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Geometric phases in neutrino oscillations with nonlinear refraction
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Neutrinos propagating in dense astrophysical environments sustain nonlinear refractive effects
due to neutrino–neutrino forward scattering. We study geometric phases in neutrino oscillations
that arise out of cyclic evolution of the potential generated by these forward-scattering processes.
We perform several calculations, exact and perturbative, that illustrate the robustness of such
phases, and of geometric effects more broadly, in the flavor evolution of neutrinos. The scenarios
we consider are highly idealized in order to make them analytically tractable, but they suggest the
possible presence of complicated geometric effects in realistic astrophysical settings. We also point
out that in the limit of extremely high neutrino densities, the nonlinear potential in three flavors
naturally gives rise to non-Abelian geometric phases. This paper is intended to be accessible to
neutrino experts and non-specialists alike.

PACS numbers: 14.60.Pq, 03.65.Vf, 97.60.Bw

I. INTRODUCTION

Geometric phases in neutrino propagation have been
investigated in various guises [1–14] over the decades
since it was recognized that neutrino flavor transforma-
tion might provide the solution to the mysterious deficit
of solar neutrinos [15, 16]. In the intervening years the
understanding of how neutrino oscillations are modified
in medium has undergone a sea change. In particu-
lar, it is now recognized that in environments with very
high neutrino density the flavor evolution of one neu-
trino is coupled to that of all other neutrinos with which
it interacts. The result is a colorful tapestry of flavor-
transformation phenomena that extends far beyond the
classic resonance mechanism at work in solar neutrinos.

In this paper we conduct the first study of neutrino ge-
ometric phases that accounts for the nonlinear coupling
of flavor states, a phenomenon known in the neutrino lit-
erature as self-coupling. The phases that we exhibit in
our calculations persist at the probability level and are
therefore detectable in principle, though no attempt is
made here to extract geometric phases from models of
any degree of astrophysical realism. By and large such
models would necessitate numerical analysis, which may
obscure some of the insights otherwise made transparent
by an analytical treatment. Our present aim is to explore
the manifestations of geometric phases precisely without
the complications that continue to make the modeling of
neutrino flavor such a disobliging task. Even so, as we
argue here, one gleans a hint that geometric quantum
effects of one form or another may be nearly unavoid-
able in the flavor evolution of neutrinos in such dense en-
vironments as core-collapse supernovae or neutron-star
mergers.

Broadly, geometric phase refers to the extra, path-
dependent quantum phase that a state accumulates in
addition to the dynamical phase from the “local” influ-
ence of the Hamiltonian. The latter phase is present even
for a time-independent Hamiltonian and its importance
has been appreciated since the very advent of quantum

mechanics; we denote it by δ, and for a state |ψ〉 and
Hamiltonian H it has the usual form

δ = −
∫
dt 〈ψ(t)|H(t)|ψ(t)〉. (1)

The appreciation of geometric phases as a common and
observable feature of many quantum systems is much
more recent, dating back to the seminal realization by
Berry [17] that a state acted on by a cyclic, adiabatically
changing Hamiltonian acquires a phase whose value de-
pends on the circuit traced out by the Hamiltonian in
the space of its parameters. If |ψ〉 begins as an instan-
taneous energy eigenstate |η〉, the adiabatic theorem dic-
tates that it remains so, i.e., |ψ(t)〉 = eiφ(t)|η(t)〉, and the
total phase has the form φ = δ + γ with the geometric
phase given by γ. After the system, which is described

by time-dependent parameters ~R(t), completes a circuit
C, the state |ψ〉 has developed a geometric phase

γ = i

∮
C
〈η(t)|∇|η(t)〉 · d~R, (2)

where ∇ is the gradient operator in ~R-space.
The particular incarnation of the geometric phase de-

fined by this expression is often called the Berry phase
and is specific to cyclic, adiabatic systems. The notion
can be generalized enormously: to entangled states [18];
to mixed states [19]; and to non-adiabatic [1, 20, 21], non-
cyclic [22–26], and even open or non-Hamiltonian [27–31]
systems. In this paper we use the broad term geometric
phase but our typical targets are indeed Berry phases
of the form in Eq. (2). At several points we will make
contact with some of these generalizations.

On an intuitive level the existence of geometric
phases in quantum systems is perhaps most immediately
grasped by analogy to the classical world: A Foucault
pendulum, carried around a closed loop on the surface
of the Earth in such a way that the plane of oscilla-
tion is never rotated, nonetheless returns to its starting
point with a rotated plane of oscillation, and the angle
by which the plane has rotated (known as the Hannay
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angle) is, moreover, equal to the solid angle enclosed by
the loop. Quantum geometric phases are rotations of the
wavefunction and arise, in much the same way, from par-
allel transport along a path. For readers seeking a deeper
understanding of the phenomenon, we sketch a picture in
Sec. II of geometric phases from the perspective of dif-
ferential geometry, which permits a rigorous translation
of this classical intuition into the quantum realm. The
picture is also intimately related to the “polarization vec-
tors” (formally introduced in Sec. III) that are ubiquitous
in the literature on neutrino flavor evolution. Put suc-
cinctly, this connection is why geometry is relevant to
neutrino oscillations.

The observability of geometric phases is today well-
established in a variety of settings thanks to such land-
mark experiments as those in Refs. [32–40] and the
vast sweep of investigations carried out in more re-
cent years. The modern understanding of geometric
phases has also shed light on instances and variations of
the phenomenon that were predicted or observed before
Berry’s original analysis, perhaps the most famous cases
being the Aharonov–Bohm effect [41], the Pancharat-
nam phase [42], and the (retroactively named) molecular
Berry phase [43, 44].

Interferometry experiments, which comprise a large
share of the corpus of geometric-phase studies, are plainly
out of the question when it comes to neutrinos. But neu-
trino oscillations are themselves fundamentally an inter-
ference phenomenon: As mass eigenstates propagate in
vacuum they pick up phases at different rates, and the
interference between these phases gives rise to flavor os-
cillation. It is natural, then, to wonder whether the inter-
ference intrinsic to neutrino oscillations might function in
some way as an “interferometer” sensitive to geometric
phases.

Much of the earliest interest in this possibility sur-
rounded the idea that the resolution of the missing-solar-
neutrinos puzzle may come from the conversion of neu-
trinos into antineutrinos via the interaction of their mag-
netic moments with solar magnetic fields [2, 4, 45, 46].
Although the consensus is that the Mikheyev–Smirnov–
Wolfenstein (MSW) mechanism [15, 47] ultimately won
the day as far as the solar neutrino problem, neutrino ge-
ometric phases continue to be explored in the context of
astrophysical magnetic fields [14]. Furthermore, just as
magnetic field vectors can trace out closed loops in phys-
ical space, the optical potentials generated by coherent
forward scattering of neutrinos with background parti-
cles raise the possibility that a similar mechanism might
operate in flavor space.

Shortly after the explosion of interest in geometric
phases began, Nakagawa [1] acknowledged this possibil-
ity but observed that geometric phases cannot appear in
two-flavor neutrino oscillations in a matter background,
for the simple reason that there is just one parameter in
the Hamiltonian that is varying (viz., the density of mat-
ter particles) and therefore a cycle of finite area cannot
be traced out. Naumov [7, 8] later showed that geometric

phases can emerge in three flavors, provided that there is
both CP violation and a cyclically varying number den-
sity of scatterers. These papers regarded vacuum mixing
as the sole contributor to the off-diagonal (in the flavor
basis) Hamiltonian matrix elements; Pantaleone’s insight
[48] that self-coupling can also supply off-diagonal con-
tributions was not yet widely appreciated.

More recently geometric phases were studied by He
et al. [11] in a paper generalizing Naumov’s work to
active–sterile mixing and nonstandard interactions. Al-
though the authors noted that the neutrino-background
density is an additional parameter varying independently
of the matter-background density, they did not consider
the contribution of coherent neutrino–neutrino scatter-
ing to the off-diagonal Hamiltonian elements. We thus
point out for the first time in the literature that geomet-
ric phases can arise out of the self-coupling potential and
can appear even with just two flavors. We also argue that
because of the nonlinear nature of this potential, neutrino
self-coupling in flavor space is a particularly rich avatar
for geometric phases.

Our approach is to perform calculations on several toy
models that reveal various facets of geometric phases
in the presence of nonlinear neutrino–neutrino coupling.
The calculations that follow shed light on the precise
role of adiabaticity, the nonlinear entangling of the geo-
metric phases developed by neutrinos in interaction with
one another, the fragile cyclicity of flavor transformation,
and the non-Abelian phase structure of a certain three-
flavor limit. While we do not attempt to locate geometric
phases in realistic astrophysical models, our results are
suggestive of the prevalence in sophisticated numerical
computations of geometric effects generally, if not specif-
ically the cyclic, adiabatic phases we investigate.

