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We explore an electroweak symmetry breaking (EWSB) scenario based on the mixture of a fun-
damental Higgs doublet and an SU(4)/Sp(4) composite pseudo-Nambu-Goldstone doublet – a par-
ticular manifestation of bosonic technicolor/induced EWSB. Taking the fundamental Higgs mass
parameter to be positive, EWSB is triggered by the mixing of the doublets. This setup has several
attractive features and phenomenological consequences, which we highlight: i) Unlike traditional
bosonic technicolor models, the hierarchy between ΛTC and the electroweak scale depends on vac-
uum (mis)alignment and can be sizable, yielding an attractive framework for natural EWSB; ii) As
the strong sector is based on SU(4)/Sp(4), a fundamental (UV-complete) description of the strong
sector is possible, that is informed by the lattice; iii) The lightest vector resonances occur in the
10-plet, 5-plet and singlet of Sp(4). Misalignment leads to a 10-plet “parity-doubling” cancelation in
the S parameter, and a suppressed 5-plet contribution; iv) Higgs coupling deviations are typically of
O(1%); v) The 10-plet isotriplet resonances decay dominantly to a massive technipion and a gauge
boson, or to technipion pairs, rather than to gauge boson or fermion pairs; moreover, their cou-
plings to fermions are small. Thus, the bounds on this setup from conventional heavy-vector-triplet
searches are weak. A supersymmetric U(1)R symmetric realization is briefly described.

I. INTRODUCTION

The minimal supersymmetric Standard Model
(MSSM) provides an elegant mechanism for stabilizing
the Higgs mass, and benefits from the simplicity of the
Yukawa coupling paradigm for fermion mass generation.
However, naturalness in the MSSM is challenged by LHC
bounds on colored superpartners. Technicolor (TC) pro-
vides a beautiful mechanism for electroweak symmetry
breaking (EWSB), based on asymptotically free gauge
theories, but a light Higgs is difficult to accommodate.
The pseudo-Nambu Goldstone boson (pNGB) composite
Higgs improves on TC by providing a large gap between
the Higgs mass and other strong interaction resonances,
via vacuum (mis)alignment. However, it is not obvious
that a sufficiently light pNGB Higgs obtains in explicit
strong interaction constructions, and a UV complete
model of fermion masses is difficult to achieve, as in TC.

We introduce a promising framework for natural-
ness, which combines the advantages of the three ap-
proaches, without the potential drawbacks. It is based
on Bosonic Technicolor (BTC)/induced electroweak sym-
metry breaking [1–24], with SU(2)TC gauge group and
two fundamental flavors (nf=2). In BTC, the vacuum
expectation value of a fundamental Higgs (with Yukawa
couplings to the Standard Model fermions) is induced
from TC dynamics, via its Yukawa couplings to the tech-
nifermions; and supersymmetry (SUSY) is introduced to
protect the Higgs mass [2–7, 13, 15–17, 19–21]. The TC
superpartners decouple above the TC chiral symmetry
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breaking scale, ΛTC. From the point of view of the low
energy scalar potential, BTC can accommodate a wide
range of Higgs masses, including mh = 125 GeV, without
fine-tuned cancelations.
The strong sector of minimal BTC has an SU(4)/Sp(4)

coset description in the IR, allowing for non-trivial vac-
uum alignment between the SU(2)L conserving (EW vac-
uum) and SU(2)L breaking (TC vacuum) limits, thus
yielding a composite pNGB Higgs [25–30]. Prior BTC
studies have existed in the TC vacuum, where the would-
be pNGB Higgs decouples. In this work, we explore small
misalignment from the EW vacuum, exploiting the in-
terplay between EW conserving and EW breaking con-
stituent masses. The fundamental and pNGB scalars
mix, yielding a partially composite-pNGB Higgs. There
are several benefits: (i) vacuum misalignment yields a
separation of scales, allowing ΛTC to be raised well into
the multi-TeV region; (ii) the Higgs mass parameter mH

is also increased. In a supersymmetric realization, raising
ΛTC and mH would allow the SUSY breaking scale to be
raised, which is desirable for natural EWSB. A U(1)R-
symmetric example is briefly discussed in the concluding
remarks; (iii) vacuum misalignment reduces deviations
from the SM in the Higgs couplings and precision EW
parameters, the latter due in large measure to SU(2)L↔R

parity doubling in the vector sector.

