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We present two methods for determining the significance of a stochastic gravitational-wave (GW)
background affecting a pulsar-timing array, where detection is based on evidence for quadrupolar
spatial correlations between pulsars. Rather than constructing noise simulations, we eliminate the
GWB spatial correlations in the true datasets to assess detection significance with all real data
features intact. In our first method, we perform random phase shifts in the signal-model basis
functions. This phase shifting eliminates signal phase coherence between pulsars, while keeping
the statistical properties of the pulsar timing residuals intact. We then explore a method to null
correlations between pulsars by using a “scrambled” overlap-reduction function in the signal model
for the array. This scrambled function is orthogonal to what we expect of a real GW background
signal. We demonstrate the efficacy of these methods using Bayesian model selection on a set of
simulated datasets that contain a stochastic GW signal, timing noise, undiagnosed glitches, and
uncertainties in the Solar system ephemeris. Finally, we introduce an overarching formalism under
which these two techniques are naturally linked. These methods are immediately applicable to all
current pulsar-timing array datasets, and should become standard tools for future analyses.

I. INTRODUCTION

The existence of gravitational waves (GWs) was re-
cently confirmed with the detection of a binary black-hole
merger by LIGO, ushering in the era of observational GW
astronomy [1]. This detection relied on (amongst other
factors) precision engineering, extensive theoretical de-
velopment, and detailed detector noise characterization.
The latter is important because it tells us how confident
we are that the detector output contains a signal rather
than a spurious noise feature. Methods for this (such as
“time sliding”) are well-developed in the ground-based
and space-based interferometry literature, but until re-
cently have been lacking for pulsar-timing arrays [PTA,
2]. We explore such methods here.

PTA searches rely on the expected GW-induced cor-
relation signature between pulsars to discriminate the
GW signal against noise. These noise processes can
be intrinsic to each pulsar, such as intrinsic spin-noise
due to rotational irregularities [e.g. 3], or delays in the
pulse arrival time due to propagation through the inter-
stellar medium [e.g. 4]. Other noise processes can be
correlated across pulsars, such as uncertainties in the
Solar system ephemeris [5] which can induce a dipole-
like correlation signature, and errors in clock standards
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[6] which can induce a monopolar correlation signature.
An isotropic stochastic gravitational-wave background
(GWB) induces spatial correlations in the PTA that
have a quadrupolar signature, known as the Hellings and
Downs curve [7]. This signature is only a function of the
angular separation between pairs of pulsars in the array,
although there are more general correlation signatures for
anisotropic backgrounds [8–10], and GWBs composed of
non-GR polarisations [11, 12].

Upper limits on an isotropic stochastic GWB from the
three main pulsar-timing arrays (PPTA [13]; EPTA [14];
NANOGrav [15]) are now reaching the sensitivities re-
quired to constrain models of backgrounds generated by
a population of supermassive black hole binaries [e.g.,
16–20]. Recent projections suggest that there is signifi-
cant probability that a stochastic GWB will be detected
within the next decade [21–23].

Several detection statistics exist for a GWB signal in
pulsar timing data. Frequentist methods such as the
“optimal statistic” [24, 25] measure how likely it is (in
terms of number of standard deviations from zero) that a
cross-correlated signal is present in our data rather than
a common uncorrelated signal. As it is currently for-
mulated, this statistic assumes that all cross correlated
power comes from the GWB, although generalization to
multiple spatially correlated processes is possible. In-
deed, the Yardley statistic [26] has recently been mod-
ified to simultaneously fit for the presence of multiple
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spatially correlated signals [27].

Bayesian inference instead makes use of the fully-
marginalized likelihood (or “evidence”) to determine the
probability of one model over another. This allows for
a statistically robust comparison of models that includes
contributions to the correlated signal from GWs and e.g.
clock or Solar system ephemeris errors. We can also per-
form model comparison in more general scenarios, when
the correlation between pulsars has been modeled using
either a smooth functional form [28], or pairwise for each
pulsar pair [29]. The shortcoming of this approach is the
explicit dependence on the appropriateness of the models
being used for the evidence comparison. Objective reality
is not probed by Bayesian analysis, only our formulated
models, which should be as close as possible to being re-
alistic representations of the underlying physics. If we
formulate a series of poor models to test on the data,
then Bayesian model selection will select the least poor,
but this does not mean it is the best possible model.

In this paper we present two approaches for determin-
ing the significance of GW-induced correlations present
in pulsar timing data. The first approach exploits cor-
relations in phase, where random phase shifts are intro-
duced between pulsars to destroy signal phase coherence,
but which preserve the statistical properties of the indi-
vidual pulsar datasets. The second approach exploits
the expected spatial correlation signature of a GWB. By
“scrambling” the positions of pulsars on the sky (and
therefore their angular separations) we produce a tem-
plate of the correlation signature that is effectively or-
thogonal to the signature of any true signal in the real
dataset. In the following we use Bayesian methods, but
these techniques can be straightforwardly applied to real
datasets with frequentist detection statistics.

Previous work in Cornish and Sampson [30] has in-
vestigated the requirements of a robust detection of
GWs in PTAs, focusing on issues regarding the posi-
tion scrambling approach. In Tiburzi et al. [27] sev-
eral methods were explored to mitigate the influence
of spatially-correlated noise on GWB detection signifi-
cance, including (a) fitting a clock error signal out of all
the pulsars before the GW search; (b) fitting a monopo-
lar clock error simultaneously with the quadrupolar GW
signal; (c) fitting a dipolar ephemeris error simultane-
ously with the quadrupolar GW signal; (d) fitting an
ephemeris error time-series out of all pulsars before the
GW search. In the following, we show that Bayesian
methods can avoid inference bias by simultaneously mod-
eling all spatially-correlated processes, intrinsic pulsar
noise, and timing model parameters. “Phase-shifting”
and “sky-scrambling” are designed to operate on actual
pulsar-timing datasets to provide a more conservative es-
timate of detection significance than methods relying on
noise simulations, which can be biased to higher signifi-
cance if undiagnosed noise features are present.

