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Abstract

Beam dump experiments have been used to search for new particles with null results interpreted

in terms of limits on masses mφ and coupling constants ε. However these limits have been obtained

by using approximations (including Weizsäcker-Williams (WW) approximation) or Monte-Carlo

simulations. We display methods, using a new scalar boson as an example, to obtain the cross

section and the resulting particle production numbers without using approximations or Monte-

Carlo simulations. We show that the approximations cannot be used to obtain accurate values of

cross sections. The corresponding exclusion plots differ by substantial amounts when seen on a

linear scale. In the event of a discovery, we generate pseudo-data (assuming given values of mφ

and ε) in the currently allowed regions of parameter space. The use of approximations to analyze

the pseudo-data for the future experiments is shown to lead to considerable errors in determining

the parameters. Furthermore, a new region of parameter space can be explored without using one

of the common approximations, mφ � me. Our method can be used as a consistency check for

Monte-Carlo simulations.
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I. INTRODUCTION

Beam dump experiments have been aimed at searching for new particles, such as dark

photons and axions (see, e.g. [1] and references therein) that decay to lepton and/or pho-

ton pairs. Electron beam dumps in particular have received a large amount of theoretical

attention in recent years [2, 3]. The typical setup of an electron beam dump experiment is

to dump an electron beam into a target, in which the electrons are stopped (For a discus-

sion of proton beam dumps, which is beyond the scope of this work, see, e.g. [4, 5]). The

new particles produced by the bremsstrahlung-like process pass through a shield region and

decay. These new particles can be detected by their decay products, electron and/or photon

pairs, measured by the detector downstream of the decay region. Previous work simplified

the necessary phase space integral by using the Weizsäcker-Williams (WW) approximation

[6, 7] which, also known as method of virtual quanta, is a semi-classical approximation. The

idea is that the electromagnetic field generated by a fast moving charged particle is nearly

transverse which is like a plane wave and can be approximated by real photon. The use of

the WW approximation in bremsstrahlung processes was developed in Ref. [8, 9] and applied

to beam dump experiments in Ref. [2, 10]. The WW approximation simplifies evaluation

of the integral over phase space and approximates the 2 particle to 3 particle (2 to 3) cross

section in terms of a 2 particle to 2 particle (2 to 2) cross section. For the WW approxima-

tion to work in a beam dump experiment, it needs the incoming beam energy to be much

greater than the mass of the new particle, mφ, and electron mass me.

The previous work [2] used the following three approximations:

1. WW approximation;

2. a further simplification of the phase space integral, see Eq. (31);

3. mφ � me.

The combination of the first two approximations has been denoted [8] the improved WW

(IWW) approximation. The name “improved WW” might be somewhat misleading since

the procedure reduces the computational time but not to improve accuracy). In this paper,

we will focus on examining the validity of WW and IWW approximations (The validity of

WW approximation is also discussed in other processes, e.g. [11]). The third approximation

used to simplify the calculation of amplitude, however, is not in our scope because it is
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merely a special case by cutting off our results when mφ . 2me. Nevertheless, we should

point out that without using the third approximation we can use beam dump experiments

to explore a larger parameter space.

As an example, we use the beam dump experiment E137 [12] and the production of a

new scalar boson, which we denote φ. Interest in a new scalar boson arose recently because

such particle which couples to standard model fermions can solve the proton radius puzzle

and muonic anomalous magnetic moment discrepancy simultaneously [13, 14]. However,

the techniques we introduce can be used for the production and possible detection of other

particles.

The outline of this paper is as follows. In Sec. II, we calculate the squared amplitude for 2

to 3 and 2 to 2 processes. In section III, the cross sections for the 2 to 3 and 2 to 2 processes

are calculated in the lab frame without any approximation. In Sec. IV, we introduce the

WW approximation. In Sec. V, we derive and compare the cross sections with and without

approximations. In Sec. VI, we compare the number of new particles produced in beam

dump experiments with and without approximations. In Sec. VII, we assume that this new

scalar boson is observed and measured in beam dump experiment, determine the mass and

coupling constant, and compare the results with and without approximations. A discussion

is presented in Sec. VIII.

