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CMB and lensing reconstruction power spectra are powerful probes of cosmology. However they
are correlated, since the CMB power spectra are lensed and the lensing reconstruction is constructed
using CMB multipoles. We perform a full analysis of the auto- and cross-covariances, including
polarization power spectra and minimum variance lensing estimators, and compare with simula-
tions of idealized future CMB-S4 observations. Covariances sourced by fluctuations in the unlensed
CMB and instrumental noise can largely be removed by using a realization-dependent subtraction
of lensing reconstruction noise, leaving a relatively simple covariance model that is dominated by
lensing-induced terms and well described by a small number of principal components. The corre-
lations between the CMB and lensing power spectra will be detectable at the level of ~ 50 for a
CMB-S4 mission, and neglecting those could underestimate some parameter error bars by several
tens of percent. However we found that the inclusion of external priors or data sets to estimate
parameter error bars can make the impact of the correlations almost negligible.

I. INTRODUCTION

Gravitational lensing is the leading non-linear effect on the observed CMB anisotropies on intermediate and large
scales. The lensing smooths out acoustic peaks in the temperature and E-polarization power spectra, generates B-mode
polarization by lensing of E modes, and transfers power into the damping tail at very high ¢. The non-Gaussianity
of the signal can also be used to reconstruct the lensing potential, which then has its own power spectrum which can
be a powerful cosmological probe.

Several works [IH6] have studied the auto-covariance of the lensed CMB power spectra. The lensing-induced
peak smoothing correlates different multipoles, since when the lensing power fluctuates high the smoothing increases
everywhere: all the CMB power spectrum peaks go down, and all the troughs go up. However, lensing is only a small
part of the signal in the T and E-polarization, and quite a large number of lensing modes contribute (at ¢ < 100), so
the off-diagonal lensing covariance is small compared to the total. For the B-mode power spectrum the effect is much
more important, since (except possibly on very large scale) all of the signal is expected to be generated by lensing.

Since lensing reconstruction also probes the lensing modes more directly, it is not independent of the lensing effect
on the CMB power spectra. Furthermore, the four-point estimator for the lensing reconstruction power spectrum
uses the lensed CMB modes, so the reconstruction is also not independent of fluctuations in the unlensed CMB.
Both effects lead to covariance between the lensing reconstruction power and the observed CMB power spectra. The
correlations have been studied in detail by Ref. [6] for the CMB temperature, where the effect is shown to be small
at PLANCK sensitivity. However, future observations will have much higher signal-to-noise reconstructions, and will
also observe the CMB polarization at much higher sensitivity and resolution, so a full polarization analysis is timely
to avoid potential double counting of information. With high signal-to-noise lensing reconstructions, ultimately it
may be possible to delens most of the lensing contributions to the CMB power spectra, rendering the spectra more
independent [7]. However even with delensing there will be some residual correlation that needs to be modelled, and
for the foreseeable future it will remain an important consistency check that compatible results can be obtained using
the lensed spectra.

Considering just the lensing reconstruction alone, the complicated four-point nature of the estimator means that
there may be non-trivial correlations between multipoles that need to be modelled consistently to construct a reliable
likelihood. Refs. [6] [8, @] have shown that by using knowledge of the observed CMB power spectra it is possible to
use a realization-dependent reconstruction noise subtraction that removes the dominant off-diagonal correlation due
to fluctuations in the CMB power (and hence also much of the correlation with the CMB power). A generalization to
realistic cut sky filters, cross-spectra and polarization was used by the PLANCK analysis [10], and can be motivated
by the form of the optimal four-point estimator [6l [T, 12] in temperature.

As data accuracy improves, polarization will become relatively more important, as EB lensing reconstruction
becomes better than TT reconstruction once the noise levels are low enough due to the absence of intrinsic small
scale fluctuations in B. Ongoing CMB experiments already started to use minimum variance reconstructions of the
lensing potential power spectrum in intensity and in polarization, although the intensity measurement dominates
the total reconstruction so far [I0, 13 14]. Already ground-based high-sensitivity CMB experiments such as the



SIMONS ARRAYEL the South Pole Telescope (SPT—SG)EL the Advanced Atacama Cosmology Telescope (ADVACT)EL
and the SIMONS OBSERVATORYE| are under deployment and future ground-based facilities such as CMB-S4E|, as well
a possible space satellite, are being proposed to further increase the sensitivity at high resolution. See Fig. [I] for
the different levels of reconstruction noise in the case of a CMB-54 like experiment, which has sufficiently low noise
that the EB reconstruction contains most, but not all, of the information. In this paper, we focus on the minimum
variance reconstruction of the lensing potential power-spectrum, including semi-optimally weighted combinations of
all estimators between T, E, and B.

Our paper is organized as follows. We start with a review of CMB lensing and its reconstruction in Sec. [T to lay out
our notation. We then describe our analytical model for the auto- and cross-covariances of CMB and lensing power
spectra in Sec. [[TT] and compare it against simulations described in Sec. [[V] We discuss the impact of the correlations
on parameter estimation in Sec.|V] and conclude in Sec. Details of analytical calculations and numerical evaluations
are presented in a series of appendices.

II. CMB LENSING AND RECONSTRUCTION
A. Weak lensing of the CMB

At the epoch of recombination the Universe becomes mostly transparent to photons, and is well approximated as a
single source plane for CMB photons. Weak gravitational lensing by large-scale structure along the line of sight gives
small but important distortions to the primordial anisotropies of the CMB. We can relate the lensed CMB field X (1)
along direction i to the unlensed field X (i) by the deflection angle a(1):

X(h) = X (A + a(n)). (1)
where X € {T, E, B}. In the Born approximatiorﬂ we define the (projected) lensing potential ¢ as

. X fr(x —x) .

p(h) = -2 ; dx e Oe) e 00 (x,m0 — X), (2)
where ¥ is the (Weyl) gravitational potential. The deflection angle is given by the angular derivative of the lensing
potential, (i) = V¢(n). The lensing potential is an integrated measure of the mass distribution back to the moment
of recombination, including geometrical effects of the background through fx, which is the angular diameter distance
and encodes the relationship between comoving distance and angle.

The lensing potential can be decomposed into multipole moments

B(R) = e Y™ (D), (3)
m

and the effect of lensing on the unlensed CMB field can be expressed perturbatively by Taylor expanding Eq. [1]in the
harmonic domain [I8§]

X@m =X4m+5Xgm+52Xgm+..., (4)

where X, are the multipoles of the lensed CMB. High order terms (6™ Xy,,) are due to the effect of the lensing, and
are of the order O(¢™) and linear in the unlensed CMB field. For example, we have at first order [19]

m L 7 I >
0Xom = Z Z (=) b0, m, (m _77212 _;,Ll) sx Fooy05[€00100 Xogms + Beey 0y Xogms), (5)
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L http://cosmology.ucsd.edu/simonsarray.html

2 https://pole.uchicago.edu/spt/

3 https://act.princeton.edu

4 https://simonsobservatory.org

5 http://CMB-S4.org

6 Throughout this paper we neglect the corrections introduced by post-Born lensing and large-scale structure non-Gaussianity; these have
a negligible impact on the CMB power spectra [I5] [I6], though small biases in the quadratic estimators may ultimately need to be
separately corrected to avoid biased estimates [17].
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where we used parity complements 7' = 0, E = —B, and B = E. The expression for the second order term can be
found for example in Ref. [§]. The € and § parity terms are defined as

1+ (_1)€+€1+€2 1— (_1)€+€1+E2

5 , Betre, = 5 , (6)

€00100 =

and the function F' is defined as
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where sx is the spin number of CMB field X (zero for temperature, two for polarization)..

B. Lensing reconstruction

The lensing potential is approximately Gaussian and its power spectrum on the full sky is given by:

<¢€m¢z/m/> = 5@6/ 6mm’ ng (8)

We can define an estimator C‘f ? for this power spectrum as

¢
. 1 .
bb _ 2
C =g m§:_£|¢em| : (9)

We can reconstruc g{)gm from lensed CMB modes by noting that fixed lenses introduce correlations between CMB
modes X,Y € {T, E, B}. In the context of quadratic estimators [19H22], we have

) by 4
VLD DD DI (R 705 S o (10)
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where Af ¥ is a normalization factor which ensures that (bfwzf is unbiased

—1
A = e+ )3 o) (11)
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with the response functions f given by

Fb ™ sx Fovees (6%1@0@ + ﬂezlé20/2 ) + sy Foyery (Geelegcﬁy - ﬂzzlbcﬁy) (12)

For estimators involving polarization we use an approximation for the non-perturbative response function that follows
the form of the lowest-order perturbative result but uses lensed spectra in the expression for f (as written here,
denoted by a tilde, following Refs. [8, 23]). For unbiased results from very small-scale temperature we found it was

necessary to replace the lensed power spectra by CZVT, the lensed temperature-gradient power spectrum that appears
in the non-perturbative response function [23]@
The optimal weights g can be found by minimising the variance of the estimator for a fiducial modelﬂ

7 neglecting X — ¢ correlations.

8 To compute CgVT, we follow the full-sky derivation using correlation functions in the Appendix C in Ref. [23]. We discuss the magnitude
of this effect in Sec.

9 Sometimes it is useful to maintain separability of the individual polarization estimators, in which case the cross-correlation term in the
denominator can be dropped (as in the PLANCK analysis), with a small loss of optimality [22]. Here we use the full joint-analysis result.
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Here C is the fiducial expectation of the total lensed CMB power spectrum, including signal and the noise
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Crot® = CI 0V 4 0%y explt( + 1) ofyymn/(81n2)], (14)

and og(y is the level of instrumental noise (assumed homogeneous and isotropic), and opwpwm is the full-width half

maximum of the optical beam (assumed perfectly gaussian). The response functions are also evaluated with the

CXY/(ﬁd)

7 .

fiducial theoretical lensed power spectra Throughout this manuscript, we focus on a possible CMB-S4

configuration, and we set the level of noise in temperature to opp = 1.5 pK.arcmin (\/5 bigger in polarization), and
we assume a beam width ocpwhay = 3 arcmin. We restrict our analysis to 40% of the sky to take into account the
fact that CMB-S4 will not be able to cover the full sky from the ground. Furthermore, we restrict the multipole
range to the interval 20 < ¢ < 3000, to mimic the difficulty for a ground-based experiment to deal with foreground
contamination, atmosphere contamination, or masking effects. We later discuss the effect of extending the multipole
range. Using Eq. [9] and [I0} we obtain

J4
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for which the expectation value is given by

AL XY JZW

(G770 = NPV g op? 1 NOAYEY L o(1epr). (16)
where N(") is the reconstruction “noise” of order O([Cf¢]”). The first term is called the Gaussian reconstruction
noise (or disconnected part of the lensed CMB 4-point function), and its general expression is
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The NV bias (linear in the lensing potential spectrum) is taken into account following Refs. [10, 24]. Notice that
due to the complex form of this term, we compute it in the flat-sky approximation, which is valid on large angular
scales £ < 20. Given that in this work we are interested in small scales (£ > 100) and the influence of the N(*) bias is
mostly at small scales (see Fig. , we do not expect any difference with respect to the curved-sky result.
As for the temperature case [0l 18] (also see [25]), we can define realization-dependent noise-subtracted power spectra
by forming
A XY L ZW A XY ZW aN(O)’XYZW
e oo yoxvaw 5 O
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where the realization-dependent N ©).Xyzw (RDNO hereafter) is defined by replacing some of the lensed CMB spectra
in Eq. [17] by their observed realization:

aNéo)’XYZW
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FIG. 1. Minimum-variance lensing power spectrum measured from our set of simulations (red points with error bars) and
theoretical expectation (solid thin black line), assuming a possible CMB-S4 configuration with 1.5 uK.arcmin white noise for
temperature, 3 arcmin beam, multipole range 20 < ¢ < 3000 and sky coverage fsky = 0.4. The measurement is obtained by
subtracting the realization-dependent noise bias NOMV and analytical N(V"MV bias from the uncorrected measured lensing
power spectrum (black points with error bars). Coloured lines show the analytically-calculated N ©) biases for various combi-
nations (see Eq.[[7): TTTT (blue), EEEE (green), TETE (purple), TBTB (cyan), EBEB (red), and the minimum variance
noise biases (solid thick black line for NOMV and dashed thick black line for N<1)’MV).
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subtraction takes out fluctuations in

, but with the advantage that the realization-dependent

due to reconstruction noise ﬂuctuationb from the realization of the
Z(fid)

expt assumed), as can be seen

CMB and noise power (and also any leading error from inaccuracy in the fiducial Ce
from the first line of Eq. . In order to simplify notation, we define

XY ZW
@

A XY pZW ~(0),XY ZW
Cé RDNO = CZ) ¢ _Ne( ) (20)

where ./\/(O )XY ZW 2N(O) Xy zw N(O) XYZW © As we shall see later, the data-dependent noise mitigation of Eq.
also smlphﬁes covariances, removing almost all of the noise Correlatlons (see Sec. D At low noise levels iterative
estimators may be able to do significantly better than the simple quadratic estimators, but for simplicity we restrict
to quadratic estimator reconstruction here.

