of the flux tube, and a remaining
contribution

cint ≡ c−D⊥ ≡
3C2

2π2
− 4B + 3 (2.8)
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associated with those additional, purely internal degrees
of freedom which might also exist within the full flux-tube
theory (including those associated with any compactified
spacetime dimensions which may also exist).

At first glance, it might seem that our dark sector must
have D⊥ = 2, just as does our visible sector. This would
certainly be true if our dark-sector flux tube were to ex-
perience the same spacetime geometry as does the visible
sector. However, we emphasize that in a string-theoretic
or “braneworld” context, the dark sector could corre-
spond to physics in the “bulk” — i.e., physics perpen-
dicular to the brane on which the visible-sector resides.
The degrees of freedom in the bulk would then be able to
interact with those on the brane at most gravitationally,
and would thus constitute dark matter by construction.
However, the geometric properties of the bulk will gen-
erally differ from those of the brane — the bulk might
contain not only extra spacetime dimensions which are
effectively large (i.e., uncompactified) with respect to the
fundamental string scale, but also extra spacetime dimen-
sions which are small (i.e., compactified). The bulk may
also be populated by additional fields with no spacetime
interpretations at all. It is for this reason that we make
no assumptions about the values of c or D⊥ associated
with the dark sector.

Once our flux-tube theory is specified and the corre-
sponding values ofB and C determined, we may calculate
the corresponding effective static-quark potential V (R)
between two quarks a distance R apart. We find [14]

V (R) =

(
Ms

2π

)√
(MsR)2 − (C/2)2

≈ M2
sR

2π
− C2

16π

1

R
+ ... for R�M−1

s . (2.9)

The first term in the final expression indicates a linear
confinement potential, as expected; this is nothing but
the classical energy in the flux tube. By contrast, the
second term resembles a Coulomb term but is actually
an attractive universal quantum correction (or Casimir
energy) which arises due to the transverse zero-point vi-
brations of the flux tube.

For visible-sector hadrons, it is natural to take D =
4. As a result, the D⊥ = 2 scalar string with cint = 0
(corresponding to B = 5/4 and C = 2π/

√
3 ≈ 3.63)

is the “minimal” string that we expect to underlie all
descriptions of the actual visible-sector QCD flux tube.
In fact, it has been shown in Ref. [14] that this minimal
D⊥ = 2 scalar string with κ = 36 provides an excellent
fit to hadronic data, both for low energies (which are
sensitive to the Casimir energy within the confinement
potential) as well as high energies (which are governed
by the asymptotic degeneracy of hadronic states and the
corresponding Hagedorn temperature). As discussed in
Ref. [14], this success — coupled with the appearance of
the same quantity C in both places — provides a highly
non-trivial test of the classical conformal invariance of
the QCD string.

In this paper, we shall imagine that our DDM ensemble
of dark-sector hadrons mimics that of the visible-sector
hadrons to the extent that it corresponds to a set of
masses Mn and state degeneracies ĝn parametrized by
the functional forms given in Eqs. (2.1) and (2.5). How-
ever, we shall not insist on an actual string interpretation
governing our dark-sector confinement dynamics, and as
discussed above we shall therefore regard B and C as free
parameters which may be adjusted at will (subject to cer-
tain constraints to be discussed below). Nevertheless it
is only when B and C correspond to appropriate values
of D⊥ and c via the relations in Eq. (2.7) that we may
describe our resulting spectrum as corresponding to that
of a classically self-consistent string moving in a specific
geometry. Moreover, motivated by our experience with
visible-sector hadrons, we shall continue to regard the
special scalar-string case with B = 5/4 and C = 2π/

√
3

as our “minimal” theory, corresponding to the action in
Eq. (2.6) with D⊥ = 2. Adjusting the value of B above or
below 5/4 can then be interpreted as changing the effec-
tive number of uncompactified spacetime dimensions felt
by our dark-sector flux tube (i.e., the number of uncom-
pactified spacetime dimensions into which it can experi-
ence fluctuations), while increasing the value of C beyond

2π/
√

3 corresponds to introducing additional purely in-
ternal degrees of freedom with central charge cint into our
flux-tube theory.

Note, in this regard, that the degrees of freedom associ-
ated with fluctuations into extra compactified spacetime
dimensions count towards cint rather than D⊥. Thus, in
terms of its effects on the dark sector, the act of com-
pactifying a spacetime dimension to a radius below the
associated string scale preserves the central charge c (and
thus the coefficient C) and merely shifts the associated
degrees of freedom from D⊥ to cint. The resulting change
in the asymptotic state degeneracies ĝn due to the change
in B then reflects the appearance of new Kaluza-Klein
resonances in the total flux-tube spectrum.

D. Constraints on parameters

Even though Ms, M0, B, and C are henceforth to
be viewed as unrestricted quantities parametrizing our
hadron-like DDM ensemble, they are nevertheless sub-
ject to certain self-consistency constraints.

First, we note that while the asymptotic form for ĝn in
Eq. (2.5) is remarkably accurate within those regions of
(B,C) parameter space for which actual string realiza-
tions exist, there are other regions of (B,C) parameter
space within which this approximation provides unphysi-
cal results. For example, given that the expression for ĝn
in Eq. (2.5) multiplies a growing Bessel function against
a falling monomial, for any given value of B it is in prin-
ciple possible for there to exist a critical value of C below
which ĝn is not always monotonically increasing for all
n ≥ 0. Such a situation is clearly unphysical, imply-
ing that the number of accessible flux-tube states fails to
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grow with the total energy in the flux tube. We therefore
demand that

ĝn+1 > ĝn for all n ≥ 0 . (2.10)

Given that we have taken ĝ0 = 1, it turns out throughout
the parameter range of interest that this requirement is
tantamount to demanding

ĝ1 > 1 . (2.11)

If we further wish to demand that our ensemble of dark
“hadrons” admit a string-theoretic description, then cer-
tain additional consistency conditions on the parameters
B and C must be satisfied as well. For example, since
D⊥ ∈ ZZ > 0 in any self-consistent string construction,
we must have

B ∈ ZZ/4 > 3/4 . (2.12)

Likewise, as discussed above, any self-consistent string
theory will also have c ≥ D⊥ (or cint ≥ 0), which in turn
implies

C2 ≥ 2π2

3
(4B − 3) . (2.13)

There are, of course, further string-derived constraints
that might be imposed. For example, the allowed set of
worldsheet central charges c that can be realized in such
non-critical string theories depends crucially on the types
of string models under study and the types of conformal
field theories used in their constructions. However, the
constraints in Eqs. (2.12) and (2.13) can be taken as a
minimal model-independent set of constraints that must
be satisfied as a prerequisite to any possible string inter-
pretation.

In Fig. 1, we indicate the region of (B,C) param-
eter space which is consistent with the constraints in
Eqs. (2.11), (2.12), and (2.13). We emphasize that the
first of these constraints must always be satisfied as a
matter of internal self-consistency. By contrast, as dis-
cussed above, the latter two conditions need to be sat-
isfied only if one imposes the additional stipulation that
our ensemble of dark “hadrons” admit a string-theory
description. We observe in this connection that the first
constraint is always weaker than the remaining string-
motivated constraints. In other words, a string-based de-
scription with B ∈ ZZ/4 ≥ 1 is always guaranteed to have
monotonically growing degeneracies ĝn. In Fig. 1 we also
highlight the point (B,C) = (5/4, 2π/

√
3) corresponding

to the “minimal” D⊥ = 2 scalar string. While this the-
ory need not necessarily provide the best-fit description
for our dark hadrons (as it does for the visible hadrons),
its minimality nevertheless provides a useful benchmark
for exploring the parameter space of our DDM model.
Finally, we observe from Fig. 1 that our combined con-
straints imply that

C >∼ 1.693 . (2.14)

FIG. 1: The region of (B,C) parameter space of interest for a
DDM ensemble of dark “hadrons.” The red shaded region is
excluded by the theoretical self-consistency condition ĝ1 ≥ 1.
By contrast, the blue shaded regions are excluded by the con-
straint B > 3/4 as well as by the constraint in Eq. (2.13),
and thus correspond to regions in which it would not be pos-
sible to interpret the ensemble constituents as the states of
a quantized string. Note that locations for which B 6∈ ZZ/4
would also suffer from this difficulty. Within the (unshaded)
string-allowed region, we have indicated contours of D⊥, c,
and cint, as defined in Eqs. (2.7) and (2.8). The black dot
indicates the point in parameter space corresponding to the
minimal D⊥ = 2 scalar string with cint = 0. As demonstrated
in Ref. [14], this model provides the best fit to the visible
hadron spectrum.

Indeed, this is the allowed range in C for which ĝ1 > 1
when B = 3/4.

As an illustration of the results of this section, let us
focus further on this “minimal” D⊥ = 2 scalar string.
As noted above, the action for this string is given in
Eq. (2.6). Quantizing this theory then gives rise to
a discrete spectrum of states whose exact degeneracies
are1 ĝn≥0 = {1, 2, 5, 10, 20, 36, 65, 110, 185, ...}. Indeed it
is only because of the existence of a quantized string for-
mulation that we are even able to calculate the degenera-
cies of the corresponding ensemble from first principles.
However, as we have asserted, these degeneracies are ex-
tremely well approximated by the expression in Eq. (2.5)

with (B,C) = (5/4, 2π/
√

3). This is shown in Fig. 2,

1 These degeneracies ĝn may be extracted as the coefficients of
qn in a small-q power-series expansion of the infinite product∏

n(1 − qn)−2. With only minor modifications and a proper
physical definition for q, this infinite product turns out to be the
partition function of the D⊥ = 2 scalar string theory in Eq. (2.6).
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FIG. 2: State degeneracies ĝn for the D⊥ = 2 scalar-string
flux-tube model of Eq. (2.6) (red circles), with the asymp-
totic functional form in Eq. (2.5) superimposed (blue line). It
is clear that our asymptotic functional form succeeds in mod-
elling the state degeneracies extremely accurately all the way
down to the ground state, as we shall require for our analysis.

where we plot both the discrete exact degeneracies ĝn
and the approximate functional form in Eq. (2.5). As
evident from Fig. 2, our functional form matches these
discrete values of ĝn extremely well for all values of n ≥ 0
— even though the degeneracies ĝn are necessarily inte-
gers and even though our functional form was originally
designed to be accurate only in the asymptotic n → ∞
limit! Indeed, as claimed above, this functional form is
accurate to within two percent over the entire range of
n. This demonstrates the power of the functional form
we have adopted, as well as the utility of an underlying
string formulation for our flux tube.

III. LIFETIMES AND COSMOLOGICAL
ABUNDANCES FOR HADRONIC DDM

ENSEMBLES

In the previous section, we discussed the spectra of our
dark “hadronic” DDM ensembles. Our next step, then,
is to consider the lifetimes and cosmological abundances
of the individual states within these ensembles.

