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We numerically solve the evolution equations of neutrino three-flavor density matrices, and show
that, even if neutrino oscillations mix neutrino flavors, large lepton number asymmetries are still
allowed in certain limits by Big Bang Nucleosynthesis (BBN).

I. INTRODUCTION

Despite the fact that the baryon number asymmetry
of the Universe is constrained to be B ∼ 10−10 by Big
Bang nucleosynthesis (BBN) [1] and observations of the
Cosmic Microwave Background (CMB) [2], the universe
is allowed to have a large lepton number asymmetry (L
defined similarly to B but for leptons) as long as such an
asymmetry is associated with neutral particles. In par-
ticular, a large asymmetry of neutrinos (e.g. L & O(1))
is quite attractive in view of its impacts on cosmology
(for example, as a solution to the problem of topological
defects via a symmetry non-restoration [3, 4], generation
of B from L via sphaleron [5], and/or as contribution to
the extra relativistic species ∆Neff which may lead to a
better fit to cosmological data). Even if the total lepton
number vanishes, L = 0, the asymmetry Lα (for a neu-
trino flavor να) could be large enough to have an impact
on the generation of B [6] and ∆Neff .

The main constraints on large neutrino asymmetries
come from BBN (especially the abundance of 4He) [7, 8]
and ∆Neff , which is constrained by both BBN and CMB
observations [2]. In particular, BBN strongly constrains
the asymmetry of electron neutrinos such that the degen-
eracy parameter (ξα ≡ µα/T , with µα being the chemical
potential of να and and T the temperature) is constrained
as [9]

−0.018 ≤ ξe ≤ 0.008⇒ −4.5 . 103Le . 2.0, (1)

while recent Planck satellite data of CMB observa-
tions constrain ∆Neff . 0.36 at 95 % CL (Planck,
TT,TE,EE+lowP+BAO) [2] which conventionally trans-
lates to

|ξµ,τ | . 0.89⇒ |Lµ,τ | . 0.24 (2)

where Lα ≡ (nα − nᾱ)/nγ with nα/nᾱ and nγ being the
number density of να/ν̄α and photons, respectively.

Meanwhile, there has been a series of works showing
that neutrino oscillations in the early universe mix three
neutrinos such that any asymmetry Lµ,τ which is estab-
lished well before BBN is converted significantly to Le
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[9–15] (See also [16]). As a result, although in Ref. [17]
it was shown that sizable asymmetries of νµ,τ leading
to large ∆Neff of O(0.1 − 1) are possible, this was the
case only for θ13 = 0. Later, Refs. [9, 14] showed that
for a non-zero θ13, as measuread by experimental obser-
vations, BBN requires |Lµ,τ | . 0.1 which translates to
∆Neff . 0.07.

However, in these numerical simulations, the quantum
kinetic equations of neutrino/anti-neutrino density ma-
trices were solved using a scheme such that the mixed
three-flavor neutrino system was handled as successive
effective two-flavor systems (νµ-ντ and νe-νµ,τ ) before
and after νµ-ντ equalization, as can be seen by the fact
that the νµ-ντ degeneracy once established is never lifted
[29] , which is not consistent with the three mixing angles
being non-zero, as will be discussed below. For the evolu-
tion up to the point of νµ-ντ equilibrium, the two-flavor
description is enough since νe participates in the oscil-
lations only afterwards. However, once νe is involved,
the evolution of the mixed three-flavor system becomes
quite complicated, and the νµ-ντ equalization may not
be maintained any more. In addition, the choice of neu-
trino mixing parameters has significant impact on the
final asymmetry of each flavor after the mixing and os-
cillation effects settle the system to an equilibrium state.
More importantly, the total asymmetry L does not need
to be small as long as its contribution to B is suppressed
by symmetry non-restoration [30]. In this regard, it is
worth while to re-examine the impact of three-flavor os-
cillations of neutrinos on the BBN bound of the lepton
number asymmetries with all the mixing angles different
from zero as experiments indicate.

In this paper, we argue that effective two-flavor de-
scription of the mixed three-flavor neutrino system does
not necessarily capture the real physics of neutrino oscil-
lations in the early universe. We demonstrate our argu-
ment by presenting the numerical solution to the three-
flavor evolution equations, which is different from the
results in earlier work based on a two-flavor effective de-
scription. We also show that BBN still allows large asym-
metries which can lead to ∆Neff ∼ O(1).
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II. TWO- OR THREE-FLAVOR DESCRIPTION?

