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We study the reconstruction of the cosmic rotation power spectrum produced by parity-violating
physics, with an eye to ongoing and near future cosmic microwave background (CMB) experiments
such as BICEP Array, CMBS4, LiteBIRD and Simons Observatory. In addition to the inflation-
ary gravitational waves and gravitational lensing, measurements of other various effects on CMB
polarization open new window into the early universe. One of these is anisotropies of the cosmic
polarization rotation which probes the Chern-Simons term generally predicted by string theory.
The anisotropies of the cosmic rotation are also generated by the primordial magnetism and in the
Standard-Model Extention framework. The cosmic rotation anisotropies can be reconstructed as
quadratic in CMB anisotropies. However, the power of the reconstructed cosmic rotation is a CMB
four-point correlation and is not directly related to the cosmic-rotation power spectrum. Under-
standing all contributions in the four-point correlation is required to extract the cosmic rotation
signal. Assuming inflationary motivated cosmic-rotation models, we employ simulation to quantify
each contribution to the four-point correlation, and find that 1) a secondary contraction of the
trispectrum increases the total signal-to-noise, 2) a bias from the lensing-induced trispectrum is
significant compared to the statistical errors for e.g. LiteBIRD and CMBS4-like experiments, 3) the
use of a realization-dependent estimator decreases the statistical errors by 10-20%, depending on
experimental specifications, and 4) other higher order contributions are negligible at least for near
future experiments.

I. INTRODUCTION

One of the most important goals in cosmic microwave
background (CMB) polarization cosmology is to detect
the B-mode polarization from the inflationary gravita-
tional waves (GWs). Multiple CMB experiments have
been searching for evidence of the inflationary GWs. The
current best upper bound on the amplitude of the infla-
tionary GWs is obtained as r < 0.07 (2σ) by BICEP2 /
Keck Array (hereafter BK) [1]. Still there is no evidence
of the inflationary GWs.

In addition to the inflationary GWs, theories in the
early universe can be tested through various observa-
tional effects on CMB polarization. Measurements of the
polarization rotation angle (cosmic rotation) are known
to be a unique probe of new physics in the early uni-
verse containing a pseudo-scalar Nambu-Goldstone bo-
son coupled with photons by the Chern-Simons electro-
magnetic term (e.g. [2–5]). Such theory is known to
be a generic prediction of string theory and detection
of the pseudo-scalar fields provides implications for fun-
damental physics (for review, see e.g. [6] and references
therein). The presence of the pseudo-scalar fields leads to
the cosmic birefringence and the CMB polarization angle,
α, is rotated. Multiple studies have discussed the fluctu-
ations of the pseudo-scalar fields which produce spatial
variation in α (e.g. [7–9]).

The cosmic-rotation measurement can be also used to
probe the effect of the Faraday rotation by the primor-
dial magnetic fields (PMFs) (e.g. [10, 11]). While PMFs
are also constrained by the fact that they produce vector
and tensor perturbations and generate B-mode spectrum
[12], the cosmic rotation induced by the Faraday rota-

tion is sensitive to the flat spectrum (lower value of the
spectral index) [13] and its direct measurement provides
a complementary test of PMFs [14].

Ref. [15] recently show that the cosmic rotation is gen-
erated by the Standard-Model Extension which has a
parity-violating term.

In CMB observations, the cosmic rotation of the CMB
Q and U maps are described as (e.g. [16])

[Q̆± Ŭ ](n̂) = e±2iα(n̂)[Q± U ](n̂) . (1)

The cosmic rotation produces non-zero correlations be-
tween temperature and B mode, and also between E
and B modes [17]. Anisotropies of the cosmic rotation
are induced by inhomogeneous pseudo-scalar fields and
create mode mixing between E and B modes which is
similar to the gravitational lensing. The cosmic rota-
tion anisotropies can be reconstructed from CMB maps
through the mixing between different Fourier modes [18].