A. Cosmological abundances

As we have seen, the degeneracy of states gn for our
ensemble of dark “hadrons” grows exponentially with the
mass of the state, with asymptotic behavior gn ∼ e

√
n ∼

eMn/Ms . This exponential rise in the state degeneracies
places severe constraints on the possible, physically con-
sistent cosmological production mechanisms by which the
corresponding abundances Ωn might be established. In-
deed, unless the corresponding abundances Ωn fall suffi-
ciently rapidly with n, our ensemble is likely to encounter
severe phenomenological difficulties.

Fortunately, our interpretation of the individual com-
ponents of such an ensemble as dark hadrons suggests
a natural mechanism through which the corresponding
abundances Ωn are generated with an exponential sup-
pression factor capable of overcoming this exponential
rise in gn. As we have discussed, we have been imag-
ining that these dark “hadrons” emerge as the result of
a dark-sector confining phase transition triggered by the
strong interactions of some dark-sector gauge group G.
This phase transition occurs when the temperature T in
the dark sector drops below the critical temperature Tc
associated with this phase transition. This event marks
the time tc at which the primordial abundances of our
individual hadrons are established. Moreover, it is rea-
sonable to assume that residual G interactions establish
thermal equilibrium among these hadrons at T ∼ Tc.
Thus, the primordial abundances Ωn of our hadrons can
be assumed to follow a Boltzmann distribution at t = tc:

Ωn(tc) ≡
ρn(tc)

ρcrit(tc)
=

1

3M̃2
PH(tc)2

∫
d3p

(2π)3
Ep e

−Ep/Tc

(3.1)

where Ep ≡
√
p · p +M2

n and ρcrit(t) ≡ 3M̃2
PH(t)2

where M̃P ≡ MP /
√

8π = 1/
√

8πGN is the reduced
Planck mass and H(t) the Hubble parameter. Indeed,
we may equivalently regard these abundances as emerg-
ing from an infinitely rapid succession of thermal freeze-
outs. Evaluating Eq. (3.1) explicitly, we find

Ωn(tc) = X

{
(MnTc)

2K2(Mn/Tc)

+ 1
2 M

3
nTc

[
K1(Mn/Tc) +K3(Mn/Tc)

]}
(3.2)

where Kν(z) are modified Bessel functions of the sec-

ond kind and where X ≡ [6π2M̃2
PH(tc)

2]−1 is a common
overall multiplicative factor.

In general, a given state with massM produced at tem-
perature Tc will be non-relativistic (behaving like massive

matter) if Tc <∼M and relativistic (behaving like radia-
tion) otherwise. In such limiting cases, the abundances
in Eqs. (3.1) and (3.2) take the simplified forms

Ωn(tc) ≈

{√
π/2XMn(MnTc)

3/2 e−Mn/Tc non-rel

6XT 4
c rel .

(3.3)
At first glance, it may seem that any value for Tc might

be phenomenologically permissible. However, this pro-
duction mechanism can only be self-consistent if it in-
jects a finite total energy density into our system. In
other words, as a bare minimum, we must require that

Ωtot(tc) ≡
∞∑
n=0

gnΩn(tc) < ∞ . (3.4)

However, this condition is sensitive to the behavior of the
abundances Ωn(tc) for extremely large n, corresponding
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to states which are non-relativistic. For such states, we
see from Eq. (3.3) that Ωn(tc) ∼ e−Mn/Tc . With gn ∼
n−BeC

√
n as n → ∞, we find using Eqs. (2.1) and (3.1)

that Eq. (3.4) can only hold if

Tc
Ms

≤ 1

C
. (3.5)

This then becomes a hard bound on the allowed values
of Tc, one which ensures that the Boltzmann exponen-
tial suppression factor in Eq. (3.1) ultimately overcomes
the exponential rise in the degeneracy of states gn. In-
deed, Eq. (3.5) reflects nothing more than the statement
that Tc ≤ TH , where TH ≡ Ms/C is the Hagedorn tem-
perature of our dark ensemble. For the visible hadronic
sector, one often assumes that Tc and TH are related to
each other parametrically, with Tc either directly identi-
fied as TH or positioned not too far below TH . We shall
implicitly make the same assumption for the dynamics of
our dark sector as well.

The next question is to determine which of our en-
semble components are produced relativistically or non-
relativistically at T = Tc. To do this, we shall hence-
forth assume that Tc,Ms,M0 > TMRE where tMRE and
TMRE are the time and temperature associated with
matter-radiation equality. This assumption, which par-
allels what occurs for the hadrons of the visible sector,
ensures that our abundances Ωn(t) are established dur-
ing the radiation-dominated era prior to matter-radiation
equality and that all ensemble constituents have be-
come effectively non-relativistic by tMRE. Note that
the assumption that Tc > TMRE follows from our ex-
pectation that our dark degrees of freedom prior to tc
(i.e., prior to “hadronization” in the dark sector) are
likely to be relativistic, thereby reinforcing the radiation-
dominated nature of the era prior to TMRE and mak-
ing matter-radiation equality impossible to achieve us-
ing only visible-sector matter, as would have been re-
quired had we taken Tc < TMRE. Similarly, the asser-
tion that Ms > Tc follows directly from our assumption
that Tc > TMRE, given the constraints in Eqs. (2.14) and
(3.5). Finally, although it is not impossible to imagine
self-consistent scenarios in which M0 < TMRE, taking
M0 > TMRE also helps to preserve tMRE at its standard
cosmological value. We shall nevertheless make no asser-
tion regarding the relative sizes of M0 and Tc.

The above assumptions enable us to determine which
of the components of our ensemble are relativistic or non-
relativistic at T = Tc. To do this, we simply compare
Tc against the ensemble masses Mn given in Eq. (2.1).
Given the constraint in Eq. (3.5), it is straightforward to
demonstrate that

Tc ≤
Ms

C
≤ M1

C
. (3.6)

Since C > 1 [as follows from Eq. (2.14)], we conclude
that all of our ensemble components with n ≥ 1 are nec-
essarily non-relativistic at t = tc. By contrast, the n = 0

component will be relativistic at t = tc if Tc >∼M0, and
non-relativistic otherwise.

Eq. (3.1) describes the abundances of our dark-sector
hadrons at the time tc when these hadrons come into ex-
istence as the result of a dark-sector confining transition.
However, once established, these abundances then evolve
non-trivially with time as a result of two effects. The
first of these is Hubble expansion; the second is particle
decay. We shall treat each of these effects separately.

In order to evaluate the effect of Hubble expansion on
the abundances Ωn(t), we shall assume a standard cosmo-
logical history in which the universe remains radiation-
dominated (RD) from very early times up to the time
tMRE of matter-radiation equality. We shall also approx-
imate the universe as matter-dominated (MD) through-
out the subsequent epoch. In general, we recall that the
abundance Ω(t) of non-relativistic matter scales as t1/2

during an RD epoch but remains constant in an MD
epoch; by contrast, the abundance of relativistic mat-
ter remains constant during an RD epoch but scales as
t−2/3 during an MD epoch. Likewise, we recall that
the temperature T of the universe scales as T ∼ t−1/2

during RD but T ∼ t−2/3 during MD. Thus any en-
semble component of mass M which is “born” relativis-
tic at T = Tc � M will eventually transition to non-
relativistic behavior as the temperature ultimately drops
below T ∼M .

Collecting these observations, we then find that the net
effect of Hubble expansion is to rescale the original abun-
dance of given state of mass M by a factor which depends
on whether that state was non-relativistic or relativistic
at the time tc of its production:

Ω(t) = Ω(tc)×

{√
tMRE/tc non-rel√
tMRE/tM rel

(3.7)

where tM denotes the time at which T = M . Note that
this result is valid for any time t ≥ tMRE. Since it follows
from our assumptions that tc, tM < tMRE, we see that the
abundances of all of our ensemble states are necessarily
enhanced before reaching the current MD era. However,
as evident from Eq. (3.7), these abundances are not en-
hanced equally: the abundance of a non-relativistic com-
ponent is enhanced more greatly than that of any rela-
tivistic component of mass M a factor

√
tM/tc.

We have already seen that the states with n ≥ 1 are
all non-relativistic, while the n = 0 ground state is either
relativistic or non-relativistic depending on the value of
M0/Tc. Thus, putting all of the pieces together, we find
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for all n ≥ 1 that

Ωn(t) =

√
π

2
XMn(MnTc)

3/2e−Mn/Tc

√
tMRE

tc

=

√
π

2
X

(
gc

gMRE

)1/4
(MnTc)

5/2

TMRE
e−Mn/Tc

=

√
π

72

1

g
3/4
c g

1/4
MRE

M
5/2
n

T
3/2
c TMRE

e−Mn/Tc .

(3.8)

Note that in passing to the second line we have exploited
the standard time/temperature relationship suitable for
an RD epoch, specifically2

t =

√
π

32
g∗(T )−1/2 MP

T 2
, (3.9)

where g∗(T ) tallies the number of effectively relativistic
degrees of freedom driving the Hubble expansion at any
temperature T , with gα ≡ g∗(Tα). Likewise, in passing
to the final line of Eq. (3.8) we have recognized that H =
1/(2t) for an RD epoch, from which it follows that X =
1/(6gcT

4
c ).

For n = 0, however, the corresponding cosmological
abundance is given by

Ω0(t) =



√
π

72

1

g
3/4
c g

1/4
MRE

M
5/2
0

T
3/2
c TMRE

e−M0/Tc Tc <∼M0

1

gc

(
gM0

gMRE

)1/4(
M0

TMRE

)
Tc >∼M0 .

(3.10)
As expected, the cosmological abundances in Eqs. (3.8)

and (3.10) depend non-trivially on the three mass scales
which parametrize our dark-hadron mass spectrum,
namely M0, Tc, and Ms (the latter appearing implicitly
through Mn). They also depend on the fixed mass scale
TMRE. However, if we disregard the numerical g-factors
which appear in these results and which only serve to
parametrize the external time/temperature relationship,
we see that the ratios between these abundances depend
only on the ratios between our input mass scales. In par-
ticular, such abundance ratios are no longer anchored to
a fixed external mass scale such as TMRE. To make this
point explicit, let us define the dimensionless quantities

r ≡ M0

Ms
and s ≡ Tc

Ms
(3.11)

and imagine that g∗(T )1/4 does not change significantly
between Tc and M0. (Note, indeed, that g1/4 varies much

2 Note that the factor of
√
π/32 in Eq. (3.9) is consistent with our

adoption of Boltzmann statistics in Eq. (3.1); for Bose-Einstein

statistics this would instead become
√

45/16π3.

more slowly than g.) We then find from Eqs. (3.8) and
(3.10) that

Ωn≥1(t)

Ω0(t)
=


(n+ r2)5/4

r5/2
e−(
√
n+r2−r)/s s <∼ r

√
π

72

(n+ r2)5/4

r s3/2
e−
√
n+r2/s s >∼ r .

(3.12)
Thus, up to an overall rescaling factor Ω0, we see that all
of our abundances Ωn depend purely on the dimension-
less ratios r and s. It then follows that the cosmological
abundance of each state in our dark-hadron ensemble is
determined once Ω0 is anchored to a particular numeri-
cal value and specific values of r and s are chosen. This
observation will be important in what follows.