In Sec. II we sketch the picture of geometric phases
from the viewpoint of differential geometry. In Sec. III
we present the relevant background on medium-enhanced
neutrino oscillations. We then turn our attention to the
flavor evolution that occurs in a system of two coupled
neutrino populations. Working in the two-flavor approx-
imation, we examine three limiting cases: the mixed-
potential limit in Sec. IV, the pure-self-coupling limit
in Sec. V, and the weak-self-coupling limit in Sec. VI.
After examining these two-flavor scenarios, we return in
Sec. VII to the mixed-potential limit, this time in three
flavors, and show how it begets non-Abelian geometric
phases. We conclude in Sec. VIII.

II. THE DIFFERENTIAL-GEOMETRIC
PICTURE

The Born rule implies that the overall phase of a
quantum state |ψ〉 is inessential for computing or mea-
suring observables at some time t. With a rephasing
|ψ̃(t)〉 = eiα|ψ(t)〉 by some arbitrary phase α,

〈ψ̃(t)|O|ψ̃(t)〉 = 〈ψ(t)|O|ψ(t)〉 (3)
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for any Hermitian operator O. As a result the value of
α in |ψ̃(t)〉 can be chosen arbitrarily, but as shown by
Berry it does not follow that the overall phase can be
ignored altogether. At a basic level, geometric phases are
in fact amenable to observation because once α is chosen
for |ψ̃(t)〉, the phase of |ψ̃(t′)〉 at any other time t′ is
predetermined by this choice (in conjunction, of course,
with the dynamics of the system). In other words, phase
changes are physically significant.

Granting that geometric phases exist, it is perhaps not
so surprising that they are observable—but that they
should exist at all is a profound fact about quantum
mechanics. Fundamentally the existence of geometric
phases is a consequence of Hilbert space having nontriv-
ial geometry, and the values of the phases are governed
by that geometry in tandem with the relevant Hamil-
tonian. Just as the spheroidal shape of the Earth de-
termines the Hannay angle [49] of a Foucault pendulum
carried along the planet’s surface, in an analogous way
does the “shape” of Hilbert space determine how a wave-
function rotates—that is, picks up phase—as it is moved
along a path.

These ideas are most naturally expressed in a rigorous
manner using the language of principal fiber bundles and
their associated structures. The relation between geo-
metric phases and fiber bundles was the powerful insight
of Simon [50] and has been elaborated by many subse-
quent authors. We now try to elucidate this helpful way
of understanding geometric phases.

For a Hamiltonian H[~R] that depends on the time-

dependent parameters ~R(t), a given nondegenerate in-

stantaneous eigenstate |ψ̃〉 can be specified by the pair(
~R, exp(iα)

)
, where α is the arbitrary overall phase re-

ferred to previously. We have already established that
this pair corresponds to the same physical state regard-
less of the value of α; in technical terms, the pair projects
down to the same ray in projective Hilbert space for all α.
Hilbert space can thus be visualized as a manifold with
an identical string piercing through every point: A given
point on the manifold corresponds to a physical state (or,

equivalently, a value of ~R) and the string through that
point represents the possible choices of phase α for that
particular physical state.

A principal fiber bundle describes precisely such an ob-
ject. It consists of three parts (Fig. 1): a total space E, a
base manifold M , and a Lie-group fiber G. The transla-
tion into bundle language uses the following associations:

E ←→ States in Hilbert space,

identified by (~R, exp(iα)),

M ←→ Physical states in projective

Hilbert space,

G ←→ Elements eiα of the group U(1). (4)

If the eigenstate is part of an n-degenerate subspace,
then the fiber G is instead the non-Abelian group U(n).

FIG. 1. A visualization of the differential-geometric structures
underpinning the geometric phase. The curve Γ̃ in Hilbert
space projects down to a curve Γ in projective Hilbert space.
Γ̃ begins and ends on the same fiber (labeled G, denoting the
Lie group) but may not return to the same element in the
fiber. The group element at the start of the loop is brought
to the element at the end by the holonomy γΓ. The holonomy
is precisely the geometric phase acquired upon completing the
cycle.

For simplicity we will continue to assume non-degeneracy
throughout the remainder of this section, but we will
demonstrate the emergence of non-Abelian fibers in the
context of neutrino oscillations in Sec. VII.

As ~R(t) evolves, a curve C(t) in parameter space, hence
also a curve on the base manifold M , is traced out. The
curve on M , Γ(t), can be visualized as the shadow of a

curve Γ̃(t) on E: At every point in M there is a point
in E elevated above the base manifold according to its
fiber element. The freedom to choose the value of α for
|ψ̃(ti)〉 at a specific time ti is manifested as a freedom to

choose the fiber element at Γ̃(ti), but having made this
choice, the fiber elements are non-arbitrary for t > ti
(and, for that matter, for t < ti). For us, the condition
of adiabaticity furnishes the principal fiber bundle with
a connection, which is to say a way of moving a state
from one fiber to the next. The adiabatic connection is
equivalent to the condition〈

ψ̃(t)

∣∣∣∣ ddt
∣∣∣∣ψ̃(t)

〉
= 0. (5)

This constraint describes the parallel transport of the
state along the path and captures the intuitive notion
that the state vector moves in such a way that locally
it never appears to be rotating, modulo the dynamical
phase evolution (Eq. (1)).

If ~R(tf ) = ~R(ti), then Γ forms a closed loop and the
state returns at tf to the same fiber it began on at ti. It
is not guaranteed, however, that the state will return to
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the same fiber element. The difference

ei[α(tf )−α(ti)] ≡ ei∆α (6)

is itself an element of the Lie group and is termed the
holonomy of the connection on the principal fiber bundle.
It is precisely equal to the geometric phase: ∆α = γ.
The plausibility of a global rotation occurring without
any local rotation can be seen from the non-transitivity
of phase [42, 51]: 〈ψ̃1|ψ̃2〉 and 〈ψ̃2|ψ̃3〉 having the same

phase does not necessarily imply that 〈ψ̃1|ψ̃3〉 has the
same phase as well.

The numerical value of the holonomy depends on the
curve Γ and the geometry of the manifold M on which
Γ lies. To illustrate this point concretely, we consider
the evolution of two-flavor neutrinos in flavor space. As
with any two-level system, wavefunction normalization
and the arbitrariness of α(ti) relegate a C2 state vector
to the Bloch sphere S2. In two flavors, therefore, it is
the geometry of the Bloch sphere that determines the
geometric phase associated with passage along a closed
loop C in parameter space. The principal fiber bundle can
be pictured in this case as a ball (M = S2) with spikes
(G = U(1)) sticking out of it. The three-flavor case with
two degenerate eigenstates, which we turn to toward the
end of this study, has base manifold CP 2 = SU(3)/U(2)

and is not as easily visualized, but the message is the
same: The geometry of Hilbert space leaves its footprint
in the flavor conversion of neutrinos.

III. NEUTRINO OSCILLATIONS IN MEDIUM

Neutrino oscillations are conveniently studied by track-
ing the time-evolution of the flavor wavefunction

|ψ〉 =

 ae
aµ
aτ

 , (7)

where aα is the amplitude for the neutrino to have α fla-
vor. This same state, expressed above in the flavor basis,
can be translated into the mass basis via the Pontecorvo–
Maki–Nakagawa–Sakata (PMNS) matrix UPMNS:

|ψ〉f = UPMNS|ψ〉m, (8)

where the subscript denotes the basis. (The wavefunction
in Eq. (7) is really |ψ〉f, but we will be dropping the
subscripts as we proceed, leaving that job to the context.)
The mixing matrix is traditionally parameterized as

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
−iδ −c12s23 − s12c23s13e

iδ c23c13

 , (9)

using the notation cij ≡ cos θij and sij ≡ sin θij in terms
of the oscillation angles θ12, θ23, and θ13. The parameter
δ is the Dirac CP-violating phase. Measurements of the
three mixing angles represent major triumphs of exper-
imental particle physics over the past two decades; the
Dirac phase, meanwhile, remains largely unconstrained
but with several groups in hot pursuit, including those,
for example, at NOνA [52], T2K [53], and DUNE [54].
Two additional phases are present if neutrinos are Ma-
jorana particles. As the Majorana phases have no effect
on oscillations, we take them to vanish.

The mismatch between the flavor and mass eigenstates
is one of the fundamental facts about neutrinos. It gives
rise to oscillations in vacuum and is essential to the rich
phenomenology of in-medium flavor evolution that has
been discovered since Wolfenstein’s pioneering revelation
[47] that neutrinos propagating in matter sustain refrac-
tive effects in much the same way that photons do. The
derivation of neutrino oscillations and detection probabil-
ities from UPMNS can be found in the standard references
[55].