The cosmic rotation has been measured by mul-
tiple CMB experiments. The uniform cosmic rota-
tion has been constrained as e.g. α = −0.36 ±
1.24(stat.) ± 1.5(sys.) [deg] by WMAP [19], and α =
0.35 ± 0.05(stat.) ± 0.28(sys.) [deg] recently by Planck
[20]. The anisotropic cosmic rotation has also been con-
strained by multiple studies (e.g. [7, 9, 21]). The cur-
rent tightest upper bound on the amplitude of the scale-
invariant rotation spectrum is L(L+1)CααL /(2π) . 1deg2

(2σ) by POLARBEAR collaboration (2015) [22] (here
CααL and L denote the cosmic rotation spectrum and
multipole, respectively). There are still no evidence of
the cosmic rotation, and future CMB polarization ex-
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periments such as BICEP Array [23], CMBS4 1, Simons
Observatory 2 and LiteBIRD [24] will probe the cosmic
rotation by significantly improving their sensitivity to
CMB polarization. In these future experiments, the mea-
surement of the uniform rotation is expected to suffer
from the significant systematics uncertainties, and the
anisotropies of the cosmic rotation would be an alter-
native probe to explore the parity-violating physics and
primordial magnetism from CMB observations.

In this paper, we discuss the reconstruction of
the cosmic-rotation power spectrum and specify non-
negligible contributions to the reconstructed power spec-
trum with a numerical simulation. While the method
to reconstruct the cosmic-rotation fluctuations has been
discussed with multiple works (e.g. [18, 25]), the recon-
struction of the cosmic-rotation power spectrum is not
well explored. Similar to the gravitational lensing, the
power spectrum of the estimator, α̂, is not equivalent to
the cosmic-rotation power spectrum, CααL , i.e. the power
of α̂ is the four-point correlation of the observed CMB.
The most significant contribution comes from the dis-
connected part of the four-point correlation (hereafter,
disconnected bias) which is included in the above data
analysis [9, 22]. There are, however, further contribu-
tions to the reconstructed power spectrum which must
be taken into account in ongoing and near future high-
sensitivity polarization experiments. For example, a sec-
ondary contraction of the trispectrum in the presence of
the cosmic rotation produces a non-trivial contribution
(hereafter, N1 term). The N1 term is considered as a
signal of the cosmic rotation and the expected signal-to-
noise could be enhanced compared to ignoring the N1
term. The lensing-induced trispectrum could also con-
tribute as a bias (hereafter, lensing bias). The study of
quantifying these contributions is required to estimate
the cosmic-rotation power spectrum in high-sensitivity
polarization experiments.

This paper is organized as follows. In Sec. II we sum-
marize the cosmic rotation anisotropies. In Sec. III we
study the reconstruction of the cosmic rotation power
spectrum. Sec. IV is devoted to summary and conclu-
sion.

Throughout this paper, we assume a flat ΛCDM model
with the best-fit parameters from Planck [26].

II. COSMIC ROTATION ANISOTROPIES

A. Anisotropies of the cosmic rotation from
parity-violating physics and primordial magnetism

String theory generally predicts the presence of a
pseudo-scalar Nambu-Goldstone boson coupled to the

1 https://cmb-s4.org/CMB-S4workshops/index.php/Main_Page
2 https://simonsobservatory.org/

Chern-Simons electro-magnetic term described as (e.g.
[6])

L 3 a

2fa
Fµν F̃

µν . (2)

Here a is the pseudo-scalar fields, fa is the coupling con-
stant, Fµν is the field strength of the electro-magnetic

fields, F̃µν is the dual of Fµν . The presence of the
pseudo-scalar fields leads to the cosmic birefringence and
the CMB polarization angle is rotated as α = ∆a/fa
where ∆a is the change of the pseudo-scalar fields along
photon’s trajectory (e.g. [3]). If a is effectively massless
during inflation, the power spectrum of α in the large-
scale limit is given as [8]

L(L+ 1)

2π
CααL =

(
HI

2πfa

)2

. (3)

Here HI is the Hubble expansion rate in the inflationary
era.