B. Lifetimes and decays

As indicated above, our derivation of the dark-sector
cosmological abundances Ωn(t) has thus far disregarded
the effects of particle decays. In other words, we have
implicitly assumed that each ensemble component is ab-
solutely stable once produced at Tc. As our final step, we
shall therefore now incorporate the effects of such decays
into our analysis. In doing so, we shall make several sim-
plifying assumptions. First, we shall assume that the net
injection of energy density in the form of radiation from
these decays has a negligible effect on the total radiation-
energy density of the universe. Hence, this effect decou-
ples from the effect of Hubble expansion. Second, we
shall further assume that the contribution to the total
decay width Γn of each ensemble constituent from intra-
ensemble decays is negligible. In other words, we shall
assume that Γn is dominated by decays to visible-sector
final states which do not include lighter ensemble con-
stituents. We shall discuss the consequences of relaxing
this assumption in Sect. VI. Third, we shall assume that
all states at a given mass level n share a common decay
width Γn, and that this width scales with n across our
dark-hadron ensemble according to

Γn = Γ0

(
Mn

M0

)ξ
(3.13)

where Mn are the dark-hadron masses in Eq. (2.1) and
where Γ0 (or, equivalently, the corresponding lifetime τ0)
and the scaling exponent ξ > 0 are taken to be additional
free parameters of our model. Thus each state in our
dark-sector ensemble has a lifetime τn ≡ 1/Γn given by

τn = τ0

( n
r2

+ 1
)−ξ/2

. (3.14)

Finally, for simplicity, we shall imagine that all states
with lifetimes τn indeed actually decay at t = τn.

Under these assumptions, the abundance Ωn(t) of any
ensemble constituent at any time t ≥ tc is given by the
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expressions quoted above, but now multiplied by an ad-
ditional decay factor

e−(t−tc)/τn ≈ e−(
√
n+r2/r)ξt/τ0 (3.15)

where we have approximated t� tc. For s <∼ r, we thus
have

Ωn≥1(t) = Ω
(NR)
0 (t)

(n+ r2)5/4

r5/2
E(NR)
n (t) (3.16)

where

E(NR)
n (t) ≡ e−(

√
n+r2−r)/s−[(

√
n+r2/r)ξ−1]t/τ0 (3.17)

and where

Ω
(NR)
0 (t) =

√
π

72

1

g
3/4
c g

1/4
MRE

(r
s

)3/2
(

M0

TMRE

)
e−r/s−t/τ0 .

(3.18)

By contrast, for s >∼ r, we have

Ωn≥1(t) =

√
π

72
Ω

(R)
0 (t)

(n+ r2)5/4

r s3/2
E(R)
n (t) (3.19)

where

E(R)
n (t) ≡ e−

√
n+r2/s−[(

√
n+r2/r)ξ−1]t/τ0 (3.20)

and where

Ω
(R)
0 (t) =

1

gc

(
gM0

gMRE

)1/4(
M0

TMRE

)
e−t/τ0 . (3.21)

IV. COSMOLOGICAL CONSTRAINTS ON THE
DARK-HADRON ENSEMBLE

Having determined the abundances and lifetimes of
each of the individual components of our dark-hadron
DDM ensemble, we now proceed to study the overall
properties of our ensemble and its behavior as a func-
tion of time. However, as we shall see, many of the phe-
nomenological properties and constraints that apply to
such an ensemble do not rest upon the properties of the
individual ensemble components per se, but rather upon
various aggregate quantities that collectively describe the
ensemble as a whole. Accordingly, in this section we shall
begin by describing three aggregate quantities which ul-
timately play the most important roles in characterizing
and constraining such dark-hadron DDM ensembles. We
shall then discuss of some of the most immediate cosmo-
logical constraints that can be placed upon these quan-
tities.

A. Total abundance, tower fraction, and effective
equation of state

Perhaps not surprisingly, the first aggregate property
of a given dark-hadron DDM ensemble that shall concern

us is its total abundance

Ωtot(t) ≡
∞∑
n=0

gn Ωn(t) = κ

∞∑
n=0

ĝnΩn(t) . (4.1)

Given our results in Eqs. (3.16) and (3.19), this total
abundance takes the form

Ωtot(t) =
κΩ

(NR)
0 (t)

[
1 +

∞∑
n=1

ĝn
(n+ r2)5/4

r5/2
E(NR)
n (t)

]
s <∼ r

κΩ
(R)
0 (t)

[
1 +

√
π

72

∞∑
n=1

ĝn
(n+ r2)5/4

r s3/2
E(R)
n (t)

]
s >∼ r

(4.2)

where Ω
(NR,R)
0 (t) are given in Eqs. (3.18) and (3.21). In-

deed, we further note from Eqs. (3.18) and (3.21) that

Ω
(NR,R)
0 (t) = e−(t−tnow)/τ0 Ω

(NR,R)
0 (tnow) (4.3)

where tnow ≈ 4 × 1017 s denotes the current age of the
universe. We thus see from Eqs. (4.2) and (4.3) that the

overall magnitude of Ω
(NR,R)
tot (t) can be viewed as being

set by the single number Ω
(NR,R)
0 (tnow).

In characterizing the properties of our DDM ensem-
ble and how they evolve with time, we are certainly in-
terested in tracking Ωtot(t). However, we are also in-
terested in tracking the distribution of this total abun-
dance among the individual ensemble constituents. One
quantity of particular interest that provides essential in-
formation about this distribution is the so-called “tower
fraction” 0 ≤ η(t) ≤ 1 originally introduced in Ref. [1].
This quantity is typically defined in the DDM literature
as the fraction of the abundance carried by all ensem-
ble components other than the dominant component,
where the dominant component is the one making the
largest individual contribution to Ωtot(t). As such, the
quantity η tracks the degree to which a single compo-
nent carries the bulk of the total abundance. When η is
close to zero, our ensemble effectively resembles a tradi-
tional single-component dark-matter setup. By contrast,
when η differs significantly from zero, our ensemble is
more truly “DDM-like”, with many of the ensemble con-
stituents playing a non-trivial role in together shaping
the properties of the dark sector.

Such a definition for η is appropriate in cases in which
each ensemble constituent has a unique mass and life-
time. Indeed, this has often been the case for the types
of DDM ensembles previously studied. However, for the
dark-hadron DDM ensembles on which we are focusing
here, the states at a given Regge level n have been as-
sumed to have essentially equal masses and lifetimes.
Thus, in this paper, we shall adopt a modified defini-
tion for η(t) in which the comparison is made between
the aggregate abundance contributions that accrue level
by level rather than state by state. Specifically, we define

Ω̂n(t) ≡ gnΩn(t) (4.4)
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as the aggregate cosmological abundance arising from all
states at a particular oscillator level n. In terms of these
aggregate abundances, we then define

η(t) ≡ 1− maxn{Ω̂n(t)}
Ωtot(t)

. (4.5)

Thus we continue to have 0 ≤ η(t) ≤ 1, with η ≈ 0
signifying a dark sector resembling traditional single-
component dark matter and η > 0 indicating (and quan-
tifying) a DDM-like departure from this traditional sce-
nario.

At first glance, one might assume that the n = 0
ground state(s) must always yield the largest aggregate

abundance Ω̂n(t) because the primordial abundances
Ωn(t) for the states at all higher levels n > 0 are ex-
ponentially suppressed by the corresponding Boltzmann
factor in Eq. (3.1). However, for the DDM ensembles of
dark hadrons studied here, it often turns out that the
Hagedorn-like exponential growth of the degeneracies gn
as a function of n can more than compensate for the
Boltzmann suppression for small values of n. Indeed,
this is true even for combinations of the ensemble pa-
rameters B, C, r, and s which satisfy the consistency
conditions discussed in Sect. II and which yield a finite
value of Ωtot(tc). As a result of this net balancing be-
tween these two competing exponential effects, the level
carrying the greatest aggregate cosmological abundance

Ω̂n(t) need not always be the n = 0 ground state. It need
not even be fixed as a function of time. This possibility
must therefore be taken into account when evaluating
η(t).

Finally, another important quantity which can be
taken to characterize our dark sector is the so-called
equation-of-state parameter w. For a single-component
dark sector, this quantity is nothing but the ratio be-
tween the pressure p and energy density ρ of the dark
component: p = wρ. However, we are dealing here with
a multi-component dark sector in which each component
has its own individual lifetime and abundance. As a re-
sult, the total energy density and pressure associated
with our dark sector will generally experience a rather
non-trivial time dependence which causes our ensemble
as a whole to behave collectively as if it had a non-trivial
w — even if each individual component is taken to be
pure matter with w = 0.

To describe these collective effects, we therefore de-
fine [1] an effective equation-of-state parameter weff(t)
which describes the behavior of our ensemble as a single
collective entity:

weff(t) ≡ −
(

1

3H

d log ρtot

dt
+ 1

)
. (4.6)

Here H is the Hubble parameter and ρtot = 3M̃PH
2Ωtot

is the total energy density of the ensemble. Note that the
definition in Eq. (4.6) is nothing but the usual definition
of w prior to any assumptions of dark-sector minimal-
ity. As discussed above, we are primarily concerned with

the evolution of the ensemble during the present matter-
dominated epoch, within which H(t) ≈ 2/(3t). Thus,
the effective equation-of-state parameter for our DDM
ensemble within this epoch is given by

weff(t) = − t

2Ωtot

dΩtot(t)

dt
. (4.7)

As discussed in Sect. III, the only explicit dependence of
Ωtot(t) on t within a matter-dominated epoch is due to
the exponential decay factor (3.15) within each individual
abundance Ωn(t). We thus find that

weff(t) =
t

2τ0Ωtot(t)

∞∑
n=0

gn

(√
n+ r2

r

)ξ
Ωn(t) . (4.8)

Note that even though each of the individual components
of our ensemble has been taken to be matter-like (with
w = 0), the collective equation-of-state parameter weff(t)
for our ensemble as a whole is positive, reflecting the
fact that the ensemble as a whole is continually losing
abundance as its individual components decay. Indeed,
it is only in the τ0 → ∞ limit that weff(t) → 0. As
we shall see in Sect. IV B, weff(t) plays an important
role in constraining the parameter space of these DDM
ensembles.

B. Cosmological constraints

Given our time-dependent aggregate quantities Ωtot(t),
η(t), and weff(t), we now turn to the cosmological con-
straints that bound these functions. In this way, we shall
ultimately be placing non-trivial constraints on the pa-
rameter space underlying these hadronic DDM ensem-
bles.

In this connection, we again stress that our aim in this
paper is not to perform a detailed analysis of the astro-
physical and/or cosmological constraints on this param-
eter space. Such a detailed analysis would clearly be an
important but extensive task which is beyond the scope
of this paper. Moreover, such an analysis would require
a host of further assumptions concerning the particular
nature of our ensemble, the specific decay modes of its
constituents into SM states, and so forth. Rather, in this
paper, our goal is to simply to obtain a rough initial sense
of those regions of parameter space in which a DDM en-
semble of dark “hadrons” might have at least the poten-
tial of phenomenological viability. Accordingly, in what
follows, we shall put forth a set of requirements which di-
rectly constrain the fundamental quantities Ωtot(t), η(t),
and weff(t) we have defined above, but which do not re-
quire any further information concerning these hadronic
ensembles beyond those properties already discussed. In
some sense, then, these might be viewed as the imme-
diate “zeroth-order” model-independent constraints that
any DDM ensemble of this sort must satisfy.