II. DYNAMICS—A NEW SCALAR BOSON AS AN EXAMPLE

For simplicity, we assume that the new scalar boson φ only couples to electron by a

Yukawa interaction, i.e. the scalar boson does not couple to other standard model fermions

other than electron. The Lagrangian in the mostly-plus metric is

L ⊃ −1

2
(∂φ)2 − 1

2
m2
φφ

2 + eεφψ̄ψ (1)

where ε = g/e, e is the electric charge, and ψ is the electron field. Once the scalar boson is

produced, it will decay to photons pairs through electron loop,

Γφ→γγ = ε2
α3

4π2

m3
φ

m2
e

f

(
m2
φ

4m2
e

)
, (2)
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+

φ(k)

e(p) e(p′)

A(Pi) A(Pf)

γ(q)

FIG. 1. Lowest order 2 to 3 production process: e(p) +A(Pi)→ e(p′) +A(Pf ) +φ(k). A, γ, e, and

φ stand for the target atom, photon, electron, and the new scalar boson.

where me is the electron mass and f(τ) = 1
4τ2

∣∣∣1 + (1− 1
τ
)
(
sin−1

√
τ
)2∣∣∣2. If mφ > 2me, the

scalar boson can also decay to electron pairs,

Γφ→e+e− = ε2
α

2
mφ

(
1− 4m2

e

m2
φ

)3/2

. (3)

A. 2 to 3 production

The leading production process is the bremsstrahlung-like radiation of the scalar from

the electron, shown in Fig. 1,

e(p) + A(Pi)→ e(p′) + A(Pf ) + φ(k) (4)

where e, A, and φ stand for electron, target atom, and the new scalar boson, respectively.

We define the following quantities using the mostly-plus metric

s̃ = −(p′ + k)2 −m2
e = −2p′· k +m2

φ

ũ = −(p− k)2 −m2
e = 2p· k +m2

φ

t2 = −(p′ − p)2 = 2p′· p+ 2m2
e (5)

q = Pi − Pf
t = q2

which satisfy

s̃+ t2 + ũ+ t = m2
φ. (6)
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+

φ(k)

e(p) e(p′)

γ(q)

FIG. 2. Lowest order 2 to 2 production process: e(p) + γ(q)→ e(p′) + φ(k). γ, e, and φ stand for

photon, electron, and the new scalar boson.

For definiteness, we assume the atom is a scalar boson (its spin is not consequential here)

so that the Feynman rule for the photon-atom vertex is

ieF (q2)(Pi + Pf )µ ≡ ieF (q2)Pµ (7)

where F (q2) is the form factor which accounts for the nuclear form factor [15] and the atomic

form factor [16]. Here, we only include elastic form factor since the contribution of inelastic

one is much smaller and can be neglected in computing the cross section. The amplitude of

the process in Fig. 1 is

M2→3 = e2g
F (q2)

q2
ūp′,s′

[
/P
−(/p− /k) +me

−ũ +
−(/p′ + /k) +me

−s̃
/P

]
up,s (8)

where up,s is the electron spinor; s and s′ are equal to ±1. After averaging and summing

over initial and final spins, we have

|M2→3|2 =

(
1

2

∑
s

)∑
s′

|M2→3|2 = e4g2
F (q2)2

q4
A2→3 (9)

where

A2→3 = −(s̃+ ũ)2

s̃ũ
P 2 − 4

t

s̃ũ
(P · k)2 − (s̃+ ũ)2

s̃2ũ2
(m2

φ − 4m2
e)

[
P 2t+ 4

(
ũP · p+ s̃P · p′

s̃+ ũ

)2
]
.

(10)

B. 2 to 2 production

For the 2 to 2 process in Fig. 2, a “subprocess” of the full 2 to 3 interaction,

e(p) + γ(q)→ e(p′) + φ(k). (11)
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With the same definition in Eq. (5), s̃, ũ, and t2 satisfy

s̃+ t2 + ũ = m2
φ (12)

and the amplitude in Fig. 2 is

M2→2 = egεµλūp′,s′

[
γµ
−(/p− /k) +me

−ũ +
−(/p′ + /k) +me

−s̃ γµ

]
up,s (13)

where ε is the photon polarization vector and λ = ±1. After averaging and summing over

the initial and final spins and polarization,

|M2→2|2 =

(
1

2

∑
s

)∑
s′

(
1

2

∑
λ

)
|M2→2|2 = e2g2A2→2 (14)

where

A2→2 =− (s̃+ ũ)2

s̃ũ
+ 2(m2

φ − 4m2
e)