Another candidate of the origin of the cosmic rotation
is the PMFs. The cosmic rotation induced by the PMFs
is given as [10, 11]

α =
3

16π2eν2

∫
dl · τ̇b , (4)

where ν is the observed frequency, e is the elementary
charge, τ̇ is the differential optical depth, b is the co-
moving magnetic field strength, and dl is the comoving
length element along the trajectory of CMB photons. Al-
though the cosmic-rotation power spectrum depends on
the model of the PMFs, the nearly scale-invariant spec-
trum of the PMFs generated at the inflation leads to ap-
proximately the scale-invariant form of Eq. (3) [27]. The
relation between the effective magnetic field strength and
the rotation power spectrum is then given as [28]

L(L+ 1)

2π
CααL = 2.3× 10−5

(
30GHz

ν

)4(
B

1 nG

)2

. (5)

Since the cosmic rotation induced by the above two sce-
narios has the scale-invariant spectrum, this paper focus
on the rotation power spectrum whose shape is described
as

L(L+ 1)

2π
CααL = ACB × 10−5 . (6)

Here, we introduce an amplitude parameter of the cosmic
rotation power spectrum, ACB . ACB < 33 (95% C.L.)
is the current upper bound from Ref. [22]. ACB ∼ O(1)
can be tested by the BK experiment with data up to 2014
and we set ACB = 1 in our analysis.

B. Mode coupling induced by anisotropic cosmic
rotation

The reconstruction of the anisotropic cosmic rotation
from CMB maps is based on the fact that anisotropies of

https://cmb-s4.org/CMB-S4workshops/index.php/Main_Page
https://simonsobservatory.org/
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the cosmic rotation produces off-diagonal mode coupling
between the E- and B- modes. An estimator of the cos-
mic rotation anisotropies, α(n̂), is given as a quadratic
in CMB [18]. Here we summarize the method for recon-
structing α(n̂) from the CMB polarization. Hereafter,
we use L for the multipoles of the α and ` for the E and
B modes.

The E and B modes are defined using the Stokes Q
and U maps as

E` ± iB` = −
∫

d2n̂ e−in̂·` [Q± iU ](n̂)e∓2iϕ` . (7)

Here we denote ϕ` as the angle of the multipole vector,
`, measured from the Stokes Q axis. From Eq. (1), the
rotated E and B modes are given by (e.g., [18])

Ĕ` = Ẽ` +

∫
d2L

(2π)2
2αL

× [Ẽ`−L cos 2ϕ`−L,` + B̃`−L sin 2ϕ`−L,`] (8)

B̆` = B̃` +

∫
d2L

(2π)2
2αL

× [Ẽ`−L sin 2ϕ`−L,` − B̃`−L cos 2ϕ`−L,`] , (9)

where ϕ`1,`2 ≡ ϕ`1 − ϕ`2

If the higher order of α is ignored, the rotated CMB
map of Eq. (1) is given by

[Q̆± Ŭ ](n̂) ' [1± 2iα(n̂)][Q± U ](n̂) . (10)

The rotation-induced mode-coupling between E and B
modes are then given as [25]

〈ĔLB̆`−L〉CMB = wα`,Lα` . (11)

Here the ensemble average, 〈· · ·〉CMB, operates on unro-
tated CMB anisotropies under a fixed realization of the
cosmic rotation fields, α. The weight functions is then
given by

wαL,` = 2(C̃EE
` − C̃BB

|L−`|) cos 2ϕ`,L−` , (12)

where C̃EE
` and C̃BB

` are the lensed E- and B-mode power
spectrum, respectively. In this paper, we only consider
the mode coupling between E and B modes since the EB
estimator is the best to constrain the cosmic rotation [29].

C. Quadratic estimator of anisotropic cosmic
rotation

Eq. (11) motivates the following estimator for the ro-
tation angle [25]

α̂L = AαL(αL − 〈αL〉) , (13)

where 〈· · ·〉 is the ensemble average over realizations of
observed E and B modes and αL is the unnormalized

EB estimator,

αL =

∫
d2`

(2π)2
wαL,`

Ê`

ĈEE
`

B̂L−`

ĈBB
|L−`|

. (14)

Here wαL,` is the weight function given at Eq. (12). The

second term, 〈αL〉, is a correction for the mean-field bias
and is usually estimated from the simulations. The quan-

tities, Ê and B̂, are the observed E and B modes which
contain the instrumental noise. Their power spectra are

denoted as ĈEE
` and ĈBB

` , respectively. The quantity AL

is the quadratic estimator normalization and is given as

AαL =

[∫
d2`

(2π)2
w2

L,`

ĈEE
` ĈBB

|L−`|

]−1
. (15)

The weight function of α is orthogonal to that of the
lensing potential and the estimator of Eq. (13) is not
biased by the presence of the lensing at linear order [18].
As discussed in Sec. III, however, the contributions of
the lensing effect appear in the power spectrum of the
estimator.

