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Abstract

We consider a concise dark matter (DM) scenario in the context of a non-exotic U(1)

extension of the Standard Model (SM), where a new U(1)X gauge symmetry is introduced

along with three generation of right-handed neutrinos (RHNs) and an SM gauge singlet

Higgs field. The model is a generalization of the minimal gauged U(1)B−L (baryon number

minus lepton number) extension of the SM, in which the extra U(1)X gauge symmetry is

expressed as a linear combination of the SM U(1)Y and U(1)B−L gauge symmetries. We

introduce a Z2-parity and assign an odd-parity only for one RHN among all particles, so

that this Z2-odd RHN plays a role of DM. The so-called minimal seesaw mechanism is

implemented in this model with only two Z2-even RHNs. In this context, we investigate

physics of the RHN DM, focusing on the case that this DM particle communicates with

the SM particles through the U(1)X gauge boson (Z ′ boson). This “Z ′-portal RHN DM”

scenario is controlled by only three free parameters: the U(1)X gauge coupling (αX), the Z
′

boson mass (mZ′), and the U(1)X charge of the SM Higgs doublet (xH). We consider various

phenomenological constraints to identify a phenomenologically viable parameter space. The

most important constraints are the observed DM relic abundance and the latest LHC Run-2
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results on the search for a narrow resonance with the di-lepton final state. We find that

these are complementary with each other and narrow the allowed parameter region, leading

to the lower mass bound of mZ′ & 2.7 TeV.
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I. INTRODUCTION

Neutrino masses and a suitable candidate for the dark matter are the major missing

pieces in the Standard Model (SM), which require us to extend the SM. The minimal B−L

model [1–6] is a simple, well-motivated extension of the SM to incorporate the neutrino

masses, where the global U(1)B−L (baryon number minus lepton number) symmetry in the

SM is gauged. In the presence of the three right-handed neutrinos (RHNs) the model is free

from all the gauge and gravitational anomalies. Associated with the spontaneous B − L

gauge symmetry breaking by a vacuum expectation value (VEV) of the B − L Higgs field,

the RHNs and the B−L gauge boson (Z ′ boson) acquire their masses. With the generated

Majorana masses for the RHNs, the seesaw mechanism [7–11] is implemented, and the light

SM neutrino mass is generated after the electroweak symmetry breaking. The mass spectrum

of the new particles introduced in the minimal B − L model (the Z ′ boson, the Majorana

RHNs and the B − L Higgs boson) is controlled by the B − L gauge symmetry breaking

scale. If the breaking scale lies around the TeV scale, the B −L model can be tested at the

Large Hadron Collider (LHC).

Among various possibilities, a concise way of introducing a dark matter (DM) candidate

in the minimal B − L model has been proposed in Ref. [12]. Instead of extending the

minimal particle content, a Z2-parity is introduced and an odd-parity is assigned to only

one RHN while even-parities are assigned to all the other fields.1 Hence, the parity-odd RHN

serves as the DM. On the other hand, two parity-even RHNs account for the neutrino mass

generation via the seesaw mechanism. This system is nothing but the so-called minimal

seesaw [14, 15], which is the minimal setup to reproduce the observed neutrino oscillation

data with a prediction of one massless neutrino as well as the observed baryon asymmetry

in the universe through leptogenesis [16].

There are two ways for the RHN DM to communicate with the SM particles. One is

through two Higgs bosons, which are expressed as linear combinations of the SM Higgs

and the B − L Higgs bosons after the breaking of the U(1)B−L and the electroweak gauge

symmetries. The DM phenomenology for this case has been analyzed in [12, 17, 18]. The

other way is that the interactions between the DM and the SM particles are mediated by

the Z ′ boson. This class of DM scenario is called “Z ′-portal DM” and has been attracting

1 We can consider the Z2-parity as an emergent global symmetry in the limit of vanishing Dirac Yukawa

couplings [13].
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a lot of attention recently. In the scenario, a DM particle is introduced along with an

electric-charge neutral vector field (Z ′ boson) in an extension of the SM with the so-called

Dark Sector [19–22] or new gauge interactions [23–49]. The mediator Z ′ boson allows us to

investigate a variety of DM physics, such as the DM relic abundance and the direct/indirect

DM search. A remarkable feature of the scenario is that the Z ′ boson resonance search at the

LHC is complementary to the cosmological observations of the Z ′-portal DM in identifying

a phenomenologically viable parameter region.

