
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Stochastic gravitational waves associated with the
formation of primordial black holes

Tomohiro Nakama, Joseph Silk, and Marc Kamionkowski
Phys. Rev. D 95, 043511 — Published 15 February 2017

DOI: 10.1103/PhysRevD.95.043511

http://dx.doi.org/10.1103/PhysRevD.95.043511


Stochastic gravitational waves associated with

the formation of primordial black holes

Tomohiro Nakama1, Joseph Silk1,2,3 and Marc Kamionkowski1

1 Department of Physics and Astronomy,

Johns Hopkins University, Baltimore, Maryland 21218, USA

2 Institut d’Astrophysique de Paris, UMR 7095, CNRS,

UPMC Univ. Paris VI, 98 bis Boulevard Arago, 75014 Paris, France

3 BIPAC, Department of Physics,

University of Oxford, Keble Road, Oxford OX1 3RH, UK

Abstract

Primordial black hole (PBH) mergers have been proposed as an explanation for the gravitational wave
events detected by the LIGO collaboration. Such PBHs may be formed in the early Universe as a result of
the collapse of extremely rare high-sigma peaks of primordial fluctuations on small scales, as long as the
amplitude of primordial perturbations on small scales is enhanced significantly relative to the amplitude of
perturbations observed on large scales. One consequence of these small-scale perturbations is generation
of stochastic gravitational waves that arise at second order in scalar perturbations, mostly before the
formation of the PBHs. These induced gravitational waves have been shown, assuming gaussian initial
conditions, to be comparable to the current limits from the European Pulsar Timing Array, severely
restricting this scenario. We show, however, that models with enhanced fluctuation amplitudes typically
involve non-gaussian initial conditions. With such initial conditions, the current limits from pulsar timing
can be evaded. The amplitude of the induced gravitational-wave background can be larger or smaller
than the stochastic gravitational-wave background from supermassive black hole binaries.



1 Introduction

The LIGO collaboration recently detected gravitational waves (GWs) from merging black holes (BHs) [1–5],
and the first event of these originated from BHs with masses of ∼ 30M⊙. Although there are a number
of stellar-astrophysical origins for these BHs [6–14], it is also possible [15–17] that they may be primordial
black holes (PBHs) [18–21]. A relatively large population of PBHs might have been formed as a result of a
spike in the spectrum of the initial curvature perturbations [22–31], which leads to the presence of extremely
rare peaks collapsing to PBHs during, e.g., the radiation-dominated era. Various tests of this early-Universe
scenario for PBHs have been discussed in [32–43]. References such as [44,45] provide additional observational
constraints on PBHs in general.

One of the interesting implications of this scenario for PBHs is the generation of a stochastic GW back-
ground at around their formation epoch (in addition to any stochastic background of higher frequencies from
the mergers of PBH binaries during the epoch of matter domination [46, 47]). The formation of a sufficient
number of PBHs would require, however [48–55], that the amplitude of primordial perturbations be con-
siderably enhanced on small scales relative to that observed on large scales [56]. In this case, a stochastic
GW background of relatively large amplitude is generated at second order in scalar perturbations when
they are on superhorizon scales (induced GWs) [57–70]. Furthermore, primordial fluctuations could lead to
the formation of shocks, from which GWs are also emitted [71]. This also leads to a large-amplitude GW
background if the RMS fluctuations are sufficiently large. For either induced GWs or GWs from shocks, a
global generation of GWs is considered; that is, GWs are emitted everywhere in the Universe, even though
overdensities collapsing to PBHs are extremely rare (see, e.g, [44]). In either case, the amplitude of these
global GWs are determined by the amplitude of primordial fluctuations. The frequency of GWs associated
with the formation of PBHs of ∼ 30M⊙ is observed to be roughly ∼ nHz due to the cosmic expansion,
and the predicted amplitude is already comparable to the current limits set by pulsar timing arrays, thus
excluding (apparently) the PBH scenario for the initial LIGO event, or at least the small-scale-spike scenario
for production of such PBHs.