D. An efficient form of computing the estimator

Before exploring the reconstruction of the cosmic ro-
tation power spectrum, here we describe an algorithm to
efficiently compute the quadratic estimator.

Let us consider an efficient form of the normalization
given in Eq. (15). The normalization of Eq. (15) is ex-
pressed as a convolution of two quantities and is rewritten
as

1

AαL
= 2

3∑
i=1

∫
d2n̂ e−in̂·L <[AE,i(n̂) ·AB,i(n̂)] . (16)

where the quantities AE,i(n̂) and AB,i(n̂) are the inverse
Fourier transform of the following quantities:

AE,1
` = v`

(C̃EE
` )2

ĈEE
`

, AB,1
` = v∗`

1

ĈBB
`

, (17)

AE,2
` = v`

1

ĈEE
`

, AB,2
` = v∗`

(C̃BB
` )2

ĈBB
`

, (18)

AE,3
` = −2v`

C̃EE
`

ĈEE
`

, AB,3
` = v∗`

C̃BB
`

ĈBB
`

, (19)

with v` = (1, e4iϕ`). Compared to directly compute the
integral in Eq. (15), the above normalization is evaluated
more efficiently by employing the Fast Fourier transform.

The unnormalized quadratic estimator of Eq. (14) is
also described as a convolution. Similar to the quadratic
estimator of the gravitational lensing potential, an effi-
cient form of Eq. (14) is given as

αL = 2
∑
i=1,2

∫
d2n̂ e−in̂·`<[XE,i(n̂)XB,i(n̂)] . (20)
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Here, the quantities XE,i(n̂) and XB,i(n̂) are the inverse
Fourier transform of

XE,1
` = C̃EE

` e2iϕ`
Ê`

ĈEE
`

, (21)

XB,2
` = e−2iϕ`

B̂`

ĈBB
`

, (22)

XE,2
` = e2iϕ`

Ê`

ĈEE
`

, (23)

XB,2
` = −C̃BB

` e−2iϕ`
B̂`

ĈBB
`

. (24)

In this paper, we apply the above algorithm to recon-
struct the cosmic rotation anisotropies.

III. UNDERSTANDING RECONSTRUCTED
COSMIC-ROTATION POWER SPECTRUM

The reconstructed cosmic-rotation fields, α̂, can be
used to extract the cosmic rotation spectrum CααL
through its power spectrum, Cα̂α̂L . However, the prop-
erties of the reconstructed power spectrum is not well
studied especially in the case of high-sensitivity polariza-
tion experiments. Here we first discuss important con-
tributions to the reconstructed power spectrum and then
show impact of these contributions on the reconstructed
power spectrum.

A. Methodology of cosmic-rotation power
reconstruction

Since we work with the quadratic estimator for the
cosmic rotation anisotropies, the power spectrum of the
reconstructed cosmic rotation is the four-point correla-
tion. The contributions to this four-point correlation can
be broken into disconnected and connected (trispectrum)
parts as

〈|α̂L|2〉 = 〈|α̂L|2〉D + 〈|α̂L|2〉C . (25)

1. Disconnected bias

The most significant contribution comes from the dis-
connected piece of the four-point correlation (discon-
nected bias) which consists of the two-point correlations.
Similar to the lensing case [30], this contribution is given
analytically by

〈|α̂L|2〉D = A2
L

∫
d2`1
(2π)2

∫
d2`2
(2π)2

wαL,`1w
α
L,`2

× (〈E`1E`2〉〈BL−`1BL−`2〉
+ 〈E`1BL−`2〉〈BL−`1E`2〉

=
1

2
〈|α̂E1,B2

L + α̂E2,B1

L |2〉1,2 . (26)

Here the index i = 1,2 denotes one of two sets of inde-
pendent realizations and 〈· · ·〉i is the ensemble average
over the ith set of realizations.