[(
s̃+ ũ

s̃ũ

)2

m2
e −

t2
s̃ũ

]
. (15)

III. CROSS SECTION

A. 2 to 3

The cross section for the 2 to 3 process, see Eq. (4) and Fig. 1, in the lab frame is given

by

dσ =
1

4|p|M |M
2→3|2(2π)4δ4(p′ + k − p− q) d3p′

(2π)32E ′
d3Pf

(2π)32Ef

d3k

(2π)32Ek
(16)

where M is the mass of the target atom. Integrating over p′ and changing the variable from

Pf to q, we have

dσ =
|M2→3|2

1024π5|p|MEfE ′Ek
δ(E ′ + Ek − E − q0)d3qd3k. (17)

In order to integrate over q, we choose the spherical coordinate (Q, θq, φq) where Q = |q|,
and θq and φq are the polar and azimuthal angles of q in the direction of V = k− p. First,

we use the remaining δ-function to integrate out Q, and then change variables from θq to t.

We obtain

dσ =
d3k

128π4|p|V Ek

∫ tmax

tmin

dt

(
1

8M2

∫ 2π

0

dφq
2π
|M2→3|2

)
(18)

6



where V = |V|, t(Q) = q2 = 2M(
√
M2 +Q2 −M), tmax = t(Q+), tmin = t(Q−), and

Q± =
V [ũ+ 2M(E ′ + Ef )]± (E ′ + Ef )

√
ũ2 + 4Mũ(E ′ + Ef ) + 4M2V 2

2(E ′ + Ef )2 − 2V 2
. (19)

Integrate over the polar angle, θ, and azimuthal angle of k in the diection of p, and then

change the variable from |k| to x where x ≡ Ek/E. We have

dσ

dxd cos θ
=

|k|E
64π3|p|V

∫ tmax

tmin

dt

(
1

8M2

∫ 2π

0

dφq
2π
|M2→3|2

)
= ε2α3 |k|E

|p|V

∫ tmax

tmin

dt
F (t)2

t2

(
1

8M2

∫ 2π

0

dφq
2π
A2→3

)
. (20)

B. 2 to 2

The 2 to 2 cross section, see Eq. (11) and Fig. 2, in the lab frame is straightforwardly

expressed in terms of the amplitude,

dσ

d(p· k)
= 2

dσ

dt2
=
|M2→2|2

8πs̃2
= ε2α22π

s̃2
A2→2. (21)

IV. WEIZSÄCKER-WILLIAMS APPROXIMATION

It is explained in Ref. [8] that the WW approximation relies on the incoming electron

energy being much greater than mφ and me, such that the final state electron and scalar

boson are highly collinear. In that case the phase space integral can be approximated by

1

8M2

∫
dφq
2π
A2→3 ≈ t− tmin

2tmin
A2→2
t=tmin

. (22)

With the WW approximation, Eq. (20) can be approximated to be

dσ

dxd cos θ
≈ ε2α3 |k|E

|p|V
A2→2
t=tmin

2tmin
χ, (23)

where

χ =

∫ tmax

tmin

dt
t− tmin
t2

F (t)2. (24)

Using Eq. (21), we have

dσ

dxd cos θ
≈ αχ

4π

|k|E
|p|V

s̃2

tmin

dσ

d(p· k)

∣∣∣∣
t=tmin

. (25)
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Following the discussion in Ref. [2, 10], near t = tmin (when q and V = k−p are collinear),

we can approximate the following quantities

s̃ ≈ − ũ

1− x
ũ ≈ −xE2θ2φ −m2

φ

1− x
x
−m2

ex

t2 ≈
ũx

1− x +m2
φ (26)

V ≈ E(1− x)

tmin ≈
s̃2

4E2

Using Eq. (26), we arrive at the well-known equation [2, 10]

dσ

dxd cos θ
≈ αχ

π

xE2β

1− x
dσ

d(p· k)

∣∣∣∣
t=tmin

(27)

where β =
√

1−m2
φ/E

2
k . Note that in Eq. (27) dσ/d(p· k) is evaluated at t = tmin. So the

amplitude A2→2 in Eq. (21) evaluated evaluated at t = tmin using Eq. (26) is

A2→2
t=tmin

≈ x2

1− x + 2(m2
φ − 4m2

e)
ũx+m2

φ(1− x) +m2
ex

2

ũ2
. (28)

V. CROSS SECTION COMPARISON

To test approximations of the cross section for φ production, we examine three cases.