In prior work, however, primordial fluctuations have been assumed to be gaussian. As we discuss below,
however, the inflationary physics that generates a spike in the power spectrum for primordial perturbations
is also likely to induce non-gaussianity on these small scales [24, 72]. Hence it is important to investigate
the effects of non-gaussianity on the generation of global GWs. To this end, we use some simple models of
non-gaussianity to illustrate how the GW amplitude can change. If we discard the assumption of gaussianity,
then the power-spectrum amplitude required to produce the same abundance of PBHs can be changed and,
in particular, reduced. As an extreme example, it has been shown [73] that the amplitude can be kept as
small as ∼ 10−4 of the standard scale-invariant spectrum in multi-field inflation models in [73]. There the
possibility to explain high-redshift supermassive black holes by PBHs formed by the collapse of primordial
perturbations was explored, without causing unacceptably large µ distortions to the frequency spectrum
of the cosmic microwave background. The suppression we explore here of the power-spectrum amplitude
and resulting GW amplitude by non-gaussianity is quite similar. We focus explicitly on induced GWs, but
note [71] that the amplitude of GWs from shocks should be similar, but at somewhat lower frequency.

This paper is constructed as follows. In §II we revisit the relation between the mass of PBHs and the
typical frequency of GWs associated with their formation. In §III we discuss the dependence of induced GWs
on non-gaussianity using several models for non-gaussianity, comparing induced GWs with current pulsar
timing limits, a prediction for GWs from supermassive black hole binaries and also for the future sensitivity
of the Square Kilometer Array, and we conclude in §IV.

2 Mass-frequency relation revisited

As will be shown, the relation between the mass of PBHs and the typical frequency of GWs associated with
their formation is crucial to determine whether they are probed by pulsar timing. Hence we revisit this issue
closely in the following.

The mass of PBHs can be approximately evaluated by the horizon mass at the moment when the fluc-
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tuations reenter the horizon. In cosmology, the horizon reentry is usually defined by k = aH , and let us
therefore write

M = γ
4π

3
(ρrH

−3)k=aH , (1)

where γ = O(1) parameterizes the deviation from the horizon mass. On the other hand, in numerical
simulations the horizon reentry has often been defined by the moment when the radius of the overdensity
coincides with the Hubble radius [74–79], and hence let us introduce γ′ to write

M = γ′
4π

3
(ρrH

−3)ar=H−1 . (2)

How best to relate these two definitions of horizon reentry is not trivial. If one simply uses r = k−1, then
both definitions coincide (γ = γ′), but it might be more reasonable to assume the radius is one-fourth of the
wavelength: r = λ/4 = (π/2)k−1. Suppose one assumes r = αk−1, then since t(ar = H−1) = α2t(k = aH)
and ρrH

−3 ∝ H−1 ∝ t, γ = α2γ′.
There have been attempts to calculate the masses of PBHs by numerical simulations. One of the difficulties

in determining the masses of PBHs by numerical simulations is the appearance of a singularity, and a
simulation has to be terminated before the mass asymptotes to a constant value if one adopts a slicing facing
the singularity, such as the one used in [80]. One way to circumvent this problem is to use what is called null
(or observer time) slicing [74–77,79,81–84] under spherical symmetry, in which the spacetime is sliced along
null geodesics of hypothetical photons emitted from the center and escaping the formed BH horizon to reach
spatial infinity, as illustrated in Fig. 8 of Ref. [79]. With this slicing, one can follow the formation of the BH
horizon and subsequent accretion until the mass converges, as is shown in, e.g., Fig. 9 of Ref. [79].

If the amplitude is extremely close to threshold, the perturbation enters into a quasi-stable, relatively
long-lived intermediate state, during which a substantial fraction of matter is blown away from the central
overdensity as a relativistic wind [76]. If eventually the perturbation collapses to form a PBH from an
intermediate state, its mass can be substantially smaller than the horizon mass (γ′ ≪ 1), and the resultant
mass follows a scaling relation of the form M ∝ (δ − δth)

γ (critical phenomenon) [76,77,85,86]. In Ref. [85],
the critical phenomenon was investigated using null slicing, but they provide initial conditions at around
horizon reentry and hence they are contaminated by unrealistic decaying modes as noted in [87]. Indeed, in
Ref. [87], another slicing which also avoids the singularity was used focusing on growing modes, and they
found that the mass depends on the profile and amplitude, but their simulations were terminated before the
mass fully converged.