II. THE UV THEORY

In this letter our focus is on the impact of the UV
theory on the BTC vacuum structure, and the result-
ing scalar and vector meson masses and interactions.
For this purpose it suffices to consider minimal non-
supersymmetric BTC, with a single Higgs doublet H .
The extension to two Higgs doublets is straightfor-
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SU(2)TC SU(2)W U(1)Y

(Ψ1 Ψ2)T ≡ T1,2 (� �)T � 0

Ψ3
≡ U � 1 −1/2

Ψ4
≡ D � 1 +1/2 .

Table I: Technifermion gauge quantum numbers.

ward. The minimal TC sector contains the gauge group
SU(2)TC, together with an SU(2)L doublet and two
singlet technifermions, i.e. nf = 2, see Table I. All
of the technifermions are treated as left-handed Weyl
fields, transforming under the (1/2, 0) representation of
the Lorentz group SU(2) × SU(2) ∼ SO(3, 1). With
weak interactions turned off, the model possesses a global
SU(4) symmetry under which the four-component object

Ψ = (T1 T2 U D)T (1)

transforms as a fundamental.
The TC condensate

〈ΨaΨT,bǫ C−1〉 ∝ Φab (2)

is antisymmetric in the SU(4) flavor indices a, b; the ma-
trix C is defined momentarily. We assume that Φ breaks
SU(4) to its maximal vectorlike subgroup Sp(4), yielding
an SU(4)/Sp(4) coset structure. The most general Sp(4)
preserving condensate is [25]

Φ =

(

eiα ǫ cos θ 12 sin θ

−12 sin θ −e−iαǫ cos θ

)

, (3)

where θ ∈ [0, π] and α is a CP violating phase (Φ 7→ −Φ†

under CP , see (10)). At sin θ = 0 electroweak symmetry
is unbroken, while at sin θ = 1 the condensate is purely
SU(2)L breaking. These limits are referred to as the
electroweak (EW) and TC vacua, respectively.
The Sp(4) vacuum degeneracy is lifted by the UV tech-

nifermion interactions. Previous BTC studies only in-
cluded the Higgs Yukawa couplings, which selects the TC
vacuum, sin θ = 1. We will explore the benefits of mis-
alignment from the electroweak vacuum, or small to mod-
erate sin θ. This is minimally accomplished by adding
gauge singlet technifermion masses of O(vW ). (They can
be linked to SUSY breaking and, therefore, to ΛTC.) The
UV potential In SU(4) notation is

VUV = −ΨT ǫ C−1(M + λ)Ψ+ h.c.+m2
H |H |2 + λh|H |4

(4)
where C−1 = diag[iσ2, iσ2, iσ2, iσ2] acts on the LH Weyl
spinors in Ψ, ǫ acts on the TC indices, and H is the SM
Higgs doublet withm2

H > 0 and quartic coupling λh. The
4× 4 matrices M and λ contain the gauge singlet masses
m1,2 and the Higgs Yukawa couplings, respectively,

M =
1

2

(

m1 ǫ 0

0 −m2 ǫ

)

, λ =
1

2

(

0 −HΛ

HT
Λ 0

)

, (5)

where

HΛ =
1√
2

(

λU (σh + v∗ − iπ3
h) λD(−iπ1

h + π2
h)

−λU (iπ
1
h + π2

h) λD(σh + v + iπ3
h)

)

. (6)

σh (~πh) are the scalar (pseudoscalar) components of H ,
with v ≡ |〈H〉|. The fermion masses are

m1T2T1 +m2UD +mUT1U +mDT2D , (7)

where mU = λUv
∗/
√
2, mD = λDv/

√
2. Under SU(4)

rotations, (M + λ) 7→ U∗(M + λ)UT with U ∈ SU(4).
The gauge-kinetic term for Ψ, including the elec-

troweak and TC interactions is

LKE = iΨ† σ̄µ(∂µ − iAµ − iGa
µτ

a/2 14)Ψ , (8)

where σ̄µ = (1,−~σi
µ) and

Aµ = diag[g2 W
a
µ

1

2
τa,−g1Bµ

1

2
τ3]. (9)

We preface our analysis of the IR with a brief discus-
sion of discrete symmetries in the UV theory. With the
weak interactions turned off, the only discrete symmetry
of the gauge-kinetic Lagrangian lying outside of SU(4) is
CP , under which Ψ transforms as

CP : Ψ(xµ) 7→ i ǫ C−1 Ψ∗(xµ) . (10)