1. The complete calculation, Eq. (20),

dσ

dx
= ε2α3 |k|E

|p|

∫ θmax

0

d cos θ
1

V

∫ tmax

tmin

dt
F (t)2

t2

(
1

8M2

∫ 2π

0

dφq
2π
A2→3

)
(29)

where θmax depends on the configuration of the detector. For beam dump E137,

θmax ≈ 4.4× 10−3.

2. WW: using the WW approximation, Eq. (22),(
dσ

dx

)
WW

= 2ε2α3|k|E(1− x)

∫ θmax

0

d cos θ
A2→2
t=tmin

ũ2
χ (30)

where θmax is the same as the first case and χ is defined in Eq. (24). Note that the

upper and lower limits of χ depend on x and θ.
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(a) dσ/(ε2dx) (b) relative error of dσ/(ε2dx)

FIG. 3. (Color Online) The solid green, dashed red, and dotted blue lines correspond to the

differential cross section with no, WW, and IWW approximation. The relative error of O is

defined by (Oapprox. −Oexact)/Oexact.
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3. Improved WW (IWW): If the upper and lower limits of the t-integral in χ in Eq. (30)

are not sensitive to x and θ; i.e., the integration limit can be set to be independent

of x and θ, we can further approximate the integration limits of t. Similar to the

argument in Ref. [2], we set

tmin =

(
m2
φ

2E

)2

and tmax = m2
φ +m2

e (31)

which is valid when the production cross section is dominantly collinear with x close

to 1. The difference in tmax between [2] and our approach is because we do not assume

mφ � me. Therefore, we can pull χ out of the integral over cos θ. Then, changing

variables from cos θ to ũ and extending the lower limit of ũ to −∞, we have(
dσ

dx

)
IWW

= ε2α3χ
|k|
E

1− x
x

∫ ũmax

−∞
dũ
A2→2
t=tmin

ũ2
(32)

= ε2α3χ
|k|
E

m2
e(2− x)2 − 2xũmax

3ũ2max
(33)

where ũmax = −m2
φ
1−x
x
−m2

ex and in the last line, we use Eq. (28). We emphasize that

the name “improved” means reducing the computational time (because of one fewer

integral than in the WW approximation above) and does not imply more accuracy.

In Fig. 3, we show the cross sections in each of the three cases for five values of the scalar

boson mass, setting the incoming electron beam energy to 20 GeV. In both approximations,

the cross section is of the same order of magnitude as that using the complete calculation.

However, there are regions where there are O (1) relative errors. The WW approximation

(dashed red lines in Fig. 3) can differ from the complete calculation by 100% when mφ . 1

MeV; in the IWW case (dotted blue lines in Fig. 3), the approximation starts to fail when

mφ & 100 MeV.

VI. PARTICLE PRODUCTION

There are two characteristic lengths which are crucial in beam dump experiments. The

first is the decay length of the new particle in the lab frame,

lφ =
Ek
mφ

1

Γφ
, (34)
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where Γφ = Γφ→e+e− + Γφ→γγ, see Eq. (2) and (3). The new particle, after production, must

decay after going through the target and shielding and before going through the detector in

order to be observed. If the target is thick (much greater than a radiation length), most of

the new particles will be produced in the first few radiation lengths. The production rate is

approximately proportional to the probability e−Lsh/lφ(1− e−Ldec/lφ), where Lsh is length of

the target and shield and Ldec is length for the new particle to decay into electron or photon

pairs after the shield and before the detector.

The second characteristic length is the absorption length

λ =
1

neσabs
, (35)

where ne is the number density of the target electrons and σabs is the cross section of

absorption process. The leading process of absorption is

e(p) + φ(k)→ e(p′) + γ(q), (36)

which is related to the 2 to 2 production process Eq. (11) via crossing symmetry s̃ ↔ ũ.