C. Minimum variance reconstruction

The reconstructed minimum variance (MV) lensing potential QBMV can be expressed in term of the individual
reconstructed lensing potentials ¢~XY as

=D wi ™ d (21)
XY



The summation over XY is done over the 6 pairs TT, EE, BB, TE, TB, and EB. The weights w*" depend on the
reconstruction noise [I9], and are given by

0),MV 0)—
Y _ Né ) Z(N§ ) I)XYZW’ (22)
zw

where N is a matrix containing all the individual reconstruction noises and the minimum variance reconstruction
noise given by

1
NOMY . (23)
¢ 0)—
Z (Né ) WXYZW
XY ZW
Using Eq. we obtain the minimum variance lensing potential power-spectrum
A¢I\/IV¢I\IV Z XY ZW A¢XY¢ZW
w; (24)

XY ZW

Building on this, the auto-covariance matrix for the reconstructed minimum variance lensing potential power spectrum
is given in terms of all individual covariances by

7 !’ ! ’
¢MV MV A¢MV I\/IV XY ZW XY¢ZW A¢X Y ¢Z w le/ Z W/
COV(C ,Cy, E E wy, Wy, cov(Ce ,Cp, Jwg, * wg, (25)

XY, ZW X'Y',Z'W'’

for XY, ZW, X"Y’, Z’W' running over {TT, EE,TE, BB,TB, EB}. We will include all covariance terms, including
off-diagonal contributions (see Sec. [[II C)). Similarly, the cross-covariance between the reconstructed minimum variance
lensing potential power spectrum and the estimated lensed CMB spectra can be written as

MV MV A XY ZW XY  ZW
COV(C¢ ¢ fg expt Z w wfl COV(CZ ¢ CZQ expt) (26)
XY, ZW

III. COVARIANCES

In this section we describe our approximate analytic model for the covariances of the measured CMB and lensing
power spectra and compare it against simulations. We will start with covariances between CMB power spectra,
proceed with cross-covariances between CMB and lensing power spectra, and finally discuss covariances between
lensing power spectra. These three power covariances involve the lensed CMB 4-point, 6-point and 8-point functions,
respectively, because CMB power spectra involve products of two CMB fields, while lensing power spectra involve
products of four CMB fields (assuming quadratic lensing reconstruction).

To model these CMB N-point functions, we make a number of assumptions. We first assume the underlying unlensed
CMB, lensing potential, and noise fields are Gaussian. In principle, their covariance can then be evaluated exactly in
terms of correlation functions following a similar method as for the calculation of the lensed power spectrum [26], 27].
In practice, full evaluation becomes numerically prohibitive, so in the following we will instead adopt a perturbative
approach and identify the leading contributions. We still aim to keep the disconnected Gaussian covariance and
other relevant connected subterms fully non-perturbative wherever possible, but only keep numerically important
contributions that are connected by up to four underlying Gaussian fields (e.g. up to second order in the lensing
potential power spectrum), dropping various additional complex terms (typically involving more nested sums) that
are not required to match simulations to good accuracy.

We neglect correlation between the lensing potential and the CMB, which should be true to very high accuracy
for high-¢ CMB modes where the ISW temperature and reionization-sourced polarization is negligible. Since we also
assume the unlensed CMB, lensing potential and noise to be Gaussian we can neglect all odd connected correlations.
Finally we assume no primordial B-mode contribution. In some calculations we use the fact that the lensed CMB has
zero mean, that is (Xy,,,) = 0, and when averaged over realizations of large-scale structure, the lensing potential has
also zero mean, (¢, ) = 0.



A. Lensed CMB power spectrum correlations

Several works [3H0} [28] already probed the correlation of lensed CMB power spectra for various combinations of
terms, either using a series expansion or generalizing to non-perturbative forms in an ad hoc way. In the following
we mainly follow their work, summarising the important steps. In the Appendix we give some notes on how the
various terms can be derived.

1. Cowariance model

Assuming no primordial B modes, the correlation of the lensed CMB power spectrum for temperature or E modes
contains three main contributions up to second order in the lensing potential power spectrum

e e 1 iy
ov v av g UV’
cov(CF Yoxptr Ol tpt) = €0VG (CF Yorpts CF bript) + 26 + 1) (26 +1) E : Matzz felesez + fei0500 felegzz)

+Zach 2_ (oo L8007V’
o09? 203 +1 ac¢¢ ’
23 £3 £3

(27)

where U, V,U’, V'’ can be T or E. The first term of the right-hand side is the disconnected piece of the covariance, or
Gaussian variance, given by

P 1 oy
uv u'v’ _ vu’ vv’ ov'’ vu’
COVG(Cfl,expt’ Cfg expt) - 5Z1Z2 261 +1 (Cfl,exptcll expt Cll exptcll expt) (28)

The second term in Eq. [27|is first order in Cf ¢ and is numerically small; it is related to the trispectrum contribution to
the covariance (see e.g. [29]). The third term is of order (C’g’d’)Q7 and arises from the fact that two lensed band powers
are connected by the covariance of the ¢ field they share. More specifically, the derivatives of lensed CMB spectra
with respect to the lensing potential power spectrum tell us how the fluctuations in the lensing power propagate to
the lensed CMB power spectra.

The auto-covariance of the B-mode power spectrum is slightly different from the temperature and E-mode. We
assume no primordial B-mode contribution in this paper, so they are entirely generated by lensing of E modes. The
dominant terms in the covariance are

805’3
b (CEER L
ac 205 + 1 aCE

~ ~BB
COV(Oél ,expt? CEQ expt) - COVG(Oél,exptv Zg,expt + E

ocEE o . zacz
+ 1 2 .
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(29)

All terms in the auto-covariance for the B modes are at least second order in the lensing potential power spectrum.
The second and third term in the RHS reflect the fact that two lensed B-mode band powers are connected by the
covariance of the unlensed E-mode field and the covariance of the ¢ field they share. We neglect one term second

order in CZ’ ¢ that involves a Wigner-6j symbol, which has a complex form but has been found to be small compared
to the other terms [4] (and we find that it is not needed at the level of precision required in this paper; see e.g. Fig. .

We can also write down the cross-covariance between lensed temperature or E-mode and lensed B-mode power
spectra following Ref. [5]

ov BB
'y 00, 2 (oe29%
acgE T 0Cy? s+ 100 oot

COV(C’ZZXI)U Cég,expt) ~ (30)

where UV € {T'T, EE,TE}. Notice that this does not have a disconnected component.
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FIG. 2. Correlation matrices (as defined in Eq. of lensed CMB power spectra used in this paper (TT, EE, TE, BB) up
to second order in C®?, in the case of a possible CMB-S4 experiment. The left panel shows the results obtained using the
analytical expressions derived in this section, while the right panel shows the difference between the analytical estimates and
the results obtained on simulations. There is a good agreement between both. For visual purposes, the diagonal elements have
been set to zero. See text for more discussions.

2. Correlation matrix

For visualization purpose, we show in Fig. |2|the correlatlon matrices between all lensed CMB spectra used in this pa—
per. The elements of the correlation matrix corr(CY", CY'V") corresponding to the covariance matrix cov(CY ", CYV")
are defined by

cov(CEV, CIV"

corr(égv C’U v =
\/cov(C'UV CUV)COV(C'U v C’U'V')

(31)

for UV,U'V' € {TT,EE,TE, BB, ¢¢}. The temperature and E-mode auto-correlations are dominated by checker-
board structures, as already seen in Refs. [B] [6], which correspond to the position of the acoustic peaks and troughs
of the CMB spectra that are most affected by lensing.

For very high multipoles (¢ > 2500), the correlation is fainter due to the rise of the noise. We found that the
temperature power spectrum exhibits large correlations between large and very small scales if we go beyond ¢ = 3000.
These correlations reflect the fact that the lensing transfers power from large scales to small scales, and if we include
scales beyond ¢ = 3000 the constraints from temperature become more important than all other spectra (at these
noise and beam levels). However, such small scales would in practice be dominated by other secondary anisotropies,
and therefore we do not include them in the analysis (note that this cut also significantly reduces the information
from the temperature lensing reconstruction).

The B power auto-correlation is much broader and much stronger than the others, reflecting the fact that the B
modes are entirely generated by lensing, and are produced by a very non-local coupling in ¢ between E and ¢, see
e.g. Ref. [30] and references therein. The BB spectrum only shows significant correlation with the other spectra for
{pp < lyy, where there is a smoothing effect on the acoustic peaks generated by relatively large-scale lensing modes.
In order to understand this pattern, let us take the example of the correlation between lensed EE and lensed BB
power-spectra. First, we notice the fact that the correlation is systematically weak for fgr < fgp is mainly driven
by the fact that the (2CFF power is quite blue. Then there are two regimes: {gr < 1000, and ¢gg > 1000. For



¢pr < 1000, we start from the fact that the B-modes power-spectrum is generated by the lensing of the unlensed
E-modes (first term in the RHS of Eq. , with CPB ~ [ d(log £)€4Cf¢ﬁszE, which peaks at 500 < {gr < 1000. For
¢gE > 1000, we are now interested in the term associated with the cosmic variance of the lens power spectrum (second
term in the RHS of Eq. . This term causes a band structure from the EE spectrum derivatives (fluctuations in
smoothing), and the correlation is fainter for /g > 1000, when the BB spectrum drops and becomes noise dominated.

The right panel of Fig. [2| shows the difference between the model and the simulations. The agreement is on
overall good, with some differences for covariances involving one B-mode spectrum. These differences appear to
be unimportant for this paper. We note that the diagonal elements between the model and the simulations are in
sub-percent agreement.

3. BEvaluating the derivatives

To compute the covariances listed above, we need to evaluate the derivatives of lensed CMB power spectra with
respect to the lensing potential power spectrum and with respect to the unlensed CMB power spectra. Some previous
works such as Ref. [6] made use of the series-expansion of the lensed CMB spectra in terms of CZ’ ¢. This method
has the advantage of being fast and giving reasonable results but it may not be sufficiently accurate for the level of
precision that future experiments will reach. Therefore throughout this paper, we evaluate the derivatives of spectra
using the more accurate correlation function methods [26] 27]. We typically found that the correlation between the
lensing amplitude estimates A¢A4V¢Mv and AU\“/ discussed in Sec. is artificially enhanced by up to 30-40% if
we use the series-expansion to compute the derivatives rather than the correlation function method. We detail the
computation of this in Appendix A similar technique using the flat-sky approximation has been used recently in
the work of Ref. [7], and an alternative scheme to estimate these derivatives is described in the Appendix of Ref. [5].

B. Cross-correlation between observed lensed CMB and reconstructed lensing potential power spectra

Using the quadratic estimator for the lensing potential defined in Eq.[I0] cross-covariances between observed lensed
CMB power spectra and reconstructed lensing potential power spectra involve covariances between CMB 2-point and
4-point functions. In their most general form, they can be expressed as

XY pZW
¢XY¢ZW ~ Azl Afl _1 mi+mo 63 64 61 £5 ZG Zl
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X Gt TR0 (X, Ve, 2y We, Uty Ve -ma) = (X, ¥, Ze, We) Ut Ve, -m) |, (32)

where ¢, = (¢;,m;). We identify four main contributions to the cross-covariance which are detailed in the following
subsections:
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expt )trlspectrum

The different terms follow different ways of expressing the 6-point function: 2+2+2-point (disconnected Gaussian
piece), 2+4-point (Trispectrum A and B) and connected 6-point function (signal). Of those four contributions, the
first two are cancelled by the RDNO subtraction (and therefore not used for the results of this paper unless stated),
leaving the last two terms as potentially important.