Throughout this paper we confine our attention to the
coherent limit of neutrino propagation, which is to say
that collisions (scattering processes that alter the mo-

mentum of the neutrino) are negligible [56–59]. This
approximation holds to varying degrees of accuracy in
many settings of interest: It is applicable in vacuum, for
one, as well as in astrophysical environments such as the
Earth, the solar interior, the region far outside a core-
collapse supernova or compact-object merger, and the
early universe after weak decoupling, but it fails in the
extremely dense interior of a supernova or merger rem-
nant or at high enough temperatures in the early uni-
verse that neutrinos are thermally equilibrated with the
plasma. The coherent and incoherent limits are tied to-
gether by a regime in which neither collisions nor the
medium-enhanced flavor transformation that occurs be-
tween scattering events can be neglected, as is the case
during the protracted transition of neutrinos in the early
universe from being strongly coupled to the plasma to
being fully free-streaming. This worst-of-both-worlds
regime is also exemplified by the “neutrino halo” region of
core-collapse supernovae [60], which is negligible during
the late-time neutrino-driven-wind epoch but may be im-
portant during the neutronization burst or shock revival.
Environments bridging the coherent and incoherent ex-
tremes are a frontier of research in neutrino astrophysics
and lie beyond the ambitions of the present paper.
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In the coherent limit, which we henceforth adopt, the
neutrino flavor state obeys a Schrödinger-like equation

i
d|ψ〉
dt

= H|ψ〉, (10)

with Hamiltonian

H = Hvac +Hmatt +Hν , (11)

where the three contributions to the Hamiltonian are re-
spectively due to neutrino mass, forward scattering off of
matter particles (nucleons, charged leptons), and forward
scattering off of other neutrinos [61]. We briefly discuss
each of these in turn.

The vacuum term Hvac is present in all environ-
ments and encodes the masses of the individual neutrino
eigenstates. In the mass basis it is simply the matrix
(1/2E) diag

(
m2

1,m
2
2,m

2
3

)
, where mi is the mass of eigen-

state νi and E is the neutrino energy. In the flavor basis
it has the form

Hvac = UPMNS

(
1

2E
diag

(
m2

1,m
2
2,m

2
3

))
U†PMNS. (12)

It is evident that Hvac has non-zero off-diagonal elements
in the flavor basis that cause mixing between the flavor
states: This, of course, is the phenomenon of neutrino
oscillations in vacuum.

When neutrinos are immersed in a dense bath of mat-
ter particles, as they are in many astrophysical settings,
the dispersion relations of the individual flavors are mod-
ified by forward scattering off of the background. The
most common scenario is one in which electrons (and
possibly positrons) are abundant but muons and tauons
are all but absent; a thermal environment requires quite
a high temperature for the heavier charged leptons to
be plentiful. Under these circumstances, all flavors feel
a forward-scattering potential generated by the neutral-
current weak interaction with e±, but only νe feels the ad-
ditional potential from the charged-current interaction.
This effect is encoded in Hmatt. In this paper we are not
concerned with the precise form of the matter Hamilto-
nian (for reasons that will become evident momentarily),
so to illustrate its structure we write down the matrix in
the scenario where the matter background consists en-
tirely of e− with number density ne. In the flavor basis,

Hmatt =
√

2GFnediag (1, 0, 0) , (13)

where GF is the Fermi constant. Since Hmatt is diagonal
in the flavor basis and Hvac is diagonal in the mass basis,
the energy eigenstates in medium differ from both the
mass and the flavor eigenstates. Under the right condi-
tions, the adiabatic decrease in ne from very high down
to vanishing density induces efficient conversion through
the MSW mechanism.

The final constituent of the Hamiltonian stems from
forward scattering with other neutrinos. The physics in-
troduced by this term is rich, as it generalizes the effect of

Hmatt to a nonlinear, matrix-structured index of refrac-
tion. The matrix structure enters because the neutrino–
neutrino forward-scattering amplitude depends not just
on the density of the background neutrinos but on their
quantum states. The potential generated by these pro-
cesses is therefore proportional to a sum over the density
matrices ρ = |ψ〉〈ψ| of each background neutrino. Ex-
plicitly,

ρ =

 ρee ρeµ ρeτ
ρ∗eµ ρµµ ρµτ
ρ∗eτ ρ∗µτ ρττ

 =

 |ae|2 a∗eaµ a∗eaτ
a∗µae |aµ|2 a∗µaτ
a∗τae a∗τaµ |aτ |2

 . (14)

The diagonal element ραα is proportional to the number
density of neutrinos of flavor α and the off-diagonal ele-
ment ραβ (α 6= β) measures the quantum coherence be-
tween flavors α and β. If neutrinos of momentum ~q have
number density nν,~q and flavor state ρ~q, then a neutrino
of momentum ~p propagating through this background ex-
periences

Hν =
√

2GF
∑
~q

(1− p̂ · q̂)nν,~qρ~q, (15)

where the sum is over all momentum states but could be
expanded to include any additional indices used to label
neutrinos in the system. (By writing ρ = |ψ〉〈ψ|, we have
assumed that each density matrix describes a pure state.)
The geometric factor (1− ~p · ~q) originates from the struc-
ture of the weak-interaction current. For the sake of
brevity, we will later use µ~q ≡

√
2GF (1− p̂ · q̂)nν,~q.

Note that this contribution is nonlinear in the sense that
it couples together the different neutrino trajectories in
flavor space. (Note also that we are ignoring antineutri-
nos in this discussion. We will continue to do so in the
calculations that follow, as antineutrinos do not change
the analysis in any essential way.)

Throughout much of this paper we will perform calcu-
lations in the two-flavor approximation that is appropri-
ate when νµ and ντ have the same interaction potentials,
which holds whenever (1) muons and tauons are scarce
and (2) νµ and ντ have identical spectra. Specifically,
we consider mixing between νe and a state νx, the latter
being a particular superposition of νµ and ντ . In this
case |ψ〉, ρ, and the interaction potentials reduce in an
obvious manner from the three-flavor expressions given
above. There is now just a single mixing angle θv, with
no CP-violating phase, and the 2 × 2 mixing matrix is
simply the rotation

U =

(
cos θv sin θv

− sin θv cos θv

)
. (16)

It follows from Eq. (12) that the vacuum Hamiltonian is

Hvac =
ω

2

(
− cos 2θv sin 2θv

sin 2θv cos 2θv

)
, (17)

with the vacuum oscillation frequency defined in terms
of the mass-squared splitting δm2 ≡ m2

2 − m2
1 by ω ≡
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δm2/2E. The mass hierarchy, which remains experimen-
tally ambiguous, is reflected in the sign of the oscillation
frequency: ω > 0 for the normal hierarchy (NH), ω < 0
for the inverted hierarchy (IH).

With only two flavors, coherent neutrino evolution is
tantamount to a two-level problem and can be mapped
onto the Bloch sphere; in this regard it is analogous to
the physics of electron spins, nuclear isospins, qubits,

and so on. The Bloch vector ~P formed from the su(2)-
algebra decomposition of the density matrix ρ is com-
monly known in the neutrino community as the polariza-
tion vector, in deference to photon polarization:

ρ =
1

2

(
I + ~P · ~σ

)
. (18)

Noting that Eq. (10) can be recast as a Liouville–von
Neumann equation

i
dρ

dt
= [H, ρ] , (19)

a similar decomposition of the Hamiltonian permits the
coherent equations of motion to be written as a Bloch-like
equation with infinite relaxation time:

d~P

dt
= ~H × ~P . (20)

~P can be visualized as a vector pointing from the origin
to the surface of the S2 manifold described at the end of
the previous section. In this picture the parallel transport

condition in Eq. (5) forbids ~P from spinning and thereby

moving locally along the fiber, even as ~P precesses about
~H. Given our emphasis on the two-flavor limit, it will be
helpful to have this polarization-vector picture in mind.
Indeed, it is precisely the geometric nature of Eq. (20)
that underlies the geometric phases exhibited below.

Absent the self-coupling potential Hν , the Hamiltonian
can be rewritten in terms of effective in-medium mixing
parameters:

Hvac +Hmatt =
ωm

2

(
− cos 2θm sin 2θm

sin 2θm cos 2θm

)
, (21)

with in-medium oscillation frequency (using the analo-
gous form of Eq. (13) for two flavors)

ωm ≡

√√√√ω sin2 2θv +

(
ω cos 2θv −

√
2

2
GFne

)2

(22)

and in-medium mixing angle given by

sin2 2θm ≡
ω2 sin2 2θv

ω2
m

. (23)

The upshot is that flavor evolution in a matter back-
ground looks like vacuum oscillations with modified fre-
quency and amplitude. For this reason, in the rest of the

paper we will ignore Hmatt; it is assumed to have been
absorbed into the vacuum mixing parameters.

With Hν present, the nonlinear communication be-
tween flavor states considerably expands the range
of flavor-evolution phenomena. These behaviors are
grouped under the heading of collective neutrino oscil-
lations and have been the subject of intense study in
recent years [62–125]. One paradigmatic collective effect
is the synchronization of flavor: When Hν dominates the
Hamiltonian, all neutrinos experience roughly the same
potential, leading them to undergo nearly identical os-
cillations at a common effective frequency. Synchronized
oscillations are perhaps the cleanest example of cyclic
evolution of the Hamiltonian at strong nonlinear cou-
pling, but they are not alone.