Due to the pseudoreality of the SU(2)TC fundamental,
P and C are separately unphysical, only being defined
up to arbitrary SU(4) rotations. The EW interactions
in (8) are CP invariant, with Aµ 7→ AT

µ under CP . For
simplicity, we take real m1,2, λU,D, i.e. CP invariant
VUV . We have checked to O(p4) in the chiral expansion
[31] that this yields α = arg(v) = 0 at the minimum of
the potential (if NDA is not grossly violated), which we
assume below.
GLR-parity interchanges the generators of SU(2)L and

SU(2)R. It is an element of the unbroken Sp(4), trans-
forming Ψ 7→ GLRΨ, with

GLR = −
(

0 σ2

σ2 0

)

, (11)

up to an overall phase. This can be seen by extending
to the left-right symmetric gauge group, i.e. replacing
g1Bµτ

3 7→ g2RW
a
Rµτ

a, and requiring that under GLR

the top and bottom two components of Ψ are exchanged,
and g2LWL ↔ g2RWR. GLR invariance of VUV would
imply m1 = m2 and λU = λD.

III. THE VACUUM ALIGNMENT AND

SCALARS

The SU(4)/Sp(4) coset contains five broken gener-
ators Xa in the 5-plet of Sp(4), and ten unbroken



3

ones T a in the adjoint, satisfying XΦ − ΦXT = 0,
TΦ + ΦT T = 0 [25]. The isotriplets are T a=1,2,3 =

diag[τa, (−)aτa] /2
√
2,

T a=4,5,6 =
1

2
√
2

(

cθτ
a−3 −isθτ

a−3 τ2

−i(−)asθτ
a−3 τ2 (−)a cθ τa−3

)

,

(12)
and Xa=1,2,3, obtained via cθ → sθ, sθ → −cθ in T a+3.
The other generators are listed in [25] (with T 7,...,10 de-

noted T 1,...,4
‖ ). The 5-plet decomposes as (2, 2)+(1, 1) un-

der the Sp(4) subgroup SU(2)1×SU(2)2, where SU(2)1, 2
are identified with the generators (T a ± T a+3)/

√
2,

a=1,2,3, and reduce to SU(2)L,R in the sin θ → 0
limit. T 1,2,3 are the generators of the isospin group
SU(2)V = SU(2)L+R = SU(2)1+2.
Following [32], the Sp(4) ∼= SO(5) 5-plet of Nambu-

Goldstone bosons (NGB’s) ~π appears in the exponential

ξ = exp(
√
2i πaXa/f) 7→ UξV †, (13)

where f is the TC decay constant in the chiral limit
and the transformation applies to the global rotations
U ∈ SU(4), V ∈ Sp(4), thus V ΦV T = Φ. The πa

transform under CP like the vector currents Ψ†σ̄µX
aΨ,

see (10), and similarly for GLR, yielding CP -odd (even)
π1,3,5 (π2,4), and GLR-odd (even) π1,2,3,5 (π4).
The kinetic terms are expressed in terms of Cµ =

iξ†Dµξ. Projecting onto the broken and unbroken di-
rections defines (Cµ = dµ + Eµ)

dµ = 2tr(CµX
a)Xa 7→ V dµV

†,

Eµ = 2tr(CµT
a)T a 7→ V (Eµ + ∂µ)V

† ,
(14)

which, respectively, are a 5-plet and 10-plet of Sp(4),
transforming homogeneously and like a gauge field, as
indicated. We further define the building blocks

χ± = ξT (M + λ)ξΦ± h.c. , (15)

transforming as χ± 7→ V χ±V
† under Sp(4).

The leading O(p2) chiral Largangian is

L(2) =
f2

2
tr(dµ d

µ) + 4πf3Z2 tr(χ+), (16)

where Z2 ≈ 1.47 ± 0.26 at this order, according to a
recent Nc = nf = 2 lattice study [33].1 The TC and

1 The value of Z2 is obtained by comparing chiral limit pion masses
following from Eq. (16) with analogous expressions in [33]. In
the notation of the latter, m2

π = 2Bmf , yielding the transla-
tion Z2 = B/(8πf). The lattice results for B and f are quoted
with fractional errors of ≈ 8% and ≈ 16%, respectively, corre-
sponding to a fractional error δZ2/Z2 ≈ 0.26. This uncertainty
is sufficiently small so as not to qualitatively impact the spectra
and associated tunings we examine below, i.e. variation of Z2

within the given error can be compensated in physical quantities
by O(10%) modifications of other free parameters.