1. Terms not cancelled by the use of RDNO

We identified two main contributions to the cross-covariance that remain after RDNO subtraction, coming from the
connected 4 and 6-pt functions.
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a. Connected 6-point function: signal term. The connected signal part of the 6-point function comes from the

covariance of the realization of the lensing potential power C‘M) and the lensed CMB power, C ov, Specifically, we
define the signal term as being the contraction that appears in "the connection by two ¢ modes

aC¢XY¢ZW

A XY ZW N 0‘7 o Z A ~ U"}

V(G O g stgnar = 3 — 22— cov (cee.civ). (34)
l3 l3

XY ,ZW
where CZ ¢"" denotes the signal expectation in the fiducial model, including contributions from both the lensing

potential power itself and the N bias The covariance of the realization powers can be evaluated exactly
analytically using the assumed Gaussianity of ¢:

App AUV ¢>¢> e~ (3D /(20 ¢p AUV
cov (czl Ne ) - / DeCLH(CT Yoy |€| TR cirey
_ ( / DoP( > _ 2(CZ¢>2 8Cgv (35)
W1 1 ac‘f"f’ T 20+ 1 ot

Using the lensing potential input to our simulations we checked that the simulation and numerical derivative cal-
culations are consistent with this exact result to high accuracy in the range of multipoles of interes@ We then
have

XY ZW ~ ~
acy ¢ 2 (CM)angV
ocy?  23+10 7 oot

dXY $ZW 4
COV(C Cg,‘, expt)s1gna1 Z
L3

(36)

In the case of temperature and E-polarization, the covariance arises because the same lenses are responsible for
the smoothing of the acoustic peaks of the CMB spectrum and for the signal part of the lensing reconstruction
power. Both respond to fluctuations in the lensing power, which comes from the cosmic variance of the lenses: the
greater the lensing power in any realization, the greater the smoothing of the CMB power spectrum, and the larger
the lensing potential estimator becomes. This correlation is mostly between large-scale lens modes (€44 < 500) and
intermediate and small-scale CMB modes that are most affected by the lensing smoothing (¢, > 500). For BB
the signal covariance produces a broad-band correlation, since the B-mode power has contributions from couplings
between a wide range of scales. For a CMB-S4 like experiment, the signal correlation term seems to drive most
of the correlations between the reconstructed lensing potential power spectra and the observed lensed CMB power
spectra (and entirely dominates after realization-dependent noise subtraction; see Fig. . We show later in Sec.
that the signal covariance is almost entirely due to a single mode of the lensing, which can be projected out from the
covariance to reduce the correlations.

Note that we have neglected a contribution to the signal term arising from the fact that the normalization response
is O(C?) (from the fluctuation in the response f in the actual realization). This term is believed to be subdominant
with respect to terms already considered in Eq.

b. Connected 4-point function: Type B trispectrum. The lensed CMB trispectrum also contributes to the cross-
covariance of Eq. To second order in the lensing potential power spectrum there are two main contributions:
Type A considered in Eq. [AT2] above, and Type B considered here. They are detailed for some specific cases in
Appendix Following Ref. [ i), the Type B term can be split further into two parts, primary and non- prnnary
contributiong"3] None of these two Type B contributions are cancelled by the use of the realization-dependent N©
correction, but it has been argued [6l [§] that the non-primary contribution is subdominant compared to the primary
one. Therefore, we only focus on the primary contribution for the rest of this paper, given by

PP
AdXY pEW A e rimar, C€1 A Z ,ex ~
COV(CZ ¢ sz expt)trIl‘rSl]bI;ethrufn V= 205 + 1{ 241 +21 = Zgéz; gl szZMz (X A Y)]
+(X<—>Z,Y<—>W)}—|—(U<—>V). (37)

10 If we assume no contribution from N1, then Eq. reduces to Eq. E8 in [6] in the case of temperature.

11 Note that CZXYd’ZW is not directly the estimator mean, which also would have indirect dependence of the lensing power via the response
functions.

12 And therefore we could conclude that the small mismatch between simulations and model at low multipoles (where the signal term
dominates over the others) seen in Figs. [344]is not due to approximations in the signal term.

13 The primary contribution refers to the contribution for which sums over m’s in Eq. simplify due to orthogonality relations of Wigner
symbols, while the non-primary contribution includes the remaining terms.
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for CMB pairs ab € {TT,TE, EE, BB}. This term is almost an order of magnitude weaker than the signal contribution
described above for the scales of interest. For some combinations we can express the Type B trispectrum as the noise
term Eq. multiplied by the signal-to-noise (C%?/.A), as shown in Appendix in a handful of cases. For EE,
BB and TE, the signal is mostly at low and intermediate lensing and CMB multipoles (44 < 1000 and ¢y < 2000).
For temperature, the signal is also seen at smaller lensing scales because the signal-to-noise of the reconstruction is
rather constant across the multipole range (see Fig. |1)).

2.  Terms cancelled by the use of RDNO

From Eq. , the cross-covariance of lensed CMB power spectra with RDNO-corrected lensing power spectra can
be expressed in terms of the covariance without any RDNO correction as follows:

o o oN(OXYZW
A¢XY¢ZW AUV A¢XY¢ZW AUV )_ Z 21

~ab Py
COV(CKI,RDNO ) CZg,expt) = COV(Cel ) Cég,expt COV(C&,expt? CYZ[];g)cpt)' (38)

aCaE

(ab),ls £3,expt

The RDNO correction of the measured lensing power spectrum cancels two terms in Eq. [33] that would otherwise
appear in the cross-covariance. These two terms are detailed and discussed in Appendix

C. Reconstructed lensing potential power-spectrum auto-correlations

Using the quadratic estimator for the lensing potential defined in Eq. [L0]and the estimator for its power spectrum in
Eq. the auto-covariance of the reconstructed lensing potential power spectrum is given by the covariance between
two CMB 4-point functions. It can be expressed in a general form as:

A XY ZW A XYz W Ag(YAZZWAg(/YIAZZ/W/ 1 T ~ - v AT
wv (G * 0L T ) = D eR T S Mg )G ()55 ) ()

£3»--~>£103m1 ;12

y by Ly 0 bs lg £ by lg Ay by Lo {o
mz My —mi) \ms mg my) \my mg —mg ) \mg mig Mo

X |:<XZS &4 Z£5 W£6 Xé7 ?Zs Zég Wélo > - <X£3 i}gél Zﬁs Wﬁ(ﬁ > <Xé7 i}zS Zég Wélo >i| ’ (39)

where ¢, = (¢;,m;). In the following, we identify the relevant contributions for this analysis. As in the previous
section, we explicitly separate the contributions by whether they are cancelled by the RDNO subtraction.

1. Terms not cancelled by the use of RDNO

Starting from Eq. [39] we identified two terms potentially relevant for our analysis.

a. Gaussian reconstruction power variance. The first term is the Gaussian reconstruction power variance, which
on the full sky is predominantly

A XY ZW A XY Z'w! 1 A XY XY nA L ZW  Z' W A XY Z'W/! A ZW XY
covg(Cy L Cp ¢ ):%gzm((oz L (o7 S D T (o S D 1 (o) >) (40)

for general lensing reconstruction power. We include N(!) bias in the expectation values here (from Eq. 16)), but
neglect the full off-diagonal signal fluctuation dependence arising from N,

b. Connected 8-point function. We also have a correlation induced by the connected 8-point function. The leading
order contribution is of order (9([6’25 ?12) [31], which makes a full calculation rather involved. A full analysis is beyond
the scope of our paper, but we have checked that some of the simple contractions have a negligible effect on estimates
of the lensing amplitude from the lensing power spectrum, and comparison with simulations also shows no evidence
for significant missing terms. We therefore drop all connected 8-point function contributions.
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FIG. 3. Cross-correlation matrices (as defined in Eq. |31) between the lensed CMB power spectra and the reconstructed
minimum variance lensing potential power spectrum without RDNO subtraction in the case of CMB-54 like experiment. The
top row shows the results from the analytical model. Each panel corresponds to the correlation of the lensing potential power
spectrum with a lensed CMB power spectrum: Cj TT C,ZE E CTE and Cf B The covariance matrices contain all the terms
described in the Sec. [[II] and Appendices & [AF] - The middle row shows the results obtained from the set of 5,000 MC
simulations. The bottom row is the difference between the analytical model and the simulations. The agreement between the
model and the simulation is rather good, except for the B modes where the model tends to mis-estimate the contribution with
respect to simulations (see text). This difference has little impact on the results discussed in this paper.

2. Terms cancelled by the use of RDNO

Using RDNO cancels correlations arising because fluctuations in the observed CMB power spectrum induce changes
of the Gaussian lensing reconstruction lensing noise. Explicitly, from Eq. the auto-covariance of the measured,
RDNO-corrected lensing power spectrum can be expressed in terms of the covariance without RDNO correction as

8Neo) XY ZW

’ ’ ! ’ ’ ’ 7 ’ ~ ’ ’ ’ ’

AGXY pEW A XY g2 W A XY $ZW ApX Y gZ'W ~ab A XY @2 W
cov(CthDNO ,042’RDN0 )= cov(Cz1 ,Cp, ) — E P COV(C@S’eXpt, C )

(ab),ls {3,expt
(0 )XY Z'W (0 )XY ZW (0 )XY Z'W
XY 62V A ON, ON, ON,
— g COV(CZ C@g,expt)T + E %’TCOV(C& expt? C&;,expt) zd

(ab),l3 £3,expt (ab),(cd), 3,04 £3,expt L4,expt

(41)

The details of the computation and a discussion about these terms can be found in Appendix [A4]
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FIG. 4. Same as Fig. [3] but we use the realization-dependent noise bias subtraction in the computation of the matrices. The
overall correlations at small lensing scales are reduced, but the correlations at large lensing scales remain almost identical.

D. Detectability of the correlations

In this section we quantify the detectability of the off-diagonal parts of the covariance. Let’s define our joint data
vector C as

G = (CT o G G OB e’ — NOMYY )

£,expt?r ~Lexptr ~L,expts

The full covariance of this joint data vector (denoted cov) contains all contributions listed above after applying the
realization-dependent noise bias subtraction, namely all covariances listed in Sec. [[ITA] for the CMB auto-covariances,
Sec. for the cross-covariances, and Sec. for the lensing auto-covariances. We split the total covariance
as a Gaussian part cov®, and a non-Gaussian part cov® with unknown amplitude o as

cov = cov® + acov™C. (43)

The likelihood for the data C (in which the C are approximated as Gaussian in the fiducial model) reads

—2InL(C) = CT(COVG + acov¥)TIC + In(|cov® + acovNE)), (44)
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where |.| denotes the determinant of a matrix. Assuming no prior, the Fisher matrix for the amplitude «a of the
non-Gaussian part of the covariance is defined as the expectation value

9%~ In L(C)) >
dada

1
Fop = < = 5”_[‘1r[covNG’cov_lcovNG’cov_1 ) (45)

o=

where Tr denotes the trace of a matrix. The significance (or detectability) of the off-diagonal parts of the covariance
is then given by v/ Fyq.

For CMB-54, the off-diagonal parts of the covariance should be detectable with a significance around 6o. This shows
that in general the non-Gaussian contributions are not negligible, and must be included to get reliable x? goodness
of fit numbers. The impact on cosmological parameters is expected to be much less significant, and we assess this in
more detail below after checking agreement with simulations. Among the lensed CMB spectra, the B modes generate
most of the impact. Neglecting B modes in the analysis (auto- and cross-covariance) leads to a lower-significance
detection of the off-diagonal parts of the covariance (~ 3.50).

IV. SIMULATIONS
A. Simulation pipeline

To test and validate our analytical results, we developed a simulation and lensing reconstruction pipeline. We
generate 5,000 periodic square patches of jointly Gaussian unlensed T,Q,U skies of 2500 deg? from spectra computed
using CAMB for a ACDM cosmology based on the latest Planck constraints [32] with h = 0.6688, Q,h? = 0.02214,
Q.h? = 0.1207, ny = 0.9624, 03 = 0.817, 7 = 0.0581, and one massive and two massless neutrino eigenstates (sum of
the masses M, = > m, = 60 meV).

For convenience, the pipeline uses the flat-sky approximation. The 2D wavevectors £ = (£,£,) of the patch are
assigned curved-sky power Cjg_1/2. These maps are then lensed according to the realization of the lensing potential.
The ¢ — T and ¢ — E correlations are neglected. The lensing operations are performed numerically using a standard
bicubic spline interpolation of the unlensed maps given on a regular grid with resolution 0.7 arcmin, which is sufficient
given our noise levels and high-¢ cuts. The lensed spectra agree with the (curved sky) predictions from CAMB (sub-
percent accuracy) across the scales we are using for the reconstruction. A Gaussian beam with FWHM 3 arcmin,
identical in temperature and polarization, is applied to each lensed sky, together with homogeneous isotropic noise of
1.5 uK.arcmin (T) and 1.5v/2 pK.arcmin (Q,U). We do not include directly real-life complications such as foregrounds,
sky-cuts, anisotropic beams and uneven hit-counts etc, that would complicate the lensing reconstruction without being
relevant for our purposes. However, we keep only multipoles 20 < ¢ < 3000 of the simulated maps, which roughly
accounts for the loss of modes on large scales due to sky coverage and on very small-scales due to foregrounds.