Geometrically the crucial feature of neutrino self-
coupling is that even in two flavors a complex off-diagonal
potential can develop, opening the possibility for cyclic
evolution of the Hamiltonian. With the standard matrix
representation of the Pauli matrices, the y-component

of ~H corresponds to the imaginary parts of these off-
diagonal elements. Since H can always be written as
a real symmetric matrix in the standard MSW (vac-

uum+matter) scenario, in a matter background ~H never
leaves the xz-plane and closed loops on the Bloch sphere,
other than the trivial one formed by following the xz
great circle, are precluded. This conclusion no longer
holds in a neutrino background. The coherent coupling
of neutrino flavor states can thus be framed as a geomet-
ric statement.

IV. MIXED POTENTIALS WITH TWO
FLAVORS

In this and the next two sections we analyze geometric
effects that arise in a scenario with two-flavor neutrinos
interacting with each other by way of coherent forward
scattering. For simplicity we neglect any contributions
from a matter background, which as noted previously
can be absorbed into the vacuum potential by working
in terms of effective in-medium mixing parameters. By
dialing the strengths of the vacuum and self-coupling po-
tentials, one finds that the system gives rise to a panoply
of flavor-transformation phenomena. We take three dif-
ferent limits of the coupling strengths that illuminate in
particular how the flavor transformation enmeshes with
geometry.

The equations of motion for two pure populations of
neutrinos interacting with one another are

i
d|ψ1(t)〉
dt

= [ω1B + µ2ρ2(t)] |ψ1(t)〉,

i
d|ψ2(t)〉
dt

= [ω2B + µ1ρ1(t)] |ψ2(t)〉, (24)

where mode i has wavefunction |ψi(t)〉, vacuum oscil-
lation frequency ωi, and density parameter µi (defined
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below Eq. (15)). The matrix B is equal to Hvac with the
energy-dependent part taken out. In the mass basis it is

B = diag (−1/2, 1/2) and has vector form ~B = − (1/2) ẑ.
In this section we consider the limit in which the neu-

trinos of mode 2 are extremely dilute but those of mode
1 are extremely dense:

i
d|ψ1(t)〉
dt

= ω1B|ψ1(t)〉,

i
d|ψ2(t)〉
dt

= µ1ρ1(t)|ψ2(t)〉. (25)

As a shorthand, we term this arrangement mixed poten-
tials.

The first equation of motion describes vacuum oscilla-
tions and is easily solved:

|ψ1(t)〉 = exp (−iω1Bt) |ψ1(0)〉. (26)

In the mass basis the matrix exponential is diagonal and,
taking as an initial state

|ψ1(0)〉 =

(
cos θ12

eiφ1 sin θ1
2

)
, (27)

one finds that |ψ1〉 corresponds to a polarization vector
~P1 precessing about the z-axis with fixed frequency ω1

and at fixed polar angle θ1:

|ψ1(t)〉 =

(
cos θ12

ei(φ1−ω1t) sin θ1
2

)
. (28)

In the case of the IH, ω1 < 0 and the direction of pre-
cession is reversed. The other mode |ψ2〉—a flavor state
evolving under a Hamiltonian that sweeps out a circle in
flavor space—is mathematically identical to a spin in a
magnetic field that sweeps out a circle in physical space.
Although we are indicating with the notation that |ψ1〉
represents a pure state of neutrinos at a chosen energy,
it may be that |ψ2〉 interacts with an ensemble—pure or
mixed—with some spectrum. If the ensemble undergoes
synchronized oscillations, then the computation proceeds
almost unchanged.

In Sec. IV A we adopt an adiabatic treatment, thereby
reproducing the neutrino version of the classic result for
the geometric phase of a spin in a cyclic magnetic field,
and we point out that in principle this phase is observ-
able. In Sec. IV B we find the exact (non-adiabatic) so-
lution and demonstrate the geometric-dynamical phases
that appear as perturbative corrections to the traditional
purely geometric phase.

A. Adiabatic treatment

We now set out to determine, under the assumption
of adiabatic evolution, the phase acquired by |ψ2〉 after
~H2(t) = µ1

~P1(t) undergoes one period of cyclic evolu-
tion. Based on the foregoing discussion, we know that

x

y

z

~P1

~P2

φ1

θ12θv

FIG. 2. Initial (t = 0) configuration of polarization vectors in

the mixed-potentials scenario. ~P1 undergoes vacuum oscilla-
tions (clockwise about ẑ = −B̂ for the NH, counterclockwise

for the IH). Its trajectory is shown by the dashed circle. ~P2

is in an electron-flavor eigenstate and points along L̂.

~H2 rotates with frequency ω1 about the mass-eigenstate
axis B̂ = −ẑ (Φ1(t) = φ1 − ω1t), maintaining a con-

stant magnitude | ~H2(t)| = µ1 and a constant polar angle
Θ1(t) = θ1. The coordinate system is chosen such that

the flavor-eigenstate axis L̂, which is defined to point
along the polarization vector associated with νe, is in the
xz-plane. This set-up is depicted in Fig. 2.

If the test neutrino is initially electron flavor, that is,

|ψ2(0)〉 = |νe〉 , (29)

then ~P2 has initial azimuthal angle Φ2(0) = 0 and initial
polar angle Θ2(0) = 2θv, where θv is the mixing angle in
vacuum. We stress that this problem has four physically
relevant vectors. Making the reasonable stipulation that
|ψ1〉 also decouples into a flavor eigenstate, then at any

given time the vectors L̂, B̂, P̂1, and P̂2 are generally not
coincident. One can see quite readily that should any
two of these unit vectors be identical at all times, then
geometric phases in |ψ2〉 are either absent or unobserv-
able:

• If B̂ = L̂, then oscillations do not occur.

• If P̂1(t) = B̂, then the path of ~H2 does not enclose
a finite area in parameter space.

• If P̂2(t) = P̂1(t), then in the adiabatic limit |ψ2〉 is
in an energy eigenstate at all times and its phase
will not show up at the probability level.

• If P̂1(t) = L̂, P̂2(t) = L̂, or P̂2(t) = B̂, then L̂ must

be equal to B̂.

It follows immediately that if decoupling occurs into fla-
vor eigenstates, it is a prerequisite for the appearance of
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an observable adiabatic geometric phase that two param-
eters be nonzero: the initial relative phase φ1 between
the two modes and the vacuum mixing angle θv. With
these considerations in mind, we now proceed to derive
the geometric phase.

In the chosen coordinate system the Hamiltonian ma-
trix is

H2 =
µ1

2

(
cos θ1 e−i(φ1−ω1t) sin θ1

ei(φ1−ω1t) sin θ1 − cos θ1

)
, (30)

which is represented by the vector

~H2 =
µ1

2

 sin θ1 cos (φ1 − ω1t)
sin θ1 sin (φ1 − ω1t)

cos θ1

 . (31)

The energy eigenstates of this Hamiltonian correspond to
the normalized polarization vectors parallel and antipar-

allel with ~H2. As kets they are

|ν+(t)〉 =

(
cos θ12

ei(φ1−ω1t) sin θ1
2

)
,

|ν−(t)〉 =

(
− sin θ1

2

ei(φ1−ω1t) cos θ12

)
, (32)

and they have energy eigenvalues E± = ±µ1/2.
The geometric phase, defined in Eq. (2), can be recast

in the form

γ =

∮
C
~A · d~R, ~A = i〈η(t)|∇|η(t)〉 (33)

for eigenstate |η(t)〉. The vector ~A is the gauge potential
associated with the adiabatic connection. In this case the
gauge potentials are given by

~A+ = i 〈ν+| ∇ |ν+〉 = −
sin2 Θ1

2

sin Θ1
Φ̂,

~A− = i 〈ν−| ∇ |ν−〉 = −
cos2 Θ1

2

sin Θ1
Φ̂. (34)

Integration along the curve swept out by ~H2 then yields
the geometric phases acquired by these energy eigen-
states:

γ+ =

∮
C

~A+ · d~R = ±π (1− cos θ1) ,

γ− =

∮
C

~A− · d~R = ±π (1 + cos θ1) , (35)

where the upper (lower) signs are for the NH (IH). Evi-
dently the geometric phase is sensitive to the mass hier-
archy, with the proper sign being fixed by the direction
of traversal about the loop. The dynamical phase, mean-
while, is

δ± = −
∫ T

0

E±dt = ∓µ1

2
T, (36)

so that the energy eigenstates after one period T are

|ν+(T )〉 = e±iπ(1−cos θ1)e−i
µ1
2 T |ν+(0)〉 ,

|ν−(T )〉 = e±iπ(1+cos θ1)e+i
µ1
2 T |ν−(0)〉 , (37)

where again the upper (lower) signs are for the NH (IH).