In Section II we introduce the Bayesian pulsar-timing
likelihood. In Section III we discuss the phase and spa-
tial correlations of pulsars due to the influence of a GWB,

and introduce our two methods of phase shifting and sky
scrambling. These methods are applied in Sec. IV to (1)
an idealized simulation; (2) a more realistic simulation;
(3) a simulation for which our noise model is incomplete,
where there are large glitches in each pulsar; and (4) a
simulation which contains additional noise processes that
induce spatial correlations, i.e. a clock and ephemeris er-
ror. With the latter two, we show the superiority of our
methods over repeated noise-only simulations. We sum-
marize our findings in Sec. V.

II. A PULSAR TIMING LIKELIHOOD

For any pulsar we can write the times of arrival (TOAs)
for the pulses as a sum of both a deterministic and a
stochastic component:

ttot = tdet + tsto, (1)

where ttot is a vector of length NTOA for a single pul-
sar, with tdet and tsto the deterministic and stochastic
contributions (modeled as Gaussian random processes)
to the total respectively. An initial estimate, β0, for the
m timing model parameters for each pulsar can be ob-
tained through a standard weighted least-squares fit, or
using Bayesian analysis routines [31], both of which are
included in the Tempo2 [32, 33] timing package. This
allows us to generate an initial set of timing residuals,
which we denote δt = ttot − tdet(β0).

We assume that the difference between this initial so-
lution β0, and the final solution βf obtained from a joint
analysis that includes a GWB term will be small. There-
fore a linear approximation of the timing model can be
used such that any deviations from the initial guess of
the timing model parameters are encapsulated using the
vector ε of length m, such that εi = βfi − β0i. These
small timing model deviations influence the timing resid-
uals via the term Mε, where M is the NTOA×m timing
model “design matrix” describing the dependence of the
residuals on the timing model parameters.

Furthermore, we include the influence of all low-
frequency processes on the timing residuals (such as in-
trinsic spin-noise, a common red-noise process, and a
GWB) via the term Fa. The vector a of length 2Nfreqs de-
scribes the Fourier coefficients of any low-frequency pro-
cess at a limited number of harmonics of the base sam-
pling frequency 1/T (where T is the observation timespan
of a single pulsar, or the maximum coverage of the en-
tire pulsar timing array), and F is the NTOA × 2Nfreqs

“Fourier design matrix” consisting of alternating columns
of sines and cosines.

We can also explicitly include the influence of white-
noise terms on the timing residuals, such as from TOA
measurement uncertainties (which may be modified by
additional system-dependent scaling parameters such
as EFACs and EQUADs), correlated measurement un-
certainties in simultaneous multi-frequency observations
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(ECORR), or pulse phase jitter [34]. However we implic-
itly marginalize over these effects in the following such
that their influence is confined to the NTOA×NTOA white
noise covariance matrix, N, for each pulsar.

The model-dependent timing residuals, r, for each pul-
sar can thus be written in terms of the input residuals,
δt as

r = δt−Mε− Fa, (2)

with a likelihood given by

p(δt|ε,a,η) =
exp

(
− 1

2rTN−1r
)√

det(2πN)
, (3)

where η encapsulates any parameters not already repre-
sented by ε or a.

We group all low-frequency and reduced rank signals
into a common description, such that

r = δt−Tb, (4)

where

T =
[
M F

]
, b =

[
ε
a

]
. (5)

We place a Gaussian prior on the coefficients, b:

p(b|φ) =
exp

(
− 1

2bTB−1b
)√

det(2πB)
, (6)

with,

B =

[
∞ 0
0 ϕ

]
, (7)

such that the timing model portion of b has an infinite
variance to approximate a uniform unconstrained prior
on timing model parameter deviations, ε.

The low-frequency portion of b has a variance, ϕ, given
by the spectrum of all low-frequency processes in the
data. Since this may include a GWB we must naturally
model spatial correlations in the data:

[ϕ](ai),(bj) = Γabρiδij + κaiδabδij , (8)

where κai is the intrinsic low-frequency (“spin-noise”)
spectrum of pulsar a at the ith sampling frequency; ρi
is the GWB spectrum at the ith sampling frequency;
and Γab is the overlap reduction function (ORF) between
pulsars a and b describing the reduction in correlated
power due to the spatial separation of the pulsars. For
an isotropic stochastic GWB this Γab depends only on
the separation between pulsars and is commonly known
as the “Hellings and Downs curve”. We note that both κ
and ρ can either be modelled with a functional form (such
as a power-law or a smooth turnover) or as a free spec-
trum with a parameter per frequency. In the following we
consider all low-frequency processes to be well described

by power-law spectra at all sampling frequencies νi, such
that (taking κai as an example)

κai =
A2
a

12π2

1

T

(
νi

1yr−1

)−γa
yr2. (9)

For a GWB the exponent has a value of γ = 13/3
for a circular GW-driven population of SMBHBs. All
intrinsic red noise and GWB power-law spectral param-
eters are grouped into the parameter vector η. We can
trivially include other spatially correlated signals in the
model by adding additional terms to Eq. (8), e.g. a
monopolar-correlated process to model clock errors, or
a dipolar-correlated process as a (sub-optimal) model
of ephemeris uncertainties. Ephemeris uncertainties can
be modeled coherently [5, 14, 35] rather than through
spatial-correlation analysis.

We can now write the joint probability density of
the timing model and reduced rank signal parameters,
p(b,η|δt), as:

p(b,η|δt) ∝ p(δt|b)× p(b|η)× p(η). (10)

Taking the logarithm of Eq. (10) and extremizing gives

the maximum likelihood vector of coefficients b̂:

b̂ = Σ−1d, (11)

where Σ = (TTN−1T +ϕ−1) and d = TTN−1δt.
We can also analytically marginalize Eq. (10) over the

coefficients b, giving:

p(η|δt) ∝
exp

(
− 1

2δt
TC−1δt

)
√

det(2πC)
× p(η), (12)

where C = N + TBTT. In practice, the Woodbury
matrix identity [36] is used to reduce Eq. (12) to lower
rank operations and thus accelerate computations.