We assume that most PBHs form from peaks sufficiently above the threshold, so that γ′ is not significantly
smaller than unity.1 According to Ref. [76] γ′ & 1 for (δ− δth) & 0.02 for their initial conditions. An example
shown in Fig. 9 of Ref. [79] corresponds to a compensated2 [91], gaussian-like initial profile, and also to
a growing mode. In addition this case is sufficiently above the threshold and not affected by the critical
phenomenon. For this example γ′ ≃ 1.2, which translates to γ ≃ 3., if we use α = π/2.

Next, we rederive the relation between the mass of PBHs and the wavenumber of fluctuations collapsing
to them, and also the typical frequency of GWs associated with their formation, leaving γ of (1) unspecified:
In this context, the horizon mass during the radiation-dominated era is related to that at the moment of the
matter-radiation equality:

Meq =
4π

3
2ρeqH

−3
eq =

8πΩrρcr
3aeqk3eq

≃ 2.8× 1017M⊙, (3)

where ρcr = 3H2
0/8πG and we have used Ωr ≃ 8 × 10−5 [92], zeq ≃ 3400, keq ≃ 0.01Mpc−1 and H0 ≃

1This is the case at least if primordial fluctuations follow gaussian statistics [88, 89]. Though the probability density is
larger at threshold than at larger amplitudes since the probability density is rapidly decreasing there, the amplitude has to
be extremely close to the threshold in order for the critical phenomenon to be important, and also PBH masses are small for
such cases and hence they are relatively unimportant. The critical phenomenon would be relatively more important when the
probability density decreases more slowly around the threshold than in the gaussian case.

2Uncompensated profiles would probably lead to larger masses [87, 90].
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67kms−1Mpc−1 [56]. Then the mass of PBHs is related to the temperature as

M

Meq
= γ

(

ρr
2ρeq

)−1/2

=
√
2γ

(

g

geq

)−1/2 (
T

Teq

)−2

, M ≃ 1.5× 105γM⊙

( g

10.75

)−1/2
(

T

1MeV

)−2

, (4)

where g is the number of degrees of freedom of relativistic species, and Teq ≃ zeqT0 ≃ 9300K (0.80eV) with
T0 ≃ 2.726K [93]. For 1MeV . T . 100MeV, g ≃ 10.75 (see, e.g., Ref. [94] for a recent calculation),
and this range of temperatures corresponds to PBH masses of 15M⊙ . M . 1.5 × 105M⊙. Since the
temperature of radiation evolves according to the conservation of entropy, i.e., ga3T 3 = const. and hence
ρr ∝ gT 4 ∝ g−1/3a−4.3 Using this relation we find

M

Meq
=

γ

2

ρ

ρeq

(

Heq

H

)3

=
γ

2

(

geq
g

)1/3 (
keq
k

)2 a2eqHeq

a2H
. (5)

Since a2eqHeq/a
2H =

√
2(g/geq)

1/6,

M =
γ√
2
Meq

(

geq
g

)1/6 (
keq
k

)2

≃ 17γM⊙

( g

10.75

)−1/6
(

k

106Mpc−1

)−2

. (6)

This can be inverted as

k =

(

γ√
2

)1/2

keq

(

geq
g

)1/12 (
Meq

M

)1/2

≃ 7.5× 105γ1/2Mpc−1
( g

10.75

)−1/12
(

M

30M⊙

)−1/2

, (7)

or in terms of frequency f = ck/2π,

f ≃ 1.2γ1/2nHz
( g

10.75

)−1/12
(

M

30M⊙

)−1/2

. (8)

That is, the typical frequency of GWs associated with the formation of PBHs of ∼ 30M⊙ is observed to be ∼
nHz, due to the cosmic expansion, and hence they are likely to be probed by pulsar timing, as will be shown
below.