The calculation thus far is identical to the standard
one for a spin-1/2 particle in a rotating magnetic field,
and as usual the geometric phase is half the solid angle
enclosed in parameter space by the loop traced out by
the Hamiltonian vector. But a key point for neutrinos
is that their production and detection project onto the
flavor axis. It is therefore necessary to convert between
the interaction and energy bases. The unitary matrix U
effecting the transformation

(
|ν−〉
|ν+〉

)
= U

(
|νe〉
|νx〉

)
(38)

is given by

U =

(
U11 U12

U21 U22

)
=

(
eiΦ1 sin θv cos θ12 − cos θv sin θ1

2 eiΦ1 cos θv cos θ12 + sin θv sin θ1
2

eiΦ1 sin θv sin θ1
2 + cos θv cos θ12 eiΦ1 cos θv sin θ1

2 − sin θv cos θ12

)
. (39)

Note that U is time-dependent, since Φ1(t) = φ1 − ω1t.
Using the unitarity of U , one can write the initial

state—assumed to be νe—as

|ψ2(0)〉 = U∗11 |ν−(0)〉+ U∗21 |ν+(0)〉 . (40)

After one period has elapsed, the state has evolved to

|ψ2(T )〉 = U∗11e
−iπ(1+cos θ1)ei

µ1
2 T |ν−(0)〉

+ U∗21e
−iπ(1−cos θ1)e−i

µ1
2 T |ν+(0)〉 . (41)

Projecting |ψ2(T )〉 onto the flavor state in which it was
produced at t = 0 yields

|〈νe|ψ2(T )〉|2 = 1− 4 |U11|2 |U21|2 sin2
(
π cos θ1 −

µ1

2
T
)
.

(42)
Letting x ≡ cos 2θv cos θ1 + cosφ1 sin 2θv sin θ1, we have

|U11|2 =
1

2
(1− x) , |U21|2 =

1

2
(1 + x) , (43)
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allowing us to write

|〈νe|ψ2(T )〉|2 = 1−
(
1− x2

)
sin2

(
π cos θ1 −

µ1

2
T
)
.

(44)
Recalling that γ± = −π ± π cos θ1, one has, finally,

|〈νe|ψ2(T )〉|2 = 1−
(
1− x2

)
sin2 (γ± + δ±) , (45)

where the choice of ± is arbitrary. We would have ar-
rived at the same expression if we had instead chosen the
neutrino to be initially νx.

Moreover, Eq. (45) is independent of the choice of
hierarchy. But since the overall sign of γ changes
upon flipping the hierarchy—whereas the sign of δ goes
unchanged—the transition probability turns out to be
hierarchy-dependent. This finding has a simple explana-
tion in the polarization-vector picture: The precession

direction of ~P1 about B̂ is set by the hierarchy, while the

precession direction of ~P2 about P̂1 is not.
It may be helpful to note that |〈ν±(0)|ν±(T )〉| = 1,

since the geometric and dynamical phases vanish under
the modulus. In other words, the fact that the neutrino
is produced and detected in a state other than one of the
energy eigenstates is necessary for the phases to appear
at the probability level. In fact, if one knows the flavor
of the neutrino at t = 0, then by measuring the flavor of
the neutrino at t = T , one is effectively performing an
interferometry experiment capable in principle of probing
the geometric phase. In this case, that phase is a measure
of the flavor-space path traced out by the other neutrino,
which need not be directly observed.

B. Exact solution

The formulae applied in the previous section are appro-
priate to the adiabatic limit, in which the energy eigen-
vectors track the Hamiltonian vector as it sweeps out a
circuit. But it turns out that an exact solution can be
found even without this assumption. Let

|ψ2(t)〉 = a(t)|ν+(t)〉+ b(t)|ν−(t)〉 (46)

and suppose that |ψ2(0)〉 = |ν+(t)〉, so that a(0) = 1 and
b(0) = 0. This initial condition is equivalent to the one in
the previous subsection, but here we are not demanding
that |ψ2〉 remain in the eigenstate |ν+〉.

The Schrödinger equation says that the coefficients of
|ψ2(t)〉 obey the system of equations

da(t)

dt
+ a(t)

〈
ν+(t)

∣∣∣∣ ddt
∣∣∣∣ν+(t)

〉
+ b(t)

〈
ν+(t)

∣∣∣∣ ddt
∣∣∣∣ν−(t)

〉
= −iµ1

2
a(t),

db(t)

dt
+ a(t)

〈
ν−(t)

∣∣∣∣ ddt
∣∣∣∣ν+(t)

〉
+ b(t)

〈
ν−(t)

∣∣∣∣ ddt
∣∣∣∣ν−(t)

〉
= i

µ1

2
b(t). (47)

Enforcing b(t) = 0 amounts to the adiabatic approxima-
tion; it can be seen that the deviation from this limit
is associated with the “cross terms” that mix the eigen-
states. The coupled first-order differential equations can
be rewritten as decoupled second-order differential equa-
tions. The equation for a(t) is

d2a

dt2
− iω1

da

dt
+

[(µ1

2

)2

+
µ1

2
ω1 cos θ1

]
a = 0. (48)

This is the equation of a (complex) damped harmonic os-
cillator with real frequency-squared and imaginary fric-
tion and can be solved with the usual ansatz a(t) ∼
expαt. The resulting algebraic equation for α has so-
lutions

α± =
iω1

2
± iµ1

2

√
1 + 2

ω1

µ1
cos θ1 +

(
ω1

µ1

)2

. (49)

The general solution, of course, can be written as

a(t) = c+e
α+t + c−e

α−t, (50)

and the initial condition |ν(0)〉 = |ν+(0)〉 implies that

c+ =
1

2
− 1

2∆

[
1 +

ω1

µ1
cos θ1

]
,

c− =
1

2
+

1

2∆

[
1 +

ω1

µ1
cos θ1

]
, (51)

where ∆ is the square root of the discriminant,

∆ ≡

√
1 + 2

ω1

µ1
cos θ1 +

(
ω1

µ1

)2

. (52)

Observe that α± are purely imaginary regardless of the
values of ω1, µ1, and θ1.

An important quantity found throughout the neutrino
literature is the adiabaticity parameter Υ (usually de-
noted γ, but our hands are tied), upon which the tran-
sition probability P through a resonance depends expo-
nentially: P ≈ e−πΥ/2 [126]. The parameter can be cast
into the form [123]

Υ ≈ |HT |2∣∣∣Ḣz

∣∣∣ , (53)

where HT = H2
x+H2

y is the transverse part of the Hamil-
tonian vector and the right-hand side is evaluated at
resonance. In circumstances where a flavor-state level
crossing occurs, such as in the MSW mechanism, this
definition implies that transitions are unlikely to occur
if the separation between the energy eigenstates at clos-
est approach is large relative to the speed with which
the resonance is traversed. Although the system we are
analyzing has no such level crossing, Υ nonetheless co-
heres with what we mean by adiabaticity. Applying the
definition above, one has

Υ ≈ µ1 |P1,T |2∣∣∣ω1

(
~B × ~P1

)
z

∣∣∣ . (54)
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Dropping factors of order unity, this becomes simply
Υ ≈ µ1/ω1, so that the adiabatic limit corresponds to
ω1/µ1 −→ 0. Thus the neutrino adiabaticity parameter,
even in this non-resonant scenario, is consistent with the
more general intuition that adiabaticity prevails when
the change in the Hamiltonian is slow compared to the
response of the particle.

To zeroth order in ω1/µ1 one has, for T = 2π/ω1,

α±T −→ ±i
µ1

2
T + iπ (1∓ cos θ1) . (55)

The dynamical and geometric phases from the previous
section are therefore recovered as the leading-order terms
in the perturbation expansion in the adiabaticity param-
eter.

The probability of |ψ2(t)〉 being in the upper eigenstate
at any time t is

|a(t)|2 = 1− 2c+c− (1− cosµ1∆t) . (56)

It is interesting to coerce a(t) into the form r(t) exp iφ(t).
The modulus is simply r(t) = |a(t)| and the phase is

φ(t) =

arctan

 c+ sin
(
ω1t
2 + µ1∆t

2

)
+ c− sin

(
ω1t
2 −

µ1∆t
2

)
c+ cos

(
ω1t
2 + µ1∆t

2

)
+ c− cos

(
ω1t
2 −

µ1∆t
2

)
 .

(57)

Specifying t = T leads to

r(T ) =
√

1− 2c+c− (1− cosµ1∆T )

φ(T ) = arctan

[
(1− 2c−) tan

µ1∆T

2

]
, (58)

Expanding each to first order in ω1/µ1 yields

r(T ) ≈ 1− ω1

2µ1
sin2 θ1 sin2

(µ1

2
T + π cos θ1

)
,

φ(T ) ≈− µ1

2
T − π cos θ1 −

ω1

µ1

π sin2 θ1

2
. (59)

These can be combined to give an expression for a(T ),
with the adiabatic-limit geometric and dynamical phases
substituted appropriately:

a(T ) ≈−
[
1 +

π

2δ+
sin2 θ1 sin2 (δ+ + γ+)

]
× exp

{
i

[
δ+ + γ+ +

π2 sin2 θ1

2δ+

]}
. (60)

As expected, in the zeroth-order expansion one obtains

a(T ) = − exp [i (δ+ + γ+)] . (61)

This is identical to our result from the previous subsec-
tion, up to an unobservable minus sign. Note also that
the corrections to the fully adiabatic result intertwine ge-
ometry and dynamics. It is only at lowest order that the
two can be neatly separated.

V. PURE SELF-COUPLING WITH TWO
FLAVORS

We have seen that if the Hamiltonian for a neutrino
sweeps out a circle, then the neutrino acquires a geomet-
ric phase after one period that is proportional to the solid
angle of this circle on the Bloch sphere. It is well-known
from geometric-phase lore that in fact the path could be
any closed circuit and in all cases the phase acquired is
determined by the enclosed solid angle.