Recently, the minimal B−L model with the RHN DM has been investigated in the light

of the LHC Run-2 results [40]. Here, the RHN DM communicates with the SM particles

mainly through the Z ′ gauge boson, and hence it is the Z ′-portal DM scenario. In the model,

the DM physics is controlled by only two free parameters, the B−L gauge coupling and the

Z ′ boson mass. It has been found that the constraint from the observed DM relic abundance

leads to a lower bound on the gauge coupling as a function of the Z ′ boson mass. On the

other hand, the cross section of Z ′ boson production at the LHC is also determined by the

same two free parameters. The LHC Run-2 results on search for a narrow resonance with the

di-lepton final states have been interpreted to obtain the upper bound on the gauge coupling

as a function of the Z ′ boson mass. Combining the two results, an allowed parameter region

has been identified to obtain the lower bound of mZ′ & 2.5 TeV. In deriving the allowed

parameter region, a complementarity between the cosmological and the collider constraints

was essential.

In this paper, we generalize the minimal B − L model to the so-called non-exotic U(1)X

extension of the SM [50]. The non-exotic U(1)X model is the most general extension of the

SM with an extra anomaly-free U(1) gauge symmetry, which is described as a linear combi-

nation of the SM U(1)Y and the U(1)B−L gauge groups. The particle content of the model is

the same as the one in the minimal B −L model except for the generalization of the U(1)X

charge assignment for particles. Hence we can easily extend the minimal B −L model with

the RHN DM to the non-exotic U(1)X case. In this context, we perform detailed analysis

to identify a phenomenologically viable parameter region through the complementarity be-

tween the DM physics and the LHC Run-2 results. Because of the U(1)X generalization, the

Z ′ boson couplings with the SM particles are modified and the resultant parameter region

is found to be quite different from the one obtained in Ref. [40]. For the LHC Run-2 results,

we employ the most recent results reported by the ATLAS and the CMS collaborations in

4



SU(3)c SU(2)L U(1)Y U(1)X Z2

qiL 3 2 1/6 (1/6)xH + (1/3)xΦ +

uiR 3 1 2/3 (2/3)xH + (1/3)xΦ +

diR 3 1 −1/3 −(1/3)xH + (1/3)xΦ +

ℓiL 1 2 −1/2 (−1/2)xH − xΦ +

eiR 1 1 −1 −xH − xΦ +

H 1 2 −1/2 (−1/2)xH +

N j
R 1 1 0 −xΦ +

NR 1 1 0 −xΦ −

Φ 1 1 0 +2xΦ +

TABLE I. The particle content of the minimal U(1)X extended SM with Z2 parity. In addition to

the SM particle content (i = 1, 2, 3), the three RHNs (N j
R (j = 1, 2) and NR) and the U(1)X Higgs

field (Φ) are introduced. Because of the Z2 parity assignment shown here, the NR is a unique

(cold) DM candidate. The extra U(1)X gauge group is defined with a linear combination of the

SM U(1)Y and the U(1)B−L gauge groups, and the U(1)X charges of fields are determined by two

real parameters, xH and xΦ. Without loss of generality, we fix xΦ = 1 throughout this paper.

2016 [51, 52].

This paper is organized as follows. In the next section, we define the minimal non-exotic

U(1)X extension of the SM with the Z ′-portal RHN DM. In Sec. III, we analyze the DM

relic abundance and identify a model parameter region to satisfy the observed DM relic

abundance. In Sec. IV, we consider the results by the ATLAS and the CMS collaborations

at the LHC Run-2 on the search for a narrow resonance with the di-lepton final states.

We interpret the results into the constraints on the Z ′ boson production in the minimal

non-exotic U(1)X model. Combining all the constraints, we identify the allowed parameter

regions in Sec. V. The last section is devoted to conclusions.

II. THE MINIMAL NON-EXOTIC U(1)X MODEL WITH RHN DM

We first define our model by the particle content listed on Table I. The U(1)X gauge

group is identified with a linear combination of the SM U(1)Y and the U(1)B−L gauge groups,
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and hence the U(1)X charges of fields are determined by two real parameters, xH and xΦ.

Note that in the model the charge xΦ always appears as a product with the U(1)X gauge

coupling and it is not an independent free parameter. Hence, we fix xΦ = 1 throughout this

paper. In this way, we reproduce the minimal B − L model with the conventional charge

assignment as the limit of xH → 0. The limit of xH → +∞ (−∞) indicates that the U(1)X

is (anti-)aligned to the U(1)Y direction. The anomaly structure of the model is the same

as the minimal B − L model and the model is free from all the gauge and the gravitational

anomalies in the presence of the three RHNs. The introduction of the Z2-parity is crucial

to incorporate a DM candidate in the model while keeping the minimality of the particle

content. The conservation of the Z2-parity ensures the stability of the Z2-odd RHN, and

therefore it is a unique DM candidate in the model.