The lensing reconstruction uses the separability of the weight functions of the quadratic estimator in T,Q,U space.
We use a FFT-based real-space implementation for the un-normalized Cartesian components «, , of the displacement
field, which can be written in convenient matrix notation as follows

B
Qg y(z) = Z Z BeCOVZl Dy ew'z] [Z i@LyCéentCovleg e”'z] . (46)
pe(ruy L e ; 5

In this equation, Dy = (T, Qe, Up) is the data vector input to the MV estimator, By is the 3 x 3 (diagonal) beam
matrix with constant diagonal entries exp [€(€ + 1)ogwn/(16102)], Cove = BeCy™Be + Ng the 3 x 3 covariance
matrix of the harmonic mode £ of the data (including beam and noise) and C}™ is the 3 x 3 spectral matrix of the
fields, implemented using the noiseless lensed spectra:

C’ff C’ZE cos 2 CZT E §in 2y

Céen - C’ZE cos 21y C’fé cos? 21hp + C’fg sin? 20, (C’fE — CfB) cos 21 sin 21y (47)
CZE sin 2¢p (CZEE - C’f;é) oS 21)p sin 210 C’fé sin? 2 + C’fé cos? 240y,

with 1, the phase of the harmonic mode £. The Cartesian components are then rotated to curl and potential modes
in harmonic space, and normalized by the response to the potential mode, which is identical to the N bias.

This implementation based on a (T, Q,U) description of the data differs (very slightly) from more traditional im-
plementations based on combining the set of estimators built from pairs from (7', E, B), such as the state-of-the-art
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implementation from the Planck team [I0]. The exact MV weights for the TE estimator are non-separable, making a
exact implementation difficult to achieve with good scaling properties, so the weights are usually approximated. Our
implementation, which never calculates the separate estimators, has the advantage of avoiding this small approxima-
tion, and is identical to the exact minimum Gaussian variance ¢ estimate described in Sec. [ Its numerical cost is
approximately proportional to the optimal fg, X €2, .

Finally, binning is performed over slowly varying quantities:

1 1 g

xy_ b b 04 DXy XY \
O = AL e 2 (e + 1 e (48)

where b; and b; correspond to lower bin boundary and bin centre respectively of the bin number i. The weight powers
are chosen so that wyy =1 and wgg = 2.

As mentioned in Sec. [[TB] we found that using lensed temperature power spectrum in the weights of the quadratic
estimator was not accurate enough to reconstruct correctly the largest scales (biases of ~ 10% from the temperature

estimator for £m. = 3000). To avoid this bias, we instead use the non-perturbative gradient power spectrum CZVT
in Eq. [47] for the weights of the quadratic estimator (but we keep the lensed spectra in the covariance matrix for the
inverse-filtering operations). We did not find it necessary to extend this to polarization.

B. Comparison between the model and simulations

Once we have the set of lensed CMB power spectra and reconstructed lensing potential power spectra, we compute
the auto-covariances and cross-covariances. We show in Fig. [3] the comparison between the full cross-covariance model
developed in the previous section (including terms cancelled and not cancelled by RDNO subtraction), and the results
obtained on simulations. We show the cross-correlation matrices for a better visualization. The agreement between
both is rather good in temperature, where the model manages to reproduce most of the features seen on simulations.
For the EE and TE power spectra, the model is not as good as for temperature, but nonetheless the agreement is good
enough for our purpose (~10% difference at large scales, and less than 5% elsewhere). The main difference between
analytic and simulation results in this case can be seen at large lens scales, where the model tends to overestimate the
correlation. The case of B modes is different. The model fails to capture correctly the effect at large and intermediate
scales (up to 50% difference at £ v yuv = 500).

Fig. [4] shows the same comparison between model and simulations, but we keep only the terms not cancelled by
RDNO subtraction (and therefore used later to derive cosmological parameter uncertainties). The main reduction
of correlation is seen at small lensing scales, and the correlations remain almost untouched at large lensing scales.
This change is expected because fluctuations in the CMB power, which induce larger lensing correlations at small
noise-dominated scales than large scales, are suppressed by the RDNO subtraction. The agreement between model
and simulations is on overall improved, although the difference at large scales is still visible.

These differences between the model and simulations are however not detectable at the 1o level, though the slight
overestimation of the correlation in the analytic model reduces the total detectability of the non-Gaussian covariance
terms to about 5o. However, we note an improvement in the agreement between the model and the simulations if
the B modes are discarded from the analysis (both then agree within 0.20). We also found that the final results on
cosmological parameters are not greatly affected, with both analytical and simulation results giving similar results
(up to few percent differences on the cosmological parameter uncertainties, see Sec. .

V. IMPACT OF CORRELATIONS ON PARAMETER ESTIMATION

Often likelihoods are approximated as Gaussian in the power spectra, neglecting correlations between the lensing and
CMB power spectra. In this section we test this simple approximation against a likelihood using our full covariance,
including lensing-induced off diagonal terms and cross-covariances between the spectra. Our full covariance model
includes all contributions listed in Sec. [[T]] after applying the realization-dependent noise bias subtraction, namely all
covariances listed in Sec. [[ITA] for the CMB auto-covariances, Sec. for the cross-covariances, and Sec.

for the lensing auto-covariances.

A. Lensing amplitude estimates

We first focus on an overall amplitude parameter A of a fiducial lensing potential power spectrum such that
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CP* = ACH |na, (49)

keeping all other cosmological parameters fixed. The lensing amplitude A can be estimated from the reconstructed
lensing potential power spectrum using (e.g. [6])

1 A XY $ZW 1),XYZW
D e CEM) (Covdgxngzw)w (CZ:,RDd)NO - Ne(' )

121 XY HZW = ) (50)
LA >, SXYZW
where SFYZW =%, C’g"b (Cov(;}“ngzw)M/C‘éq5 ensures (A) = 1 if data come from the fiducial model, and (COV(E)}(Y&ZW)

indicates the matrix inverse of the full lensing auto-covariance matrix including off-diagonal components as defined
in Sec. (with the realization-dependent bias subtraction). Note that we have neglected the lensing potential
power-spectrum dependence of the N1 bias, which is subdominant for our purpose. Similarly, the lensing amplitude
can also instead be estimated from the lensed CMB power spectrum

p . .

R oo (Cge‘)ipt - C’Ze‘;pt) (COVU\"/,expt)M, (Cl{{V _ qu)

Agy = v ) (51)
>0 Sy

where U,V € {T, E, B} and SVV = %, (C?V —C’?V) (covgjé exm)ﬂ/ (O{W —C’QV), and (cov[;}/ expt) indicates the

matrix inverse of the full CMB auto-covariance matrix including off-diagonal components as defined in Sec. [[ITA] The
corresponding standard deviations c4,, and 4, of the estimators are the inverse square root of the denominator
of each estimator, and they are reported in Table [ The best constraints come from the BB spectrum and the
reconstructed lensing potential power spectrum (an order of magnitude tighter than current measurements). The TT,
EE, and TE spectra perform equally well, with an uncertainty on the lensing amplitude almost three times larger.
Note that these values for the uncertainties agree very well with the values obtained on simulations.
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FIG. 5. Per-£ contribution Sp™V™V (left) and S{V (middle and right) to the total lensing signal-to-noise squared as defined
in Egs. & (solid lines). For comparison, we overplot the results obtained on simulation (plus signs). The realization-
dependent noise bias subtraction has been used to compute Sp™V™V. We show the contribution from minimum variance lensing
reconstruction (left panel), lensed temperature (red), lensed E modes (blue), lensed TE power spectrum (green), and lensed
B modes (yellow). Since we are interested in the distribution of the signal-to-noise over different scales (and not in the total

SNR), each estimator has been normalised so that their integral over ¢ is unity.

Fig. shows the contributions SMYMY and SUV to the total signal-to-noise squared (S/N = 3", S¢) for the lensing
amplitude estimates. The lensing S/N coming from the 4-point lensing reconstruction comes from a broad range
of multipoles, with a maximum value at ¢ ~ 500. Lensing S/N from EE and TE power spectra is mainly coming
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from the acoustic peaks, where the smoothing effect is largest, and the smoothing itself probes mainly lensing modes
with ¢ < 150. However, unlike the case for PLANCK studied in Ref. [6] for example, the lensing S/N from the
temperature power spectrum for future experiments comes from both the acoustic peaks and the very small scales
(where the spectrum starts to become lensing dominated). Finally, the S/N from B modes comes from the entire
range of the lensing B-mode spectrum. If we extend the multipole range to fy,.x = 4000, this description is still
true for polarization spectra which are noise dominated at high multipoles, but the signal-to-noise for temperature
becomes completely dominated by the very small scales (¢ > 3000). However, in practice it may be difficult to clean
such high-¢ temperature modes from contaminating foregrounds.
The covariance between the two lensing amplitude estimators is given by

Zdﬂ;b 40\7

max max

A ) — 2 2 ¢ -1 Npd ATV -1 ov _ AUV
cov(Agg, Agy) = 0a,,04, . Z Z _ Cy (Covngg)zlhcov(C’e2 s Ol expt) (COVU\"/,expt)és& (C’@4 Cy, ),
01,02=022 £5,04=007
(52)
where we explicitly dropped the indices for the lensing for clarity. The corresponding correlation is computed via

R Apy, Ao
COIT(A¢¢, AUV) = w (53)

OA4TAgy

We show in Fig. [6] the evolution of this correlation between the lensing amplitude estimates as a function of the

maximum multipole £2%_ for the lensing reconstruction (upper left panel). Here we apply the realization-dependent

bias subtraction, and keep Y= 3000.

We first notice that unlike the PLANCK case studied in Ref. [6], for CMB-S4 the correlations are no longer negligible.
In the temperature case, Ref. [6] found an amplitude correlation of around 3%, while for CMB-S4 (red solid line)
the correlation between the lensing amplitude estimated from the TT power spectrum and that estimated from the
minimum-variance lensing power is as big as 20% when using the full range of multipoles for lensing reconstruction.
Estimating the lensing amplitude from the polarization power spectra EE (blue solid line) or TE (green solid line)
instead of TT gives similar correlations for £2¢ = 3000. Restricting the amplitude estimates to larger scales leads to
higher correlations, reaching up to 50% correlations for £¢%_ ~ 150.

The lensing amplitude estimator using the BB power spectrum is most affected by correlations (yellow): it is more
than 60% correlated with the lensing amplitude estimated from the minimum variance 4-point lensing measurement if
¢9¢ > 500. This is not surprising since the B modes are generated entirely by lensing. The case of BB is also the case
where the analytic model and simulations tend to show some noticeable differences (results obtained on simulations are
shown using the cross mark, with the same colour code as the analytic results; shaded grey regions are the uncertainty
coming from the simulations). This difference is also seen in Figs. [3| & 4} where we can see residual correlations in the
difference between model and simulations. We investigated the reason of the failure at low multipoles for the lensing
reconstruction, but we were not able to find a better agreement within the subset of terms that we calculate. We
note that the model and simulations do reach reasonable agreement if we consider the whole range of multipoles for
the lensing reconstruction (i.e. at £2% = 3000 the model and simulations give similar results).

In Table [[] we show the impact of correlations on lensing amplitude estimates between the minimum variance
reconstruction estimate and the estimate from lensed CMB spectra using the full range of multipoles (20 < ¢ < 3000).
The use of the realization-dependent noise bias subtraction has little impact on the correlation (20% decrease at
most). This small impact tells us that for CMB-S4, the noise contribution is not the dominant one. After realization-
dependent noise bias subtraction, there are only two contributions left in our approximation to the cross-covariance
matrix: the signal and the Type B trispectrum contributions (Eqgs. [36] & . We found that the Type B trispectrum
contribution is negligible with respect to the signal contribution (almost an order of magnitude lower for relevant
scales), i.e. the signal contribution dominates the lensing amplitude correlation.