Instead of Meq, one can also relate the mass of PBHs to the current horizon mass M0 = 4πρcr/(3H0)
3 ≃

4.7× 1022M⊙ as follows. From the conservation of entropy,

ρr =

(

g0
g

)1/3

a−4Ωrρcr, (9)

then,

M =
4πγ

3a
k−3

(

g0
g

)1/3

Ωrρcr. (10)

The scale factor here can be eliminated by

H2 =

(

k

a

)2

=
8πG

3

(

g0
g

)1/3

a−4Ωrρcr =

(

g0
g

)1/3

a−4ΩrH
2
0 , (11)

a−1 = k

(

g

g0

)1/6

Ω−1/2
r H−1

0 . (12)

Then

M =
4πγ

3

(

g0
g

)1/6
Ω

1/2
r ρcr
H0k2

= γΩ1/2
r M0

(

g0
g

)1/6 (
H0

k

)2

. (13)

3Strictly speaking, the numbers of degrees of freedom defined in terms of entropy and energy should be distinguished, and
they start to slightly deviate at around the epoch of electron-positron annihilation: the former becomes ≃ 3.9 whereas the latter
becomes ≃ 3.4 [94]. Since the difference is not significant and also the dependence on g is relatively weak, we use geq = 3.5.
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3 Dependence of induced GWs on non-gaussianity

Let us use the following class of non-gaussian probability density functions (PDFs), introduced in Ref. [73]4:

P (ζ) =
1

2
√
2σ̃Γ (1 + 1/p)

exp

[

−
( |ζ|√

2σ̃

)p]

, (14)

where σ̃ and p are positive. This function satisfies
∫∞

−∞
P (ζ)dζ = 1 and reduces to a gaussian PDF when

p = 2. When p < 2, the PDF decreases more slowly than the gaussian case: that is, the high-sigma tail is
enhanced. The dispersion of ζ is

σ2 ≡
∫ ∞

−∞

ζ2P (ζ)dζ =
2Γ(1 + 3/p)

3Γ(1 + 1/p)
σ̃2, (15)

where Γ(a) is a gamma function. In particular, σ = σ̃ when p = 2, as it should be. The abundance of PBHs
is

β =

∫ ∞

ζth

P (ζ)dζ =
Γ(1/p, 2−p/2(ζth/σ̃)

p)

2pΓ(1 + 1/p)
, (16)

where ζth is the threshold for the PBH formation5, for which we take ζth = 0.5, and Γ(a, z) is an incomplete
gamma function. This can be solved for σ̃ as

σ̃ =
2−1/2ζth

Q−1(1/p, 2β)1/p
, (17)

where Q−1(a, z) is the inverse of the regularized incomplete gamma function Q(a, z) ≡ Γ(a, z)/Γ(a), namely,
z = Q−1(a, s) if s = Q(a, z). Let us consider the scenario of Ref. [15] and fix β to account for the entire
dark matter by PBHs. The initial abundance β is related to the current abundance ΩPBH, normalized by
the current critical density, as

β =
ρPBH

ρr
=

(

g

g0

)1/3

a
ΩPBH

Ωr
. (18)

By eliminating the scale factor via

M =
γ

2G

(

3

8πGρr

)1/2

= γΩ−1/2
r a2M0

(

g

g0

)1/6

, (19)

we find

β = γ−1/2

(

g

g0

)1/4
ΩPBH

Ω
3/4
r

(

M

M0

)1/2

≃ 1.2× 10−8γ−1/2
( g

10.75

)1/4
(

ΩPBH

0.3

)(

M

30M⊙

)1/2

. (20)

When β is fixed, σ (or the ratio ζth/σ) is smaller (larger) for a smaller value of p, as is shown in the top panel
of Fig. 1, which can be obtained from Eqs. (15) and (17). See also Fig. 7 of Ref. [73], which shows PDFs with
different values of p for a fixed β. Since induced GWs are roughly estimated by Ωgw(f) ∼ σ4Ωr [63]

6, they are
smaller (larger) when p < 2 (p > 2) than the gaussian case when β is fixed. This is very similar to what was
described in Ref. [73], which sought to evade constraints from spectral distortions of the cosmic microwave
background while producing massive PBHs to account for supermassive black holes found at high redshifts.