Since Eq. (15) is symmetric in s̃↔ ũ, the algebraic form of amplitude squared of absorption

process is the same as Eq. (15) but differs by a factor 2 from summing over final state

instead of averaging over initial state in Eq. (14)

A2→2
abs = 2A2→2. (37)

The cross section of the process (34) is

dσ

dΩ
=

1

64π2me

|q|
|k|

|M2→2
abs |2

Ek +me − |k| cos θγ
(38)

σabs =
πε2α2

me|k|

∫ 1

−1
d cos θγ

|q|A2→2

Ek +me − |k| cos θγ
, (39)

where θγ is the angle between outgoing photon and incoming new particle. The new particle,

after produced, must not be absorbed by the target and shield to be detected. If the target

is thick (much greater than absorption length), the production rate will be approximately

proportional to the probability e−Lsh/λ.

The number of the new particles produced in terms of the cross section (without consid-

ering the absorption process) can be found in, e.g., Refs. [2, 3, 10]. Using the thick target

approximation and including the absorption process, we find

Nφ ≈
NeX

M

∫ E0

Emin

dE

∫ xmax

xmin

dx

∫ T

0

dtIe(E0, E, t)
dσ

dx
e
−Lsh

(
1
lφ

+ 1
λ

)
(1− e−Ldec/lφ), (40)
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where M is the mass of the target atom (aluminium); Ne is the number of incident electrons;

X is the unit radiation length of the target; E0 is the incoming electron beam energy,

Emin = me + max(mφ, Ecut) and xmin =
max(mφ,Ecut)

E
where Ecut is the measured energy

cutoff depending on the detectors; xmax, which is smaller but very close 1 (xmax can be

approximated to be 1−me
E

if the new particle and electron initial and final state are collinear);

T = ρLsh/X where ρ is the density of the target; lφ is the decay length of the new particle

in lab frame; λ is the absorption length of the new particle passing through the target

and shield; Ie, derived in Ref. [17], is the energy distribution of the electrons after passing

through a medium of t radiation length

Ie(E0, E, t) =

(
ln E0

E

)bt−1
E0Γ(bt)

, (41)

where Γ is the gamma function and b = 4/3. For beam dump E137 which we take as our

prototypical setup, E0 = 20 GeV and Ecut = 2 GeV; Ne = 1.87 × 1020; Lsh = 179 m and

Ldec = 204 m. The experiment has a null result which translate to 95% C.L. of Nφ to be 3

events.

In Fig. 4, we show regions of coupling and mass excluded by the lack of a signal at E137,

using the three different ways to calculate the differential cross section, dσ/dx. Because of

the exponential factor from decay and absorption lengths, the error in the exclusion plot

due to making approximations to the cross section is smaller along the upper boundary,

which is mainly determined by whether φ lives long enough to make it to the detector.

With the WW approximation, the 100% error in cross section causes an error of less than

20% along the lower boundary, and in a log-log plot across several scales, a 20% error is

almost indistinguishable by eyesight. On the other hand, with the IWW approximation, the

difference is clearly visible when mφ & 100 MeV. We emphasize that the similarity of the

exclusions with or without the approximations in a log-log plot means that the cross section

approximations are good to the order of magnitude but the relative error can deviate at the

O (1) level.

In Fig. 4, we see that the absorption process, Eq. (36), cuts off the exclusion plot

around ε ∼ O(1) where the coupling of φ to electrons is of same order of the electromagnetic

coupling. Therefore, in this region, there is another significant process to consider for beam

dump experiments. This is the trapping process due to the re-scattering

e(p) + φ(k)→ e(p′) + φ(k′). (42)
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(a) exclusion plot (b) exclusion plot (zoomed in)

(c) exclusion plot (linear scale) (d) relative error of exclusion boundary

FIG. 4. (Color Online) (a)–(c) Exclusion (shaded region) plot for ε using the beam dump ex-

periment E137. The solid green, dashed red, and dotted blue lines correspond to the differential

cross section with no, WW, and IWW approximation. (d) The solid red and dashed blue lines

correspond to the relative error of exclusion boundary with WW and IWW approximation. The

thin and thick lines correspond to the upper and lower boundaries of the exclusion plot.