Our first constraint is an obvious one: despite the pres-
ence of an infinite tower of dark-hadronic resonances,
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each with its own cosmological abundance and lifetime,
we shall demand that

Ωtot(tnow) = ΩCDM ≈ 0.26 . (4.9)

This requirement is clearly predicated on the assumption
that our dark-hadronic ensemble represents the totality
of the dark sector; for other cases we would simply require
that Ωtot(tnow) <∼ 0.26. As we shall see, in either situa-
tion this is a severe and unavoidable constraint which
ultimately “anchors” our entire construction in terms of
actual numbers and mass scales.

Second, we may also consider the time-variation of
Ωtot(t). The time-variation of this total abundance is
constrained by experimental probes which yield infor-
mation about the dark-matter abundance during differ-
ent cosmological epochs. For example, CMB data [24]
provides information about the dark-matter abundance
around the time of last scattering — i.e., at a redshift
z ≈ 1100, or equivalently a time of roughly 2.7×10−5tnow.
On the other hand, observational data on baryon acoustic
oscillations [25] and the relationship between luminosity
and redshift for Type Ia supernovae [26] provide infor-
mation about H(t) and the dark-energy abundance ΩΛ

at subsequent times, down to redshifts of around z ≈ 0.5.
Within the context of the ΛCDM cosmology, the agree-
ment between these different measurements implies that
the dark-matter abundance has not changed dramatically
since the time of last scattering.

In order be consistent with this result, we shall there-
fore demand that the total abundance of our DDM en-
semble not vary by more than 5% between an early “look-
back” time tLB and today:

Ω(t)− Ω(tnow)

Ω(tnow)
≤ 0.05 for all tLB ≤ t ≤ tnow .

(4.10)
In what follows, we shall choose a look-back time tLB =
10−6tnow, which lies comfortably before the recombina-
tion epoch.

In addition to these constraints on the time-variation
of the dark-matter abundance, there are further con-
siderations which constrain the decays of the DDM-
ensemble constituents more directly. These constraints
depend on the decay properties of the dark-sector par-
ticles and are thus ultimately model-dependent. How-
ever, for those rather general cases in which the en-
semble constituents can decay to final states involving
visible-sector particles, one must ensure that these de-
cay products not disrupt big-bang nucleosynthesis [27],
not produce observable distortions in the CMB [28, 29],
not reionize the universe [30], and not violate current
limits on the fluxes of photons or other cosmic-ray par-
ticles [31, 32]. Indeed, even if the ensemble constituents
decay exclusively into other, lighter dark-sector particles,
such decays can nevertheless leave observable imprints
on small-scale structure [33, 34], alter the scale- and
redshift-dependence of the cosmological gravitational-
lensing power spectrum [35], and affect the luminosity-
redshift relation for Type Ia supernovae [36, 37]. Since

these effects all arise from the decays of ensemble con-
stituents, non-observation of these effects also leads to
constraints on the time-variation of Ωtot.

Some of these latter constraints admittedly depend on
model-dependent aspects of the decay kinematics of the
dark-ensemble constituents. However the strongest and
most general of these constraints effectively amount to
limits on the variation of Ωtot(t) within the recent past
— i.e., for redshifts 0 . z . 3. Therefore, in addition to
our look-back-time constraint in Eq. (4.10), we shall also
impose an additional constraint on our effective equation-
of-state parameter:

weff(tnow) ≤ 0.05 . (4.11)

Through Eq. (4.7), this thus becomes a constraint on
the present-day time-derivative of Ωtot(t). It is im-
portant to stress that this constraint is independent of
that in Eq. (4.10): while Eq. (4.10) constrains accumu-
lated changes in Ωtot(t) over a relatively long interval,
Eq. (4.11) constrains the time-variation of Ωtot(t) near
the present time.

Other considerations will also guide our interest in cer-
tain regions of parameter space. For example, from a
DDM-inspired standpoint, we are particularly interested
in scenarios for which

η(tnow) ∼ O(1) , (4.12)

i.e., scenarios in which the present-day value of η is sig-
nificantly different from zero. This ensures that a siz-
able number of ensemble constituents continue to sur-
vive and contribute meaningfully to Ωtot at the present
time, with dark-matter decays occurring throughout the
present epoch and not just in the distant past or fu-
ture. Although Eq. (4.12) is not a strict requirement for
phenomenological consistency, this condition guides the
degree to which we may regard our ensemble as being
fully DDM-like, with a significant portion of the ensem-
ble playing a non-trivial role in the phenomenology of
the dark sector. For example, this condition rules out re-
gions of parameter space in which τn � τ0 for all n ≥ 1,
with τ1 � tLB. In such regions of parameter space, all
excited dark-hadronic states have decayed prior to our
look-back time, leaving us with a single dark-hadronic
ground state in the present epoch. Such a scenario triv-
ially satisfies all of our phenomenological constraints on
the time-variations of the total dark-sector abundance,
but is effectively no different from that of a traditional,
single-component dark sector. It is thus less interesting
from a DDM perspective.

There are two further phenomenological constraints
which will be useful for us to consider in the following.
First, we shall demand that τ0 � tnow. Although we
do not necessarily require τ0 ≈ 109tnow as in traditional
single-component dark sectors, we generally expect that
τ0 must exceed tnow by at least several orders of magni-
tude in order to satisfy look-back and weff constraints.
This assumption will be discussed further in Sect. V.
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Likewise, although we have thus far assumed M0 ≥ TMRE

throughout our analysis, we actually must impose the
somewhat stronger bound M0

>∼ O(103)TMRE ≈ O(keV)
in order to satisfy BBN and structure-formation con-
straints. This last requirement implicitly assumes that
our lightest ensemble component carries the largest cos-
mological abundance (or at least a sizable fraction of the
total cosmological abundance), but we shall see in Sect. V
that this turns out to be true for the vast majority of phe-
nomenologically interesting cases.

Finally, we shall also make certain simplifying assump-
tions. First, for concreteness, we shall restrict our at-
tention to situations with ξ = 3. In other words, we
shall assume that the dominant contributions to the de-
cay lifetimes τn of our DDM constituents φn scale as
τn ∼ 1/M3

n across the DDM ensemble. Decay widths
of the form Γn ∼ M3

n/Λ
2 emerge naturally from oper-

ators such as φnFµνF
µν/Λ where Λ parametrizes the

energy scale associated with such couplings and where
Fµν denotes a field-strength tensor associated with either
the visible-sector (SM) photon or a dark-radiation pho-
ton associated with an additional Abelian gauge group
under which the ensemble constituents are not charged.
The contributions from such operators will dominate the
decays of our DDM constituents in scenarios in which
our DDM ensemble is uncharged with respect to all SM
symmetries, and in which intra-ensemble decays can be
neglected. Likewise, we shall also make the simplifying
assumption that κ = 1 in Eq. (2.2). This restricts us
to the bare “minimal” case in which we do not ascribe
non-trivial degrees of freedom to our dark-sector quarks,
and thereby focus exclusively on the ensemble of states
generated by our infinite tower of hadronic resonances.
Finally, throughout our analysis, we shall continue to im-
pose the self-consistency constraints listed in Eqs. (2.10)
[or equivalently (2.11)], (2.12), (2.13), and (3.5).

Thus, going forward, the free parameters governing
our dark-hadron DDM ensemble may be tallied as fol-
lows. First, there are the two parameters {B,C} which
govern the individual state degeneracies ĝn according
to Eq. (2.5). Second, there are the four parameters
{r, s,M0, τ0} which govern the individual abundances
Ωn(t) in Eqs. (3.15) through (3.21). However, impos-
ing Eq. (4.9) as an overall normalization condition al-
lows us to remove M0 as a free parameter. Thus, for
the rest of this paper, we shall consider our DDM en-
sembles as functions of their locations within the five-
dimensional parameter space corresponding to the vari-
ables {B,C, r, s, τ0} where B ≥ 1, C2 ≥ 2π2(4B − 3)/3,
and s ≤ 1/C.

V. RESULTS

In general, we seek to determine which values of our
defining parameters {B,C, r, s, τ0} lead to self-consistent
and potentially viable dark sectors — i.e., sectors which
satisfy our abundance, look-back, and weff constraints

in Eqs. (4.9), (4.10), and (4.11) respectively, along with
our M0 > O(keV) constraint. For each such set, we also
seek to determine the corresponding values of relevant
mass scales such as the string scale Ms. We also seek to
determine the extent to which the corresponding ensem-
ble is truly DDM-like, with a relatively large number of
component states playing a significant role in the phe-
nomenology of the dark sector and contributing to Ωtot

at the present time. In general, the larger the value of
η(tnow), the more DDM-like the corresponding ensemble.

At first glance, it might seem rather daunting to ori-
ent ourselves within the five-dimensional {B,C, r, s, τ0}
parameter space. However, there are really two separate
parts to our analysis — one part which depends only
on relative mass scales, and one part which makes ex-
plicit reference to absolute mass scales. It is clear from
Eqs. (4.2) and (4.3) that once we know {B,C, r, s, τ0},
we can determine the function Ω

(R,NR)
tot (t) up to an

overall multiplicative constant Ω
(R,NR)
0 (tnow). Setting

Ω
(R,NR)
tot (tnow) = ΩCDM ≈ 0.26 therefore immediately

determines a required numerical value of Ω
(R,NR)
0 (tnow).

This also determines the corresponding values of η(tnow)
and weff(tnow). Up to this point, we have not yet an-
chored our results in terms of absolute mass scales. How-
ever, this can also easily be done: we simply set our re-

quired numerical value of Ω
(R,NR)
0 (tnow) to the expression

in either Eq. (3.18) or Eq. (3.21). This then determines
an absolute value for the mass scale M0, whereupon we
find that Ms = rM0 and Tc = (s/r)M0. Thus, in this
way, we can extract the values for Ms and η(tnow) corre-
sponding to every point in the {B,C, r, s, τ0} parameter
space.

Certain observations can be made rather rapidly. For
example, given Eq. (4.9), it immediately follows that

Ω0(tnow) <∼ 0.26 — a bound which can be saturated only
when η(tnow) = 0. More generally and more schemati-
cally, we might write this constraint in the rough order-
of-magnitude form

Ω0(tnow) <∼ O(0.1) . (5.1)

However, let us now consider the expression in Eq. (3.21)
for Ω0(t) in the relativistic case. Since τ0 must signif-
icantly exceed tnow by at least several orders of mag-
nitude, as discussed in Sect. IV, we see that the expo-
nential factor e−t/τ0 is essentially 1. Likewise we recall
that M0/TMRE ≥ O(103), as also discussed in Sect. IV.
Let us assume that this bound is saturated, so that
M0/TMRE = O(103). We therefore find that Eq. (5.1)
can be satisfied only if gc ∼ 104. This would in turn re-
quire a mass scale Tc which at the very minimum exceeds
the TeV scale (thereby introducing a hierarchy between
Tc and M0 which is at least a factor of 106) and which
actually must be so high that there are at least ten times
as many effectively relativistic degrees of freedom below
this scale than are known to exist below the TeV scale
— a rather unlikely proposition resting entirely on cur-
rently unknown physics. Considering greater values of
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M0/TMRE only worsens this situation and requires even
greater values of gc. Therefore, although there might
exist finely tuned slivers of parameter space in which
one might manage to achieve a balancing between gc and
M0/TMRE sufficient to satisfy Eq. (5.1), we shall aban-
don any further consideration of the relativistic case in
what follows.