III. DESTROYING SIGNAL COVARIANCE

To assess GWB signal significance, we ideally want
many equally-likely realizations of noise-only pulsar-
timing datasets. If our detection statistic from the real
dataset were smaller than in a fraction p̃ of these noise-
only datasets, then the p-value of the GWB detection is
less than or equal to p̃. Our aim in the following is to
make this statement by removing correlations from the
real pulsar timing datasets, instead of making many noise
simulations where the properties are based on a poten-
tially incomplete noise model. We try to make our noise
models as realistic as possible, but any undiagnosed fea-
tures in the data will not be represented in a noise simu-
lation. Our approach keeps all features of the data intact,
and we show that this produces a more conservative esti-
mate of the GWB detection significance. Some progress
has recently been made towards forming these kinds of
null streams for continuous-GW analysis [37, 38].



4

Cgwb = F'gwbF
T

Phase Shifting Sky Scrambles

FIG. 1. The two detection significance techniques operate on
real pulsar timing datasets, and are naturally linked through
the common result of destroying cross-pulsar GWB signal cor-
relations.

The reduced rank description of the GW signal covari-
ance (as in Sec. II) provides two ways for us to remove the
GWB’s correlated influence between pulsars. The time-
domain covariance induced by a GWB takes the following
form:

Cgwb = 〈F agwba∗gwb FT 〉
= F 〈agwba∗gwb〉FT

= FϕgwbFT , (13)

where F is the Fourier design matrix of the signal, and
ϕgwb is the variance of the zero-mean signal coefficients
agwb. This variance is proportional to the power spectral
density of the GWB-induced time delays:

ϕgwb = 〈agwba∗gwb〉

= Γab ×
A2

gwb

12π2

1

T

(
νi

1yr−1

)−γ
yr2. (14)

With the following two techniques we destroy signal
covariance by either operating on the phase coherence
through F, or on the induced spatial correlations through
Γab. In Eq. (13) and Fig. 1 we see that these are naturally
linked through the common result of mitigating cross-
pulsar signal correlations in the data.

A. Phase shifting

Phase shifting attacks the phase coherence of the GWB
signal that is induced between different pulsars in the
PTA. There are two approaches one can take in phase
shifting — we can either construct phase shifted datasets
(data-driven), or we can search for the GWB with a phase
shifted model (model-driven).

Data-driven — In this approach we must first recon-
struct the signal in each individual pulsar. We determine
the maximum likelihood parameters of the intrinsic pul-
sar noise (without including a GWB in the model), then
solve Eq. (11) to obtain the maximum likelihood signal

coefficients, b̂. By selecting only the components, â, that
correspond to the frequencies we want to shift, we can re-
construct the maximum likelihood signal realization with
s = Fâ.
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FIG. 2. Example of phase shifting on J2317+1439 in Simu-
lation 1 (blue points, top panel). The maximum-likelihood
signal realization for the lowest 3 frequencies is shown as a red
line in the top panel. We subtract this from the dataset to ob-
tain a set of residuals (middle panel), where there is still clear
structure left over. After phase shifting as in Section III A we
obtain the new signal (red line, bottom panel), which we add
back to the residuals to obtain a new, shifted dataset (blue
points, bottom panel).

We also construct a shifted signal, s′, using the ad-
justed matrix F′, defined as:

F ′(ν, t) = sin (2πνt+ δν) , (15)

and equivalent cosine terms, with δν a frequency-
dependent random phase between 0 and 2π. This gives
our shifted signal as s′ = F′â.

We can then construct a new, shifted dataset δt′:

δt′ = δt− s + s′. (16)

An example of this shifting process is shown in Fig. 2
for J2317+1439 in Simulation 1.1 Crucially (as will be
shown in Sec. IV B) this process retains the statistical
properties of the original dataset, including any unmod-
elled stochastic or systematic effects. However by shifting
the phases of the signal we have removed any correlations
between pulsars.2

1 Residuals in the top panel of Fig. 2 are given by Tempo2 perform-
ing a generalized least-squares fit of the timing-model parame-
ters, where the .par file has the following red-noise estimates:
TNRedAmp = −13.301, TNRedGam = 4.333, TNRedC = 50.

2 We have implicitly assumed a stationary GWB signal, since our
phase-shifting approach applies an independent random phase
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Model-driven — This approach is rather simple, in
that we employ the pulsar datasets as they are, and
search on the data with new phase-shifted Fourier design
matrices, F′, in the model for low-frequency processes.
The data will now prefer a model with a common (but
uncorrelated) red process instead of a GWB. We use the
model-driven phase-shifting in all of the following since
it is so easily implemented. However, both approaches
produce consistent results, and the data-driven approach
is important in illustrating that the statistical properties
of each pulsar dataset remain unaffected.

B. Sky scrambles

Sky scrambles attack the spatial correlations induced
by the GWB signal. These correlations are described by
the distinctive quadrupolar Hellings and Downs signa-
ture. By contrast, a common uncorrelated low-frequency
signal will have zero spatial correlations, and stochastic
clock-standard drifts can be modeled as a low-frequency
process with constant (monopole) spatial correlations [6].
Inaccuracies in the Solar system ephemeris may lead to
dipole-like spatial correlations between pulsars [27], but
modeling them as such is sub-optimal when coherent
methods are available [5, 14, 35]. Unlike phase shifting,
sky scrambling requires us to make specific assumptions
about the expected spatial correlation signature of the
signal.

Model-driven — Our GWB search pipelines use a
Hellings and Downs template for the spatial correlations
to filter out noise processes against the true signal. To
sky scramble, we artificially move pulsar positions from
their true values3 so that the angular separations between
pulsars will be scrambled. Thus, when we impose our
template correlation signature it will be at odds with
the spatial correlation signature of any true GWB in the
data. Our goal is to make the overlap of the true spatial
correlations as orthogonal as possible to our scrambled
correlation model. We want to make it a maximally-poor
template to effectively null the influence of GWB-induced
spatial correlations in the data. We stress that we are not
merely interchanging pulsar positions in the array — the
sky scrambles are constructed by searching for new pul-
sar positions over the entire sky to minimize the overlap
of the scrambled template with the true correlations.