In practical analysis, the disconnected bias should be
accurately estimated as this term is the most significant
source of the four-point correlation. More accurate esti-
mate of the disconnected bias can be realized by replacing
part of the simulated E and B modes with the observed
values. In this realization-dependent method, the discon-
nected bias is estimated as

(2π)2δD0 N̂
(0)
L ≡ 〈|α̂E,B1

L + α̂E1,B
L |2〉1

− 1

2
〈|α̂E1,B2

L + α̂E2,B1

L |2〉1,2 . (27)

Here δD is the delta function in the Fourier space. The
above estimator is derived as the optimal trispectrum
estimator analogues to the lensing case [31] (see ap-
pendix A for derivation). Realization-dependent meth-
ods are useful to suppress spurious off-diagonal elements
in the covariance matrix of the power spectrum estimates
and decrease the statistical uncertainties (e.g. [32]). In
addition, Eq. (27) is less sensitive to errors in covari-
ance compared to the other approaches [31]. We use
the realization-dependent method to estimate the discon-
nected bias in the following analysis.

2. N1 term

Similar to the lensing reconstruction case [33], the
trispectrum of Eq. (25) is expressed as

〈|α̂L|2〉C = (2π)2δD0 (CααL +N
(1)
L ) +O[(CααL )2] . (28)

Additional contributions N
(1)
L is usually referred to as the

N1 term. The N1 term in the cosmic rotation is given by

(2π)2δD0 N
(1)
L ≡ A2

L

∫
d2`1
(2π)2

∫
d2`2
(2π)2

wαL,`1w
α
L,`2

× 〈〈E`1E`2〉α〈BL−`1BL−`2〉α
+ 〈E`1BL−`2〉α〈BL−`1E`2〉α〉 . (29)

Here 〈· · ·〉a denotes the ensemble average with a fixed
realization of α and 〈· · ·〉 is the usual ensemble average.
The N1 term can be efficiently computed by simulation
as

(2π)2δD0 N
(1)
L =

1

2
〈|α̂E1,B2

L + α̂E2,B1

L |2〉α

− 1

2
〈|α̂E1,B2

L + α̂E2,B1

L |2〉1,2 . (30)

Here the two set of realizations has the same realization
of α but with uncorrelated un-rotated CMB.

3. Higher-order term

The term from higher orders of CααL could additionaly
generate the connected part of the four-point correlation
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Eq. (28). The impact of the higher-order terms on the
power spectrum estimation would be smaller than that of
the N1 term, but the accuracy of the lensing reconstruc-
tion from the Planck experiment is already affected by
the second order of the lensing potential power spectrum
[34]. We examine the impact of the higher-order term
with the simulation described below.

4. Lensing bias

The presence of the lensing effect does not biases the
estimator of the cosmic rotation anisotropies [18]. How-
ever, in the power spectrum analysis, the lensing-induced
trispectrum leads to a bias in the power spectrum of the
cosmic rotation estimator (hereafter, lensing bias). The
lensing signals have been detected by multiple CMB ex-
periments and the impact of the lensing bias should be
studied in the cosmic rotation measurement. This bias
can be estimated using the standard lensed-ΛCDM sim-
ulations.

B. Simulation of CMB map

To explore the impact of the above contributions, we
employ the following simulated CMB maps.

We first compute CMB and lensing-potential angu-
lar power spectra using CAMB [35] and generate unlensed
CMB and lensing-potential maps as a random Gaussian
fields. We assume 200◦ × 200◦ square maps. The CMB
maps are then remapped by the lensing potential based
on the algorithm of Ref. [36].

In addition to the lensed-CMB map, we also create a
map including rotation as follows. We generate random
fields of anisotropic rotation maps, α(n̂), (where n̂ de-
notes a position) whose power spectrum is described by
Eq. (6) with ACB = 1 The CMB polarization maps are
then rotated by α(n̂) according to Eq. (1). We denote
these maps as “rotated lensed-CMB” map.