This situation changes dramatically when we turn to
the non-relativistic case in Eq. (3.18). In this case, we
continue to find that e−tnow/τ0 ≈ 1. However, the pres-
ence of the factor (r/s)3/2e−r/s allows us greater freedom
in satisfying the constraint in Eq. (5.1). Indeed, the first
thing we learn is that our system is going to be very sensi-
tive to the ratio r/s — not surprising, given that this was
already the radio that determined the extent to which our
lightest mode was relativistic or non-relativistic. How-
ever, we now see that r/s is also going to play a large
role in governing the allowed values of the overall mass
scales in our system, with greater (lesser) values of r/s
generally corresponding to higher (lower) absolute mass
scales for our ensemble.

We shall therefore proceed through our parameter
space as outlined above, paying special attention to the
values of r and s and in particular to the ratio r/s. Specif-
ically, for each value of {B,C, r, s, τ0}, we shall deter-
mine whether our internal consistency constraints B ≥ 1,
C2 ≥ 2π2(4B − 3)/3, and s ≤ 1/C are satisfied and
whether the phenomenological consistency constraints in
Eqs. (4.10) and (4.11) are satisfied. If so, we shall then
determine the corresponding values of Ms and η(tnow),
with the overall goal of understanding which regions of
parameter space potentially lead to viable ensembles and
which subregions correspond to ensembles which are par-
ticularly DDM-like.

Because of the somewhat natural and intuitive role
played by the D⊥ = 2 scalar flux tube, as discussed in
Sect. II, we shall adopt the values

B = 5/4 , C = 2π/
√

3 ≈ 3.63 (5.2)

as “benchmark” values and begin our exploration within
(r, s) space. Taking τ0 = 109tnow, we find the results
shown in Fig. 3.

Let us first concentrate on the left panel of Fig. 3.
The red region indicates those values of (r, s) which are
excluded by look-back and weff constraints, while the
pale green region is excluded by the requirement that
M0

>∼ O(keV). The blue curves indicate contours of
η(tnow) and the magenta curves indicate contours of Ms,
labelled by values of log10(Ms/GeV). The single green
curve indicates the contour with M0 = 1 keV. The thin
black curve indicates the contour with r/s = 1, and thus
serves as the nominal dividing line between the regions in
which the lowest ensemble state is relativistic (above and
to the left) or non-relativistic (below and to the right).

Several things are immediately apparent from this fig-
ure. First, we see that the portion of the parameter space
corresponding to the relativistic case is excluded by our
constraint on M0. This is entirely in keeping with our

conclusions already reached above. Nevertheless, we also
see that beyond this region there exists an entire area
of parameter space in which all of our constraints are
satisfied. Moreover, within this region we see that Ms

varies from the keV/MeV-range all the way to the Planck
scale. Likewise, η(tnow) varies through all of its possible
values. This is therefore not only an allowed region, but
one which is likely to be exceedingly rich in phenomenol-
ogy. Indeed, given the contours plotted in this figure,
we see that the “sweet spot” within the (r, s) parameter
space lies roughly within the range{

1 <∼ r <∼ 6

0.05 <∼ s <∼ 0.18 .
(5.3)

This is the region of (r, s) parameter space where the
plotted blue and magenta contours intersect each other
and form a “cross-hatched” region, as illustrated in the
left panel of Fig. 3. This sweet spot is therefore the region
that will be of maximum interest to us. Indeed, within
this region, we observe from the left panel of Fig. 3 that
η(tnow) increases if either r or s is increased, while Ms

increases in the former case but decreases in the latter.
The right panel of Fig. 3 focuses on this sweet-spot re-

gion and shows the same Ms and η contours, only now
plotted with respect to the variables r/s and s using a
linear rather than logarithmic axis. The fact that the
Ms contours are approximately vertical in this region in-
dicates that Ms is dominantly determined by the ratio
r/s, exactly as anticipated above, with increasing values
of r/s corresponding to increasing values of Ms. Indeed,
we see from the right panel of Fig. 3 that Ms increases
extremely rapidly as a function of r/s, in keeping with
the exponential dependence in Eq. (3.18). Likewise, in-
creasing the value of r/s while holding r fixed tends to
decrease the value of η(tnow). Thus, for fixed r, we find
that Ms and η(tnow) tend to vary inversely with respect
to each other as functions of r/s, with our ensembles be-
coming less DDM-like at higher mass scales and more
DDM-like at lower mass scales. Likewise, for fixed r/s,
we find that increasing r tends to increase η(tnow), as
already evident from the left panel of Fig. 3.

It is easy to understand these results physically. For
fixed r, increasing r/s corresponds to decreasing s. This
lowers the critical temperature Tc at which our initial
cosmological abundances are established, which has the
effect of decreasing the abundances of the heavier states
relative to the lighter states. This therefore decreases
the value of η(tnow). By contrast, holding r/s fixed and
increasing r corresponds to increasing s as well. The in-
crease in r renders all of the ensemble states more mas-
sive but provides a smaller proportional mass increase for
the heavier states than for the lighter states. Thus the
mass ratios between heavier and lighter states decreases,
which tends to increase the value of η(tnow). Likewise, as
discussed above, increasing s also tends to increase the
value of η(tnow). These two effects then tend to reinforce
each other, as evident in Fig. 3.
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FIG. 3: A survey of physics in the (r, s) plane, with B, C, and τ0 set to the “benchmark” values shown. Left panel : The thin
black line labeled ‘1’ indicates the contour with r/s = 1; this is thus the dividing line between the region in which the lighest
state is relativistic (left of this line) versus non-relativistic (right of this line). The blue curves indicate contours of η(tnow),
while the magenta lines indicate contours of Ms and are labelled by the value of log10(Ms/GeV). The red region is excluded

by look-back and weff constraints, while the pale green region is excluded by the constraint M0
>∼ O(keV) which is saturated

along the single green contour. Increasing (decreasing) the value of τ0 does not affect the Ms or η(tnow) contours, and simply
shifts the red exclusion region to the left (right). Right panel : Same as left panel, but with features plotted relative to the
variables r and r/s. The entire region shown in this panel corresponds to the non-relativistic case.

Having identified our sweet-spot region in (r, s) pa-
rameter space, we now investigate how these values of
Ms and η(tnow) vary as our other parameters B, C, and
τ0 are varied. To do this, we study variations in these
parameters relative to an (r, s) “benchmark”

r = 3.5 , r/s = 30 , (5.4)

which we henceforth take as representative of our sweet-
spot region in the (r, s) plane. In Fig. 4 we illustrate the
effects of variations in B and C relative to this bench-
mark, plotting contours of Ms and η(tnow) in the (r, C)
plane (upper left panel), the (s, C) plane (upper right
panel), and the (B,C) plane (lower panel). Note that
since we must always have s ≤ 1/C, it is actually the
normalized product s ·C which captures the dependence
on s in situations where C might also be varied. In the
upper right panel we therefore plot our contours relative
to s ·C rather than s alone. Likewise, in the lower panel
of Fig. 4 we have continued to indicate our allowed re-
gions of B and C as in Fig. 1, where the dot continues
to represent the D⊥ = 2 scalar-string benchmark values
in Eq. (5.2).

Together, the three panels of Fig. 4 tell a consistent
story. First, with r and s held fixed, we see from the up-
per left and lower panels of Fig. 4 that increasing C gen-
erally tends to increase η(tnow). This result makes sense:
increasing C corresponds to increasing the degeneracies
of the heavier states relative to the lighter states. How-
ever, with s held constant, each of these heavier states
continues to accrue the same abundance as before. Thus
increasing C increases the total abundance carried by
the heavier states relative to that carried by the lighter

states, thereby increasing η(tnow). Second, we see from
the lower panel of Fig. 4 that while our values of Ms

and η(tnow) are quite sensitive to C, they are far less
sensitive to B. This too makes sense, since C governs
the exponential rate of growth in the state degeneracies
while B governs only the subleading polynomial behav-
ior. Third, in each of the above two cases, we also note
that increasing C while holding r or B fixed also corre-
sponds to decreasing Ms. Thus, once again, we see that
Ms and η(tnow) tend to vary inversely with each other,
giving rise to more DDM-like ensembles at lower energy
scales and more traditional ensembles at higher energy
scales.

Finally, we see from the upper right panel of Fig. 4 that
our values of η(tnow) are largely insensitive to variations
in C as long as s · C is held fixed. However, this too is
easy to understand. Increasing C while holding s·C fixed
corresponds to decreasing s as we increase C. Increasing
C induces an exponential increase in the degeneracy of
each massive state, while decreasing s decreases the crit-
ical temperature Tc, thereby inducing a corresponding
exponential decrease in the abundance associated with
each such state. Thus, to first approximation, these two
effects tend to mitigate each other: they produce more
states, but also cause each state to carry a correspond-
ingly smaller abundance.

Thus far we have not discussed the effects of vary-
ing our remaining free parameter τ0. Varying τ0 does
not affect the degeneracies of states or their cosmologi-
cal abundances. Indeed, variations in τ0 affect only the
lifetimes of these states. In principle, this has the po-
tential to affect the values of quantities such as η(tnow)



17

FIG. 4: Contours of η(tnow) (blue curves) and Ms (magenta curves), labelled as in Fig. 3 and plotted in three different planar
“slices” through the (B,C, r, s) parameter space. The top two panels show these contours plotted in the (r, C) and (s, C)
planes, respectively, while the bottom panel shows these contours plotted in the (B,C) plane. In all panels, colored shaded
regions are excluded by either string consistency constraints (blue shaded regions), internal consistency constraints (red region

in lower panel), or phenomenological look-back, weff , or M0
>∼ O(keV) constraints (pale green regions as well as the red region

along the right edge of the upper right panel). As in Fig. 3, the thin black vertical r/s = 1 contour (visible at the extreme left
of the upper left panel) continues to represent the boundary between the regions in which the lightest state is either relativistic
(left of the line) or non-relativistic (right of the line).