The signal contribution to the cross-correlation matrix has a low-rank structure (as shown by Refs. [3, [@]). We
performed a Singular Value Decomposition (SVD) of the cross-correlation matrix (after RDNO), and found that most
of the information was contained in the first couple of modes{ﬂ In Fig. |§| (upper right panel), we show the correlation
between lensing estimates after projecting out the first mode obtained from the SVD of the cross-covariance matrix.
For polarization spectra, the first mode captures all the correlation, and after projection the residual correlation in

14 There is a factor ~50 between the first and the second singular values, and a factor ~10 between the second and the third singular
values.
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FIG. 6. Upper left panel: Correlation between the 4-point lensing amplitude A¢¢ (estimated from the measured lensing power
spectrum) and 2-point lensing amplitude Amy (estimated from measured, lensed CMB power spectra), as a function of the
maximum multipole £, used for the reconstruction of the lensing potential (keeping £%%, = 3000 fixed). Upper right panel:
Same as upper left panel, but we project out the first singular vector from the cross-covariance matrix. Lower panel: First
singular vectors from the cross-covariance matrix (top: CMB side, bottom: lensing side). In all plots, the analytical model (solid
lines) is compared against simulations (crosses), with TT, EE, TE, and BB shown in red, blue, green, and yellow, respectively.
All results in this figure have been obtained by using realization-dependent noise bias subtraction. The shaded grey regions in
the upper left and right panels are the uncertainty coming from the simulations. See text for more discussion.

all cases becomes extremely small (consistent with zero given the uncertainty of the Monte Carlo simulations). For
the temperature case, one can see some residual correlations at low reconstruction multipoles reaching a few percent,
which disappear completely if we also project out the second singular vector from the SVD. Both analytic predictions
(coloured solid lines) and simulations (coloured cross, with shaded region denoting the uncertainty from the MC
simulations) are in agreement, despite for example the initial difference seen for the B-mode case if £2My oMy < 2000.

The lower panel of Fig. [f] shows the first singular vectors coming from the SVD of the cross-covariance matrix. The
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TABLE 1. Impact of correlations on lensing amplitude es- TABLE II. Constraints on lensing amplitude estimates using

timates between the minimum variance estimate and the the CMB power spectra (ngeq;(ph C[E,gcpt7cg:£{pt7c££(pt) and
. . A MV MV
estimate from lensed CMB spectra, using the whole range lensing reconstruction ¢¢ = (CZ?RDI‘{’IO ), using the whole

of multipoles (i.e. 2%, = ¢YY. = 3000). Note that for
S4 the reconstruction is signal dominated on large scales,
hence RDNO subtraction does not greatly decrease the cor-
relation. For comparison, the uncertainty in the estimate of
the lensing amplitude from minimum variance lensing only
is 04,, = 0.0037 (0a,, = 0.0057 if RDNO is not used).

range of multipoles (i.e. £2%, = (SMB = 3000) and keeping
other cosmological parameters fixed. We show results us-
ing Gaussian covariance (aga) and non-Gaussian covariance
(0a,), for the joint constraint, from the lensing reconstruc-
tion alone, and from the lensed CMB spectra alone.

G
OAa TA,

COI‘I‘(A¢MV¢MV7 Aﬁ(/) COI‘I‘(Ad)Mvd)MV, Aﬁ‘y)

Tagy a = CMB+¢é 0.0020 0.0035
v RDNO not used RDNO used a= oo 0.0037 0.0037
TT 0.011 15% 17% a=CMB  0.0024 0.0039
EE 0.012 25% 21%
TE 0.013 22% 18%
BB 0.0043 70% 64%

upper lower subpanel shows the right singular vectors vy,,,, (normalised by ¢yv (€yy +1)). In the case of TT, EE, and
TE, they mainly correspond to the difference between lensed and unlensed CMB power spectra (but not completely
due to the presence of the Type B trispectrum contribution). In the case of BB, the first right singular vector has
the shape of the E-mode power spectru The lower subpanel shows the left singular vectors U pry nv - In all the

cases, the large-scale lenses are the dominant cause of the covariance with the lensed spectra, and the corresponding
signal term is easy to model.

We also performed this analysis by extending the range of multipoles for both CMB spectra and lensing reconstruc-
tion up to fmax = 4000. We found that results on polarization do not change (at S4 noise and beam levels, CMB
polarization spectra are dominated by the noise for multipoles beyond 3000), so only temperature results change.
At these small scales the lensed temperature power spectrum is driven by the lensing power, and the uncertainty on
the lensing amplitude from the lensed temperature spectrum is reduced by a factor of 3 compared to the case where
lmax = 3000, becoming comparable to constraints from B modes (see Table . The correlation between the lensing
amplitude estimates is also slightly enhanced, reaching 30% in the case of temperature (for polarization spectra the
correlation already reached a plateau at lower lensing reconstruction multipoles). However, given that polarization
does not provide additional constraints at scales beyond ¢ ~ 3000, and it might well be difficult to access those smaller
scales in practice for temperature, we do not further consider scales beyond £,,x = 3000.

Given that the lensing amplitudes estimated from the BB power spectrum and the minimum variance lensing power
spectrum have similar error bars and are rather correlated, one might worry that lensing reconstruction does not add
much independent lensing information to the lensed BB power spectrum (or vice-versa). Table [[I| shows how the
error on the estimate of the lensing amplitude changes using different data sets: joint estimation from lensed CMB
spectra and lensing reconstruction, lensing reconstruction only, and lensed CMB spectra. Using the non-Gaussian
covariance avoids double counting the same lensing information, and therefore increases the uncertainties on the
lensing amplitude compared to treating the constraints as independent. However, for S4 the lensed CMB does still
add additional information on the lensing amplitude, so the measurements are still somewhat complementary@
In addition, systematics may affect these measurements in different ways in practice, making it useful to consider
both. Furthermore, iterative/maximum-likelihood lensing reconstruction methods [33] that are more optimal than the
quadratic estimator used in this paper are expected to improve the accuracy of the lensing reconstruction significantly.
We therefore always expect the lensing information from lensing reconstruction to be extremely useful.

B. Cosmological parameter estimation

In this section, we quantify the effect of the covariances for the estimation of cosmological parameters from the joint
data vector described in Eq. As in the previous section, we base our full covariance model on all the contributions

15 Although vgpp disagrees between model and simulations at high £pp, we believe this is not important in practice because the BB
power spectrum is mostly noise-dominated on these scales.

16 In the limit of perfect noiseless measurements the lensing field would be reconstructed perfectly, and the lensed CMB power spectra then
cannot contain additional (direct) information on the lensing amplitude as there are no additional lensing modes to constrain. However,
in general the perturbative maximum likelihood lensing power spectrum estimator does include both the four-point reconstruction and
the response from the lensed power spectra [6].
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that are left after RDNO subtraction (listed in Sections [[IT Al [[TT B 1| and [[TIC ). We first discuss Fisher forecasts,
which are fast to evaluate for many combinations of experimental configurations. We then discuss small differences
obtained with Markov-Chain Monte Carlo (MCMC) forecasts that better account for the non-Gaussian posterior
shape. In both cases we approximate the binned C, distribution as having a Gaussian distribution in a fiducial
ACDM model, and investigate the change in results when the covariance matrix is approximated using the form
expected for Gaussian fields, compared to the approximate more accurate model developed in this paper (accounting
for non-Gaussianity of the lensed CMB fields and the lensing reconstruction estimator).

Our base ACDM set of parameters is based on the latest PLANCK constraints [32], with Qph% = 0.02214, Q.h% =
0.1207, 109A, = 2.11788, ny = 0.9624, 7 = 0.0581, 1006y;c = 1.0411. We do not include large-scale PLANCK (or
other) CMB data, but do include a 7 prior motivated by the recent PLANCK measurement: 7 = 0.0581 £ 0.01 (which
we discuss further below).

1. Fisher matrix forecasts

The effect of the covariance on the estimation of a set of cosmological parameters p, can be estimated using the
Fisher matrix

oC., . _,. 0C,
Fag =) o (covh), . ap >, (54)
e, P B

where cov~! is the inverse covariance matrix of the joint data vector in Eq. The error op, on the parameter p,
is then given by

Ope =1/ (F71) (55)

aa’

We show in Table [[T]] the impact of non-Gaussian covariances for a base set of flat ACDM cosmological parameters.
The first column shows the 1o bound for the base parameters assuming the covariance matrix of the joint data vector
is fully non-Gaussian (containing all blocks, each of which contains off-diagonal elements). The second column shows
the fractional change in this 1o bound when switching between non-Gaussian and Gaussian covariances:

G
_Pa "Pa 56
o (56)

) Op, — 0
Degradation =

where o, and aga are the errors on parameter p, in the case of non-Gaussian and Gaussian covariances respectively.
The impact of non-Gaussian covariances on the errors is modest, at most 9% for this set of base parameters. The third
column shows consistency between errors from the the analytic model developed in Sec. [[IT] and the results obtained
from simulations:

op sims

gv (57)

Agreement = -
O—SlmS
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sims

where o, and ¢, are the errors on parameter p,, obtained from the analytical model and the simulations respectively
(both using non-Gaussian covariances). The agreement between both is good, with a difference on the error at most
a few percent, which is sufficient to validate the model developed in this paper. The larger fractional differences in
the off-diagonal covariances seen in Figs. [3 & [4] are not that important because the magnitude of the non-Gaussian
terms is small compared to Gaussian terms, so it is not necessary to model them with very high accuracy.

We also probe one-parameter extensions to the base set of parameters, by considering three other parameters: the
sum of neutrino masses, the effective number of relativistic degrees of freedom, and the fraction of baryonic mass in
helium. In all three cases we use fiducial values of M, = 100 meV, Neg = 3.046, and Y, = 0.245. The neutrino
sector is modelled as three massive neutrinos following a normal hierarchy, using the measured mass splitting from
oscillation experimentﬂ The impact of non-Gaussian covariances from the Fisher matrix is shown in Table For
these one-parameter extensions, and this experimental configuration, only the sum of neutrino masses is affected by
the non-Gaussian covariance: we obtain a 1 ¢ error of 72 meV on the sum of neutrino masses with a mild ~ 10%

17 Physically, we also could use an inverted hierarchy since the lowest possible total mass allowed is around 100 meV. We approximate the
full normal hierarchy by two distinct mass eigenstates, where the lower mass state has degeneracy two.



TABLE III. Impact of non-Gaussian covariances for the
base set of parameters from a Fisher matrix analysis us-
ing our fiducial CMB-S4 configuration: 1o bound for pa-
rameters using full non-Gaussian covariance, degradation
with respect to Gaussian covariance, and relative differ-
ence between analytical predictions and simulations (er-
ror on the error). Parameters used: Quh? = 0.02214,
Qch? = 0.1207, 10°A, = 2.11788, ne = 0.9624, 7 = 0.0581,

21

TABLE IV. Constraints on one-parameter extensions to the
base ACDM model from a Fisher matrix analysis using our
fiducial CMB-S4 configuration: 1o bound for parameters us-
ing full non-Gaussian covariance, degradation with respect
to Gaussian covariance, and relative difference between an-
alytical predictions and simulations (error on the error).
Fiducial parameters used: M, = 100 meV, Neg = 3.046,
and Y}, = 0.245. We assume a Gaussian prior on 7 (£ 0.01).

1000mc = 1.0411. We assume a Gaussian prior on 7 (£ Each row represents the constraint on the parameter after

0.01). marginalization over the base set.
Pa 0p., Degradation Agreement with Pa 0p, Degradation Agreement with
(%) simulations (%) (%) simulations (%)
Quh?  0.00004 0.7 -0.4 M, /meV T2 11 0.1
Qch?  0.00066 2.4 -3.2 Neg  0.052 3.1 -1.1
10°4;  0.022 9.3 -1.1 Y, 0.0030 2.8 -0.8
s 0.0022 0.5 -0.1
T 0.0062 6.4 -1.6
1006nc 0.00010 -0.2 -3.9

degradation from the non-Gaussian covariance. Notice that if we discard information from the measurement of the
lensing potential (using only TT, EE, TE, and BB spectra), the constraint on the sum of neutrino masses is even
less sensitive to the choice of covariance (i.e. including or not the off-diagonal elements in the auto-covariance of the
lensed CMB spectra makes a change of -0.9% in the resultlEI), and the 1 o error becomes 94 meV.

We study the impact of the experimental set-up by looking at the impact of the non-Gaussian covariances for
various noise levels. The results are summarized in Fig. We show the errors on parameters and the degradation
factors as a function of the instrumental noise level, for noise values from 0.75 pK.arcmin to 12 pK.arcmin, and for a
ACDM+M,, model. The results for our assumed S4 configuration, the main focus of this paper, are highlighted with
bigger circle marks. The degradation increases for smaller noise levels, reaching around 15-20% for the parameters
directly influenced by the lensing (i.e. the optical depth, the scalar amplitude, and the sum of neutrino masses)lﬂ And
not only does the degradation factor increase with decreasing noise level, but the error on the parameters plateaus.
From Fig. [} we observe for example that the error on 7 is rather similar for a noise level of 1.5 pK.arcmin or 6
pK.arcmin if the full non-Gaussian covariance is considered. However as soon as we increase further the level of
noise, the degradation factor quickly decreases, with degradation factors for all parameters less than 5% for a final
(temperature) noise of 210 uK.arcmin.