4For general p, derivatives at ζ = 0 are discontinuous and hence this PDF would strictly speaking be unrealistic. Nonetheless,
this model is sufficient and convenient for our purposes to illustrate how induced GWs depend on non-gaussianity, when the PBH
formation probability is fixed to account for the entire dark matter. Other examples of non-gaussianity will also be discussed
below.

5The threshold for PBH formation has been discussed in the literature [21,95], and strictly speaking the formation condition
depends on the perturbation profile and hence cannot be described by a single parameter [75, 79, 87].

6The peak amplitude of induced GWs depends on the spectrum of the curvature perturbations; if the width of the latter is
narrow, the peak amplitude is larger than this simple estimation [63].
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Figure 1: Top: The ratio ζth/σ as a function of p, controlling deviation from a gaussian PDF in Eq. (14),
with β = 10−8. When p = 2 the PDF is gaussian, for which ζth/σ ≃ 6. Center: Dependence of global or
induced GWs on p. Local gravitational waves due to non-spherical collapse are also shown, which do not
depend on non-gaussianity. Current limits from European Pulsar Timing Array [96] (PTA), a prediction of
stochastic gravitational waves from supermassive black hole (SMBH) binaries and a predicted sensitivity of
the Square Kilometer Array (SKA) [97] are also shown. Bottom: The dependence of induced GWs on β.
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In the two-field inflation models discussed there, the RMS was kept sufficiently small so that the dissipation
of global fluctuations does not produce substantial spectral distortions. The dependence of induced GWs on
p is shown in the center panel of Fig. 1, along with other issues described in the following.

Although we have discussed induced GWs from global fluctuations, determined by the RMS amplitude,
the locally largest GWs due to generation on superhorizon scales and shock formation are expected where
high-sigma peaks collapse to form PBHs. Another related mechanism is GWs due to non-spherical collapse
(see also Ref. [98]). These GWs are locally largest but are suppressed overall due to the extreme rareness of
collapsing peaks. The contributions of the three mechanisms would not be hugely different, and hence we focus
on GWs from non-spherical collapse as an example. It will be convenient to write Ωgw ∼ fβΩr ∼ 10−12f ,
where f < 1 is the efficiency factor or the ratio of the energy of GWs to the mass of PBHs. The precise
determination of f would be challenging, but even for the maximal case of f = 1, these GWs are smaller
than what are expected from supermassive black holes, and hence the precise determination of the efficiency
f is not crucial for our discussions. With this in mind, the efficiency f may roughly be given by the square of
ellipticity ǫ of collapsing overdensities (see e.g. [99]), and the ellipticity of high-sigma peaks may be ǫ ∼ 0.1,7

then f ∼ 0.01. What is shown in the center panel of Fig. 1 corresponds to this value as an example.
In Ref. [96], new limits are provided on stochastic GWs based on observations of six pulsars for 18 years by

the European Pulsar Timing Array. They show constraints on the GW spectrum assuming some power-law
spectrum, and also constraints at a series of discrete frequencies without assuming a power-law, which is more
suited for our purposes. The lowest frequency constrained there is (18 years)−1 ≃ 1.8 × 10−9Hz, at which
Ωgw . 3 × 10−9 (their Fig. 1), which is shown in the center panel of Fig. 1. This frequency approximately
corresponds to the PBH mass of ∼ 30M⊙ from (8)8, noting that the width of the GW spectrum is expected
to be on the same order as the peak frequency [63].9

We also show a predicted sensitivity for the Square Kilometer Array of Ωgw ∼ 10−12 as well as that of
stochastic GWs from binary supermassive black holes of Ωgw ∼ 10−10 shown in Ref. [97], where the latter is
based on Ref. [104, 105].