The trapping process is expected to be as important as the absorption process in this example

(new scalar particle, beam dump E137), and also cuts off the exclusion plot around ε ∼ O(1).

However, in Fig. 4 the region where ε > 10−3 has been excluded by other experiments, such

as electron g − 2 [18, 19] and hydrogen Lamb shift [20], which are discussed in Ref. [14] as

well as astrophysical processes [1]. Therefore we do not include the trapping process in this

example, but it might be crucial for other experiments.
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VII. A POSITIVE SIGNAL

To further explore the accuracy of the approximations to the cross section, let us imagine

that there is a signal of a new particle being produced at a beam dump experiment. In such

a case, the mass and the coupling of this particle can be determined by examining the data,

i.e., the distribution of events as a function of energy deposited in the detector. We perform

3 sets of pseudo-experiment by using the setup of E137; assume that the scalar boson

exists with (mφ, ε) = (110 MeV, 10−7), (mφ, ε) = (200 MeV, 1.3× 10−7), and (mφ, ε) =

(0.3 MeV, 8× 10−6), which are outside of the the current exclusion in Fig. 4. We increase

the incoming beam luminosities by 36, 36, and 137 times (increasing the total number of

electrons dumped into the the target), so that the expected total number of events is around

100, 100, and 400. We assume that the resolution of the detector is 1 GeV (which means that

there are 18 bins) and generate the “observed” number of events using a Poisson distribution

with the mean value from the complete calculation for each bin. Finally, we can fit the

“observed” data with the calculation with no, WW, and IWW approximation using χ2 test,

and we assume that the variance of the calculated value also satisfies Poisson distribution (i.e.

we ignore systematic errors on the observed numbers of events for simplicity). Therefore,

the definition of χ2 becomes

χ2 =
∑
i

(Ncal,i −Nobs,i)
2

σ2
i

=
(Ncal,i −Nobs,i)

2

Ncal,i +Nobs,i

(43)

where Ncal and Nobs are calculated and “observed” number of events; the subscript i is for

the bins. Since there are two independent parameters (mass and coupling) to fit, the 1σ and

2σ range correspond to ∆χ2 = 2.30 and ∆χ2 = 6.18, where ∆χ2 = χ2 − χ2
min.

We show the results of these pseudo-experiments with (mφ, ε) = (110 MeV, 10−7) in Fig.

5, (mφ, ε) = (200 MeV, 1.3× 10−7) in Fig. 6, and (mφ, ε) = (0.3 MeV, 8× 10−6) in Fig. 7.

We see that the “true” parameter values lie within the 1σ allowed regions when fitting with

the complete calculation. On the other hand, although using approximation sometimes gives

a fairly good estimate of cross section, the result of data fitting lies outside the 2σ range. It

is worth noting that the shape of the 1σ or 2σ range is roughly along the exclusion boundary

in Fig. 4, because the exclusion boundary is the isocontour of the number of events.

Next, we consider another scenario of the third pseudo-experiment with (mφ, ε) =

(0.3 MeV, 8× 10−6). In this part of parameter space, the allowed coupling and mass can
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(a) generated data (b) χ2 fit

FIG. 5. (Color Online) Assuming the scalar boson exists with (mφ, ε) = (110 MeV, 10−7) and is

observed in E137 with 36 times luminosity. (a) The number of events distribution with respect

to the energy of the scalar boson: the thin red line line is obtain by the complete calculation (no

approximation), and the thick black lines is the “data” generated by Poisson distribution with

mean value given by the complete calculation. (b) The best fit point, 1σ range, and 2σ range with

no, WW, and IWW approximation: the star is the “true” value; the circle, triangle, and squares

are the best fit parameters with no, WW, and IWW approximation, respectively; the black, dashed

red, and dotted blue inner (outer) loop correspond to the 1σ (2σ) range with no, WW, and IWW

approximation, respectively; the shaded area is the excluded region with no approximation from

Fig. 4. The top and bottom rows correspond to the results of two separate pseudo-experiments.

extend over roughly an order of magnitude. To illustrate the usefulness of the complete

calculation, we perform fits to this data assuming that there is another experimental result

that can sensitively measure the coupling. This would be the case if recently proposed

experiments involving decays of radioactive nuclei underground see a nonzero signal [14, 21]

and we can use the beam dump experiment to determine the mass precisely. For simplicity,

we assume that the other experiment measures the coupling with with negligible error. Since
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(a) generated data (b) χ2 fit

FIG. 6. (Color Online) Assuming the scalar boson exists with (mφ, ε) = (200 MeV, 1.3× 10−7)

and is observed in E137 with 36 times luminosity. See the caption in Fig. 5 for details.

there is one parameter to fit, the 1σ and 2σ range correspond to ∆χ2 = 1 and ∆χ2 = 4.