An intuitive picture is given by considering the behav-
ior of the signal-to-noise ratio from the GWB optimal-

per sampling frequency. If the GW signal has non-stationary
features then we need to account for frequency correlations in
the data by performing correlated phase shifts, such that δi/δj =
νi/νj . From here on we only consider stationary GW signals.

3 Their true values are retained for fitting astrometric terms in the
timing model.

statistic in the frequency domain:

〈ρ〉2 ∝
∑
a,b6=a

∑
i

[
Γ′ab(νi)S

′
i × Γab(νi)Si

Pa(νi)Pb(νi)

]
, (17)

where a and b index pulsars, i indexes sampling frequen-
cies of the pulsar time series, primes denote template (or
model) quantities, and unprimed quantities indicate true
signal or noise processes in the data4. The power spec-
tral density of the GWB-induced time delays, Si, takes
the usual power-law functional form throughout. This
equation can be seen as a noise-weighted inner product
of an ORF template with the actual correlations in the
data.

Applying a sky-scrambled ORF to Eq. (17) minimizes
the overlap of the template with the signal, and dimin-
ishes the detection significance of the GWB in the data.
This equation can also be used as a generator of sky
scrambles — we can insert typical pulsar noise properties
along with signal assumptions to find a scrambled tem-
plate ORF that makes 〈ρ〉 as small as possible. These
scrambles can then be used to construct the spatial cor-
relation template in a Bayesian analysis of real datasets.
We repeat this process to generate many sky scrambles,
and analyze the real data with the corresponding scram-
bled ORFs. Each analysis will return a Bayes factor for
a GWB versus a common-uncorrelated red process. By
virtue of the scrambling, these should now favor a model
with a common-uncorrelated red process. The distribu-
tion of these Bayes factors is the desired null hypothesis
distribution. We can then assess how frequently spurious
noise correlations can give a Bayes factor that exceeds the
Bayes factor found from the true unmodified dataset.

In practice, a more straightforward generator of sky
scrambles is through minimization of the normalized in-
ner product of the template ORF with the expected true
ORF. This “match statistic” has been explored in [30],
and we reiterate its form here:

M =

∑
a,b ΓabΓ

′
ab

(
∑
a,b ΓabΓab ×

∑
a,b Γ′abΓ

′
ab)

1/2
,

M =

∑
a,b6=a ΓabΓ

′
ab

(
∑
a,b6=a ΓabΓab ×

∑
a,b6=a Γ′abΓ

′
ab)

1/2
, (18)

where in M the sum is over all unique pulsar pairings,
while in M the sum excludes pulsar self-pairings since
these merely add positive terms regardless of whether
the pulsar positions are scrambled or not. The benefit
of these match statistics is that they rely purely on the
geometric properties of the array through the sky loca-
tions of the pulsars. We use the minimization of M to

4 In principle we can apply different template ORFs at each fre-
quency, however for the purposes of this study we assume no fre-
quency evolution of the GWB angular-power distribution, and
thus no evolution of the true or template ORF.
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generate sky scrambles for the analyses in the rest of this
paper, employing a particle swarm optimization (PSO)
algorithm [39, 40] to find scrambled positions for which
M is below a given threshold with respect to the true
ORF and all other previously discovered sky-scrambles.

There is a concern that, for a given number of pul-
sars, there are only a finite number of unique sky scram-
bles which produce ORFs that are orthogonal to the true
ORF and all other scrambled ORFs. This is not easy to
assess since we are not merely interchanging the pulsar
positions, but it could bias our assessment of detection
significance if there are repeated scrambles. Ideally we
want all scrambles to be independent so that we have
equally-weighted Bayes factors to produce the null hy-
pothesis distribution. This is similar to the geometric
problem known as a “spherical code”, where one tries to
fit as many independent points as possible on the surface
of a unit hypersphere whose position vectors have certain
overlaps with each other. This issue is unsolved in an ar-
bitrary number of dimensions, but if we were to insist
on mutual-orthogonality of all scrambled ORFs then we
can not have more than Npsr(Npsr − 1) scrambles, and
even fewer if the scrambled ORFs must correspond to
physical perturbations of pulsar positions. In practice
we can partially mitigate this issue by not demanding
that the scrambled ORFs be exactly mutually orthogo-
nal, but merely that their normalized inner product be
below some threshold. A larger threshold value gives
more sky-scrambles, but at the cost of reduced indepen-
dence.

Data-driven — We perform an initial search on the en-
tire pulsar array dataset for a GWB signal, from which we
extract the maximum likelihood signal coefficients âgwb

in each pulsar. At each frequency, the variance of these
signal coefficients is equal to the power spectral density
of the GWB-induced time delays, scaled by the ORF be-
tween the pair of pulsars in question: 〈aaa∗b〉i = ΓabSi. In
the following we denote the vector of all pulsars’ GWB
signal coefficients at a particular frequency, νi, by âi.
The expected covariance matrix of this vector of coeffi-
cients is then the Hellings and Downs spatial correlation
matrix, scaled by Si. Explicitly, the spatial correlation
matrix, Γ is:

Γ =


Γ11 Γ12

...

Γ21 Γ22

...

· · · · · · . . .

 . (19)

We Cholesky factorize Γ, then operate on âi with the
inverse Cholesky factor to decorrelate the signal between
different pulsars. Hence,

Γ = LLT ,

â′′i = L−1âi, (20)

where â′′i is the vector of new pulsar signal coefficients
at frequency i, which are uncorrelated between pulsars

but retain the same spectral properties. We repeat this
process at all sampling frequencies in our rank-reduced
approximation of the GWB signal, giving new vectors
of signal coefficients for each pulsar. However, this pro-
duces only one set of uncorrelated signal coefficients —
to produce many scrambled datasets we can correlate
the coefficients again by Cholesky factorizing a scram-

bled ORF, Γ′ = L′L′T , and operating on the uncorre-
lated signal coefficients such that â′i = L′â′′i . As in the
data-driven phase shifting approach, we now form new
pulsar datasets such that:

δt′ = δt− Fâ + Fâ′. (21)

We now have new pulsar datasets with their individ-
ual spectral properties intact, but which are correlated
according to a scrambled ORF. Each scrambled ORF
gives a new PTA dataset which is analyzed under the
assumption that the true ORF is present, and iterating
over scrambles gives the distribution of the Bayes factor
under the null hypothesis. The analog with Eq. (16) is
now easy to see: when phase shifting we modify F while
in sky scrambling we modify â. As in the case of phase
shifting, the model-driven sky-scrambling approach is a
more straightforward practical implementation, so we use
it in all of the following.