The masses and mixing parameters of neutrino oscil-
lations are now measured to be [1, 21]

∆m2
21 = 7.53+0.18

−0.18 × 10−5 eV2 (3)

∆m2
31 ' ∆m2

32 = 2.67± 0.12× 10−3 eV2 (4)

and

sin2 2θ12 = 0.846± 0.021 (5)

sin2 2θ13 = 0.093± 0.008 (6)

sin2 θ23 = 0.40+0.03
−0.02 (0.63+0.02

−0.03) (7)

where θij are the mixing angles in the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) mixing matrix [22, 23] whose
CP-violating phase is set zero here. In the early universe,
the oscillations of neutrino flavors can be described by
the evolutions of neutrino/anti-neutrino density matri-
ces. For a mode of momentum p, the density matrices in
the flavor basis of three active neutrinos (νe, νµ, ντ ) can
be expressed in terms of polarization vectors P/P̄ and
Gell-Mann matrices λi (i = 1− 8) as

ρp =
1

3

8∑
i=0

Piλi, ρ̄p =
1

3

8∑
i=0

P̄iλi (8)

where λ0 is the 3×3 identity matrix. Then, the evolution
equations of ρp and ρ̄p are given by [24, 25] (see also [26])

i
dρp
dt

=
[
Ω +
√

2GF (ρ− ρ̄) , ρp

]
+ C [ρp] (9)

i
dρ̄p
dt

=
[
−Ω +

√
2GF (ρ− ρ̄) , ρp

]
+ C [ρ̄p] (10)

In the above equations,

Ω =
M2

2p
− 8
√

2GF pE`
3m2

W

(11)

where M2 is the mass-square matrix of neutrinos in
flavor-basis, GF the Fermi constant, mW the mass of W -
boson, E` = diag(Eee + Eµµ, Eµµ, 0) the energy density
of charged leptons, ρ = (1/2π2)

∫∞
0
ρpp

2dp (and similarly
for ρ̄), and C[. . . ] is the collision term.

Practically, we numerically solve the equations of mo-
tion (EOM) of Pi and P̄i derived from Eqs. (9) and (10).
Those equations are mixed in a complicated way, and it
is non-trivial to get an insight of what may happen un-
less a numerical integration is performed. It is also dif-
ficult to see if the maintenance of νµ-ντ equalization in
an effective two-flavor description taken in earlier works
still is valid in this case. However, it is instructive to
note that, when one of the mixing angles is set zero with
θ23 = π/4, the mass-square matrix M2 has a special
pattern (for example, if θ13 = 0, then M2

12 = −M2
13 and

M2
22 = M2

33). In this case, ignoring self-interaction terms,
which barely affect our results, and the subdominant col-
lision terms in Eqs. (9) and (10), one can see that some

pairs of P±i s (for example, P−1 -P−4 and P+
2 -P+

5 where
P±i ≡ Pi± P̄i) are likely to be driven in exactly opposite
way (see Appendix). As a result, it becomes possible to

have P−3 −
√

3P−8 = 0 and d
(
P−3 −

√
3P−8

)
/dt = 0 simul-

taneously, and this implies that, once νµ-ντ equalization
is achieved, it is likely to be maintained even if another
non-zero mixing becomes active. This is the case in which
the two-flavor description can be applicable. However, if
all the mixing angles are non-zero as the accumulated
neutrino oscillation data indicate, or θ23 6= π/4 even if
θ12 = 0 or θ13 = 0, the special pattern of the square-mass
matrix disappears, and there is no reason to expect νµ-
ντ equalization to be maintained once the second and/or
third mixing get involved. Hence, we can expect that
the two-flavor description may be applicable only to that
limited case, which does not apply in view of the current
observational data in neutrino oscillation experiments.
In the next section, we will show that this is in fact the
case.