CMB-54 will observe from the ground and therefore the largest scales will be difficult to measure. We have
conservatively set to zero scales with ¢ < 20, which means that we do not constrain 7 directly from the CMB
polarization. Lensing does provide some amplitude information, but relating that to 7 via the observed CMB amplitude
is partly degenerate with the effect of other parameters like the neutrino mass. External priors will therefore be crucial
to break parameter degeneracies and get tight constraints [34]. For the sum of the neutrino masses, there is a great
improvement on the 1 o error if we use the PLANCK 7 prior +0.01 (see Table compared to no prior at all: the
error is reduced by almost a factor three. Moving from the current PLANCK prior on 7 to the lowest achievable bound
+0.002 by a CMB experiment (assuming an instantaneous reionization process, for a full-sky cosmic variance limited
experiment up to £ = 2500 as described in Ref. [35]), as shown in Table the error is again reduced by almost a
factor 1.5. Introducing a prior on 7 also helps to decrease the non-Gaussian degradation factor in all the cases, and
the impact of non-Gaussian covariance is less than 5% for 7 prior equal to 0.002 (see Table . In the future, 21 cm
experiments could provide even better constraints on 7 as shown in Ref. [36] and therefore further lower the error on
cosmological parameters depending on i@

We also include a prior from future DESI and Euclid BAO measurements (see Tables V and VI in Ref. [37] for the
numbers used). These combined constraints are shown in Tables|[V|& for two different priors on the optical depth
7. The inclusion of BAO priors lowers the errors, and the biggest effect is seen for the sum of neutrino masses, fyic

18 A negative non-Gaussian degradation factor means that the error on the parameter is better when the non-Gaussian covariance is used.
This is the case when the parameters are anti-correlated (partially or fully) rather than correlated.

19 Without a prior on 7, the degradation factor reaches more than 50% for 7, As, and almost 40% for M,. For a very optimistic
experimental setup (and no prior on 7), with noise of 0.5pK.arcmin, beam size of 1 arcmin and extending the multipole range up to
5000 in polarization, the impact of covariance reaches 50% on M, and 70% for T and As.

20 However we found that the improvement on the sum of neutrino masses for values of the prior lower than 0.002 is minor (for the values
of noise, beam and bandwidth considered here).
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FIG. 7. Impact of the covariances on the cosmological parameter (Fisher) errors as a function of experimental noise, in the
context of a ACDM+ M, model. The figures on the left show the errors on the parameters in the case of non-Gaussian covariance
(solid curves) and Gaussian covariance (dashed curves). The errors have no units but the sum of neutrino masses in units of
eV. The figures on the right show the degradation factor on the error for parameters when using non-Gaussian covariance
instead of Gaussian covariance (see Eq. . The CMB-S4 case described in this paper is highlighted with bigger circle markers
(temperature noise level of 1.5 uK.arcmin). We keep the beam width and fraction of observed sky fixed, with values 3.0 arcmin
and 40% respectively, and we apply a Gaussian prior 7 = 0.058 = 0.01. The degradation factor is smaller for bigger values of
the experimental noise. See text for more explanations.

(or Hy), and Ag, for which a measurement of BAO helps to strongly break the geometric degeneracy in the CMB
data [38]. The non-Gaussian degradation factor becomes smaller in the case without the BAO as the lensing becomes
less important as the results are degeneracy limited.

2. Monte Carlo Markov Chain posterior likelihood estimation

To check the results obtained with the Fisher analysis, we make a direct likelihood exploration using a Monte Carlo
Markov Chain (MCMC) approach by using the mean log likelihood evaluated at the fiducial model. We focus on
the ACDM+M,, model, and run MCMC chains using COSMOMC@ for the following cases: CMB-S4 like experiment,
Gaussian or non-Gaussian covariances, with or without inclusion of external BAO measurements, and two different
priors on 7 (0.01 and 0.002).

Fig. [8] shows one- and two-dimensional joint marginalized posterior distributions in the {7, M, } parameter space
(using the 0.01 7 prior on the left and the 0.002 7 prior on the right). The corresponding 1 ¢ errors and non-Gaussian
degradation factors are shown in Table [V] (using the 0.01 7 prior) and Table (using the 0.002 7 prior). These
tables also list results for the other cosmological models of the ACDM+M,, model. Note that the numerical sampling
error for the MCMC is a few percent, so the degradation factors are reported at this level of precision and small
percent-level changes should not be over-interpreted. To ease the comparison between both methods we also report
the results from the Fisher method at this level of precision.

The left panel of Fig. [§shows that if we use the prior on 7 from the recent PLANCK measurement, the MCMC results
(filled ellipses and solid lines) are not in good agreement with the Fisher matrix results (dashed). This disagreement
is seen for Gaussian and non-Gaussian covariances, with and without BAO information. While the directions of
degeneracy axes are similar, the parameter errors inferred from the posterior distributions differ significantly between
the Fisher matrix and MCMC analyses in some cases (hinting at a non-Gaussian posterior which is better captured
by the MCMC analysis as discussed at the end of this section).

21 http://cosmologist.info/cosmomc/


http://cosmologist.info/cosmomc/

23

TABLE V. Comparison between the Fisher matrix analysis and the MCMC. For both methods, we show the impact of non-
Gaussian covariances for a ACDM+M, model: 1o bound for parameters using full non-Gaussian covariance and degradation
with respect to Gaussian covariance. The two columns on the left use only our fiducial CMB-S4 configuration, and the two
columns on the right use our fiducial CMB-S4 configuration and forecasted BAO measurements from DESI and Euclid. For all
results in this table, we assume a Gaussian prior on 7 of 4+ 0.01.

CMB-54 alone CMB-54 + DESI/Euclid BAO
0p., Degradation| o,, Degradation|| op,, Degradation| o,, Degradation

Pe Fisher Fisher MCMC  MCMC Fisher Fisher MCMC  MCMC
Quh? |0.000037 1% 0.000035 -4% 0.000035 1% 0.000035 3%
Qch? 0.00083 1% 0.00074 1% 0.00054 3% 0.00075 8%
10° A 0.036 17% 0.033 11% 0.028 11% 0.031 13%
Ns 0.0023 1% 0.0023 -2% 0.0020 1% 0.0019 2%
T 0.0086 14% 0.0081 10% 0.0072 9% 0.0080 11%
1006nmc || 0.00011 4% 0.00011 0% 0.000090 0% 0.000088 2%
M, /meV 72 11% 69 5% 24 4% 34 5%

TABLE VI. Same as Table[V] but we assume a Gaussian prior on 7 of + 0.002.

CMB-54 alone CMB-5S4 + DESI/Euclid BAO
Opa Degradation| op, Degradation Opa Degradation| op, Degradation

Pe Fisher Fisher MCMC MCMC Fisher Fisher MCMC MCMC
Q,h?  |/0.000036 1% 0.000035 -2% 0.000035 0% 0.000035 0%
Qch? 0.00083 2% 0.00068 -2% 0.00030 -1% 0.00023 2%
10° Ag 0.0098 4% 0.0092 -3% 0.0082 4% 0.0084 4%
s 0.0023 3% 0.0022 -2% 0.0018 6% 0.0017 6%
T 0.0020 1% 0.0020 1% 0.0020 1% 0.0020 3%
1000nmc || 0.00011 3% 0.00011 4% 0.000087 1% 0.000086 -1%
M, /meV 53 3% 55 -1% 17 1% 19 1%

From Table [V] we find the MCMC results to be less sensitive to the impact of non-Gaussian covariance than
the results from Fisher matrix for CMB-S4 alone, although the orders of magnitude remain the same. One notable
difference is on the sum of the neutrino masses, where the Fisher method indicates twice the degradation of MCMC. If
we include the BAO measurement, parameter errors shrink in both cases, although differences between Fisher analysis
and MCMC remain in some cases (most notably for Q.h? and M,). Significant non-Gaussian degradations tend to
agree better in most cases if BAO information is included. Generically, better agreement between Fisher and MCMC
analyses when including BAO information might be related to the fact that the inclusion of BAO helps to break the
degeneracies present in the CMB data, which should make the likelihood more Gaussian.

If we now put a tighter prior on 7 by assuming the lowest possible bound from CMB measurement (right panel of
Fig. |8, and Table , the agreement between the MCMC and Fisher results are in better agreement, although still
slightly different. For the sum of neutrino masses, the difference in 1 o error is decreased slightly with o, = 53
meV from Fisher and o7, = 55 meV from MCMC results in the CMB-S4 case, and oj7, = 17 meV from Fisher and
om, = 19 meV in the case of CMB-S4+BAO. The corresponding degradation factors do change, but remain small
(less than 5%) for both methods (comparable to the sampling error in the MCMC case).

Several works, e.g. Refs. [39-41], already pointed out that a Fisher analysis may not give very accurate error
estimates for some combinations of parameters, noting significant discrepancies between Fisher matrix estimation and
MCMC results. When there are curving degeneracies or excluded regions in the parameter space (like M, < 0) the
shape is very non-Gaussian, and Fisher results are expected to be unreliable. To get more reliable Fisher estimates,
we could find a set of more Gaussian parameters for which the Fisher errors could be calculated. For example Ref. [40]
proposed physically motivated Gaussian parameterizations (although still strongly advocating for the use of MCMC),
or Ref. [42] proposed performing Box-Cox transformations on the parameter space. However, these extensions are
beyond the scope of this paper. The shape of actual data posteriors would of course also depend on the true model,
and the actual realization of the data obtained.
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FIG. 8. One- and two-dimensional joint marginalized posterior distributions at 68% and 95% confidence level in the 7 — M,
plane from a ACDM+M, set of parameters. The left panel assumes a prior on 7 from the current PLANCK measurement (£
0.01), and the right panel assumes the lowest bound from CMB measurement (£ 0.002). In each panel, we plot the contours
for CMB-S4 alone (red filled ellipses for the Gaussian covariance; blue filled ellipse for the non-Gaussian covariance) and CMB-
S4+BAO measurements (green filled ellipses for the Gaussian covariance; orange filled ellipse for the non-Gaussian covariance).
For comparison, we also show the results from the Fisher matrix (dashed ellipses). The disagreement between MCMC and
Fisher results is smaller when BAO measurements are added. For the sum of neutrino masses, as we do not account for the
excluded parameter region M, < 0 in the Fisher approach, making a direct comparison with MCMC of one-dimensional joint
marginalized posterior distributions difficult (see Tables [V| & for marginalized 1 o errors on parameters).

VI. CONCLUSIONS

We developed a detailed (but approximate) model for the auto and cross-covariances of the CMB and CMB lensing
power spectra and tested it against simulations. The main conclusions are that:

e There are correlations between the CMB and lensing reconstruction power spectra, as well as small off-diagonal
non-Gaussian contributions to the covariances of auto power spectra. The correlation and non-Gaussian contri-
butions are small, but are easily detectable in a fit to future S4-like data (at ~ 50, improving the model fit to
the data).

e Non-Gaussian contributions to the CMB auto-correlation are small, but can be accurately modelled using the
approximations of Sec. [[IT A| [3HE, 28]. B-modes produce the dominant off-diagonal contributions to the auto-
covariance. Temperature and E modes perform equally well, with a combined impact as large as the B modes
alone.

e Using estimators with realization-dependent reconstruction noise subtraction, the auto-covariance of the lensing
reconstruction power spectrum is well approximated by the simplest Gaussian model.

e The cross-correlation with the CMB is well modelled by the approximation

cov(Cy, rono Oy expt) & Z o e ( EM))Q Z;(z;
! o 00y 20 +1° 77 acy
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25

where the first term dominate@ In practice, one can quickly test the impact of the non-Gaussian covariance
by using the simplified expression for the cross-covariance:

XY ,ZW P 8C¢XY¢ZW 2 800‘7
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) » T ha,ex PP ¢ b
! 7 3023 203 +1 8 (r“)Ce3

For the considered possible CMB-S4 experimental setup, the correlation is most important for large lensing
scales ({44 < 500), but affects a large range of CMB scales (¢t gg,me > 1000 and 20 < ¢gg < 2000).

e These simple analytic models match S4-like simulations with excellent accuracy for the auto-correlation, and
good, but not perfect, accuracy for the cross-correlation.

e The impact of the non-Gaussian covariance is not negligible for a CMB-S4 experiment: neglecting it would lead
to an underestimation of errors on the lensing amplitude because the lensed CMB and lensing reconstruction
are double counting the same information (the estimates are correlated by up to 60% if the BB spectrum is
included). However, the correlation is dominated by one or two eigenmodes, which could be projected out to
reduce the correlation.

e Using a Fisher matrix analysis, we show that correlations can affect standard cosmological parameter errors from
the CMB by up to several tens of percent for an CMB-S4 experiment. For lower sensitivity observations the
correlations should be safely negligible. Using additional external data (priors on 7, BAO measurements) also
makes the correlations negligible with CMB-S4. A more accurate analysis using MCMC gives similar conclusions
but also highlights some inaccuracies of the Fisher matrix analysis.

e Although the impact is small for standard cosmological parameters if external data is included, an accurate
likelihood model should include the correlations, which is easy using the model presented here. The code is
available at https://github.com/JulienPeloton/lenscov.