Higgs gauge-kinetic terms yield the EW scale (vW = 246
GeV)

v2W = f2 sin2 θ + v2 . (17)

Minimizing the O(p2) potential (m12 = m1+m2, λUD =
λU + λD)

V
(2)
eff = 8πf3Z2(m12 cos θ − λUDv sin θ/

√
2) +m2

Hv2/2 ,
(18)

yields (mUD,m12 > 0 and θ ∈ [π/2, π])

tan θ = −mUD

m12
, v =

4
√
2λUD sin θ f3πZ2

m2
H

⇒ sin θ =

√

1− m2
12

λ4
UD

m4
H

16π2f6Z2
2

.

(19)

For simplicity, we have ignored the quartic in (18), mo-
tivated by SUSY BTC where it is a small perturbation.
The effects of EW gauge boson loops, which favor a vac-
uum alignment sin θ → 0 [34, 35], also constitute a small
perturbation provided m12/f ≫ αEW; this is indeed the
case in the numerical examples below and thus we ignore
such effects in what follows. The limit m12/f <∼ αEW is

also of interest2, and will be considered elsewhere [31].

To elucidate the structure of the vacuum and scalar
mass matrices, we project (M+λ) onto the Sp(4) singlet
(∝ Φ below) and vector directions, yielding

M + λ = −1

2

(

m̂+
λUDσh + i δλUD π3

h

2
√
2

sθ

)

Φ

+
i

2
Φ (λUD χa

θ + iδλUD χ ′a
θ )Xa, (20)

where the Sp(4) singlet fermion mass and vectors are

m̂ ≡ 1

2
(−m12 cθ +mUD sθ) = 2πf3Z2λ

2
UD/m2

H |
θ<π

~χθ = (π1
h, π

2
h, π

3
h, σhcθ + v cθ +

√
2m12sθ/λUD, 0)

= (π1
h, π

2
h, π

3
h, σhcθ, 0)

~χ ′
θ = (−π2

h, π
1
h, σh + v, π3

h cθ, δm12/δλUD), (21)

cθ ≡ cos θ, δm12 ≡ m1 − m2, etc., and the O(4) com-
ponents of ~χθ, ~χ ′

θ have opposite CP [36]. The con-
stant terms in ~χθ must cancel to avoid a constant×π4

term in Veff , induced by operators ∝ ~χθ · ~π . Thus,
tθ = −mUD/m12 holds to all orders. ~πh and π1,2,3 are
aligned, being SU(2)V triplets, however π4 is rotated by
θ relative to σh.

2 In this case, tan θ = O(mUD/αW f), and small to moderate sin θ
would correspond to mUD = O(few) GeV, or λUD = O(10−2).
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The O(p2) charged scalar and neutral Higgs mass ma-
trices are

M2
π+ = m2

H

(

1 −tβ
−tβ t2β

)

,

M2
h =m2

H

(

c2θ −cθtβ
−cθtβ t2β

)

+

(

m2
Hs2θ 0

0 0

)

,

(22)

in the bases (π+
h , π

+) and (σh, π
4), respectively, where

tβ ≡ tanβ = v/(f sin θ). (23)

M2
π+ and the first term in M2

h are related by Sp(4) in-
variance: their (1,1), (1,2), and (2,2) entries are ∝ ~χθ ·~χθ,
~χθ ·~π, and ~π·~π, respectively. (The (2,2) entries correspond
to the Gell-Mann-Oakes-Renner pion mass relation for
fermion mass m̂, i.e. m2

π = m2
Ht2β = 16πfZ2 m̂.) Both

matrices have massless eigenstates: the eaten NGB’s Ga

and would-be light Higgs. The latter’s mass is lifted by
the contribution of the second term in M2

h to the Sp(4)
singlet, ∝ (σhsθ)

2. The mass eigenstates are

G± = sβ π
±
h + cβ π

±, π̃± = −cβ π
±
h + sβ π

±,

h1 = cα σh − sα π4, h2 = sα σh + cα π4,
(24)

where tan 2α = cos θ tan 2β. The non-zero masses are

m2
π̃ = m2

H/c2β, m2
h1,2

= m2
H

(

1∓
√

1− s2θ s
2
2β

)

/(2c2β) .

(25)
where h1 and h2 are the light and heavy neutral Higgs,
respectively. There are additionally two neutral pion
states, G0 and π̃0, and an isosinglet, π5, with massm2

Ht2β.