III. RESULTS OF THREE-FLAVOR
NUMERICAL INTEGRATION

In our numerical analysis, M2 was taken to correspond
to a normal hierarchy of neutrino masses. Also, since a
precise treatment of collision terms has only minor ef-
fect in the scope of this letter (see for example [19]), we
take for simplicity C[ρp] = −iDαβ [ρp]αβ for α 6= β only,
and similarly for C[ρ̄p] [11]. The initial condition for the
simulations was set as

ρp = f(y, 0)−1diag(f(y, ξe), f(y, ξµ), f(y, ξτ )), (12)

and similarly for ρ̄p but with ξα → −ξα, where f(y, ξα) =(
ey−ξα + 1

)−1
is the occupation number of να for a mode

y ≡ p/T .
In the presence of charged lepton backgrounds and/or

collisional dampings, the dynamics of the occupation
number of a mode is not oscillation-like, but transition-
like. In this case, the dynamics of flavor asymmetries
(as a mode-integrated collective behavior) can be mim-
icked by a typical mode (i.e., corresponding to the av-
eraged momentum or close to it) even without the self
interaction term (i.e., the term proportional to ρ − ρ̄ in
Eq. (9) or (10)), modulo an overall normalization [13].
We take this single mode approach with y = 3.15 which
is nearly the same as the mode of average-momentum,
but in order not to miss specific phenomena caused by
self-interaction (e.g., blocking of transition [11]), we keep
the self-interaction term in a way that ρ− (≡ ρ− ρ̄) is re-
placed by ρ−p (≡ ρp − ρ̄p), normalized initially to match

ρ−. In order to see the result in terms of the lepton
number asymmetries, the initial occupation numbers of
our reference mode were normalized to match the initial
lepton number asymmetries accounting all modes.

The validity of our approach was checked by reproduc-
ing some results in earlier works, for example, as shown in
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FIG. 1: Evolutions of Lα for θ = (θ12, θ13, θ23) and
(ξe, ξµ, ξτ ) = (0,−0.1, 0) with self-interaction switched on/off
(solid/dotted lines). Green/red/blue line is for Le/Lµ/Lτ .
Black dotted line is the total asymmetry.
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FIG. 2: Evolutions of Lα for θ = (θ12, θ13, θ23) and
(ξe, ξµ, ξτ ) = (0, 1, 0) with self-interaction switched on. Color
scheme is the same as Fig. 1.

Fig. 1 (see Fig. 5 of Ref. [11] for comparison). The figure
shows that the main features of the evolution of Lα gov-
erned by Eqs. (9) and (10) are captured by our simplified
approach, proving the validity of our approach. The mi-
nor difference of the amplitude of synchronized oscillation
(which depend on |ηα| or ξα) may be the difference be-
tween effective two-flavor description and three-flavor full
description. If the initial asymmetries are large enough
and are not forced to obey a specific pattern (e.g., equal
and opposite), the evolution of the asymmetries appears
to be essentially independent of the self-interaction term.
This implies that for aligned initial asymmetries, when
the self-interaction is large enough, P+ hardly deviates
from the direction of I− ≡

√
2GF

∫
P−p2dp/(2π2) (or

simply P− in our simplified simulation).
As our first new result, Fig. 2 shows the evolution of Lα

with different sets of mixing angles. The self-interaction
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FIG. 3: Evolutions of Lα for θ = (θ12, θ13, θ23) and
(ξe, ξµ, ξτ ) = (0, 1,−1). Color scheme is the same as Fig. 1.

term did not make any meaningful change in this case, as
expected. As shown in the figure, the first dynamics takes
place due to θ23 ∼ π/4 which mixes νµ and ντ completely,
leading to Lµ = Lτ irrespective of the value of θ23 due
to frequent collisions. At later time, collisions become
inefficient. In this circumstance, if θ23 = π/4 and θ13 = 0
(dotted lines), this equalization is maintained even if non-
zero θ12 gets involved later. Checking the dynamics of
all components of polarization vectors, we found that the
reason for such a behavior is exactly what discussed in the
previous section. The same behavior appears if θ12 is set
zero instead of θ13. On the other hand, if all the mixing
angles are non-zero (dashed lines) or θ23 6= π/4 (solid
lines), the equalization is broken, as the second dynamics
appears due to another mixing. Therefore, we conclude
that, for the neutrino mixing parameters measured so far,
Lµ 6= Lτ as a result of neutrino mixings.