FIG. 5: Contours of the minimum value of τmin
0 consistent with the look-back and weff constraints discussed in the text, plotted

in the (r, s) plane (left panel) and in the (B,C) plane (right panel).
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since the determination of η(tnow) requires totalling the
abundances of only those states which have not yet de-
cayed at the present time. However, under the assump-
tion that τ0 � tnow (or under the equivalent assump-
tion that our scenario already satisfies the look-back and
weff constraints), we know that Ωtot(tnow) is not chang-
ing rapidly at the present time. In other words, the to-
tal abundances of those states which are decaying at the
present time is relatively small. In such cases, the Ms

and η(tnow) contours are therefore largely insensitive to
τ0. Indeed, in Fig. 3, the sole effect of varying τ0 is there-
fore merely to “slide” the red exclusion regions in Fig. 3
horizontally relative to the rest of the plot: these ex-
clusion regions move to the right (and therefore become
more threatening to our sweet-spot region) if τ0/tnow is
decreased, and move to the left (and therefore become
even less of a concern) if τ0/tnow is increased.

While this is entirely as expected, the natural ques-
tion then arises: for any values of {B,C, r, s}, what is
the minimum value of τ0 that can be tolerated before
violating our look-back and weff constraints? Contours
indicating the resulting minimum values τmin

0 are plotted
in Fig. 5 in both the (r, s) and (B,C) planes, taking our
“benchmark” values in Eqs. (5.4) and (5.2) respectively.
In general, we see from Fig. 5 that a wide variety of values
of τmin

0 are possible, depending on our specific location in
parameter space, with larger values of τmin

0 correspond-
ing to very small values of r or relatively large values of
s or C. However, for our sweet-spot benchmark values
in Eqs. (5.2) and (5.4), we see from Fig. 5 that τmin

0 can
be as small as approximately 102tnow.

This, too, is not entirely a surprise. After all, a bound
on the lifetime of the longest-lived DDM constituent on
the order τ0/tnow ∼ O(100) is roughly on the same or-
der as the most conservative bounds on the lifetime τχ
of a traditional single-component dark-matter candidate
which decays into other purely dark-sector states. In-
deed, model-independent bounds on decaying dark mat-
ter in traditional single-component models in which the
dark-matter particle carries essentially all of the observed
dark-matter abundance and decays into dark radiation
have been derived by a number of groups (see, e.g.,
Refs. [38–41]). Depending on the assumptions inherent
in the various analyses and on the breadth of cosmologi-
cal data incorporated, such studies place a bound on the
lifetime of such a dark-matter candidate on the order of
τχ/tnow & O(10 − 100). Thus, a bound on τ0 in this
range is a priori reasonable — especially since our anal-
ysis in Fig. 5 determines the value of τmin

0 based only on
cosmological look-back and weff constraints. Of course,
if the ensemble constituents decay into visible-sector par-
ticles with a non-negligible branching fraction, the con-
straints on τ0 are expected to increase significantly. In-
deed, the most stringent bounds on a single dark-matter
particle χ which decays primarily into visible-sector ra-
diation require that this particle be hyperstable, with
τχ ∼ 109tnow.

Despite the possibilities for lowering τ0 afforded by the

results in Fig. 5, we shall continue to retain our bench-
mark value τ0 = 109tnow. We do this in order to be con-
sistent with the most conservative decay scenarios possi-
ble. Although this value for τ0 is quite large, we empha-
size that this is only the lifetime of the lightest ensemble
constituent, and that a significant fraction of the ensem-
ble constituents will generally have lifetimes much less
than τ0. Moreover, even in cases for which the majority
of the ensemble is long-lived, DDM ensembles can never-
theless yield striking astrophysical signatures [6–8] which
differ from those of traditional dark-matter candidates.
Thus, even with such values of τ0, the phenomenology of
the resulting ensemble can differ significantly from that
of traditional dark-matter candidates.

Having explored the relevant {B,C, r, s, τ0} parame-
ter space of our ensemble and identified our sweet-spot
region, we now examine the characteristics of the cor-
responding ensembles in more detail. In particular, we
seek to understand what these ensembles look like, and
how their overall structure evolves with time. As dis-
cussed in Sect. IV A, the most relevant aggregate proper-
ties of any dark-sector ensemble are its total cosmological
abundance Ωtot(t), its effective equation-of-state param-
eter weff(t), and its tower fraction η(t), each of which is
generally time-dependent. We therefore begin by exam-
ining how each of these quantities evolves with time for
ensembles in and near our sweet spot.

This information is shown in Fig. 6. In this figure, we
consider a “benchmark” ensemble with B = 5/4, C =

2π/
√

3, r = 3.5, s = 3.5/30, and τ0 = 109tnow, as well
as nearby ensembles in which τ0 is varied (top row), r is
varied (second row), s is varied (third row), C is varied
(fourth row), and B is varied (fifth row). In each case, we
plot the corresponding total cosmological abundance Ωtot

(left column), equation-of-state parameter weff (middle
column), and tower fraction η (right column) as functions
of time. Note that in each case the overall abundance
is normalized through an appropriate choice of Ms such
that Ω(tnow) = ΩCDM ≈ 0.26, as required.

In each panel of Fig. 6 (except for those along the
bottom row), the blue curve corresponds to our “bench-
mark” point. We therefore begin by focussing on these
benchmark curves. The curve for Ωtot(t) appears nearly
constant at ΩCDM ≈ 0.26 for all of the cosmological
history plotted (which we assume to have been matter-
dominated), including the present time tnow. Indeed,
this behavior continues all the way into the future un-
til t ≈ 109tnow, at which point Ωtot(t) begins to decline
gently to Ωtot = 0. This behavior is matched by weff(t),
which remains near zero for most its cosmological evolu-
tion before gently rising to weff > 0 at t ≈ 109tnow. This
makes sense, since Eq. (4.7) tells us that weff(t) is pro-
portional to the time-derivative of Ωtot(t). Finally, we
see that η(t) remains more or less fixed at approximately
η ≈ 0.72 during most of its cosmological history before
smoothly dropping to η = 0.

This behavior is easy to understand. If this has been
a traditional ensemble with a single dark-matter com-
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FIG. 6: Total cosmological abundances Ωtot (left column), equation-of-state parameters weff (middle column), and tower
fractions η (right column) for our DDM ensembles, plotted as functions of time when all input variables are held fixed at their
“benchmark” values except for τ0 (top row), r (second row), s (third row), C (fourth row), and B (bottom row). In all panels
the blue curve corresponds to our “benchmark” point with B = 5/4, C = 2π/

√
3, r = 3.5, s = 3.5/30, and τ0 = 109tnow, while

the curves of other colors indicate departures away from this point. For reasons discussed in the text, the bottom row illustrates
variations in B along a line that does not include the benchmark point. Note that, as expected, some variations away from the
benchmark point violate our look-back, weff , or M0 constraints. However, our internal self-consistency constraints are always
satisfied, with Ωtot(tnow) = ΩCDM ≈ 0.26 in all cases.
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ponent whose decay we could model as essentially in-
stantaneous (just as we are assuming for the individual
components of our dark-matter ensembles), our curve for
Ωtot(t) would have been fixed precisely at its present
value ΩCDM ≈ 0.26 over the entire range shown un-
til suddenly dropping (essentially discontinuously) to
Ωtot = 0 when the single dark-matter particle decays at
t ≈ 109tnow. Likewise, weff(t) would have been strictly
fixed at weff = 0 during the cosmological evolution, while
η(t) would have been fixed at zero all along. However,
this is not a traditional dark-matter setup: this is a
DDM ensemble in which the present-day cosmological
abundance Ωtot(tnow) ≈ 0.26 is spread across a rela-
tively large number of individual components with dif-
ferent masses and different lifetimes. It is thus the con-
tinued, ordered, sequential decays of these different com-
ponents which produce the softer, gentler drop in Ωtot(t)
as t approaches t ≈ 109tnow. In fact, Ωtot(t) is actu-
ally falling slightly throughout the cosmological evolution
shown; this behavior is not visible in Fig. 6 only because
at early times prior to t ≈ 109tnow the states which are
decaying are extremely heavy and thus carry extremely
small abundances. By contrast, at late times approaching
t ≈ 109tnow, the states which are decaying are relatively
low-lying and carry more significant abundances. This is
also evident in our curve for η(t): for most of the cos-
mological history, the value η ≈ 0.72 tells us that only
approximately 28% of the total dark-sector cosmological
abundance is carried by the dominant (lightest) state in
the ensemble, even at early times, while the remaining
72% of the abundance is carried by the more massive
states — particularly those which, though more massive,
are nevertheless relatively low-lying. As a result of the
sequential decays of such states, η(t) — like Ωtot(t) —
is also actually falling slightly throughout the cosmologi-
cal evolution shown. It is only due to the decays of the
relatively low-lying states near t ≈ 109tnow that η(t) ul-
timately falls gently but noticeably to zero.

At first glance, it may seem surprising that all three of
our primary quantities Ωtot, weff , and η are nearly con-
stant at t ≈ tnow. However, this is ultimately the direct
consequence of our benchmark choice τ0 = 109tnow: with
this choice, those states within the ensemble which are
decaying today are all extremely massive and thus carry
very little abundance. The DDM nature of such an en-
semble is nevertheless clear from its η-value, which is as
high as 0.72 even at the present time. In this connection,
we again emphasize that taking τ0 = 109tnow was merely
a conservative choice which is not by itself intrinsic to the
DDM framework; indeed we learned from Fig. 5 that we
could easily have chosen τ0 as small as τ0 ≈ 102tnow with-
out running afoul of our look-back and weff constraints.
Indeed, without further details concerning the precise na-
ture of these ensembles (including, most critically, the ul-
timate decay products of their constituents), such small
values for τ0 would have been equally viable.

This observation is illustrated along the top row of
Fig. 6, where we show the evolution of our blue “bench-

mark” curves as we vary τ0 between our conservative
value τ0 ≈ 109tnow and the more extreme value τ0 ≈
102tnow. In general, changing τ0 does not affect the inter-
nal structure of the ensemble — it merely affects the life-
times of the individual ensemble constituents, rescaling
them all up or down together. Since it is these lifetimes
which produce the non-trivial time-dependence for Ωtot,
weff , and η, we expect that changing τ0 should preserve
the general shapes of these curves and merely translate
these curves along the time axis. This behavior is ver-
ified in the panels along the top row of Fig. 6. Indeed,
we can even see from these panels why τ0 ≈ 102tnow is
the minimum value of τ0 that may be chosen for our
benchmark point: choosing τ0 any smaller would shift
our curves even further towards earlier times, whereupon
Ωtot(t) would begin to experience significant variations

within the interval 10−6tnow
<∼ t <∼ tnow and weff(tnow)

would begin to deviate significantly from zero. Such be-
havior would then violate our look-back and weff con-
straints, respectively.

Let us now turn to the behavior of our Ωtot, weff , and
η curves as we vary r, as shown in the panels along the
second row of Fig. 6. Two observations underlie the be-
havior shown. First, we note that changing r changes
the lifetimes of the states at each mass level according
to Eq. (3.14), with τn/τ0 → 0 as r → 0. This result is
simple to understand: as r → 0, the n = 0 states become
hierarchically lighter than the n ≥ 0 states and thus the
n > 0 states have hierarchically shorter lifetimes. Sec-
ond, we note that changing r also changes the relative
abundances which are generated at tc according to

Ωn(tc)

Ω0(tc)
=

(n+ r2)5/4

r5/2
exp

(
−
√
n+ r2 − r

s

)
. (5.5)

This quantity is non-monotonic as a function of r, first
dropping as r is reduced from large values and ultimately
hitting a minimum before increasing again and diverging
as r → 0. Indeed, for n = 1 and s set to its benchmark
value s = 3.5/30 ≈ 0.117, this minimum occurs at r ≈
0.4.