In the limit3 s2θ c
2
β ≪ 1,

m2
h1

= m2
H sin2 β sin2 θ. (26)

Thus, a dominantly fundamental Higgs with sublead-
ing composite pNGB component (π4 is massless for
m1,2, λU,D → 0) acquires its mass from strong sector vac-
uum misalignment, as in composite pNGB Higgs models,
see e.g. [37–39].
Note that small values of sθ require tuning, cf. (19).

The largest irreducible tuning of sθ is due to λUD, and
can be quantified as |d log sθ/d logλUD| = 2 cot2 θ. The
tuning due to f is, in principle, 50% larger. However, this
is significantly reduced if f and mH are correlated, e.g.
via SUSY breaking (thus accounting for their proximity,
see Table II and concluding remarks).
The light Higgs h1V V (V = W±, Z) and h1f̄ f cou-

plings normalized to the SM ones, κV and κF , and their
s2θ ≪ 1 limits are

κV = cαsβ − sα cβ cθ → 1− c2β s
2
θ /2,

κF = cα/sβ → 1− c2β c
2
β s

2
θ /2 ;

(27)

3 The Higgs quartic is included in (22) by substituting m2

H
→

m2

H
+ λ2

h
v2/2 and, additionally, shifting (M2

h
)1,1 by λhv

2, thus
perturbing m2

h1
by ≈ λhv

2 and tanα by ≈ tαc2βλhv
2/m2

H
.

constraints on these couplings from the LHC are at the
level of 15% and 25% respectively [40].
There are two Sp(4) covariant gauge field strengths

[25],

Dµν = ∇[µdν], Fµν = −i[∇µ,∇ν ] . (28)

∇µO = ∂µO− i[Eµ,O] is the Sp(4) covariant derivative.
They transform homogeneously under Sp(4), with Dµν a
5-plet and Fµν a 10-plet. The effective operator

LχFF =
λχ sec β sin θ

64π3vW
tr(χ+ Fµν Fµν) (29)

(λχ = O(1) in NDA) induces an h1γγ coupling

L = cTC
γ

α

πvW
h1 AµνA

µν , cTC
γ =

λχ λUD cα

32
√
2πcβ

s2θ , (30)

compared to cSMγ ≃ .23. Including the modified Higgs
couplings to t,W in the h1 → γγ decay rate [41], we
obtain

Γγγ/Γ
SM
γγ ≃ 1.52 |κF c

SM
γ − 1.04κV + cTC

γ |2 . (31)

Thus, the TC shift in Γγγ is suppressed by s2θ, like ΓV V,f̄f .

Significant effects enter beyond O(p2), away from the
chiral limit, e.g. in examples with m̂ ∼ f . However,
our conclusions are not qualitatively altered [31]: tθ =
−mUD/m12 holds to all orders, as already argued; v, sin θ
and m2

h retain the forms given in (19) and (26), up to
negligible corrections from cubic and higher order Higgs
couplings, with Z2 → Z2[1 + O(m̂/2πf)] and m2

H →
m2

H + O(λ2
U,Df2). As at O(p2), m2

h1
is suppressed by

s2θ. In (17) and (23), f is replaced by the full TC-pion
decay constant, f → f [1 +O(m̂/4π)]. Isospin and GLR

combined imply that π̃3 − π5 mass mixing would be ∝
δm12 δλUD × (f sin θ, v), thus first entering at O(χ± 2),
or O(p4).
There are two Sp(4) singlet C-even scalar resonances

of note, with masses of O(Λ): the P -even σ and P -odd
η′. The σ is not broad if σ → π̃π̃, h2h2 are kinemati-
cally forbidden; the η′ has a gluonic component due to
the TC axial U(1) anomaly. They have well defined C
and P transformations, possessing dimension-5 σAA and
anomaly induced η′AÃ couplings, unlike the πa (however,

anomalous π5(WW̃,ZZ̃, AZ̃) couplings exist [26, 30]).
The σ induces the NDA shifts δm2

h ∼ −λ2
UDf2s2θ; δκV ∼

λUDcβs
2
θ/(4π); negligible δκF ; and δcTC

γ /cTC
γ ∼ 1 [31].

IV. THE VECTOR RESONANCES

All resonances appear in representations of Sp(4). We
consider the lowest lying 10- and 5-plet vectors (we do
not consider the singlet here),

R̂10 = Ra
10T

a, R̂5 = Ra
5X

a , (32)
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with R̂ 7→ V R̂V † under Sp(4) (see also Ref. [42]). Under
SU(2)1 × SU(2)2, the 10 = (3, 1) + (1, 3) + (2, 2), where

Ra±
10 = (Ra

10 ± Ra+3
10 )/

√
2, a=1,2,3, are the two triplets.