C. Unified formalism

We now examine the combined influence of phase shift-
ing and sky scrambling on the timing-residual correlation
between two pulsars. For simplicity we consider only the
correlation due to the GWB. We also initially consider
only one sampling frequency in the reduced rank descrip-
tion of the signal, but generalize later. The covariance
between timing residuals at tak in pulsar a and at tbl in
pulsar b is:

C(ak),(bl) = F(ak)ϕabF
T
(bl), (22)

where, with only one sampled frequency at νi, F(ak) takes
the form:

F(ak) =
[
sin(2πνitak) cos(2πνitak)

]
, (23)

and F(bl) is likewise. The spectrum, ϕab, at each fre-
quency is as in Eq. (14), but is explicitly represented
here as a 2Nfreqs × 2Nfreqs matrix (since each frequency
has a sine and cosine basis function):

ϕab =

[
ϕab 0
0 ϕab

]
. (24)

The result of phase shifting and sky scrambling is to
convert F(ak) and ϕab into the following:

F′(ak) =
[
sin(2πνitak + δai) cos(2πνitak + δai)

]
,

ϕ′ab =
Γ′ab
Γab
× ϕab. (25)



7

If we explicitly evaluate Eq. (22) with the phase shifted
and scrambled quantities (and generalize to multiple
sampling frequencies) we get the following for our scram-
bled model of the induced correlations:

C′(ak),(bl) =

Nfreqs∑
i

Γ′ab
Γab

ϕab [cos(2πνi(tak − tbl)) cos(δai − δbi)

− sin(2πνi(tak − tbl)) sin(δai − δbi)] .
(26)

One can easily see that without phase shifting (or with
a common phase shift for all pulsars at each frequency)
and without sky scrambling, the correlation is:

C′(ak),(bl) =

Nfreqs∑
i

ϕab cos(2πνi(tak − tbl)), (27)

which is the just the discrete Wiener-Khinchin conver-
sion between the power spectral density of a process and
the time-domain correlation. The autocovariance of each
pulsar can be examined by setting a = b in Eq. (26). In
this case Γaa = Γ′aa = 1, and phase shifts cancel at each
sampling frequency, such that the statistical properties
of each individual pulsar dataset remain intact.

IV. APPLICATION TO SIMULATIONS

In the following we test our two techniques against sev-
eral different types of PTA datasets. All Bayesian anal-
ysis and evidence recovery is performed using the PTA
analysis suite NX01 [41] with the MultiNest sampler
[42–45], where 1000 live points are employed in Secs. IV A
and IV C 1 (for a 2-D parameter space), and 5000 live
points are employed in Secs. IV B and IV C 2 (for a 22-D
and 26-D parameter space, respectively).

A. Simulation 1 (IPTA MDC open 1)

We apply the techniques to the first open dataset of
the publicly available, International Pulsar Timing Array
[46] mock data challenge.5 This dataset contains 5 years
of observations for a set of 36 pulsars, each with a 14 day
cadence, and each with uncorrelated TOA measurement
uncertainties of 10−7 seconds. These datasets do not
include any intrinsic red noise processes, clock errors, or
Solar system ephemeris uncertainties, but do include a
GWB with a power-law spectrum (Agwb = 5 × 10−14,
γgwb = 13/3). While this does not represent a realistic
dataset by any metric, it is a simple initial test case upon
which to explore the effectiveness of our approaches for
eliminating the correlation between pulsars due to the

5 http://www.ipta4gw.org/?page_id=214

GWB. In the following analyses, our noise model includes
only TOA uncertainties given by the observations (i.e. no
search parameters) while the signal model is a power-law
GWB (two search parameters).

We first need to assess how many sampling frequencies
contain information about correlations between the pul-
sars, and thus how many frequencies we need to phase
shift. We analyze the dataset with a model which ne-
glects spatial correlations in a successive number of sam-
pling frequencies, beginning with the base frequency 1/T
and then increasing. As we see in Fig. 3a, the evidence
for a GWB without spatial correlations in the lowest
∼ 20 frequencies is indistinguishable from a common-
uncorrelated red process. So long as we apply random
phase shifts to at least the first 20 sampling frequencies
in our model, the phase coherence between pulsars will be
destroyed. Sky scrambles are generated using the match-
statistic minimization approach described in Sec. III B,
with a threshold of 0.2.

The result of carrying out 300 phase-shifting and 300
sky-scrambling analyses of the dataset are also shown
in Fig. 3a as green and red log-Bayes factor histograms,
respectively. The Bayes factor is for a GWB versus a
common-uncorrelated red process. The fact that these
histograms are centred around ∼−30 shows two things:
(i) the data contains a lot of information about spa-
tial correlations; and (ii) the data now strongly favor
a common-uncorrelated red process under the modified
models. The phase-shifting and sky-scrambling tech-
niques produce consistent null hypothesis (i.e. no correla-
tions) distributions. The true log-Bayes factor of ∼ +47
is seen to be highly significant in the context of these
distributions. To make robust statements about the p-
value of correlations one would need to perform many
more analyses than our 300 to fill out the tails of the
distributions. However it is clear that spurious noise cor-
relations are an improbable source of producing the very
high Bayes factor given by the data, with a probability
of < 1/300. Indeed, this is a clear-cut case to begin with
since the Bayes factor already favors the signal model by
e47 : 1 odds. We will see the real use of these techniques
in the more realistic and marginal simulation to follow.

Finally, we check how phase-shifting and sky-
scrambling compare to noise simulations as a way to con-
struct the null hypothesis Bayes factor distribution. In
Fig. 4a we compare our histograms of log-Bayes factors
from phase-shifting and sky-scrambling with a histogram
from analyzing 300 independent noise-only datasets. In
the latter, each pulsar has the same statistical properties
as in the original dataset but without spatial correlations.
We see that our techniques match the performance of
noise simulations very well.