In the neutrino context with strong nonlinear coupling
between modes, the possibility arises that the geometric
phase is not set by the path but rather that the phase
and the path mutually determine one another. The sim-
plest case, which we shall examine in this section, is that
of two modes interacting with one another and experi-
encing negligible vacuum potential. We can picture this
scenario as two vectors rotating about each other in some
complicated way. If it can be shown that the Hamiltonian

generated by one vector ~P1 is cyclic (i.e., if that vector is

itself cyclic) and if the other vector ~P2 does not adiabati-
cally track an energy eigenstate, then it is to be expected
that geometric phases will appear at the probability level

in the second mode, which is to say that the position of ~P2

depends on the geometric phases generated by ~P1. Thus
far all of this applies equally to the mixed-potentials sce-
nario, as we just saw. But with two neutrino populations
interacting solely through self-coupling, these considera-
tions are mutual, implying that the paths and geometric
phases of the vectors are inextricably bound. The sce-
nario of the previous section was analogous to a spin in a
rotating magnetic field; the scenario here is more akin to
two spins interacting through their magnetic moments.

With these thoughts in mind, we return to the general
equations of motion in Eq. (24) and set ω1 = ω2 = 0,
leaving the self-coupling potentials nonzero. To be ex-
plicit, we have

i
d|ψ1〉
dt

= µ2ρ2|ψ1〉,

i
d|ψ2〉
dt

= µ1ρ1|ψ2〉. (62)

Formally the solutions are

|ψ1(t)〉 = P exp

(
−iµ2

∫ t

0

dt′ρ2(t′)

)
|ψ1(0)〉,

|ψ2(t)〉 = P exp

(
−iµ1

∫ t

0

dt′ρ1(t′)

)
|ψ2(0)〉, (63)

where P denotes the path-ordering operator, but clearly
these expressions are of little help since the equations
have not been decoupled.

In fact the equations can be decoupled, allowing for
exact solutions to be obtained. First note the important
fact that

i
d

dt
〈ψ2|ψ1〉 = (µ2 − µ1) 〈ψ2|ψ1〉, (64)
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hence the solution at time t is given by

〈ψ2(t)|ψ1(t)〉 = exp [−i (µ2 − µ1) t] 〈ψ2(0)|ψ1(0)〉 (65)

and |〈ψ2(t)|ψ1(t)〉|2 is constant. The geometric meaning
of these statements is more transparent when Eq. (62) is
rephrased in terms of polarization vectors:

d~P1

dt
= µ2

~P2 × ~P1,

d ~P2

dt
= µ1

~P1 × ~P2. (66)

The magnitudes of the polarization vectors are con-

served as usual, as is ~P1 · ~P2, and the conservation of
|〈ψ2(t)|ψ1(t)〉|2 corresponds to the preservation of the an-

gle between ~P1 and ~P2 even as the vectors drift through
flavor space. From a certain viewpoint, these are conse-

quence of the conservation of ~D ≡ µ1
~P1 + µ2

~P2, which
acts as a kind of “center of flavor” in analogy to the center
of mass of a mechanical system.

The first equation of motion in Eq. (62) can be rear-
ranged to read

|ψ2〉 =
1

µ2〈ψ2|ψ1〉
i
d|ψ1〉
dt

. (67)

Differentiating this—while keeping in mind Eq. (65)—
and using the second equation of motion yields

d2|ψ1〉
dt2

+ i (µ2 − µ1)
d|ψ1〉
dt

+ µ1µ2|〈ψ2|ψ1〉|2|ψ1〉 = 0.

(68)
|ψ1〉 obeys the complex conjugate of this equation. As
with the decoupled equations of motions in the mixed-
potentials limit, the friction coefficient is imaginary and
the frequency-squared is real.

Both flavor amplitudes must individually satisfy
Eq. (68), which has solutions that are superpositions of
eλ+t and eλ−t with

λ± = i
µ1 − µ2

2

[
1±

√
1 + 4

µ1µ2

(µ1 − µ2)
2 |〈ψ2(0)|ψ1(0)〉|2

]
.

(69)
Note that the signs of the eigenvalues depend on whether
µ1 or µ2 is larger. In both cases we are letting λ+ denote
the eigenvalue of greater magnitude. Thus

ψ1(t) =

(
a+e

λ+t + a−e
λ−t

b+e
λ+t + b−e

λ−t

)
,

ψ2(t) =

(
c+e
−λ+t + c−e

−λ−t

d+e
−λ+t + d−e

−λ−t

)
. (70)

With pure self-coupling, the mass axis is irrelevant and
we are free to choose more convenient coordinates than
those used in the previous section. We let ~P1(0) point

along the z-axis, and we let ~P2(0) be at an angle θ
(Fig. 3). Then |〈ψ1(t)|ψ2(t)〉|2 = cos2 θ

2 and the coef-
ficients in Eq. (70) are fixed by the parameters of the
system.

x
y

z

~P1

~P2

θ

FIG. 3. Initial (t = 0) configuration of polarization vectors
in the pure-self-coupling scenario. For convenience the coor-
dinate system is chosen such that ~P1 lies along the z-axis.

We now pose this question: If H1 undergoes cyclic
evolution, does |ψ2〉 acquire a geometric phase? Given
the structure of the solutions in Eq. (70) it is clear that
H1 and H2 both cycle after a shared period T . The same
question can then be asked of |ψ1〉 with respect to cyclic
evolution of H2, and the geometric phases that emerge
in this scenario must in some sense be coupled to one
another. Based on the solutions found above, |ψ1〉 and
|ψ2〉 each complete a cycle after a time

T =
2π

|µ1 − µ2|
√

1 + 4 µ1µ2

(µ1−µ2)2
cos2 θ

2

, (71)

at which point the wavefunctions have acquired the
phases eiα1 and eiα2 , respectively, with α2 = −α1 and

α1 = sgn (µ1 − µ2)

 π√
1 + 4 µ1µ2

(µ1−µ2)2
cos2 θ

2

+ π

 . (72)

These are the exact phases acquired by the states after a
time T . Their geometric structure is manifest, and they
are clearly coupled, as one is the negative of the other
regardless of the choice of system parameters. The result
is also notable in that the dynamical phase makes no
appearance: Since there are neither external parameters
tuning the system nor even internal parameters associ-
ated with vacuum oscillations, the only timescale avail-
able is the intrinsic dynamical one set by the neutrino
densities and the initial flavor states.

If µ1 = µ2, then no observable phase results at all.
With the neutrino densities equal, the first-derivative
term in Eq. (68) drops out and the eigenvalues are re-
lated by a sign change. The result is that only trivial
overall phases can develop over the course of a cycle. It
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is also straightforward to show that in the extreme limit
µ1 � µ2, the geometric phase acquired by |ψ1〉 reduces
to

α1 −→ −2π
µ2

µ1
cos2 θ

2
, (73)

and still α2 = −α1. Using Eq. (53), an analysis like
the one in the previous section shows that the |ψ2〉 adi-
abaticity parameter is Υ ∼ µ1/µ2. This limit therefore
describes adiabatic evolution of the relatively dilute pop-
ulation of neutrinos.

The same result can be obtained through the usual
adiabatic treatment, where the eigensystem is solved for
and the gauge potentials are calculated. To demonstrate
this, we now assume adiabaticity and compute the eigen-
vectors of H2 = µ1ρ1. The first eigenvector is simply
|νµ(t)〉 = |ψ1(t)〉, with eigenvalue λµ = µ1. The second
eigenvector |ν0(t)〉 has eigenvalue λ0 = 0 and satisfies
〈ν0(t)|ψ1(t)〉 = 0. These can be written out as

|νµ〉 =

(
a+e

λ+t + a−e
λ−t

b+e
λ+t + b−e

λ−t

)
,

|ν0〉 =

(
−b∗+eλ

∗
+t − b∗−eλ

∗
−t

a∗+e
λ∗+t + a∗−e

λ∗−t

)
, (74)

from which the gauge potentials—now written as scalars
in order to facilitate the computation—may be evaluated:

Aµ = i

〈
νµ

∣∣∣∣ ddt
∣∣∣∣νµ〉 = µ2 cos2 θ

2
(75)

A0 = i

〈
ν0

∣∣∣∣ ddt
∣∣∣∣ν0

〉
= −µ2 cos2 θ

2
, (76)

The computation of the first of these is significantly aided
by using i〈νµ| ddt |νµ〉 = 〈ψ1|H1|ψ1〉, and the second can

then be obtained easily by confirming that 〈ν0| ddt |ν0〉 =

〈νµ| ddt |νµ〉
∗. Thus, to first order,

i

∫ T

0

dt

〈
νµ

∣∣∣∣ ddt
∣∣∣∣νµ〉 = 2π

µ2

µ1
cos2 θ

2

i

∫ T

0

dt

〈
ν0

∣∣∣∣ ddt
∣∣∣∣ν0

〉
= −2π

µ2

µ1
cos2 θ

2
. (77)

These results yield a geometric phase consistent with the
expansion of the exact phase in the µ1 � µ2 limit. Here
we have exhibited phases that, while not purely geomet-
ric, nonetheless arise in addition to the dynamical phase.