The Yukawa sector of the SM is extended to have

LY ukawa ⊃ −
3

∑

i=1

2
∑

j=1

Y ij
D ℓiLHN j

R − 1

2

2
∑

k=1

Y k
NΦN

k C
R Nk

R − 1

2
YNΦN

C
R NR + h.c., (1)

where the first term is the neutrino Dirac Yukawa coupling, and the second and third terms

are the Majorana Yukawa couplings. Without loss of generality, the Majorana Yukawa

couplings are already diagonalized in our basis. Note that because of the Z2-parity, only

the two generation RHNs are involved in the neutrino Dirac Yukawa coupling. Once the

U(1)X Higgs field Φ develops a nonzero VEV, the U(1)X gauge symmetry is broken and

the Majorana mass terms for the RHNs are generated. Then, the seesaw mechanism is

automatically implemented in the model after the electroweak symmetry breaking. Because

of the Z2-parity, only two generation RHNs are relevant to the seesaw mechanism. Even

with two RHNs, the Yukawa coupling constants Y ij
D and Y k

N posses the degrees of freedom

large enough to reproduce the neutrino oscillation data with a prediction of one massless

eigenstate. The baryon asymmetry in the universe can also be reproduced with the two

RHNs [15] (see, for example, Ref. [53] for detailed analysis of leptogenesis at the TeV scale

with two RHNs).

The renormalizable scalar potential for the SM Higgs doublet (H) and the U(1)X Higgs

fields is given by

V = λH

(

H†H − v2

2

)2

+ λΦ

(

Φ†Φ− v2X
2

)2

+ λmix

(

H†H − v2

2

)(

Φ†Φ− v2X
2

)

, (2)

where all quartic couplings are chosen to be positive. At the potential minimum, the Higgs
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fields develop their VEVs as

〈H〉 =





v√
2

0



 , 〈Φ〉 = vX√
2
. (3)

In this paper, we assume λmix ≪ 1, so that the mixing between the SM Higgs boson and

the U(1)X Higgs boson are negligibly small.2 Hence, the RHN DM communicates with the

SM particles only through the Z ′ boson. Associated with the U(1)X symmetry breaking,

the Majorana neutrinos N j
R (j = 1, 2), the DM particle NR and the Z ′ gauge boson acquire

their masses as

mj
N =

Y j
N√
2
vX , mDM =

YN√
2
vX , mZ′ = gX

√

4v2X +
v2

4
≃ 2gXvX , (4)

where gX is the U(1)X gauge coupling, and we have used the LEP constraint [54, 55] v2X ≫ v2.

Because of the LEP constraint, the mass mixing of the Z ′ boson with the SM Z boson is

very small, and we neglect it in our analysis in this paper.

Assuming λmix ≪ 1, we focus on the Z ′-portal nature of the RHN DM. In this case, only

four free parameters (gX , mZ′, mDM , and xH) are involved in our analysis. As we will discuss

in the next section, it turns out that the condition of mDM ≃ mZ′/2 must be satisfied to

reproduce the observed DM relic abundance. Thus, mDM does not work as an independent

parameter, so that our results are described by only three free parameters.

III. COSMOLOGICAL CONSTRAINTS ON Z ′-PORTAL RHN DM.

In the Planck satellite experiments, the DM relic abundance is measured at the 68% limit

as [56]

ΩDMh2 = 0.1198± 0.0015. (5)

In this section, we evaluate the DM relic abundance and identify an allowed parameter

region to satisfy the upper bound of ΩDMh2 ≤ 0.1213. The DM relic abundance is evaluated

by integrating the Boltzmann equation given by

dY

dx
= − xs〈σv〉

H(mDM)

(

Y 2 − Y 2
EQ

)

, (6)

2 This assumption is, in fact, not essential. When λmix is sizable, the RHN DM can communicate with the

SM particles also through the Higgs bosons. This so-called Higgs portal RHN DM case has been analyzed

in [12, 17, 18] and it has been shown that the RHN DM mass is required to be close to a half of either

one of the Higgs boson masses in order to reproduce the observed relic abundance. Such a parameter

region is distinguishable from that in our Z ′-portal RHN DM case, and we can investigate the two cases

separately.
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where the temperature of the universe is normalized by the mass of the RHN DM as x =

mDM/T , H(mDM) is the Hubble parameter at T = mDM , Y is the yield (the ratio of the

DM number density to the entropy density s) of the RHN DM, YEQ is the yield of the DM

particle in thermal equilibrium, and 〈σv〉 is the thermal average of the DM annihilation

cross section times relative velocity (v). Explicit formulas of the quantities involved in the