These two effects are responsible for the behaviors
shown in the second row of Fig. 6. As r decreases
from its benchmark value with τ0 held fixed, the ex-
cited states with n > 0 start decaying earlier and ear-
lier. Rescaling our overall abundances in order to keep
Ωtot(tnow) = ΩCDM produces the effects shown in the left
panel. Indeed, we see from this panel that the case with
r = 0.001 actually violates our look-back and weff con-
straints, as already evident from Fig. 3. Even the Ωtot(t)
curve with r = 0.01 is tightly constrained: shifting τ0
towards any smaller values below 109tnow (i.e., shifting
this curve further towards the left) also leads to violations
of our look-back and weff constraints, as already antici-
pated in the left panel of Fig. 5. Likewise, as a result of
the observations below Eq. (5.5), the relative sizes of the
abundances Ωn associated with the excited n > 0 states
relative to the abundance Ω0 associated with the n = 0
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ground state vary non-monotonically with r, shrinking as
r drops from 3.5 to approximately 0.4, and then growing
again as r drops still further. This then explains the non-
monotonic behavior for η(t) as a function of r, as shown
in the right panel.

By contrast, the effects of varying s and C are shown
along the third and fourth rows of Fig. 6, respectively.
While the quantity s governs the exponential rate at
which the Boltzmann suppression of the abundances of
the ensemble constituents decreases with n, the quantity
C governs the exponential rate at which the the degener-
acy of states for the ensemble grows with n. As a result,
the effects of decreasing s or increasing C are largely
similar to each other as far as Ωtot(t) is concerned, as
evident in Fig. 6: both tend to increase the primordial

aggregate abundances Ω̂n of the heavier states in the en-
semble. This effect causes Ωtot(t) to begin to decline
earlier and earlier as these heavier states are the first to
decay. By contrast, it is important to note that increas-
ing C and decreasing s nevertheless have opposite effects
on the value of η(tnow): the former increases η(tnow), as
anticipated in Fig. 4, while the latter decreases η(tnow),
as anticipated in Fig. 3. This difference occurs because
increasing C merely increases the state degeneracies ĝn
of the heavy states, thereby injecting more abundance
into the heavy states relative to the light states, while
decreasing s has the effect of increasing the abundances
of all of our states, including the abundance of the dom-
inant abundance-carrier at n = 0. This causes the total
abundance of the ensemble to grow more rapidly than the
abundances of the excited n > 0 states alone, thereby de-
creasing η(tnow).

One important feature to note from these plots is the
appearance of a Hagedorn instability as s → 1/C (or
equivalently as C → 1/s). In these limiting cases, the to-
tal energy density Ωtot injected into the system through
our confining phase transition at t = tc diverges, vio-
lating the constraint in Eq. (3.4). Such cases therefore
violate our look-back and weff constraints, as evident in
Fig. 6. Indeed, the Hagedorn instability is a critical fea-
ture of theories with exponentially growing degeneracies
of states [12].

Finally, we turn to the fifth and final row of Fig. 6.
Note that in order to remain within the self-consistency
bound in Eq. (2.13), it is not possible to increase B above

our benchmark value 5/4 when C = 2π/
√

3. For this rea-
son, we have chosen to hold C fixed at a greater value,
specifically C = 7, when exploring the effects of vary-
ing B. Unfortunately, we see that variations in B are
barely distinguishable in these plots, even when B is var-
ied all the way from B = 1 (corresponding to D⊥ = 1)
to B = 9/4 (corresponding to D⊥ = 6). This tells us
that the sorts of abundance-based or equation-of-state-
based analyses we are doing here are relatively insensitive
to the number of uncompactified transverse spacetime di-
rections into which our dark-sector flux tube can vibrate,
as long as C (related to the total central charge of the
degrees of freedom on the flux-tube worldsheet) is held

fixed. Of course, in a realistic setting, there are likely
to be many other more specific probes of D⊥, including
probes that are based on specific properties of the dark-
sector dynamics. Our result here merely indicates that
studies based on cosmological abundances alone are not
likely to be the most useful in this regard.

We have seen in Fig. 6 how the total abundances Ωtot

of our DDM ensembles vary as a function of time. How-
ever, it is also interesting to understand how the indi-

vidual aggregate abundances Ω̂n(t) at each mass level n
contribute to this behavior. The result is shown in Fig. 7
for our benchmark DDM model. As we see from Fig. 7,
there are many mass levels n whose states contribute to
Ωtot(tnow): states with smaller values of n carry larger
abundances and have longer lifetimes, persisting into
later times before decaying, while those with larger values
of n carry smaller abundances and have shorter lifetimes,
decaying earlier. Indeed, this balancing between lifetimes
and abundances is a fundamental hallmark of the DDM
framework. Although the sum of these abundances at
t = tnow is fixed at Ωtot(tnow) = ΩCDM ≈ 0.26, we see
that even states with relatively large values of n have life-
times τn exceeding tnow and thus contribute non-trivially
to Ωtot(tnow). Indeed, for our benchmark model, we find
that there are no fewer than seven distinct mass levels
contributing more than 0.01 to Ωtot(tnow) and no fewer
than ten distinct mass levels contributing more than 1%
of Ωtot(tnow).

It is also interesting to examine how these results vary
as a function of the ratio r/s which, as we have seen, gov-
erns the overall mass scales associated with these DDM
ensembles. The results are shown in Fig. 8, where we plot

the aggregate fractions Ω̂n(tnow)/Ωtot(tnow) for a variety
of different mass levels n as a function of r/s. As evident
in Fig. 8, the lighest state carries a larger and larger
fraction of the total abundance as r/s increases, result-
ing in scenarios which have smaller values of η and which
are therefore less DDM-like. By contrast, the lightest
state carries a smaller proportional fraction of the total
abundance as r/s decreases, and in fact may not even be
the dominant state for sufficiently small r/s. Indeed, for
r/s = 15, we find that all states carry relatively small
abundances, and it is actually the states at the n = 23
mass level which collectively carry the largest individ-
ual abundance at the present time. Such scenarios are
therefore extremely DDM-like.

Putting all the pieces together, we can summarize our
results as in Figs. 9 and 10. Fig. 9 consists of a sequence
of dark-matter pie charts showing the relative contribu-
tions to Ωtot(tnow) = ΩCDM ≈ 0.26 from the lowest-lying
states for r = 3.5 (top row) and r = 4 (bottom row),
with r/s = {25, 30, 50, 65} across each row. Within each
pie, we illustrate the corresponding collective abundances

Ω̂n(tnow) as separate slices, one for each value of n, while
the numbers listed within each slice indicate the number
of individual states ĝn contributing at that mass level.
For each pie chart we have also shown the corresponding
values of M0, Tc, and Ms. For these calculations we have
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FIG. 7: The level-by-level aggregate cosmological abundances Ω̂n ≡ gnΩn of our benchmark DDM model, plotted as functions
of time for a series of low-lying mass levels n. We see that the lightest states decay later and carry the largest cosmological
abundances, while the heavier states decay earlier and carry smaller cosmological abundances — a key feature of the DDM
framework. As required, the sum of all abundance contributions at t = tnow is Ωtot(tnow) = ΩCDM ≈ 0.26.
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FIG. 8: Left panel : Present-time aggregate abundance fractions Ω̂n(tnow)/Ωtot(tnow), plotted as functions of r/s. As r/s
increases, the n = 0 state carries an increasingly large fraction of the total abundance, resulting in scenarios which have smaller
values of η and which are therefore less DDM-like. By contrast, for smaller r/s, we see that the lightest state carries a smaller
proportional fraction of the total abundance and in fact may not even be the dominant state for sufficiently small r/s. Right
panel : A zoom-in of the left panel, illustrating how the level n of the states carrying the largest collective abundance Ωn(tnow)
shifts as a function of r/s. For example, for r/s = 15, all states carry relatively small abundances and it is actually the n = 23
states which collectively carry the largest collective abundance at the present time. Such scenarios are therefore extremely
DDM-like.

used the input values TMRE = 0.7756 eV, gMRE = 3.36,
and gc = {10.75, 61.75, 106.75, 106.75}, respectively, for
r/s = {25, 30, 50, 65}. We have also assumed our stan-

dard benchmark values B = 5/4, C = 2π/
√

3, and
τ0 = 109tnow.

Let us begin by focusing on the “benchmark” pie chart

within Fig. 9 corresponding to r = 3.5 and r/s = 30. For
this pie chart, we see that the largest pie slice corresponds
to the abundance contribution from the n = 0 mass level,
while the successively smaller pie slices progressing in a
clockwise fashion within the pie chart correspond to the
abundance contributions from successively higher mass
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levels. For this pie chart, we find that M0 ≈ 532 GeV,
Tc ≈ 18 GeV, and Ms ≈ 152 GeV. Note that this value
for Ms is in agreement with the Ms contours shown in
Fig. 3. We also see geometrically from this pie chart that
η ≈ 0.72, in agreement with the results shown in Figs. 3,
4, and 6.

Given this, we can now investigate how this benchmark
pie chart deforms as a function of r/s and r. Results are
illustrated in the other pie charts shown in Fig. 9. We
see in general that increasing r from 3.5 to 4.0 (i.e., pass-
ing from the top row of pie charts in Fig. 9 to the bot-
tom row) has the net effect of shifting cosmological abun-
dance away from the ground state, thereby increasing η
and generally making each pie slice smaller while simul-
taneously lowering the corresponding mass scales. This
is in complete accord with the results shown in Fig. 3.
Likewise, decreasing or increasing r/s (i.e., moving left
or right along either row) has the effect of increasing
or decreasing η while decreasing or increasing our cor-
responding mass scales. Indeed, we see that the vari-
able r/s allows us to interpolate between two extremes:
traditional ensembles with high mass scales at large r/s
versus DDM-like ensembles with smaller mass scales at
small r/s. We further observe that for sufficiently small
r/s, the largest pie slice is no longer the n = 0 slice
(labelled ‘1’ in each pie chart) — as r/s decreases, this
honor gradually shifts towards the pie slices correspond-
ing to higher mass levels. This is in accordance with the
results in Fig. 8.

Fig. 10 is similar to the top row of Fig. 9, except that
we have now increased our values of C and B to

√
2π

and B = 3/2, respectively. These new values maintain
cint = 0 and correspond to the D⊥ = 3 scalar string.
These changes in C and B increase the degeneracies ĝn
of states at each mass level, with the new values in-
dicated within the corresponding pie slices. Although
the cosmological abundances per state are not affected
by the changes in C and B, these increased degenera-
cies result in ensembles which are even more DDM-like
and which have correspondingly smaller mass scales than
those along the top row of Fig. 9. These results are con-
sistent with those shown in Fig. 4.