The instrumental noise is generated as a random Gaus-
sian fields with the following power spectrum [37]:

N` ≡
(

∆P

TCMB

)2

exp

[
`(`+ 1)θ2

8 ln 2

]
. (31)

TCMB = 2.7K is the CMB mean temperature. The quan-
tity θ is beam size and ∆P is the noise level of a polar-
ization map. We consider two cases of the instrumental
noise; 1) LiteBIRD (and BK) like noise, i.e., ∆P = 3µK-
arcmin with θ = 30 arcmin, and 2) CMB-S4 like noise,
i.e., ∆P = 1µK-arcmin with θ = 3 arcmin.

FIG. 1: Cross power spectrum between the input and recon-
structed cosmic-rotation fluctuations, divided by the input
cosmic-rotation spectrum with the Monte Carlo errors (the
standard deviation of 100 realizations divided by

√
100). The

rotated CMB map is created according to Eq. (10) (linear)
or Eq. (1) (full). The “lensed weight” and “rotated-lensed
weight” denote the cases with the lensed and rotated-lensed
CMB spectra in the weight function of Eq. (12), respectively.

C. Results of the power spectrum reconstruction

1. Unbiasedness

We first test the unbiasedness of the cosmic-rotation
quadratic estimator given by Eq. (13). The reconstructed
cosmic rotation anisotropies are cross-correlated with the
input cosmic rotation fluctuations. This cross-power
spectrum is then compared with the input cosmic rota-
tion spectrum. The cross spectrum is given analytically
by

(2π)2δD0 C
α̂α
L =

∫
d2`

(2π)2
wαL,`

ĈEE
` ĈBB

|L−`|

〈Ê`B̂L−`〉ααL

= (2π)2δD0 C
αα
L +O[(CααL )2] . (32)

If the CMB map is rotated by Eq. (10), the above cross
spectrum contains up to third order of α and is equivalent
to the input spectrum.

Fig. 1 shows the cross power spectrum between re-
constructed and input cosmic rotation fluctuations. We
show two cases; rotating the polarization map accord-
ing to Eq. (10) (linear) or Eq. (1) (full). We assume the
CMBS4-like noise and use E and B modes up to ` = 3000
in the reconstruction. In the linear case, the cross power
spectrum is in good agreement with the input spectrum.
If the higher order of α is included (full), we find that the
cross power spectrum is smaller than the input spectrum
at sub-percent level. To reduce the higher-order contri-
butions, we follow the similar treatment of the lensing
power reconstruction [38], i.e., we use the rotated-lensed
power spectrum to the weight function in Eq. (12). The
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FIG. 2: Angular power spectrum of the reconstructed cosmic rotation with subtraction of the disconnected bias, N1 term and
lensing bias (black points) with the 1σ full-sky measured error in the reconstruction for one realization (Left: BK/LiteBIRD-like
noise, Right: CMBS4-like noise). We use 100 realizations of the simulated maps and the Monte Carlo error is 10% of the error
bars. We also show the disconnected bias (blue), N1 term (red), lensing bias (green), and the input rotation power spectrum
(magenta). The dashed line shows the negative value.

FIG. 3: Angular power spectrum of the reconstructed cosmic rotation after the subtraction of the disconnected bias, N1 term,
lensing bias and input cosmic-rotation power spectrum (black) with the 1σ full-sky measured error for one realization (Left:
BK/LiteBIRD-like noise, Right: CMBS4-like noise). We use 100 realizations of the simulated maps and the Monte Carlo error
is 10% of the error bars. We also show the case with the lensed CMB power spectrum in the weight function of Eq. (12) (lensed
weight).

result is shown as “rotated-lensed weight”. The corrected
cross-power spectrum becomes close to the input spec-
trum. As we show below, although the impact of the
higher-order rotation on the power spectrum reconstruc-
tion is not significant, we use the rotated-lensed power
spectrum in the baseline analysis.

2. Reconstructed power spectrum

Next we discuss the cosmic-rotation power spectrum
reconstruction employing the simulated CMB maps de-
scribed above. We perform the power spectrum recon-
struction in the two cases of the instrumental noise spec-
ification, i.e. the BK/LiteBIRD-like noise and CMBS4-
like noise.

Fig. 2 shows the power spectrum of the reconstructed
cosmic rotation after subtracting the disconnected bias,
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FIG. 4: The variance of the reconstructed rotation spectrum
with the realization-dependent disconnected bias (RDN0) di-
vided by that with the analytic disconnected bias (N0). We
show the cases with the BK/LiteBIRD-like and CMBS4-like
noise.