It is in fact not immediately apparent that this adia-
batic treatment, where the geometric phase is calculated
from the gauge potentials, even should give the correct
result. To see why, consider that the “off-diagonal” ma-
trix elements are〈

ν0

∣∣∣∣ ddt
∣∣∣∣νµ〉 = −iµ2 cos

θ

2
sin

θ

2
ei(µ2−µ1)t (78)

and 〈νµ| ddt |ν0〉 = −〈ν0| ddt |νµ〉
∗, which is to say that they

do not vanish any faster in the small-µ2 limit than the

diagonal gauge potentials do. Evidently, however, one
gets the correct results if these terms are simply dropped.
The reason is that if the state is purely |νµ〉 or |ν0〉 at
t = 0, then the component along the other eigenstate
grows slowly by virtue of being driven by µ2. This small
component in turn contributes to the phase evolution
of the dominant component with another factor of µ2.
Hence it is appropriate after all to ignore the overlap
with the small component.

What we have shown in this section is that even away
from the adiabatic limit phases arise that depend on (1)
the number densities of the two neutrino populations and
(2) the constant angle between the polarization vectors,
but not explicitly on the time over which the system is
evolved. Furthermore, the geometric phases associated
with the two states are necessarily related. In contrast
to what was found in the previous section, the geometric
phases here are living creatures: |ψ1〉 and |ψ2〉 mutually
settle, simultaneously, on their paths in flavor space and
on the attendant phases.

VI. THE µ� ω LIMIT WITH TWO FLAVORS

In Sec. IV we showed that a neutrino acquires a geo-
metric phase when it is strongly coupled to another neu-
trino undergoing vacuum oscillations; under these cir-
cumstances the Hamiltonian acts like an external, time-
dependent “flavor-magnetic” field. In Sec. V we showed
that geometric phases can survive when the evolution of
the magnetic field is coupled back to the test neutrino.
We now ask whether geometric phases persist when vac-
uum oscillations and self-coupling are accounted for in
both population of neutrinos. In particular we consider
geometric effects arising in the µ� ω limit.

We return to Eq. (24) and assume that the neutrino–
neutrino forward-scattering potentials are small com-
pared to the vacuum potentials. To prepare to use per-
turbation theory, we write the equations of motion as

i
d|ψ1〉
dt

= [ω1B + εµ2ρ2] |ψ1〉,

i
d|ψ2〉
dt

= [ω2B + εµ1ρ1] |ψ2〉. (79)

We expand perturbatively in the small parameter ε:

|ψ1〉 = |ψ(0)
1 〉+ ε|ψ(1)

1 〉+ . . . ,

|ψ2〉 = |ψ(0)
2 〉+ ε|ψ(1)

2 〉+ . . . . (80)

To zeroth order the equations of motion are just those
for vacuum oscillation:

i
d|ψ(0)

1 〉
dt

= ω1B|ψ(0)
1 〉,

i
d|ψ(0)

2 〉
dt

= ω2B|ψ(0)
2 〉, (81)
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which have solutions

|ψ(0)
1 (t)〉 = exp (−iω1Bt) |ψ(0)

1 (0)〉,

|ψ(0)
2 (t)〉 = exp (−iω2Bt) |ψ(0)

2 (0)〉. (82)

The first-order equation for |ψ1〉 is

i
d|ψ(1)

1 〉
dt

= ω1Bψ
(1)
1 + µ2ρ

(0)
2 |ψ

(0)
1 〉, (83)

which, after plugging in the zeroth-order solution for
|ψ2〉, becomes

d|ψ(1)
1 〉
dt

=− iω1B|ψ(1)
1 (t)〉

− iµ2e
−iω2Btρ

(0)
2 (0)ei(ω2−ω1)Bt|ψ(0)

1 (0)〉. (84)

This has solution

|ψ(1)
1 (t)〉 = e−iω1Bt

[
|ψ(1)

1 (0)〉 − iµ2

×
∫ t

0

dt′eiω1Bt
′
ρ

(0)
2 (t′)|ψ(0)

1 (t′)〉
]
, (85)

and |ψ(1)
2 (t)〉 has an identical form but with subscripts

interchanged.
Cyclicity fails to materialize as naturally here as it did

in earlier sections. To find geometric effects analogous to
the ones reported above, we seek values of the period T
such that

|ψ2(T )〉 = eiα|ψ2(0)〉. (86)

The phase α is to be solved for concomitantly. Since |ψ1〉
may not be cyclic with the same period, in general α will
not be a phase of the Berry genus.

The phase and period are expanded as

α = α(0) + εα(1),

T = T (0) + εT (1). (87)

If ~P2 is initially at angles (θ2, φ2), then the initial condi-
tions for this mode are

|ψ(0)
2 (0)〉 =

(
cos θ22

eiφ2 sin θ2
2

)
,

|ψ(1)
2 (0)〉 =

(
0
0

)
. (88)

Demanding that |ψ2〉 satisfy Eq. (86) then amounts to
the following requirements on α and T :

|ψ(0)
2 (T (0))〉 = eiα

(0)

|ψ(0)
2 (0)〉,

|ψ(1)
2 (T (0))〉+ T (1) d|ψ

(0)
2 〉
dt

∣∣∣∣
T (0)

= iα(1)eiα
(0)

|ψ(0)
2 (0)〉.

(89)

The first equation is satisfied if

T (0) =
2πn

ω2
, α(0) = nπ, (90)

with n ∈ Z. The second equation then becomes

∣∣∣∣ψ(1)
2

(
2πn

ω2

)〉
= ±i

(
α(1) + ω2T

(1)B
)
|ψ(0)

2 (0)〉, (91)

where |ψ(1)
2 〉 can be evaluated using Eq. (85). The + (−)

corresponds to even (odd) n.

In deriving the first-order corrections to the phase and
period it is helpful to note a few intermediate results.
First, the term in the integrand of Eq. (85) that multiplies

|ψ(0)
1 (t)〉 is

ei(ω2−ω1)Btρ
(0)
1 (0)e−i(ω2−ω1)Bt =

(
cos2 θ1

2 ei(ω1−ω2)te−iφ1 cos θ12 sin θ1
2

e−i(ω1−ω2)teiφ1 cos θ12 sin θ1
2 sin2 θ2

2

)
. (92)

The two conditions that can be extracted from the matrix
solution for |ψ(1)

1 (t)〉 are then

2πn
µ1

ω2
cos2 θ1

2
+ ξ∗ tan

θ2

2
= −α(1) +

ω2T
(1)

2
,

2πn
µ1

ω2
sin2 θ1

2
+ ξ cot

θ2

2
= −α(1) − ω2T

(1)

2
, (93)

where

ξ ≡ iµ1
e
−2πni

(
ω1
ω2
−1

)
− 1

ω1 − ω2
ei(φ1−φ2) cos

θ1

2
sin

θ1

2
. (94)
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These equations can be solved to yield

α(1) = −nπµ1

ω2
− ξ

2
cot

θ2

2
− ξ∗

2
tan

θ2

2
,

T (1) =
2πn

ω2

µ1

ω2
cos θ1 +

ξ∗

ω2
tan

θ2

2
− ξ

ω2
cot

θ2

2
. (95)

Notice that in general ξ is complex. Demanding that the
period be real (but without putting contrived restrictions
on the angles) requires that ω1/ω2 be a rational number
of the form m/n, with m ∈ Z. Choosing ω1 to satisfy
this constraint, one obtains

α(1) = −πnµ1

ω2
,

T (1) = 2πn
µ1

ω2
2

cos θ1, (96)

so that to first order we have

T =
2πn

ω2

(
1 +

µ1

ω1
cos θ1

)
,

α = nπ

(
1− µ1

ω2

)
. (97)

To ensure that |ψ2〉 is cyclic, the rationality condition
ω1/ω2 = m/n is necessary—but having so picked the
vacuum oscillation frequencies, |ψ2〉 oscillates with a
geometry-dependent period and acquires a phase sensi-
tive to the density of the other neutrino population.

Analogous results apply if instead we take |ψ1〉 to be
cyclic and seek out the period and phase consistent with
such a requirement. If µ1 = µ2 and ω1 = ω2, then |ψ1〉
and |ψ2〉 are cyclic with the same period and accrue iden-
tical phases. In this particular scenario, where the two
neutrino populations consist of particles of the same en-
ergy and density, the phases are of the classic Berry type,
with each population experiencing adiabatic evolution
under a cyclic Hamiltonian. In general the adiabatic-
ity parameter for |ψ1〉 is Υ1 ∼ ω2

1/µ2|ω2|, and similarly
for |ψ2〉. Adiabaticity is therefore established automati-
cally by taking the limit µ � ω, so long as the frequen-
cies are of comparable magnitude. This observation also
matches intuition: The time-dependent self-coupling po-
tential, which elicits deviations from adiabaticity, is only
a small part of the total Hamiltonian.