B. Simulation 2 (a more realistic simulation)

We now apply the techniques to a more realistic 10-
pulsar EPTA dataset. Table I lists the timespan, rms of

http://www.ipta4gw.org/?page_id=214
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FIG. 3. Log-Bayes factor for a correlated GWB model versus a common-uncorrelated red process. Black stars correspond to
operating on the real dataset without modeling spatial correlations in the lowest N coefficients, e.g. the black star at a frequency
index of 1 signifies that the correlation has not been included in the lowest frequency. The green circles and histogram correspond
to operating on the unmodified dataset with 300 phase-shift instances, while the red triangles and histogram are for 300 sky-
scramble instances. The case of equal model evidences is indicated with a dashed grey line at zero, and the true Bayes factor
of spatial correlations in the dataset is indicated with a dash-dot magenta line.

TABLE I. Details of simulation 2.

Pulsar Tobs [years] σw [µs] log10Ared γred
J0613−0200 16.054 1.58 -13.90 3.18
J0751+1807 17.606 2.60 -14.14 2.58
J1012+5307 16.831 1.47 -13.09 1.65
J1640+2224 16.735 1.99 -13.24 0.03
J1643−1224 17.300 1.65 -18.56 4.04
J1713+0747 17.657 0.26 -14.90 4.85
J1744−1134 17.250 0.65 -13.60 2.00
J1857+0943 17.310 1.51 -16.00 1.35
J1909−3744 9.379 0.12 -13.99 2.06
J2145−0750 17.161 1.19 -13.87 4.02

the white noise, and the properties of the red noise for
each pulsar in the simulation. These values are chosen to
be similar to those given in Caballero et al. [47] in order
to provide as realistic a simulation as possible. The obser-
vation schedule matches that of the true EPTA pulsars.
We also add a power-law GWB signal with spectral index,
γgwb = 13/3, and amplitude Agwb = 5 × 10−15. While
this is significantly in excess of current upper limits, we
choose this amplitude so that the change in log-evidence
between models that do or do not include spatial cor-
relations is ∼+3. Therefore the phase-shifting and sky-
scrambling operations can produce a measurable change
in the evidence.

As in the previous section, we first investigate how
many frequencies are informative of spatial correlations
in the data. We see in Fig. 3b that the majority of infor-
mation is contained in the lowest ∼ 2−3 frequencies. The
evidence is reduced to that of a common-uncorrelated red
process after neglecting spatial correlations in the lowest
∼ 10 frequencies. We therefore apply phase shifts to
at least these lowest 10 frequencies in the GWB signal

model. As before, sky scrambles are generated by mini-
mizing the unique off-diagonal match statistic, M , with
a threshold of 0.5.

Figure 3b also shows the histograms of log-Bayes fac-
tors produced from several hundred phase-shifting and
sky-scrambling experiments, where the techniques are
shown to match very well. Although not as significant as
the signal in IPTA MDC open 1, we see that the Bayes
factor for spatial correlations in this more realistic simu-
lation is still highly convincing and unlikely to have been
formed via spurious noise correlations. As discussed pre-
viously, in a real analysis we would desire a quantitative
assessment of the significance; this would require many
more phase shifting or sky scrambling experiments than
are examined here in order to produce smooth distribu-
tions which are well sampled in the tails. We must also
bear in mind that we used a larger match threshold than
before to generate the sky-scrambles. Therefore they are
not completely independent of one another, which may
introduce some bias in assessments of detection signifi-
cance (see Sec. III B).

As before, we confirm that phase-shifting and sky-
scrambling produce Bayes factor distributions under the
null hypothesis which compare well with the distribution
produced from analyzing many noise-only simulations.
The results for this are shown in Fig. 4b, where all dis-
tributions are shown to be in good agreement.

Finally, we use this more realistic dataset to demon-
strate that phase-shifting and sky-scrambling do not al-
ter the statistical properties of each individual pulsar
dataset. Figure 5 shows the posterior distributions of the
intrinsic red noise parameters for a subset of the pulsars
in simulation 2. Red lines show the mean parameter esti-
mates over 50 realizations of simultaneous phase-shifting
and sky-scrambling on the original dataset, where the
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FIG. 4. The null hypothesis distribution of Bayes factors
for a GWB versus a common-uncorrelated red process is ob-
tained with different techniques. The result of 300 phase shifts
(green, long-dash) and 300 sky scrambles (red, short-dash)
on the real dataset are compared to the distribution from
noise simulations (blue, solid). The Bayes factor from the
real datasets are shown as a vertical dash-dot magenta line in
both panels.

model includes separate red noise per pulsar and a GWB.
Blue lines show parameter estimates from an analysis of
the unmodified dataset, where the model includes sep-
arate red noise per pulsar and a common-uncorrelated
red process. As desired, the shifting and scrambling
processes have not significantly affected the parameter
estimates for individual pulsars. This indicates that
the underlying statistics of the dataset remain consis-
tent whether we analyze with a shifted/scrambled GWB
model or with a common-uncorrelated red process.
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intrinsic red noise for three of the pulsars in simulation 2.
Blue lines represent the analysis for the unmodified dataset
containing the uncorrelated common red noise term, red lines
are the mean of the posterior distributions over 50 realizations
of the combined phase and position shifted datasets.

C. Influence of unmodeled noise processes

So far we have shown that phase-shifting and sky-
scrambling provide null hypothesis distributions that
agree with what is given by noise simulations. We now
go further to show that phase-shifting and sky-scrambling
can in fact be superior. This occurs when our noise mod-
els are poor so that our understanding of noise processes
in the dataset is incomplete.