Though our estimates of induced GWs are crude, those for the case of gaussian fluctuations may already
be inconsistent with the existing upper limit from pulsar timing. In addition, some types of models with
non-gaussianity that reduce the ratio ζth/σ are also inconsistent. A moderate amount of non-gaussianity
seems to suffice to evade the existing upper limit, since the upper limits and induced GWs for the gaussian
case are comparable. Depending on the amount of non-gaussianity, induced GWs can still be larger than
those from supermassive black hole binaries. Even if in the future we were to observe stochastic GWs that
appear to be those from supermassive black hole binaries, we cannot fully exclude the possibility of a PBH
dark matter scenario, since in principle the amplitude of the induced GWs associated with PBH formation
can be made smaller depending on non-gaussianity, as shown in the center panel of Fig. 1. Current/future
data from pulsar timing should provide restrictions on models which predict PBHs of tens of solar masses.

The dependence on β of induced GWs is relatively weak (logarithmic), since the dependence of β on the
RMS, which determines induced GWs, is exponential. See the bottom panel of Fig. 1, which corresponds to
its center panel with different values of β. This shows that induced GWs are also useful to constrain scenarios

7Higher-sigma peaks, relevant to PBH formation, tend to be more spherically symmetric at least for a gaussian random
field [100], but still they cannot be completely spherically symmetric and estimating ǫ ∼ 0.1 may be reasonable. Though part
of Ref. [100] was recently extended to a chi-squared field in Ref. [101], to what extent this tendency about sphericity of peaks
holds for non-gaussian random fields is uncertain.

8This constrained mass is somewhat larger than what is given in [65], i.e., (0.03−10)M⊙ . This is thanks to more recent data
based on longer observations used in [96]. Future data would probe induced GWs associated with the formation of even more
massive PBHs: from (6) the PBH mass is related to the observation time T as

M = 98 γM⊙

( g

10.75

)−1/6
(

T

50 years

)2

. (21)

9When finalizing our work, we became aware of Refs. [102,103], which also discuss induced GWs associated with the formation
of solar-mass PBHs assuming gaussian fluctuations, potentially probed by pulsar timing. In Ref. [102] it was noted that if γ,
introduced in Eq. (1) of this paper, is ≃ 0.2, obtained in Ref. [21], and in addition if the GW spectrum is sufficiently steep, then
pulsar timing constraints can be evaded, while this is no longer the case if γ is larger, say γ ≃ 1. Similarly, in Ref. [103] the
spectra of induced GWs for several models and their observability by pulsar timing were discussed. In this paper we discuss a
different aspect of the problem: i.e., the effects of the non-gaussianity of primordial fluctuations.
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where PBHs constitute only part of the entire dark matter, such as the scenario of Ref. [16]. In contrast local
GWs are proportional to β.

One may also consider other types of non-gaussianity. For instance let us consider the following local
models of non-gaussianity, used in Ref. [106], restricting fNL, gNL > 0:

ζ = ζG +
3

5
fNL(ζ

2
G − σ2

G), (22)

ζ = ζG + gζ3G, g ≡ 9

25
gNL, (23)

where ζG is gaussian and its variance is 〈ζ2G〉 = σ2
G. Since 〈ζ4G〉 = 3σ4

G and 〈ζ6G〉 = 15σ6
G, the variance 〈ζ2〉 = σ2

of ζ for these models is

〈ζ2〉 = σ2
G + 2

(

3

5
fNL

)2

σ4
G, (24)

〈ζ2〉 = σ2
G + 6gσ4

G + 15g2σ6
G. (25)

In Ref. [106] the dependence of the PBH upper limits on the power spectrum of the primordial curvature
perturbations on non-gaussianity was investigated. They found that upper limits are tighter for larger positive
fNL and gNL. This is because the high-sigma tail is larger for these cases, and hence the variance of ζ is
smaller for a fixed β. Likewise, induced GWs are smaller when fixing β = 10−8 for fNL, gNL > 0. Like
Ref. [106] we are also interested in regimes where the non-gaussian terms of Eq. (22) and (23) are no longer
small corrections to the gaussian part and can dominate. We follow Ref. [106] to calculate the abundance
of PBHs for the above models of non-gaussianity10. When we fix β = 10−8, σ is determined, which then
determines induced GWs, but this time it depends on fNL or gNL. The dependence of the ratio of the
threshold to the RMS and induced GWs on fNL, gNL for β = 10−8 are shown in Figs. 2 and 3.