N1 term and lensing bias, i.e.,

ĈααL = Cα̂α̂L −N (0)
L −N (1)

L −N lens
L . (33)

Here N lens
L is the lensing bias. This de-biased power spec-

trum is in good agreement with the input rotation power
spectrum in both the BK/LiteBIRD-like and CMBS4-
like noise cases. We also show the significance of the
disconnected bias (blue), N1 term (red) and lensing bias
(green). The most dominant contribution comes from the
disconnected bias. The N1 term dominates over the in-
put rotation spectrum at smaller scales (L = 200 for the
BK/LiteBIRD-like noise and L = 800 for the CMBS4-
like noise). Although the lensing bias is smaller than
the disconnected bias in both the BK/LiteBIRD-like and
CMBS4-like noise cases, the impact of the lensing bias is
significant compared to the error bars. Note that the sta-
tistical errors are computed for 200 × 200 deg2, and the
impact of the lensing bias is reduced for CMB observa-
tions at a small patch of sky (e.g. BK).

Fig. 3 shows difference between the reconstructed
power spectrum shown in Fig. 2 and the input cosmic-

rotation power spectrum, ĈααL − CααL . The difference
is consistent with zero within at least sub percent level.
This results mean that the reconstructed power spectrum
is described by the sum of the disconnected bias, N1 term,
lensing bias and the input cosmic-rotation spectrum. We
also show that the choice of the weight function does
not significantly affect the power spectrum reconstruc-
tion, and the reconstructed power spectrum is in good
agreement with the sum of the disconnected bias, N1
term, lensing bias and the input cosmic-rotation spec-
trum. This result implies that, unlike the lensing recon-

FIG. 5: Test of the gaussian variance. We show the
variances of the reconstructed rotation spectrum with the
realization-dependent disconnected bias (RDN0) and with
the analytic disconnected bias (N0). They are divided by

2(ĈααL )2. The black lines show the case when the recon-
structed power spectrum is described as a gaussian statis-
tics. Both the BK/LiteBIRD-like (solid) and CMBS4-like
noise cases (dashed) are plotted.

struction, the higher-order biases such as the “N2 bias”
[32] is negligible in the experimental specifications con-
sidered here.

3. Realization-dependent disconnected bias and variance

The use of the realization-dependent disconnected bias
could reduce the statistical uncertainties of the cosmic
rotation power spectrum by suppressing the off-diagonal
covariance of the reconstructed rotation power spectrum.
Fig. 4 shows the variance in the case with the realization-
dependent disconnected bias (RDN0) divided by that
with the realization-independent disconnected bias (N0).
We show the cases with the BK/LiteBIRD-like noise and
CMBS4-like noise. In both cases, using the realization-
dependent disconnected bias, the statistical uncertainty
of the reconstructed power spectrum decreases and is im-
proved by roughly 10-20% compared to the case with the
disconnected bias estimated from the simulation alone.

Fig. 5 shows a test of the gaussian variance by plotting
the following quantity:

Nb ≡
Var(Ĉααb )2

2(Ĉααb )2
. (34)

If the reconstructed power spectrum is Gaussian, Nb co-
incides with the number of multipoles at the bth bin.
We find that the realization-dependent bias reduces the
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FIG. 6: Cumulative signal-to-noise ratio of the cosmic-rotation power spectrum amplitude with and without the N1 term
(Left: BK/LiteBIRD-like noise, Right: CMBS4-like noise). We show the cases with different minimum multipole of the rotation
spectrum.

non-Gaussian variance of the reconstructed power spec-
trum. The variance of the reconstructed power spectrum
with the realization-dependent bias is consistent with the
gaussian variance.

4. Signal-to-noise

Since the N1 term is considered as a signal, here we
discuss the benefit of adding the N1 term to constrain the
comic rotation. We quantify the impact of the inclusion
of the N1 term on the cosmic rotation constraints by the
following signal-to-noise ratio:

(
S

N

)
<b

=

√√√√∑
b

(Cααb +N
(1)
b )2

Var(Cα̂α̂b )2
. (35)

Here b denotes the bin center of the multipole binning and
Var(Cα̂α̂b ) is the variance of the reconstructed rotation
spectrum obtained from simulations.