R1,2,3
10 ,R4,5,6

10 , and R1..3
5 are triplets under SU(2)V . GLR

interchanges SU(2)1↔2, in addition to SU(2)L↔R, and
Ra+

10 ↔ Ra−
10 . The transformations of Ψ†σ̄µT

aΨ imply

GLR-even (odd) R1,2,3
10 (R4,5,6

10 ); and CP -even (odd) R2,5
10

(R1,3,4,6
10 ). Ra

5 transforms like πa. The Lorentz vector
indices are also raised/lowered under CP . Based on the

vector currents for R1,2,3
10 and R1,2,3

5 at θ = π/2, R̂10 and

R̂5 generalize the QCD ~ρ and ~a1 triplets, respectively.
However, Ra

10 and Ra+3
10 , a=1,2,3, are the GLR “parity

doubling partners”.
We use the antisymmetric tensor formalism for vectors

[36, 43, 44]. It is convenient for describing vector in-
teractions with electroweak gauge fields, and avoids field
redefinitions. The kinetic terms are

Lkin = −1

2
tr(∇λR̂λµ∇νR̂

νµ − 1

2
M2

RR̂µνR̂
µν) , (33)

where M2
R is the mass in the chiral limit, and R denotes

R5 or R10. A related object,

Rµ = −M−1
R ∇νRνµ, (34)

satisfies the massive Proca equation, and 〈0|Rµ|R〉 = ǫµ.

The most general O(p2) Lagrangian, linear in R̂5,10,

L(2)
R = tr

(

R̂10,µν

[

F10√
2
Fµν+ i G10d

µdν
]

+
F5√
2
R̂5,µνDµν

)

(35)
yields the bilinears (a=1,2,3)

Lbilinear = −1

4
F10 R

a
10

(

g2W
a + g1B δa3

)

− 1

4

(

F10 cθ R
a+3
10 − F5 sθ R

a
5

)(

g2W
a − g1B δa3

)

,

(36)

where F10,5 are the vector decay constants,

〈Ra
10(5)|Ψ† σ̄µ T

a(Xa)Ψ|0〉 = −iF10(5)M10(5)ǫ
∗
µ , (37)

with M10,5 the total masses. They induce R5,10 cou-
plings to the SM fermions, responsible for vector Drell-
Yan (DY) production, and obtained via the following
substitutions in the SM couplings,

W a
µ → W a

µ − g2F10

2M10

(

Ra
10,µ +Ra+3

10,µcθ
)

+
g2F5

2M5
Ra

5,µsθ

Bµ → Bµ − g1F10

2M10

(

R3
10,µ −R6

10,µcθ
)

− g1F5

2M5
R3

5,µsθ .

(38)

The leading R10 decays originate from the L(2)
R trilinears,

−G10M10

2
√
2f2

(

ǫabcRa
10,µπ

b∂µπc

+Ra+3
10,µ

[

π5∂µπa − πa∂µπ5
] )

+ . . . ,

(39)

where the ellipses denote couplings of R7,...,10
10 . In the

vector meson dominance (VMD) approximation, G10 =

−2
√
2f2/F10 (the VMD ρππ coupling, gρππ = −mρ/fρ,

is 16% below experiment; φKK is within a few %). Pro-
jecting (39) onto the Ga gives couplings to longitudinal

WL, ZL. For m̂ ∼ f , R
1,2,3,(4,5,6)
10 → π̃π̃, (h2π̃) are closed,

and R
1,2,3(4,5,6)
10 → π̃ WL/ZL, (π̃h1, h2 WL/ZL) dominate.