The behavior shown in the top panel of Fig. 2 can be understood as follows. From the plot one can
confirm that when fNL ≃ 65 (ζth/σ ≃ 19.2) the two terms in Eq. (24) are comparable, and this value
roughly coincides with the inflection point. When fNL is sufficiently larger than this value, the first gaussian
term becomes negligible. In this case the parameter fNL becomes no longer meaningful since redefining
(3fNL/5)

1/2ζG → ζG, ζ is written as ζ2G − σ2
G, and the PDF of ζ is a χ2 distribution and is controlled by

a single parameter σG. This explains the asymptotic behavior of the top panel of Fig. 2. In the large fNL

limit the abundance is calculated as β = erfc[(ζ̃th/2)
1/2], where erfc(x) is the complementary error function

and ζ̃th =
√
2ζth/σ + 1. Setting β = 10−8 this relation can be solved for the ratio as ζth/σ ≃ 22.5, which

approximately corresponds to the asymptotic value read off from the top panel of Fig. 2. The bottom panel of
Fig. 2 shows the corresponding dependence of induced GWs on fNL. Pulsar-timing constraints can be evaded
depending on fNL, and when fNL is sufficiently large, induced GWs can also be smaller than or comparable
to any prediction for supermassive-black-hole binaries.

The case of cubic non-gaussianity shown in Fig. 3 can also be understood similarly. When gNL ≃ 2000,
the first and second terms of Eq. (25) become comparable, and then the second and third terms become
comparable when 5g1/2ζth/[4

√
3(ζth/σ)] ≃ 1 or gNL ≃ 2 × 104, which roughly corresponds to the inflection

point. In the large gNL limit, redefining g1/3ζG → ζG, ζ = ζ3G, and the PDF of ζ as well as the abundance β
in this case is

P (ζ) =
dζ1/3

dζ

1√
2πσG

exp

[

−ζ2/3

2σ2
G

]

=
ζ−2/3

3
√
2πσG

exp

(

−ζ2/3

2σ2
G

)

, (26)

β =
1

2
erfc

[

1√
2

(

ζth

σ/
√
15

)1/3
]

. (27)

Once more, setting β = 10−8 we can solve for the ratio as ζth/σ ≃ 45.5, which approximately gives the
asymptotic value shown in the top panel of Fig. 3. For the case of cubic non-gaussianity the ratio ζth/σ can
be made larger, and hence Ωgw can be made smaller than quadratic non-gaussianity.

10The signs of the square roots of Eq. (37) of Ref. [106] should probably be flipped.
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One may also consider other types of non-gaussianity, such as those investigated in Ref. [107]. Higher
order terms are expected to make ζth/σ even larger, and hence Ωgw smaller. The PDF of Eq. (14) would

probably correspond to the PDF of ζ when it is written as some power of a gaussian variable, i.e., ζ ∼ ζ
2/p
G ,

very roughly. For comparison, the PDF of ζ = ζ2i−1
G , (i = 1, 2, 3, · · · ) is

P (ζ) =
ζ−2(i−1)/(2i−1)

(2i− 1)
√
2πσG

exp

[

−ζ2/(2i−1)

2σ2
G

]

, (28)

and the PDF of ζ = ζ2iG − 〈ζ2iG 〉 is

P (ζ) =
(ζ + 〈ζ2iG 〉)−(2i−1)/2i

i
√
2πσG

exp

[

− (ζ + 〈ζ2iG 〉)1/i
2σ2

G

]

. (29)

In addition, two-field-inflation models were recently discussed in Ref. [73]. These can produce PBHs
with a peaked mass spectrum while keeping the RMS sufficiently small. In this model, only a tiny fraction of
patches of some radius inside the current observable universe experience more expansion than elsewhere during
inflation, and consequently these patches can have large curvature perturbations and later collapse to form
PBHs during the radiation domination. Except for the presence of these rare patches with large curvature
perturbations, primordial fluctuations are almost scale invariant, hence the small RMS of σ2 ∼ 10−9. There
a possibility of generating PBHs massive enough to explain supermassive black holes without causing large
spectral distortions of the cosmic microwave background was discussed, but in principle producing PBHs of
tens of solar masses without generating large induced GWs should also be possible. Since σ2 ∼ 10−9, induced
GWs in that model are roughly estimated to be Ωgw ∼ 10−22.