1. Simulation 3 (mismodeled intrinsic noise)

We generate an extreme example of a dataset with
large unmodeled noise that is intrinsic to each pulsar.
We inject loud independent glitches (negative ramps in
the residual time-series due to spontaneous increases in
the pulsar rotational frequency) into each pulsar of sim-
ulation 1 (described in Sec. IV A). This glitch term is
injected as:

sglitch(t) = −A× (t− te)H(t− te)× spd, (28)

where t is the MJD of a given pulsar observation, H(·) is
the Heaviside step function, A is the glitch amplitude,
te is the MJD of the glitch epoch, and spd = 86400
is the number of seconds per day. The glitch epochs
are randomly drawn as te ∈ MJD U [53000, 54806], while
the glithc amplitudes are randomly drawn as log10A ∈
U [−18,−17].
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We analyze this simulation as we would do for a real
dataset, with the following checklist:

1. Analyze the true PTA dataset for a GWB signal.

2. Analyze the true PTA dataset for a common-
uncorrelated red process.

3. Generate many noise-only simulated datasets. We
simulate pulsars with the maximum-likelihood
noise properties of the true dataset, and also in-
ject a common-uncorrelated red process with the
maximum-likelihood parameters of the recovered
GWB signal in the true dataset. Analyze each sim-
ulated dataset for a GWB signal and for a common-
uncorrelated red process.

4. Analyze the true dataset to assess how many sam-
pling frequencies contain information about spatial
correlations. Perform many phase-shift analyses on
the true dataset.

5. Generate scrambled sky positions from either an
optimal-statistic analysis or the match statistics.
Perform many sky-scramble analyses on the true
dataset.

6. Item (3) gives the distribution of the Bayes factor
under the null hypothesis from simulations. Items
(4) + (2) are used to give the phase-shifting esti-
mation of the null hypothesis Bayes factor distri-
bution. Items (5) + (2) are used to give the sky-
scrambling estimation of the null hypothesis Bayes
factor distribution.

For item (1), our model consists of a GWB signal,
and white-noise given by the reported TOA measure-
ment uncertainties. We purposefully do not model the
glitch in each pulsar to assess how phase-shifting and sky-
scrambling perform when we have an incomplete noise
model. The parameter estimation of the GWB spec-
trum will be dominated by the self-pairings of the pul-
sars (since the off-diagonal elements of the ORF ma-
trix are at most half of the diagonal terms). There-
fore the glitches (which are negative ramps) are inter-
preted as an additional low-frequency component of the
GWB, so that the recovered signal will have a higher
amplitude than the true signal. This is indeed the case,
where the maximum-likelihood GWB signal parameters
are found to be Agwb = 9.60 × 10−14 and γgwb = 4.24,
and the posterior distributions are inconsistent with the
true GWB signal parameters of Agwb = 5 × 10−14 and
γgwb = 4.33. The log-Bayes factor for spatial correlations
in this dataset is ∼ +4.

We create 300 PTA dataset simulations which contain
white-noise at the level of the reported TOA uncertain-
ties, and a common-uncorrelated red process in each pul-
sar with A = 9.60× 10−14 and γ = 4.24. Since this am-
plitude is larger than what is actually in the true dataset,
the significance of the GWB signal should be biased high.
The histogram of log-Bayes factors from these noise sim-
ulations is contrasted with the phase-shifting histogram
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FIG. 7. Simulation 4: 2-dimensional marginalized pos-
terior distributions for GWB spectrum parameters (left
panel), clock-error spectrum parameters (middle panel), and
ephemeris uncertainty parameters (Jupiter mass error, sign
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95% credible regions when all processes are modeled, while
the orange corresponds to only a GWB being modeled. Light
green lines and points indicate the injected parameters.

and sky-scrambling histogram in Figure 6. Phase-shifting
gives a more conservative estimate of the GWB signifi-
cance in the true dataset (dash-dot magenta line) than
noise simulations, while sky-scrambling gives a signifi-
cance that is less than noise simulations but more than
phase-shifting.

2. Simulation 4 (influence of clock and ephemeris errors)

As mentioned previously, a GWB is not the only pro-
cess that can induce spatial correlations between pulsars.
We create a new dataset with the same realistic proper-
ties as simulation 2, and inject a power-law GWB sig-
nal with spectral index, γgwb = 13/3, and amplitude
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then phase-shifting and sky-scrambling give consistent null
hypothesis distributions, showing that GWB correlations in
this dataset are insignificant.

Agwb = 2 × 10−14. This signal is four times larger in
amplitude than in simulation 2. We also add two other
processes that could induce spatial correlations — (i) a
stochastic clock-error process that has the same wave-
form across all pulsars, and has the same power-law spec-
trum parameters as the GWB; (ii) a very large error in
the mass of Jupiter in our model of the Solar system
ephemeris (∆Mjup. = 3.2× 10−9M�).

We model the clock error as a stochastic process with
monopole correlations between pulsars (the correlation is
1 at all angular separations). Previous work has noted
that clock errors only induce monopole correlations if
the pulsar data spans are identical and the same tim-
ing model fits are applied [6]. However our Bayesian
approach performs regression on the timing model simul-
taneously with all noise and signal processes. So we do
not need to be concerned about potential inference biases
caused by the timing model fit. Furthermore, we model
the ephemeris uncertainty as a coherent process rather
than as a spatially-correlated signal. We search for the
magnitude and sign of the Jupiter mass error [5]. If an
ephemeris uncertainty is not simply due to a planetary
mass offset then we can still model the uncertainty coher-
ently [14, 35], without needing to resort to a dipole-like
spatial-correlation model.6

6 In this approach, we marginalize over the separate components of
an ephemeris-error vector with zero-mean Gaussian priors, whose
variances we parametrize. The variance is proportional to the
power-spectrum of the ephemeris-error component, and can be

Figure 7 shows the 2-D marginalized posterior distri-
butions for the GWB, clock error, and Jupiter mass er-
rors from analyzing this simulation. The black credible
regions correspond to the case where all processes are si-
multaneously modeled, while the orange credible regions
are when the simulation is assumed to contain only a
GWB. When all processes are modeled, the recovered
posteriors are consistent with the injected values. We
have verified that either the clock error or ephemeris un-
certainty by themselves would still produce systematic
parameter-estimation errors if unmodeled.