In practice, the full covariance could be estimated from simulations, in which case there would be no need for an
analytic model. However, accurate covariance estimates require running a large number of CMB realizations (typically
corresponding to a total area of hundreds of full skies), which is very computationally expensive. In particular, the
entire suite of simulations needs to be rerun from scratch every time experiment specifications such as noise level,
beam size or sky coverage change. Making these changes is much simpler using our analytic covariance model by
changing for example noise level or beam size when evaluating the equations. Another potential disadvantage of
simulated covariances is that they are always somewhat noisy due to the finite number of simulations used, which can
lead to sub-optimal error bars. Based on our covariance model and comparisons with simulations, one might be able
to obtain less noisy covariance estimates by exploiting the fact that the covariances are dominated by a few singular
modes, which could be estimated from much fewer realizations than the covariance between all multipole bins. The
analytic model could also be used as a prior or regulator for simulation based estimators.

A potential disadvantage of the analytic covariance model is that it relies on the quadratic estimator of the lensing
reconstruction, and it is not immediately clear how to extend it to more optimal lensing reconstruction estimators that
rely on iterative estimates [33]. However, the leading cross-covariance term (Eq. is caused by a signal covariance
which would likely remain of the same form, and would therefore probably still dominate the non-Gaussian covariance.

We have not modelled the covariance with delensed CMB spectra. While the delensing process should reduce
correlations between CMB and lensing, we would still expect the residual covariances to contain some non-Gaussianities
(see for example Ref. [43] for the detailed B-modes case, or Ref. [7] which proposes an analytical model of the covariance
of the delensed spectra). Future work could investigate this further with simulations, or extend the analytic model of
this paper.
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Appendix A: Derivations of terms in covariances
1. Auto-covariance of the CMB

Here we give a partial derivation for some of the terms in the auto-covariance of the CMB (see Sec. [[IL A)) to build
some intuition for where the various terms come from. ~
First note that the lensed CMB is linear in the unlensed CMB, so Uy, = Zx vy Xtrm

agg , where the unlensed
fields are X € {T, E, B}. Contractions over unlensed fields can therefore be done using > (544/ mm/ QCZ axem%.

1// ’
For a set of isotropic Gaussian fields with covariance matrix Cy, we can also relate power spectrum derivatives to

expectations of field derivatives using

A = P ([(cr e ny — (7] A) = ¥ (G ) )

where A is any function of the Gaussian fields. Isotropy of expectation values then implies for example that

1 92CTY  \ S4B OCEY (42)
20X oYy, | 20+1 oCcxY”
To analyse the auto-covariance we expand it into a Gaussian piece,
VG Yages CE o) = Orat gy (O agu O o+ CE e Ol ) (A3)
plus fully connected non-Gaussian pieces as follows
ATTV "y 1 ~ L ~ AV
COV(CZZXP“ CZ,:;(Pt) (261 + 1)(252 + 1) Z <U€1m1 ‘/Elnn Uégnlz ‘/ngz> C€1 exptCZUg g(pt (A4)
mimsa
= COVG(CZZXp‘W Cnglgcpt) + COVCOIIH(Oggxpt7 Cg/gx/pt) (A5)
The leading-order connected piece is given by
1 Z C¢ 3(Ug1m1 Uézmg) a(vzml ‘/Zg*mg) + perm
(201 +1)(205 + 1) b P} Obt3ms
L3mgz,m1,m2 3ms
1 . -
ZOZ¢ zlegezfxxez + fgz,egfelegzz) (A6)

T (20 +1)(265 + 1)

where we used the definition of the non-perturbative response functions [23]

a(Ullml‘?l2m2) L Iy l
1L e ) = A7
< O, s > (ml ma M3 fhhb (A7)

This leading order term is generally small, but for cov(Cf }efxpt, C’ggxpt) where X,Y € {T, E} it is more important
and can be included in alternative ways. For example, for the covariance between EE and BB, to lowest order we

have

2 BB
L 007 ppe 2(CHF)” 0CE
(2@1 + 1)(2(2 + 1 Z C P1€3€zf€1€31’2 + f€1€3€2f€1/ﬂ2) ~ 20, + 1 8CEE1‘E' (AS)
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This term can also be included more generally by instead doing CMB cross-contractions using

1 / el °CPP e S2CBE
1 CXYCX Y i . b
4 X}%:’Y/ " 8X23m3 aXZ;m 8ths 8Y/4m4 - aXésm:s aYEZmz; 3Yezmd 8X24m4

£3mg,Lamy

5 acuv e
= ﬁCOV(C C£ ) E‘E s (Ag)
&,9C; aC}

where in the second line we used Eq. (A2]). This includes both leading and next order terms in Cf ¢, and is non-
perturbative in the derivative response functions. Unfortunately, it is not straightforward to generalize this to terms
not involving BB, since complications then arise with disconnected terms appearing.

In all cases at next order there is also a simple term connected by two lensing fields given by

L oo PRCIV 92CY :Zacg 2(Cy*)2 acy v (A10)
2 ¢ Obem OBy, o, 0Dy, —~ 0Pt 20 +1 a(jﬁ’

Im ' m’

where we used Eq. (A2) with X =Y = ¢. The term is numerically important, and accounts for the correlated
fluctuations in the lensed CMB induced by fluctuations in the lensing power. We neglect various other contractions
at this order that do not simplify into simple power spectrum derivatives.

2. CMB and lensing cross-covariances: terms cancelled by the use of RDNO

As seen in Sec. The RDNO correction of the measured lensing power spectrum cancels two terms.

a. Fully disconnected 6-point functions: noise term. The first identified contribution comes from fully discon-
nected terms (disconnected 6-point functions of zeroth order in C'??), the leading covariance from the reconstruction
noise being dependent on the CMB power. Taking Gaussian contractions between two power spectra and taking the
Gaussian noise part of the expectation, we have

1 AGXY $ZW
XY ,ZW 9 ; @ B
COV (CZ sz expt)llOISe 2 § i L (Céaexptc ,expt C s ptcé,expt) (5@@265/[2
(ab),lm 'm LEmﬁexpth’m’,expt X
N(O) XY ZW )
C()Vc(é~b C ) (All)
£2,expts ~la,expt/?

(ab) csz,expt

for CMB pairs (ab) € {TT,TE,EE,BB} and Gaussian covariance covg. This term reflects the fact that both
the noise bias of the reconstructed lensing potential and the lensed CMB fields share the same CMB fields: if the
CMB power fluctuates high, both the estimated lensed CMB power and Gaussian lensing reconstruction noise N(©)
fluctuate high. It produces broadband correlations between wide ranges of scales, and dominates the full covariance
with small-scale lensing power.

The large-scale ({44 < 1000) lensing modes are reconstructed with high signal to noise for S4, and hence noise
covariance only makes a small contribution to the total correlation there. On smaller lensing reconstruction scales,
{44 2 1000, fluctuations in the CMB power do induce larger correlations, with the relative importance of the correlation
for the different CMB power spectra depending on the weights of the different CMB modes in the minimum variance
lensing estimator. The MV lensing estimator gives most weight to the EB estimator at low {44, but the temperature
estimator become relatively more important for the reconstruction of smaller-scale lenses (see Fig. . Low €44 are
therefore only very weakly correlated to the TT spectrum on large scales even ignoring the signal variance, with
BB and EE correlations dominating the noise contributions there; the TT and TE correlations dominate the noise
contributions at high £44.

Additionally, the lensing reconstruction depends on CMB modes satisfying the triangle constraint up to an (7Y
where they become noise dominated (and hence are cut off by the weights), unless an /7Y cut-off scale is imposed.
For £44 < 2V most of the temperature (and E-polarization) lensing reconstruction is from squeezed shapes involving
only high-f;7 modes which have the largest weights and lowest cosmic variance; the noise correlation at moderate 44

is therefore mainly with high (Y}, for TT. For {4 ~ ¢4, the triangles can no longer be squeezed, and a wide range
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of larger-scale CMB modes contribute (with small weight on large scales being compensated by the other mode being
near 3V ). The cosmic variance of the large-scale CMB modes is however much larger than that of the small-scale
ones, resulting in a strong correlation structure around £y ~ 200 and the first few peaks where there is the smallest
number of modes. The noise correlation with EE has a similar structure at high £44, but at lower £44 there is a
broader range of correlation scales (as for BB) because the E modes also enter the EB estimator.

As demonstrated for temperature in Ref. [6], and shown in Figs. [3] & [4] in the general case, this leading-order noise

term can be efficiently mitigated by the use of the realization-dependent N(©) correctlo

b. Connected 4-point function: Type A trispectrum. In addition to the noise term, there is another contribution
from the CMB trispectrum to the cross-covariance, denoted Type A trispectrum hereafter. It is a correction term to
the noise contribution in Eq. containing higher order terms in C%?, and its general form is given by

(0),XYZW
XY zZW ~ T A aNE
cov(Cf 0 OTY e = D

trispectrum

Aab
PH COV(Cea,expm Céz expt)conn-4pt- (A12)
(ab),t3 OCE, expt

See Appendix for more details on the derivation of this term.

3. Cross-covariances between 2-point and 4-point functions: connected 4-point functions

We are interested in connected 4-point function contribution to the 6-point function in the last line of Eq. This
is basically the contribution from the lensed CMB trispectrum to the cross-covariance. We split the 6-point function
in three groups G of two fields:

)223%4 | ZQ; WEG 0£2m2 ‘742’,,712 (A13)
—— —— ———————
G1 G2 G3

Following Ref. [6], we can show that the non-vanishing contributions are of the fornﬁ (G1G2) x (G1G2G3G3). (Type
A) and [(G1G3) x (G1G2G2G3).) + (G2G3) x (G1G1G2G3),] (Type B).

c¢. Type A: One can express the full expression in a rather simple form by noticing that the pairing (G1G2)
gives rise to the lensed CMB power spectrum, while the pairing (G1G2G3G3), is the connected 4-point function
contribution to the lensed CMB auto-correlation (see Sec. [ITA]). Then, using sum over m’s and the Eq. we
obtain:

(0), XY ZW
XY . ZW ~ T A 8N
COV(ng ¢ Olg,expt) Yo = Z

trispectrum

Aab
90 COV(CZ»,,expta Oég expt)conn-4pta (A14)
(ab),ts £5,expt
for CMB pair ab € {TT,TE,EE,BB}. We can interpret the covariance Eq. [A14] as the correction to the noise
contrlbutlon of Eq. [A11] due to the non-diagonal parts of the lensed CMB auto-covariance at higher orders in C'¢¢

(Eq. is O([Cf¢] ), while Eq. contains in our development O([CZ)¢] ) and O([C’ZM] ) terms).

d. Type B: In general, there are 8 non-vanishing terms. To compute this term, we need the expression for the
lensed CMB trispectrum. First let’s notice that the connected 4-point function (Yy, Zy Wy Vi, —m,)e at o(CP”1h)

contains only terms (Yg Zz Wi, 6Viy —m,)e and permutations thereof ((f@4 ng W%a?wz,_mgc and permutations are
cancelled by the dlsconnected part) Therefore, using Eq. I we have

~ s s~ 1 ly ¢ 14 ls ¢
(YQZQW%VKQ,,WLQ?) =3 Z(—l)m ( 30 > ( 56 ) C¢¢f43“4f45446 + all permutations,  (A15)

m ms Mg —M ms Me ™M

23 See also first line of Eq. A
24 The notation (G1G2) means that we correlate one field from group G1 with one field from group G2.
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where the superscript (2) indicates that we stopped the development at (’)([CZ’ ?]1). The general formula for the lensed
CMB trispectrum contribution to the covariance does not have a simple expression (see Eq. for the general case),
so we focus here on only few combinations that simplify.