4 Discussion

The formation of PBHs of ∼ 30M⊙ is likely to be associated with stochastic GWs of interesting frequencies
and amplitudes. This is partly because the RMS amplitudes of primordial fluctuations may be relatively
large, and in this case substantial GWs are generated at second order in scalar perturbations mostly before
horizon reentry. For instance, if we assume the full PBH dark matter scenario of [15] and gaussianity of
primordial fluctuations, these induced GWs are comparable to the current limits from pulsar timing arrays.
Naturally, the power-spectrum amplitude and hence induced-GW amplitude depend on non-gaussianity, and
we have investigated that dependence adopting examples of non-gaussianity from Refs. [73,106]. Depending
on non-gaussianity, current limits from pulsar timing can be evaded, and also induced GWs can be larger
or smaller than predictions for stochastic GWs from supermassive-black-hole binaries. Predicted frequency
spectra for induced GWs [62, 63] and stochastic GWs from supermassive black holes [96, 97, 104, 105] are in
general different and hence they could be distinguished in future experiments such as the Square Kilometer
Array, in principle. In the extreme example of Ref. [73], the power-spectrum amplitude is even as small as
the standard almost-scale-invariant spectrum seen on large scales, while generating an interesting amount
of PBHs. Existing/future data from pulsar timing will provide important restrictions on models which
predict the formation of PBHs of tens of solar masses. It would be worthwhile to regard constraints on
the abundance of PBHs from induced GWs as a conditional constraint, or more generally, induced GWs
provide joint constraints on the abundance of PBHs and non-gaussianity, similarly to the fact that the
absence of PBHs provides joint constraints on the power spectrum of primordial curvature perturbation and
non-gaussianity [106].

Though we have considered non-gaussian primordial fluctuations on small scales, the mechanism causing
small-scale fluctuations relevant to PBH formation and that causing large-scale fluctuations have to be
sufficiently decoupled, or PBH-scale and large-scale fluctuations are sufficiently uncorrelated, so as not to
generate unacceptably large PBH dark matter isocurvature perturbations on large scales [108, 109]. The
running-mass and axion-curvaton model were noted to be unaffected by this constraint [40]. Note that fNL

and gNL of this paper can be irrelevant to those constrained by this isocurvature effect [40, 108, 110], or
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Figure 2: Top: The dependence of the ratio ζth/σ on fNL of Eq. (22). Bottom: The dependence of induced
GWs on fNL.

9



0.1 10 1000 105 107

10

20

30

40

gNL

ζth/σ

↓PTA

SMBH

SKA

0.1 10 1000 105 107
10-13

10-12

10-11

10-10

10-9

gNL

Ωgw
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those constrained by the Planck collaboration [111]. One may also consider a burst of particle production
associated with some field coupled to the inflaton during inflation, well after large-scale fluctuations are
generated by quantum fluctuations of the inflaton, causing non-gaussian, large-amplitude fluctuations on
particular scales due to nonlinear interactions [30, 112–116]. In addition, Ref. [24] considered plateau-type
features in the inflaton potential, which also lead to a spike in the primordial spectrum, but the properties
of non-gaussianity in those models have been debated [72, 117].

When PBHs constitute only part of the entire dark matter, they are likely to be associated with a copious
production of dark matter minihalos as well [55], which may potentially be excluded by the absence of asso-
ciated annihilation signals [118] or their gravitational or dynamical effects. Nevertheless, an overproduction
of minihalos can also be evaded by non-gaussianity.

Higher-frequency global GWs associated with PBHs smaller than a solar mass can also be probed by space-
based and ground-based GW detectors [62–65]. See also [119] for sensitivity curves of various experiments.
Our discussions naturally apply to different masses of PBHs, that is, constraints on them from induced GWs
depend on primordial non-gaussianity. In addition, lower-frequency GWs may also be probed in the future
by lensing of 21-cm fluctuations [120]
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