The UV contribution to the S parameter can be
parametrized in terms of the effective Lagrangian cou-
pling, −g1g2SUV /(32π)W

3
µνB

µν . Tree-level R3,6
10 , R

3
5 ex-

change, cf. (36), thus yields

∆Stree = 4π
(

F 2
10/M

2
10 − F 2

5 /M
2
5

)

sin2 θ. (40)

The s2θ suppression is a feature of misalignment [37–39,
45, 46] (SUV is ∆I = 1, and the underlying operators
tr(2F2), tr(D2) ⊃ ± g1g2W

3
µνB

µνs2θ/2 [25]). It has an

explicit origin in (40): R3,6
10 parity doubling cancelation

∝ 1 − c2θ; and sθ suppression of the R3
5 couplings. The

scalar loops in S are log divergent, due to a cθ factor in
the π4 gauge boson couplings. After subtracting the SM
Higgs,

∆Sloop =
1

24π

(

s2θ log
Λ2

m
2s2α
h1

m
2c2α
h2

+ Ffin

)

, (41)

where Ffin contains finite loop contributions [31]. The
first term receives a s2α suppression that is not present in
the composite Higgs case, due to projection of π4 onto
h. For cut-off Λ ≤ 8πf , we find ∆Sloop < 0.01 in our
examples. A more refined dispersion integral approach
containing higher order R5,10 contributions [47] would
eliminate the divergence, with S remaining a small effect.
The T parameter arises from: (i) scalar loops with

isospin breaking entering via π̃3 − η′, π5 mixings, and
π̃3−π̃+ mass splitting; (ii) G+ wave function renormal-

ization via B−R1,2,4,5
5,10 loops. The loops in (i) vanish in

the δλUD → 0 limit, and in (ii) they are c2β suppressed

(due to projection onto G+) compared to the composite
Higgs and TC analogs [47–49]. Thus, S and T reasonably
lie within the allowed 1σ ellipse [50, 51].
Fermion mass corrections to M10,5 arise from terms

∝ tr(R̂2
10,5χ+) at O(p2), and larger χ+ multiplicities at

higher orders. In the limit δm12, δmUD → 0 they respect
Sp(4), and are θ-independent polynomials in m̂, as seen
from (20). This is true of all corrections to the chiral
limit. Thus, the θ = π/2 lattice measurements [33] (also
see [52]) of fπ (full decay constant), m2

π, and M10,5 hold
for arbitrary θ. F10 can be estimated by scaling a fit to
the quark mass dependence of QCD vector decay con-
stants, normalized to the observed pion decay constant.
Using fρ,ω,φ, and the lattice heavyonium decay constant
between mJ/Ψ and mΥ [53, 54], yields a function F such
that F10/f ≈ F [m̂/f ] (fρ /fπ)QCD (or F10/f ≈ [1.6, 1.8]
for m̂/f = [0, 1.5]) [20, 31]. The contribution of R5 in
(40) is bounded via the approximate upper and lower
bounds, M5 < M10ma1

/mρ (M5/M10 decreases beyond
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the chiral limit, approximated by the QCD ratio) and
F5 > fa1

f/fqcd
π (F5 increases away from the chiral limit,

obtained by scaling from QCD). We take fa1
= 152 MeV

[55] for the poorly known decay constant, using an up-
dated Br(τ+ → ντπ

+π+π−).
The above procedure yields ∆Stree/s

2
θ < [0.11, 0.09]

([0.19, 0.13] for R10) for m̂/f = [0, 1.5], confirming that
agreement with the observed 1σ range ∆S = 0.10± 0.08
[50], 0.00 ± 0.08 [51] is reasonable. The significant de-
crease in the R10 contribution away from the the chiral
limit reflects the greater vector mass vs. decay constant
quark mass dependence observed in QCD.

V. EXAMPLES

The vector masses can span a wide range, due to the
freedom to vary sin θ and the TC fermion masses. This is
illustrated in the representative examples of Table II, for
different values of the UV inputs f,mH ,m12, λUD (with
δm12, δλUD = 0), where the two isotriplet charged vec-

tors are defined as r±1(2) ≡ (R
1(4)
10 ∓ iR

2(5)
10 )/

√
2. The vac-

uum alignment and scalar spectrum have been obtained
at O(p2), with Z2 = 1.47 [33], imposing the mh1

= 125
GeV, vW = 246 GeV, and neglecting the Higgs quar-
tic for simplicity. The tuning of sθ = .6, .4, .3 (due to
λUD) is approximately 30%, 10%, 5%, respectively. Note
that mH is essentially fixed by sin θ; both mH and f
(or ΛTC ∼ 4πf) increase as sin θ decreases; while for
given sin θ, f increases as m12 and m̂ decrease. In all of
the examples, the deviations in κV and κF from 1 (SM)
are < 1%, and the deviations in the Higgs diphoton de-
cay width from its SM value are < 2% for |λχ| ≤ 2, cf.
(30),(31) (with the exception of the first example, where
a deviation as large as 6% is possible).
M10 follows from [33] and F10 from the scaling de-