Let’s consider X =Y = Z = W = U =V, then inserting Eq. Eq. [11] and [13] in the cross-covariance equation
leads to the final result

o303 (0),XXXX
Cv¢XX¢XX 622 Cxpt)Type B - primary __ C& aN& 2

0 trispectrum - AéX 805)2 . 205+ 1
2,eXp

cov( (CEX )2 (A16)

If we consider X = Z = E, Y =W = B, and U =V € {E, B}, we have only 4 non-vanishing terms (terms with
(EB) will vanish), and we obtain:

(0),EBEB
éd)EBqSEB é Type B - primary __ C aNK 2
COV( 01 Lo, expt)

trispectrum - 7
p Ae1 aggtéxpt 205+ 1

(U0 )2 (A17)

£o,expt

These simplified forms are useful to gain some intuition: we can see that the effect of the Type B trispectrum will be
the same as the noise term from Eq. modulated by the signal-to-noise of the reconstruction (C%?/A).

4. Lensing auto-covariances: terms cancelled by the use of RDNO

By expanding the second term on the RHS of Eq. 1] in terms of the different contributions from Sec. [[ITB] the last
term on the RHS is cancelled because of contributions coming from Eq. and from Appendix[A2] and we are
left with

8N(0)’XYZW AdX Y/¢Z w’

COV(ng expt? Ce

A XY  ZW A XY 2w A XY  ZW A XY Z' W
(] @ @ [ C¢ ¢ )_ Z )Secﬂm

COV(Cél,RDNO ’CZQ,RDNO ):COV(Cel » Ly,

@b
(ab),ls aCZg expt

aN(O)’X Y'Z'wW
~ ¢XY¢ZW A~
- > cov(CY , O o) Sec ITET

b
(ab) 5 OCH, exot
aNe(lo),XYZW (C C )aN(O),X/y/Z/W/ (Als)
— 7 COV Ly, expts Ly expt &d
@) (ctnts Ol expt OCT o

The second and third terms of this equation contain the signal and Type B trispectrum contributions from the
Sec. (Egs. & respectively). The last term of the RHS of this equation contains the noise and Type A
trispectrum contributions from the Appendix (Egs. & respectively) that we explicitly expand to make
the auto-covariance of the CMB to appear.

e. Contribution from reconstruction noise fluctuating with the lensed CMB power. The last term on the RHS of
Eq. [AT§| contains the auto-covariance of the lensed CMB. It cancels contractions that appear in the raw estimator
power spectrum estimators, specifically those terms arising from connecting two lensed CMB fields in each of the
estimators:

§ : * * * *
n <<a£/1m/1 -,Cxptbf’zm’z,exptcfémé,Cxptdfﬁlmﬁl,expt> - <a’e/1m/1,cxptb£’2m’2,expt><ngmé,cxptd€fkmﬁl,expt>)

(abed)
{¢/m’}
< 820¢XY¢ZW > < 82C¢X vigz'w! >
>< ~
6@@’1 mj ,exptab*’gmé,expt dey, 3™M5,expt 8d*ﬁ;m4 expt

0),XYZW 0.X'Y 2 W
~ o e e A19
= Z %YTCOV( £3,expt’ 24,expt)T, ( )

(ab),(cd) 3,64 £3,expt 1 expt

where the CMB auto-covariance includes both Gaussian and non-Gaussian parts, but we keep only the Gaussian
reconstruction noise part of the estimator expectations.
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FIG. 9. Different slices of the reconstructed lensing potential power spectrum correlation matrix: £o = 220 (top), fo = 1020
(middle), o = 2020 (bottom). The analytic model (solid red curves) contains the different contributions listed in Appendix [A4]
(contributions removed by the use of RDNO), namely the contributions from Appendix (yellow dashed-dotted curves), and
from Appendix (dashed blue curves). For visualisation purpose, we subtract the reconstruction variance (see Sec.
and we emphasise the scale £/ = o by a vertical line. We also show the results obtained on simulation (black crosses). The
model and the simulations are in relatively good agreement although some difference are seen. After RDNO subtraction, only
the Gaussian reconstruction variance is considered in our model. See text for discussions.

f. Contribution from signal and trispectrum terms in the lensing reconstruction-CMB cross-covariance. The sec-
ond and third terms on the RHS of Eq. cancel terms appearing in the raw estimator covariance involving terms
described in Sec. [ITTB2] We expect that these terms might be relevant because the connected 6-point function and
the primary (Type B) connected 4-point function have a large effect on the cross-covariance between CMB and recon-
struction power spectra. We expect the dominant terms in Eq . 39| that multiply a CMB 2- -point with a CMB 6 point
function to be (X, Zy ) (Yo, We, C07), (X, Wo, )(Ve, 20, Co0), (Yo, Z0,)(Xe, Wy, C77) and (Yy, Wy, /Xy, Z4,C3?), and

four similar terms obtamed from b1 <> Ly, as

XY AZW
A AL S gy gh&(el)ﬂ(el)(% b & )(5"” % fl)

(2€1+1) ’ 7 m3 myg —Mq ms Mg M1
L3;.-5kg,M1

x'y!  z'w’
A ¢

X |:<)~(£JZ£5><}/( Wg C >(1)+(2) +3 similar} + (51 (—)fg)

(0),XYZW o (0),X'Y'Z' W'
_ 8N cov(c C¢X Y/ 2w ) i o ¢XY¢ZW CA'~ ) 8N
= HCab L4, expt? iy Sec. [ITBl v(C £4,expt )Sec. [IITBT] b )
(ab),lq £4,expt (ab),l4 £4,expt

(A20)

where (1)4(2) means that only O([Cf¢]1) connected 4-point contributions (Eq. , and C’)([C’Zbﬂz) matter cosmic
variance contribution (Eq. from the connected 6-point function are included in the cross-covariance between

25 The last line can be obtained as follows. In the permutation written out, <)2g3 ng> enforces I3 = l5 and m3 = —ms5. The sum over
X'y z'w’

m1 and ms then enforces ¢4 = £g and m4 = —mg. Summing over my leads to (C’YWC¢ 4 ><1>+(2), which can be expressed in

terms of contributions to the covariance between measured lensed CMB and lenslng reconstruction power spectra from Sec.[[lTB 1] The

sum over {3 leads to 8N(0)/8Cg)§pt.
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the reconstructed lensing potential power spectrum and lensed CMB power spectra in the last line (excluding the

O([C’f ¢]0) noise contribution because it is already included in Eq. . We show the contribution of Eq. m to
the total auto-correlation in Fig. |§| (dashed blue curves). This term is responsible of large off-diagonal correlations,
and it dominates over other contributions at small scales, but also at large-scales because of the signal term from Eq.

g.  Comparison against simulations In Fig.[9]we plot the different contributions removed by the RDNO subtraction
(from Appendices & . For comparison, we overplot the results obtained using our set of simulations. The
agreement is on overall good, although some discrepancies can be seen especially at large scales (£44 < 1000). Those
differences appear to be unimportant for our purpose (as seen in Sec. since after applying the realization-

dependent bias subtraction the auto-covariance is predominantly dominated by diagonal elements. The agreement of
diagonal elements (considering only Eq. between the model and the simulations is at the sub-percent level.

Appendix B: Evaluating power spectrum derivatives

Following [27], the lensed CMB temperature power spectrum can be written as

. 1
CIT = 2r / €(8)dho(B)d(cos ), (B1)

where ¢ is the correlation function and d?,, is the Wigner (small) d-matrix The correlation function can be
expressed in terms of the unlensed spectrum and the lensing potential power spectrum to good accuracy as

£(B) = Z %CZT(@I(&H)U(BWQ (déb(ﬂ) + @Cglﬂ(ﬂ)dil—l(ﬂ))’ (B3)
£y

where 0(8)? = Cg(0) — Cg1(B), and

Ca() = 3 BV D a4 B1)
4
Caa(9) = 3 B D o (), (85)

4

Then we obtain the derivative of the lensed CMB power spectrum using

TT 1
ac@l — 91 8§(ﬂ)

12 B
acxY _, 0CXY dop (B)d(cos ), (B6)

where X,Y € {T, E, B, ¢}. Extending these results to polarization gives:

oCPE  acp® Log(B)
e - o =2 ds_,(B)d B
8CZ)§Y 8CE)§Y W[1 aCé)gy 2—2(5) (0056), ( 7)
OCEE  pCBB /1 aET(B)
— =2 d d B
8céY +ac£)2(Y T . 8052“/ 22(5) (COSﬂ), ( 8)
oCT” L 9E(B) 4,
aCxY = 2”/_1 aCxY dap(B)d(cos B), (B9)

26 The integration in Eq. (and same for polarization) is done using a Gauss-Legendre quadrature rule:

-~ 1 n
off = | E(B)dho(8)d(cos B) 2 3 €(awi)dfo i (B2)
- =1

where here w; are Gauss-Legendre integration weights.
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where €T, €7, and £* are defined in Ref. [27]. This method of calculating the lensed power spectrum derivatives
is more accurate than using the leading-order series-expansion method (see for example Ref. [I8]), and prevents an
artificially high correlation between the lensed CMB power spectra and the reconstructed lensing potential power
spectrum. The fact that the correlations are enhanced in the case of the series expansion can be partly understood by
noticing that series-expansion method tends to over-lens the signal with respect to the correlation function method,
as shown in Fig. In the acoustic region for example, the features due to lensing are artificially enhanced if we
use the series-expansion, and therefore the correlation between the lensing amplitude estimates becomes (artificially)

stronger.
-0.06

20 1000 2000 3000 20 1000 2000 3000 20 1000 2000 3000 20 1000 2000 3000
byt 1450 4%5) {gB

0.06

0.0

Lep(4eB + 1)vgy,

b1 (ETT + I)U[TT
40 (gEE + 1)Ugm:
ETE (ZTE + I)UgTE

FIG. 10. First singular vector of the signal covariance matrix (Eq. when using correlation function (coloured lines, with T'T,
EE, TE, BB in red, blue, green, and yellow respectively) or series-expansion methods (black lines) to compute the derivative
of the lensed CMB spectra with respect to the lensing potential power spectrum. This first singular vector represents mainly
the difference between lensed and unlensed CMB power spectra (or E modes in the case of the B modes). The computation of
derivatives using series expansion over-lenses the power spectra compared to the correlation function method (Egs. .

Appendix C: N1 deconvolution

The estimation of the lensing potential power spectrum suffers from several biases. The influence of the N(© bias
on the covariance is reduced using realization-dependent bias subtraction (see Eq. . However, there is still an N1
bias, which is mostly seen at very small scales. This can be modelled analytically, and subtracted from the lensing
potential power spectrum estimate (with perturbative corrections to account for model dependence when used for a
likelihood [I0]). However, subtracting it does not reduce the off-diagonal elements of the covariance of the estimator

(N, 2(1) depends on the lensing spectrum over a wide range of ¢). Instead we could deconvolve the estimator from the
bias using

~ -1 .
OPV e _ Z (I n N(l),MV)(w (ngMV(pMV AN MV) (c1)

£,decon
Z/

where the elements of the N(O)-MV matrix are given by

N (1), XY ZW
z;) MV _ Z wXY W (C2)
acy?
XY, ZW

We show in Fig. |11 the effect of the N(*) deconvolution on the auto-correlation of the reconstructed lensing potential
power-spectrum, with and without the realization-dependent noise subtraction applied. One can see that the effect
of the N deconvolution on the off-diagonal elements takes place at very small scales (where N M is relatively
important), but also between large and intermediate lensing scales. However, given the experimental setup chosen
here, and the smallness of the off-diagonal elements prior to the deconvolution, the deconvolution has a negligible
impact on cosmological parameter estimation. This is consistent with our neglect of the off-diagonal N(!) covariance
in the covariance model of Sec. [TTCl
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FIG. 11. Effect of the N® deconvolution on the auto-correlation of the reconstructed lensing potential power-spectrum. Top:
The left sub-panel shows the auto-correlation of the reconstructed lensing potential power-spectrum (no RDNO subtraction), the
middle sub-panel shows the auto-correlation of the reconstructed lensing potential power-spectrum with the NV ) deconvolution
applied, and the right sub-panel is the difference between both. The off-diagonal elements are reduced. The reduction takes
place at very small scales (where N M) is relatively important), but also between large and intermediate lensing scales. Bottom:
Same, but the realization-dependent noise subtraction has been applied prior to the deconvolution.
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