Obviously, the final Lα depends on L. So, we now
consider some initial values of Lα for L = 0 and L 6= 0
cases as shown in Fig. 3 and Fig. 4, respectively. In the
case of Fig. 3, due to the equal and opposite asymme-
tries of νµ and ντ , neutrino self-interaction blocks the
νµ-ντ mixing until the dynamics due to the non-zero θ13

becomes active. This phenomenon was observed already
in an earlier work [11], but the subsequent synchronized
oscillation was not clear in the result, in contrast to our
case. The large synchronized oscillation seems to be due
to the delayed mixing of νµ-ντ that is dominated by the
vacuum contribution in Eq. (11). The final asymmetries
depend on the mixing angles and configuration of Lα,0.
However, for L = 0, even if Le,0 = 0, the oscillation-
averaged values turn out to be

|Le| ∼ |Lµ,τ | . 10−2|Lµ,0| (13)

where Lα,0 is the initial asymmetry of να, and ξα,0 . 1
was assumed. Hence, in this case we end up the same
conclusion as earlier works.

Contrary to the case of L = 0, if L 6= 0, one can
take arbitrary initial values of Lα. This means that, as



4

0.05 0.10 0.50 1

-0.5

0.0

0.5

1.0

1.5

x[MeV/T]

L
α

θ = (π /6,π /20,π /4.6)

Self On

Self Off

FIG. 4: Evolutions of Lα for θ = (θ12, θ13, θ23) and
(ξe, ξµ, ξτ ) = (−1.0, 1.6, 0.3). Color scheme is the same as
Fig. 1. Dotted lines (the case of “Self Of”) were overlapped
by solid lines.
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FIG. 5: Evolutions of Lα for θ = (θ12, θ13, θ23) and
(ξe, ξµ, ξτ ) = (−1.0, 1.6, 0.3) with self-interaction turned on.
Color scheme is the same as Fig. 1.

shown in Fig. 4, at the late time equilibrium it is possible
to have small Le but large |Lµ,τ | which can result in
∆Neff ∼ O(1). Note that the net asymmetry L can be
large enough to suppress the conversion of L to B by
symmetry non-restoration [27]. This is our main result.

Finally, in Fig. 5 we show the θ23-dependence of Lα
for θ23 = (π/3.4, π/4, π/4.6) which covers the favored
values at NOvA data [21]. In the figure, one can see
that for given nonzero values of θ12,13 the larger θ23 the
smaller Lµ-Lτ separation, keeping the average of Lµ and
Lτ barely changed (or Le barely changed). This behavior
is non-trivial, but one may get an idea from the evolution
equations associated with Lα (see Appendix): Ignoring

self-interaction terms, for ρ±p ≡ ρp ± ρ̄p one finds

dρ−p
dt

∣∣∣∣
ee

=
2

3

(
Ω12P

+
2 + Ω13P

+
5

)
(14)

dρ−p
dt

∣∣∣∣
µµ

= −2

3

(
Ω12P

+
2 − Ω23P

+
7

)
(15)

dρ−p
dt

∣∣∣∣
ττ

= −2

3

(
Ω13P

+
5 + Ω23P

+
7

)
(16)

where Ωij for i 6= j can be approximated as

Ω12 ≈ ∆m2
31c13s13s23 (17)

Ω13 ≈ ∆m2
31c13s13c23 (18)

Ω23 ≈ ∆m2
32c

2
13c23s23 (19)

It is not easy to see how P+
2 , P

+
5 , and P+

7 would depend
on θ23. However, from the property of the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix [22, 23] describ-
ing neutrino mixings, it is clear that the evolution of
(ρ−p )ee is invariant under the change of θ23. This im-
plies that the θ23-dependence in the right hand side of
Eq. (14) is cancelled out. Hence, from Eq. (15)-(19) one
finds that the evolutions of (ρ−p )µµ and (ρ−p )ττ should
depend on θ23 in an equal and opposite way, but they
are not symmetric with respect to θ23 = π/4, as shown
in Fig. 5. The impact of θ13 on Lα can be easily read
off from Fig. 2, and it is straightforward to see that the
larger θ12 the closer Le and Lµ,τ .

IV. CONCLUSIONS

In this paper, we showed that, contrary to the widely
held conventional expectation, lepton number asymme-
tries of neutrinos can be quite large while keeping the
asymmetry of electron-neutrino small enough to sat-
isfy the BBN bound. Large asymmetries of muon- and
tau-neutrinos are expected to be constrained mainly by
CMB through ∆Neff (extra neutrino species or “dark”
radiation), but the asymmetries are better constrained
in terms of neutrino mass-eigenstates instead of flavor-
eigenstates [28].