In Fig. 8 we phase-shift and sky-scramble on this simu-
lation with different noise model assumptions. In the left
panel, we assume that the noise is characterized by the
TOA uncertainties and intrinsic pulsar red-noise. In the
right panel the noise model additionally includes a clock
error and Jupiter mass error. In the left panel we now
see the limitations of phase-shifting and sky-scrambling,
since the clock-error produces a large positive offset in
the spatial correlations between pulsars. Referring back
to Eq. (26), we see that phase-shifting essentially multi-
plies the spatial correlations in the true dataset by a ran-
dom number in the range [−1, 1]. Although this makes
Hellings & Downs correlations consistent with zero, this
does not work when we have spatial correlations with a
large positive offset. Model selection still prefers a GWB
signal over a common-uncorrelated red process. Likewise,
model selection still prefers our scrambled ORF over an
uncorrelated model.

These limitations make phase-shifting and sky-
scrambling very valuable diagnostic tools — the fact
that they could not completely eliminate all spatial cor-
relations is an indication of an unmodeled spatially-
correlated process. When we assume that only a GWB is
present, and make noise simulations to assess detection
significance, we get a highly significant (biased) detection
of a GWB. By contrast, in the right panel of Fig. 8 we
include a clock error and Jupiter mass error in our noise
model. The GWB is then properly isolated from these
two effects. We only phase shift in the GWB basis func-
tions, leaving the clock spatial correlations unaffected.
Likewise, only the GWB correlation signature is sky-
scrambled. When we do this we get consistent null hy-
pothesis distributions which show that the GWB spatial
correlations are insignificant in this dataset. The spatial
correlations are swamped by the clock error. Hence our
techniques are valuable diagnostic tools, and can be used
in conjunction with models for other spatially-correlated
processes to properly isolate the significance of the GWB.

modeled with a power-law or free-spectrum. If ephemeris uncer-
tainties are caused by a large number of objects (like asteroids)
then they should show up as spikes in the recovered spectrum at
their relevant orbital frequencies. This approach is still coher-
ent because we retain directional information of the ephemeris
uncertainties.
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V. CONCLUSIONS

We have studied two methods of determining the sig-
nificance of a GWB in a pulsar-timing array. Within
our Bayesian context, we can compute the Bayes factor
for a spatially-correlated GWB signal versus a common-
uncorrelated red process in the pulsars. But to put this
in context we need to know how often spurious noise cor-
relations can give similar Bayes factors. If noise alone
can often produce values as large as what we see in the
true data then this Bayes factor is clearly not very sig-
nificant. Standard rule-of-thumb guides exist for assess-
ing Bayes factor significance [48, 49], but using them in
any production-level analysis is unsatisfactory since they
are not designed with the specifics of a given problem
in mind. We must resort to numerical experiments to
produce distributions of Bayes factors under the null hy-
pothesis i.e. where there are no spatial correlations in the
dataset.

Our first technique involves adding random phase
shifts to all basis functions modeling the low-frequency
processes in a given pulsar dataset. This is performed
separately for each pulsar so that the statistical proper-
ties of each individual pulsar remain intact. But all phase
coherence between pulsars is eliminated. The second
technique involves scrambling (not merely interchang-
ing amongst other pulsars) the pulsar positions used to
construct the Hellings and Downs ORF template in our
search models. This is designed to be orthogonal to the
true signal’s ORF so that correlations between pulsars
are destroyed. Both of these techniques operate on the
true, measured PTA dataset rather than on noise simu-
lations. This incorporates all idiosyncrasies of the true
dataset into assessing the detection statistic significance,
instead of being biased by our (possibly incomplete) noise
model assumptions.

We tested our techniques against several different types
of PTA datasets, including (1) an idealized dataset (with
a large number of evenly sampled pulsars, high timing
precision, and no intrinsic red noise); (2) a more re-
alistic dataset (realistic cadence, timing precision, and
red noise levels); and (3)+(4) datasets for which our
noise model is incomplete (i.e. includes either intrinsic
or spatially-correlated noise processes which we do not
explicitly model). By performing several hundred phase-
shifting and sky-scrambling analyses, we constructed a
distribution of the Bayes factor for spatial correlations
under the null hypothesis, which allows us to quote the
p-value of the true Bayes factor. Quoting p-values when
our detection statistic is Bayesian may seem like an ill-
conceived mixture of two distinct inference philosophies,
but it is merely trying to answer the question of what
our recovered Bayes factor actually means, and how of-
ten noise alone could produce it. Our techniques can
also easily be used with frequentist detection statistics,
in which case there is no conflict of philosophies.

For the idealized and realistic datasets, we found that
the distribution of Bayes factors produced by phase-

shifting and sky-scrambling compared well with that of
analyzing many noise simulations. We took a further step
in showing that our two techniques are actually superior
to noise simulations in the case where we have a poor or
incomplete noise model. Noise simulations will include
only the processes of our incomplete noise model, and so
will provide a null hypothesis distribution which exag-
gerates the significance of the true Bayes factor. Phase-
shifting operates on the real PTA dataset and provides
a more conservative estimate of detection significance,
while sky-scrambling is found to give a significance some-
where between the noise-simulation and phase-shifting
results. For this reason, and the fact that there are lim-
itations on the number of independent sky-scrambles we
can make, the more general and reliable approach ap-
pears to be phase-shifting.

These techniques can be readily deployed on all exist-
ing and future PTA datasets, and should become stan-
dard tools for contextualizing the GWB Bayes factors
that we report in future PTA analyses. They already
exist as modeling options within the Bayesian pulsar-
timing analysis package, NX01 [41]. Understanding the
significance of our quoted detection statistics is of vital
importance as PTAs move closer to the first detection of
nanohertz gravitational waves. Growing the GWB de-
tection significance needs strategies that are designed to
resolve the spatial correlations between pulsars. This re-
quires many well-timed pulsars with long observational
baselines, and which are widely separated across the sky.
Without broad sky coverage, a PTA will not be able
to distinguish between a GWB, clock errors, or poten-
tially other spatially-correlated processes. The Interna-
tional Pulsar Timing Array plays a vital role in this effort
by pooling observations and pulsars from the individ-
ual PTAs, and coordinating a unified international GW
search program.
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