In the final assessment, cyclicity is typically jeopar-
dized when the nonlinear coupling acts to perturb the
neutrinos away from vacuum oscillations. Nonetheless
geometry remains relevant to the flavor transformation
that occurs in such a system, as evidenced by the non-
cyclic variants of the geometric phase already alluded
to in Sec. I (see, e.g., Refs. [10, 13] for applications to
neutrinos in vacuum+matter). We do not pursue this
direction any further but we do emphasize that the im-
prints of geometry in flavor transformation transcend the
cyclic, adiabatic phase.

VII. MIXED POTENTIALS WITH THREE
FLAVORS: NON-ABELIAN PHASE

We now generalize the mixed-potentials scenario of
Sec. IV to three flavors. As before, the vacuum oscil-
lations of one neutrino determine the Hamiltonian expe-
rienced by the other. That is,

i
d|ψ1(t)〉
dt

= µ2ρ2(t)|ψ1(t)〉,

i
d|ψ2(t)〉
dt

= Hvac,2|ψ2(t)〉, (98)

where |ψi〉 is a three-component vector, ρi is a 3 × 3
matrix, and in the mass basis

Hvac,2 =
1

3

 −∆21 −∆31 0 0
0 ∆21 −∆32 0
0 0 ∆32 + ∆31

 ,

(99)
using the notation ∆ij ≡ δm2

ij/2E. The equations of
motion have solutions

|ψ1(t)〉 = P exp

(
−iµ1

∫ t

0

dt′ρ2(t′)

)
|ψ1(0)〉,

|ψ2(t)〉 = exp (−iHvac,2t) |ψ2(0)〉. (100)

The matrix exponential for the second of these is straight-
forward to compute. The solution, for |ψ2(0)〉 =
(a, b, c)T , is

|ψ2(t)〉 =

 exp
(
i∆21+∆31

3 t
)
a

exp
(
i∆32−∆21

3 t
)
b

exp
(
−i∆32+∆31

3 t
)
c

 . (101)

It follows that

ρ2(t) = |a|2 exp (i∆21t) ab
∗ exp (i∆31t) ac

∗

exp (−i∆21t) ba
∗ |b|2 exp (i∆32t) bc

∗

exp (−i∆31t) ca
∗ exp (−i∆32t) cb

∗ |c|2


(102)

and thus the geometric phases induced by the Hamil-
tonian H1(t) = µ2ρ2(t) can be found by solving for the
eigensystem. (In carrying out this procedure, one is aided
by the Cardano formula.) The eigenvalues are Eµ = µ2,
E0 = 0, and E0′ = 0, which correspond respectively to
the eigenvectors

|νµ〉 =
1

|c|

 exp (i∆31t) ac
∗

exp (i∆32t) bc
∗

|c|2

 ,

|ν0〉 =
1√

1 + |c|2
|b|2

 exp (i∆31t) ac
∗
(

1− 1
|a|2

)
exp (i∆32t) bc

∗

|c|2

 ,

|ν0′〉 =
|a|2

|c|2
√

1− |a|2

 0

− exp (i∆32t)
c∗

b∗

1

 . (103)
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In this scenario two of the energy eigenstates are always
degenerate, indicating that the geometric phases have a
non-Abelian gauge structure [127].

In the two-flavor case, where the gauge was Abelian,
the geometric phases acquired by the energy eigenstates
could be deduced by solving the Schrödinger equation
with |ψ±(t)〉 = exp (iφ±(t)) |ν±(t)〉; this is the condition
that enforces perfect adiabaticity. But nothing prevents
the states within the degenerate subsystem from mixing
with each other, regardless of how adiabatic the evolu-
tion is. To find the phases in the degenerate subsystem,
one must therefore solve the Schrödinger equation with
|ψi(t)〉 = Uij(t)|νj(t)〉, where |νj(t)〉 is the jth eigenstate
and U(t) is the matrix generalizing the Abelian phase
from the two-flavor case. If the path over a time t cor-
responds to a closed loop C, then the matrix is given by
the Wilson loop

U(C) = P exp

(
i

∮
C
~A · d~R

)
, (104)

where the gauge potential is now a vector-valued matrix
with components

~Aij = i
〈
νi(t)

∣∣∇∣∣νj(t)〉. (105)

Eq. (104) generalizes Eq. (2). We do not write out all of
the gauge potentials since they are not particularly en-
lightening, but we do note that the off-diagonal elements
of A are nonzero, allowing for transitions between |ν0〉
and |ν0′〉 even in the adiabatic limit. If |ψ2(0)〉 = |να〉
for α = e, µ, τ , the transitions occur between orthogonal
linear combinations of the other two flavors.

For H1 to be cyclic, the period must be an integer mul-
tiple, all at once, of 2π/∆21, 2π/∆31, and 2π/∆32. This
reflects the requirement for a three-flavor neutrino to os-
cillate back into its original state in finite time, a condi-
tion that was guaranteed in the two-flavor case. Suppos-
ing that such a T does exist, one can show that indeed the
phases arising from the gauge potentials do not depend
explicitly on time.

The non-Abelian structure owes its existence to a ba-
sic fact about the Hamiltonian for |ψ1〉. It is a fact
that appeared previously in our study of the pure-self-
coupling scenario in two flavors: When H ∼ ρ =
|ψ〉〈ψ|, one eigenstate is |ψ〉 itself and all others are or-
thogonal states with eigenvalue 0. (Note that for the
mixed-potential scenario in two flavors, where this trait
of the Hamiltonian was also relevant, we pulled out
the trace of the self-coupling Hamiltonian and thereby
shifted the orthogonal-eigenstate energy down to−µ1/2.)
To put it more starkly, the non-Abelian phase struc-
ture is a consequence of the coupling of neutrino flavor
quantum states—with off-diagonal coherence included—
rather than merely neutrino flavor number densities.

VIII. CONCLUSION

We have pointed out that the self-coupling potential
generated by neutrino–neutrino forward scattering is ca-
pable of inducing geometric phases in flavor evolution.
The mechanism is most easily understood in the two-
flavor approximation, where a neutrino’s flavor state and
Hamiltonian correspond graphically to vectors ending on
the Bloch sphere. In a background consisting strictly of

matter particles, the Hamiltonian vector ~H is confined

to a plane. But in a medium dense in neutrinos, ~H is
liberated from the plane and, should it undergo a closed
cycle, may return to its initial point having enclosed a fi-
nite solid angle on the sphere. Path-dependent geometric
phases in the energy eigenstates are the result—and since
flavor transformation at its heart is an interference phe-
nomenon of the neutrino’s energy eigenstates, the phases
surface in flavor transition probabilities and are observ-
able in principle.

To examine these phases in an analytically tractable
setting, we have considered various limits of a very sim-
ple toy model devoid of the astrophysical complications
that beckon a numerical treatment. Despite the model’s
simplicity, the calculations presented in this paper illumi-
nate several facets of geometric phases in environments
with nonlinear refraction from neutrino self-coupling.

Foremost among these aspects are the roles of adia-
baticity and cyclicity. We have seen that adiabatic evo-
lution is not a necessity, and that geometric effects are
apparent in the non-adiabatic corrections, albeit in a way
entangled with the dynamics. We have also seen that
the complicated interplay between oscillations and self-
coupling tends to compromise cyclicity. But cyclicity is
also dispensable, and though we have not pursued this di-
rection here, it is expected that geometric effects should
prove to be a generic feature of noncyclic evolution as
well.

Beyond these, two other interesting phenomena have
emerged from the calculations: the entwining of the paths
and phases of the two neutrino populations, as exhibited
in the pure-self-coupling scenario, and the non-Abelian
phase structure of the three-flavor case. These effects
hinge on the peculiar nature of the neutrino–neutrino
forward-scattering potential, which allows neutrinos to
communicate to one another the quantum coherence of
their flavor states.

This study was motivated by the possibility for col-
lective flavor-transformation effects in the extreme en-
vironments found, for instance, in the torrid plasma of
the early universe or the incendiary outflow from a core-
collapse supernova. We have made no attempt to lo-
cate geometric phases in astrophysically realistic models
but have instead strived to make clear, based on calcula-
tions in uncluttered toy models, how such phases might
emerge. Indeed, we expect that the ideas underlying this
study may find a place, in some form, in a variety of
applications: in synchronized or bipolar oscillations in
the early universe, in a possibly cyclic halo-affected re-
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gion outside a supernova, in active–sterile oscillations,
and elsewhere. To be sure, sophisticated numerical com-
putations already have geometric effects built in implic-
itly, albeit in far more complicated manifestations than
those analyzed here. After all, the provenance of these
effects—the shape of Hilbert space and the structure of
the Hamiltonian—is encoded in the equations of motion.
But the importance of geometry in the results that these
equations output is often overlooked.
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[18] E. Sjöqvist, Phys. Rev. A 62, 022109 (2000).
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[24] G. Garćıa de Polavieja, Phys. Rev. Lett. 81, 1 (1998).
[25] G. Garćıa de Polavieja and E. Sjöqvist, Am. J. Phys.
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