We show the results in Fig. 8. Again as expected, we see that the “true” parameter values

lie within the 1σ allowed region when fitting with the complete calculation. Using the

approximations, the “true” mass lies outside the 2σ ranges. We observe that using the

complete calculation could be crucial in measuring the mass of a new particle in this region

of parameter space.

VIII. DISCUSSION

Our results are based on a new scalar boson motivated by proton radius puzzle [14].

However, we expect that the qualitative description remains similar in other type of particles,

such as pseudoscalar and vector. While the production amplitude, decay length, and the

absorption length can differ in detail for particles with different quantum numbers, they

are qualitatively similar. The approximations that we have examined deal with the phase

space integral and coupling to electromagnetism of the target nucleus. Therefore, we expect
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(a) generated data (b) χ2 fit

(c) χ2 fit (zoomed in) (d) χ2 fit (change of coordinate)

FIG. 7. (Color Online) Assuming the scalar boson exists with (mφ, ε) = (0.3 MeV, 8× 10−6) and

is observed in E137 with 137 times luminosity. (a)–(c) See the caption in Fig. 5 for details.

(d) Change of coordinate of χ2 fit plot: X = ln m0
1 GeV + ln

mφ
m0

cos θ − ln ε
ε0

sin θ and Y = ln ε0 +

ln
mφ
m0

sin θ + ln ε
ε0

cos θ, where θ = 42.4◦, m0 = 0.1 MeV, and ε0 = 2× 10−5. This means to rotate

the coordinate 42.4◦ with respect to (mφ, ε) = (0.1 MeV, 2× 10−5).

similar results to hold for other bosons as in the scalar case. The similarity of our exclusion

plot to the vector case [2, 3] provides evidence in favor of this. Including a coupling to the

muon may change the situation for mφ > 2mµ [14] due to the opening of a new channel

with typically a substantial partial width. A study of the production of vector particles in

electron beam dumps that deals with some of the issues we have addressed can be found in
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FIG. 8. (Color Online) Assuming the scalar boson exists with (mφ, ε) = (0.3 MeV, 8× 10−6) and

is observed in E137 with 137 times luminosity. The number of events distribution is the same

in Fig. 7. The value of χ2 with respect to mφ (assuming ε is precisely measured): the black,

dashed red, and dotted blue lines correspond to the χ2 values calculated with no, WW, and IWW

approximation. The minimum of χ2 corresponds the best fit mφ; the circle dots � corresponds to

1σ range (∆χ2 = 1); the circle crosses ⊗ corresponds to 2σ range (∆χ2 = 4). The gray vertical

line indicates the true value of mφ.

Ref. [22].

There are some other beam dump experiments using a Cherenkov detector, such as E141

[23] and Orsay [24]. Their exclusion plots do not extend to the region where mφ < 2me. We

show the results of the beam dump experiments E141 and Orsay in Ref. [14].

In this work, we present a complete analysis of beam dump experiments. We show

that a brute-force analytical calculation is possible. Software exists using Monte-Carlo

simulations, such as MadGraph/MadEvent [25] as used in, e.g., [26], that can calculate the

cross section without using approximations. Our work can be used as a consistency check

for Monte-Carlo simulations. We show that using the WW approximation can be trusted to

an order of magnitude in cross sections and exclusion plots. Additionally our work allows

us to understand the errors introduced by the various common approximations. In certain

regions of parameter space different errors partially cancel against each other, leading to

results that are accidentally sometimes more accurate that might be expected. However, as

we illustrated with several pseudo-experiments in a range of masses, in the event of a nonzero

signal, a complete calculation can give very different results from the approximations. This
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could be useful given the possibility of future electron beam dump experiments [27].
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