scribed above. The vector decay widths follow from the
VMD estimate for G10. The narrow width approxima-
tion is used throughout. In the first example, the R10 →
π̃π̃, h2π̃ channels are closed, yielding relatively narrow
widths. In the last two examples, with m̂/f ∼ 0.1, the
phase space suppression in the R10 → π̃π̃, h2π̃ channels is
small, yielding very large widths, thus the narrow width
approximation is rough. In general, the combination of
F10/M10 ∼ 0.1 and small branching fractions to pairs of
gauge bosons implies that the vector resonances are safe
(by at least O(10 − 100) for M10 ∼ 1 − 3 TeV) from
current LHC bounds.

VI. DISCUSSION

BTC with Nc = nf = 2 provides the minimal UV com-
plete realization of the partially composite-pNGB Higgs.
Several other noteworthy features are summarized below:
(i) ΛTC >∼ 3 TeV and an enhanced Higgs mass parameter,
e.g. mH ∼ 3mh, are accesible with moderate sθ, or tun-
ing. (In the TC-vacuum, sub-10% deviations in the Higgs

couplings would require f < 100 GeV, or ΛTC <∼ 1 TeV
[20, 21]); (ii) deviations from the SM Higgs couplings of
O(1%) are typical, due to suppression by s2θ c

2
β; (iii) The

ratio f/M10 on the lattice suggests that agreement with
the S parameter at 1σ is realized at moderate sθ; while
potentially dangerous T parameter loops are c2β = O(0.1)

suppressed; (iv) detection of vector mesons at the LHC
will be challenging.
Our ultimate goal is natural EW symmetry break-

ing. In the present context this would involve linking
the size of the Higgs mass parameter to the TC scale,
ΛTC = O(3TeV). One direction that we are exploring is
embedding our setup into a supersymmetric theory with
Dirac gauginos. Supersymmetrized minimal BTC is for-
mulated as supersymmetric QCD with Nc= nf =2 and
one adjoint matter superfield. This theory is known to
have a strong IR fixed point, with unbroken chiral sym-
metry [56, 57]; a two-loop estimate yields a fixed point
coupling α∗ ≈ 1.8. A direct link between the scale of TC
superpartner masses and ΛTC can be realized if the Dirac
TC-gaugino and scalar matter fields decouple in the su-
perconformal region [15, 16].4 Integrating out these mas-
sive states triggers a confining phase with ΛTC . mg̃TC

.
The Higgs mass, mH ∼ mW̃ /4π generated with finite
loops of Dirac EW gauginos [59, 60], can then naturally
be of order f ∼ ΛTC/4π if the SM gaugino masses sat-
isfy mW̃ ∼ mg̃QCD

. mg̃TC
. Furthermore, the resulting

effective theory contains 4-technifermion operators which
affect the vacuum alignment and may allow a construc-
tion without the explicit singlet masses m1,2.
Further study of potential UV completions, as well

as detailed collider phenomenology will be presented
elsewhere.

4 Majorana gaugino masses would undergo power law running

mg̃(µ) ∝ (µ/Λ)γ
′

with γ′ > 0 in the superconformal region [58].
Remarkably, we find γ′ < 0 in the Dirac case, with moderate
γ′ ≈ −0.41 at two loops, rendering the solution to the scale
coincidence problem a viable one.
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f m12 mH λUD sθ cβ sα v m̂ mπ̃ mh2
M10 F10 σ

pp→r
+
1

[fb] σ
pp→r

+
2

[fb] Br
r
+
1
→WZ

Br
r
+
2
→h1W

Γ
r
+
1

Γ
r
+
2

93 190 212 0.84 0.6 0.23 0.19 240 119 930 922 1585 167 5.28 3.38 0.089 0.072 29 23

165 200 323 0.52 0.4 0.27 0.25 237 109 1199 1193 2504 282 0.50 0.42 0.06 0.06 115 106

232 240 433 0.45 0.3 0.28 0.27 236 126 1531 1526 3429 392 0.054 0.049 0.04 0.04 279 271

261 50 341 0.14 0.4 0.43 0.41 223 27 802 792 3538 427 0.046 0.039 0.043 0.039 1228 1219

367 60 463 0.12 0.3 0.45 0.44 220 31 1033 1025 4950 599 0.001 0.001 0.05 0.05 1799 1793

Table II: Examples of vacuum alignment, scalar spectrum, and R10 properties, see text (all masses are in GeV).
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