Fig. 6 plots the above signal-to-noise with and without
the N1 term. In practice, if CMB data is obtained at
some region of sky, CMB analysis is usually performed
within the partial sky region and the minimum multipole
we can extract is limited. Therefore, we also show the
impact of the minimum multipole on the signal-to-noise
with varying the minimum multipoles of Cααb . Since the
cosmic rotation power spectrum becomes large at low
multipoles, the signal-to-noise decreases as the minimum
multipole becomes large. The impact of the N1 term
becomes significant as the minimum multipole increases.
The results indicate that, in ongoing and future CMB
experiments, to quantify the constraints on the overall
amplitude of the cosmic rotation anisotropies, the N1
term is needed to be included.

IV. SUMMARY

We have investigated the reconstruction of the cos-
mic rotation power spectrum from CMB polarization
anisotropies, assuming the ongoing and future CMB ex-
periments such as BK, CMBS4 and LiteBIRD. The cos-
mic rotation power spectrum is assumed to be the scale-
invariant spectrum which is motivated by the inflation-
ary origin of the cosmic rotation anisotropies. We found
that the N1 term dominates over the original input ro-
tation spectrum at small scales and increases the total
signal-to-noise of the amplitudes of the cosmic rotation
power spectrum. The lensing bias is significant com-
pared to the statistical error in the case of LiteBIRD
and CMBS4, but the impact of the lensing bias becomes
negligible for CMB observations at a small patch of sky.
The higher-order biases beyond the N1 term is found to
be not significant. We showed that the sum of the dis-
connected bias, N1 term, lensing bias and input rotation
spectrum is in good agreement with the power spectrum
of the quadratic estimator. We also found that the use
of the realization-dependent disconnected bias decreases
the statistical uncertainties of the reconstructed rotation
power spectrum by 10-20% depending on experimental
specifications.

For high-sensitivity CMB experiments, the lensing B
mode degrades the sensitivity to the cosmic rotation [25].
Since such high-sensitivity experiments can significantly
suppress the contributions of the lensing B mode by the
so-called delensing technique (e.g. [39]). However, the B
mode delensing at small scales suffers from the delensing
bias [40], and demonstration of the cosmic rotation re-
construction from the delensed B modes is required. We
leave the analysis including the delensing to future work.
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Appendix A: Disconnected bias estimation

Here we briefly summarize the derivation of the realization-dependent disconnected bias in the case of the cosmic
rotation as described in Eq. (27). The derivation is similar to that in the case of the lensing reconstruction which is
given at e.g. appendix of Ref. [41].

The disconnected bias of Eq. (27) emerges natually when deriving the optimal trispectrum estimator from the
CMB polarization likelihood. The optimal trispectrum estimator is derived from the Edgeworth expansion of the
CMB polarization likelihood;

L ∝

[
4∏
i=1

∫
d2`i
(2π)2

]
〈E`1B`2E`3B`4〉C

∂

∂E`1

∂

∂B`2

∂

∂E`3

∂

∂B`4

Lg . (A1)

Here Lg is the Gaussian likelihood of the E and B mode. The trispectrum induced by the cosmic rotation is given as

〈E`1B`2E`3B`4〉C ∝ δD`1+`2+`3+`4 [wα`1+`2,`1w
α
`3+`4,`3C

αα
|`1+`2| + wα`1+`4,`1w

α
`2+`3,`2C

αα
|`1+`4|] , (A2)

where wαL,` is defined in Eq. (12). The approximate formula of the estimator which is numerically tractable is
proportional to the derivative of the log-likelihood with respect to CααL . The derivative is given by

∂L
∂CααL

∝

[
2∏
i=1

∫
d2`i
(2π)2

]
wαL,`1w

α
−L,`2

∂

∂E`1

∂

∂BL−`1

∂

∂E`2

∂

∂B−L−`2
Lg '

(
|αEBL |2 −

N̂α
L

(AαL)2

)
Lg . (A3)

After correcting the normalization, the above equations leads to an approximate formula of the optimal estimator for
CααL with the subtraction of the disconnected bias.
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