In the literature, even if there were several works in
which integrations of the full three-flavor evolution equa-
tions were considered in some contexts, an effective two-
flavor description after the first transition between muon-
and tau-neutrinos has been used by fixing the asymme-
tries of νµ and ντ equal as a kind of conventional method
in the estimation of late time neutrino asymmetries in
the presence of neutrino oscillations. The neutrino asym-
metries in this case were tightly constrained, leading to
∆Neff . 0.07. However, such a setting is questionable in
the presence of three non-zero mixing angles. In addition,
neither BBN nor CMB data forbid a large non-zero total
lepton number asymmetry. Motivated by these obser-
vations, we numerically integrated the quantum kinetic
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equations of the full three-flavor density matrices of neu-
trinos and anti-neutrinos, and found that the asymme-
tries of νµ and ντ after all the transitions are finished be-
fore BBN are actually different, and can be large enough
to result in ∆Neff ∼ O(0.1−1) which is an order of mag-
nitude larger than the one in earlier literature and may
lead to a better fit to cosmological data [28].

For large arbitrary initial lepton number asymmetries
well before BBN, the stringent BBN bound on the asym-
metry of electron-neutrinos appears to require a fine tun-
ing of the initial condition. However, such a tuning is
certainly allowed by data, and could well be explained
by some physics beyond the standard model.
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VI. APPENDIX

A. Polarization vector equations of motions

From Eqs. (9) and (10), when the self-interaction terms
are ignored, the equations of motion (EOM) of Pi and P̄i
are derived as follows.

Ṗ0 = 0 (20)

Ṗ1 = −D12P1 − (Ω11 − Ω22)P2 + Ω23P5 + Ω13P7 (21)

Ṗ2 = (Ω11 − Ω22)P1 −D12P2 − 2Ω12P3 − Ω23P4 + Ω13P6 (22)

Ṗ3 = 2Ω12P2 + Ω13P5 − Ω23P7 (23)

Ṗ4 = Ω23P2 −D13P4 − (Ω11 − Ω33)P5 − Ω12P7 (24)

Ṗ5 = −Ω23P1 + (Ω11 − Ω33)P4 −D13P5 + Ω12P6 − Ω13(P3 +
√

3P8) (25)

Ṗ6 = −Ω13P2 − Ω12P5 −D23P6 − (Ω22 − Ω33)P7 (26)

Ṗ7 = −Ω13P1 + Ω12P4 + (Ω22 − Ω33)P6 −D23P7 + Ω23(P3 −
√

3P8) (27)

Ṗ8 =
√

3(Ω13P5 + Ω23P7) (28)

EOMs of P̄i are obtained by taking Ωij → −Ωij and
Pi → P̄i in the above equations. Hence, for P±i ≡ Pi± P̄i

one finds

Ṗ∓0 = 0 (29)

Ṗ∓1 = −D12P
∓
1 − (Ω11 − Ω22)P±2 + Ω23P

±
5 + Ω13P

±
7 (30)

Ṗ∓2 = (Ω11 − Ω22)P±1 −D12P
∓
2 − 2Ω12P

±
3 − Ω23P

±
4 + Ω13P

±
6 (31)

Ṗ∓3 = 2Ω12P
±
2 + Ω13P

±
5 − Ω23P

±
7 (32)

Ṗ∓4 = Ω23P
±
2 −D13P

∓
4 − (Ω11 − Ω33)P±5 − Ω12P

±
7 (33)

Ṗ∓5 = −Ω23P
±
1 + (Ω11 − Ω33)P±4 −D13P

∓
5 + Ω12P

±
6 − Ω13(P±3 +

√
3P±8 ) (34)

Ṗ∓6 = −Ω13P
±
2 − Ω12P

±
5 −D23P

∓
6 − (Ω22 − Ω33)P±7 (35)

Ṗ∓7 = −Ω13P
±
1 + Ω12P

±
4 + (Ω22 − Ω33)P±6 −D23P

∓
7 + Ω23(P±3 −

√
3P±8 ) (36)

Ṗ∓8 =
√

3(Ω13P
±
5 + Ω23P

±
7 ) (37)
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