We see, then, that a tremendous variety of DDM en-
sembles exist which have the two fundamental features
outlined in the Introduction — Regge trajectories and
exponentially rising degeneracies of states. These en-
sembles are consistent with our look-back and weff con-
straints, and thus satisfy the zeroth-order constraints
that may be imposed on such ensembles on the basis of
their total energy densities and equations of state alone.
We also observe an important feature, a inverse corre-
lation between the tower fraction η (which governs the
extent to which our ensemble is truly DDM-like) and
the magnitude of its underlying mass scales. Indeed, we
have seen that while traditional ensembles typically have
high corresponding mass scales, our ensembles become
increasingly DDM-like for lower mass scales — all while
remaining consistent with our look-back and weff con-

straints. These observations will likely be an important
guide and ingredient in any future attempts to build re-
alistic dark-matter models of this type.

VI. CONCLUSIONS

In this paper, we have investigated the properties of a
hitherto-unexplored class of DDM ensembles whose con-
stituents are the composite states which emerge in the
confining phase of a strongly-coupled dark sector. In en-
sembles of this sort, the masses of the constituent par-
ticles lie along well-defined Regge trajectories and the
density of states within the ensemble grows exponentially
as a function of the constituent-particle mass. This ex-
ponential growth is ultimately compensated by a Boltz-
mann suppression factor in the primordial abundances
of the individual constituents, resulting in a finite total
energy density Ωtot(t). We also showed that such ensem-
bles can naturally exhibit a balancing between lifetimes
and cosmological abundances of the sort required by the
DDM framework.

For each such ensemble, we calculated the correspond-
ing effective equation-of-state parameter weff(t) as well
as the tower fraction η(t). We also imposed a num-
ber of zeroth-order model-independent phenomenologi-
cal constraints which follow directly from knowledge of
Ωtot(t), weff(t), and η(t). In general, we found that the
imposition of such constraints tends to introduce corre-
lations between the different underlying variables which
parametrize our DDM ensembles, so that an increase in
one variable (such as, e.g., the exponential rate of growth
in the state degeneracies) requires a corresponding shift
in another variable (in this case, an increase in the life-
time of the lightest state in the ensemble, as indicated in
the right panel of Fig. 5). Perhaps one of our most im-
portant results is the existence of an inverse correlation
between the tower fraction η(t) associated with a given a
DDM ensemble and its corresponding fundamental mass
scales, so that the present-day cosmological abundance of
the dark sector must be distributed across an increasing
number of different states in the ensemble as these fun-
damental mass scales are dialed from the Planck scale
down to the GeV scale.

We are certainly not the first to consider dark-matter
scenarios in which the dark matter is composite. Indeed,
within the context of traditional dark-matter models, it
has been appreciated for some time that the dark-matter
particle could be a composite state. For example, the
lightest technibaryon in technicolor theories was long ago
identified as a promising dark-matter candidate [42, 43],
and mechanisms [44] were advanced by which this parti-
cle could be rendered sufficiently light so as to be phe-
nomenologically viable. Indeed, several explicit mod-
els [45] have been developed along these lines. Other
more exotic baryon-like composites have also been ad-
vanced as potential dark-matter candidates [46]. Lattice
studies of baryon-like states in the confining phases of
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both SU(3) and SU(4) gauge theories have also been
performed [47–49].

A variety of scenarios in which a long-lived meson-like
state which appears in the confining phase of a strongly-
coupled hidden sector have been developed as well (for
a review see, e.g., Ref. [50]). These include scenarios
in which the dark-matter particle is a pseudo-Nambu-
Goldstone boson (PNGB) stabilized by a dark-sector
analogue of flavor symmetry [51–55] or G-parity [56], or
alternatively by some other symmetry of the theory with
no SM analogue [57–61]. Complementary lattice stud-
ies of strongly-coupled dark-sector scenarios in which the
dark-matter candidate is a PNGB have been performed
as well [62, 63]. Scenarios in which the dark-matter can-
didate is not a PNGB, but rather a bound state of one
heavy quark and one light quark, have also received re-
cent attention [64–66], primarily due to the non-standard
direct-detection phenomenology to which they give rise,
as have scenarios in which the dark-matter candidate is
a bound state of heavy quarks alone [67]. More general
studies of composite hidden-sector theories which give
rise to meson-like or baryon-like dark-matter candidates
within different regions of parameter space have also been
performed [68, 69].

Composite hidden-sector states consisting of non-
Abelian gauge fields alone (so-called “glueball” states)
have also long been recognized as promising dark-matter
candidates [70, 71] — a possibility which has received re-
newed attention [72, 73] as well. Indeed, hidden sectors
involving cosmologically stable dark glueball states arise
naturally in a variety string constructions [74, 75], as well
as in certain anomaly-mediated supersymmetry-breaking
scenarios [76].

In addition, the possibility that composite states in the
dark sector could themselves form bound states (so-called
“dark nuclei”) has also been studied [77–80], as has the
possibility that these nuclei themselves could combine to
form dark “atoms” or even dark “molecules” [81, 82]. In-
deed, lattice studies [77, 83] corroborate the existence of
stable dark nuclei states even within simple, two-flavor
models with SU(2) as the confining gauge group. In
such models, a dark-sector equivalent of BBN serves as
the mechanism for abundance generation. Such models
can have interesting phenomenological consequences, es-
pecially in the regime in which a significant fraction of
the dark-matter abundance is contributed by nuclei with
large nucleon numbers [84, 85].

Composite dark-matter models are interesting from a
phenomenological perspective as well. For example, the
states of a strongly-coupled hidden sector provide a nat-
ural context [86] for strongly-interacting massive particle
(SIMP) dark matter [87, 88] models, in which 3 → 2
processes rather than 2 → 2 processes play a dominant
role in determining the dark-matter abundance. Indeed,
a number of explicit models along these lines have been
constructed [89–92]. One of the most interesting ramifi-
cations of SIMP models is that they naturally give rise
to dark-matter self-interactions with cross-sections suffi-

ciently large that dark-matter scattering can have an ob-
servable impact on structure formation [93]. Such com-
posite dark-matter models can have other phenomeno-
logical consequences as well, both at indirect-detection
experiments [94, 95] and at colliders [96–99]. Finally, the
presence of additional non-Abelian gauge sectors, each
with their own analogue of the QCD Θ-angle, could have
potential implications for the physics of axions and axion-
like particles [100].

While all of these represent theoretically viable possi-
bilities for the dark sector, the dark ensemble we have
considered in this paper is unique for several important
reasons. In traditional composite dark-matter models, it
is usually a single bound state (usually the lightest bound
state) which serves as the primary dark-matter candi-
date and which therefore carries the full dark-matter
abundance ΩCDM. While there may be several other
dark states to which this bound state couples — and
which may play a role in determining the abundance
of the dark-matter candidate — it is nevertheless true
that only one (or a few) composite states carry the dark-
matter abundance ΩCDM and thereby play a significant
role in dark-sector phenomenology. By contrast, within
the DDM framework, the dark-matter abundance is po-
tentially spread across a relatively large set of composite
states with various masses and lifetimes. Thus the usual
required stability of the traditional dark-matter candi-
date is not a required feature of the DDM ensemble,
thereby allowing the associated dark-matter abundance
ΩCDM(t) and dark-matter equation-of-state parameter
weff(t) to vary with time — even during the current,
matter-dominated era.

Moreover, because the DDM framework requires an
enlarged viewpoint in which the entire spectrum of com-
posite states are potentially relevant for determining
the properties of the dark sector, features that describe
the entire composite spectrum suddenly become relevant
for determining dark-sector phenomenology — features
which would not have been relevant for previous stud-
ies within more traditional frameworks. These features
include the fact that the masses of such bound states
actually lie along Regge trajectories, and that the den-
sities of such bound states experience a Hagedorn-like
exponential growth as a function of mass. Indeed, these
features do not play a role within traditional studies of
composite dark states, but they have been the corner-
stones of the analysis we have presented here. In this
context, we note that a similar approach was also adopted
in Ref. [84] with regard to ensembles of dark nuclei whose
abundances are generated via a dark-sector analogue of
BBN. This is indeed another context in which the full
ensemble of dark-sector states plays an important role in
dark-matter phenomenology.

Given the initial steps presented here, there are many
avenues for future research. For example, in this paper we
have primarily focused on the phenomenology associated
with the “sweet-spot” region in Eq. (5.3), as this region
gives rise to a rich spectrum of associated mass scales and
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DDM-like behaviors. However, other regions may also be
relevant for different situations, including the case of dark
ensembles emerging from the bulk sectors of actual criti-
cal Type I string theories. Indeed, such theories typically
have significantly larger central charges and values of D⊥
than those corresponding to the D⊥ = 2 flux tube, and
thus correspond to values of (B,C) which are very far
from the “benchmark” values in Eq. (5.2). Such strings
also likely correspond to values of (r, s) which are far
from those in Eq. (5.3). Likewise, in our analysis we have
taken κ = 1 and ξ = 3. Although these simple choices
were well-motivated and conservative, it would certainly
be interesting to explore the consequences of alternative
choices. It would also be of interest to explore the rami-
fications of relaxing some of the approximations we have
made in our analysis. These include the “instantaneous
freeze-out” approximation that underpins the Boltzmann
suppression factor in Eq. (3.1), as well as our implicit as-
sumption that the Hubble expansion within which our
calculations have taken place is unaffected by potential
gravitational backreaction from our continually evolving
dark sector. While these approximations may certainly
be justified to first order, a more refined calculation is still
capable of altering our results numerically if not qualita-
tively.

It would also be interesting to subject the DDM ensem-
bles we have studied here to more detailed phenomeno-
logical constraints. The constraints we have studied here,
such as our look-back and weff constraints, are those that
follow directly (and in a completely model-independent
manner) from knowledge of Ωtot(t) and weff(t) alone, and
as such we have seen that they are sufficient to rule out
vast regions of parameter space. It is nevertheless true
that a plethora of additional constraints could be formu-
lated once a particular scenario with a particular particle
content is specified, and that imposing such additional
constraints could potentially narrow our viable parame-
ter space still further.

Finally, and perhaps most importantly, in this paper

we have assumed that the effects of intra-ensemble decays
on the decay widths of the ensemble constituents are neg-
ligible. Such an assumption is certainly consistent with
our other assumptions about the structure of the theory.
In general, following our string-based approach to un-
derstanding the dyamics of these bound-state flux tubes,
we may regard the strength of the interactions among
the different dark hadrons in our DDM model as being
governed by an additional parameter, a so-called “string
coupling” gs, which we have not yet specified but which
does not impact any of the results we have presented
thus far. In general, gs can be different from the cou-
pling which governs the decays of our ensemble states to
SM states and which is thus embedded within τ0. In an
actual string construction, the value of gs is determined
by the vacuum expectation value (VEV) of the dilaton
field, but the dynamics that determines this VEV is not
well understood. In general, however, intra-ensemble de-
cays will provide an additional contribution to the total
decay widths Γn, especially for the heavier ensemble con-
stituents, and the decays of these heavier constituents can
serve as an additional source for the abundances of the
lighter constituents. The effects of such intra-ensemble
decays will be discussed in more detail in Ref. [103].
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