Boltzmann equation are as follows:

s =
2π2

45
g⋆
m3

DM

x3
, H(mDM) =

√

π2

90
g⋆
m2

DM

MP

, sYEQ =
gDM

2π2

m3
DM

x
K2(x), (7)

where MP = 2.44×1018 GeV is the reduced Planck mass, gDM = 2 is the number of degrees

of freedom for the DM particle, g⋆ is the effective total number of degrees of freedom for the

particles in thermal equilibrium (in the following analysis, we use g⋆ = 106.75 for the SM

particles), and K2 is the modified Bessel function of the second kind. In our Z ′-portal DM

scenario, a DM pair annihilates into the SM particles through the Z ′ boson exchange in the

s-channel. The thermal average of the annihilation cross section is given by

〈σv〉 = (sYEQ)
−2 g2DM

mDM

64π4x

∫ ∞

4m2

DM

ds σ̂(s)
√
sK1

(

x
√
s

mDM

)

, (8)

where σ̂(s) = 2(s − 4m2
DM)σ(s) is the reduced cross section with the total annihilation

cross section σ(s), and K1 is the modified Bessel function of the first kind. The total cross

section of the DM pair annihilation process NN → Z ′ → f f̄ (f denotes the SM fermions)

is calculated as

σ(s) =
π

3
α2
X

√

s(s− 4m2
DM)

(s−m2
Z′)2 +m2

Z′Γ2
Z′

F (xH), (9)

where

F (xH) = 13 + 16xH + 10x2
H = 10 (xH + 0.8)2 + 6.6, (10)

and the total decay width of Z ′ boson is given by

ΓZ′ =
αX

6
mZ′

[

F (xH) +

(

1− 4m2
DM

m2
Z′

)
3

2

θ

(

m2
Z′

m2
DM

− 4

)

]

. (11)

Here, we have neglected all SM fermion masses and assumed mj
N > mZ′/2, for simplicity.

Now we solve the Boltzmann equation numerically, and find the asymptotic value of the

yield Y (∞) to evaluate the present DM relic density as

ΩDMh2 =
mDMs0Y (∞)

ρc/h2
, (12)
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FIG. 1. The relic abundance of the Z ′-portal RHN DM as a function of its mass (mDM ) for

mZ′ = 4 TeV. In the left panel, we have fixed xH = 0 (the minimal B−L model limit) and shown

the relic abundance for various values of the gauge coupling, αX = 0.025, 0.027, 0.028 and 0.030

(solid lines from top to bottom). In the right panel, we have fixed αX = 0.027 and shown the relic

abundance for various values of xH = −0.8, 0, 0.5 and 1.0 (solid lines from bottom to top). The

two horizontal lines denote the range of the observed DM relic density, 0.1183 ≤ ΩDMh2 ≤ 0.1213

in Eq. (5).

where s0 = 2890 cm−3 is the entropy density of the present universe, and ρc/h
2 = 1.05 ×

10−5 GeV/cm3 is the critical density. Our analysis involves four parameters, namely αX =

g2X/(4π), mZ′ , mDM and xH . For mZ′ = 4 TeV, we show in Fig. 1 the resultant DM

relic abundance as a function of the DM mass, along with the range of the observed DM

relic abundance, 0.1183 ≤ ΩDMh2 ≤ 0.1213 [56] (two horizontal dashed lines). In the left

panel, we have fixed xH = 0, which is the minimal B − L model limit. The solid lines

from top to bottom show the resultant DM relic abundances for various values of the gauge

coupling, αX = 0.025, 0.027, 0.028 and 0.030. The plots indicate the lower bound on

αX ≥ 0.027 for mZ′ = 4 TeV and xH = 0 in order to be able to reproduce the observed

relic abundance. In addition, we can see that the enhancement of the DM annihilation

cross section via the Z ′ boson resonance is necessary to satisfy the cosmological constraint

and hence, mDM ≃ mZ′/2. The right panel shows our results for various values of xH

with the fixed αX = 0.027. The solid lines from bottom to top correspond to the results

for xH = −0.8, 0, 0.5 and 1.0, respectively. From Eqs. (8)-(11), we can see that the DM

annihilation cross section for mDM ≃ mZ′/2 is proportional to 1/F (xH). Therefore, the
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FIG. 2. The lower bounds on αX as a function of mZ′ for various values of xH , to satisfy the cos-

mological constraint of 0.1183 ≤ ΩDMh2 ≤ 0.1213. The solid lines from top to bottom corresponds

to xH = −3, +1, −2, 0 and −1, respectively. As the input xH value is going away from the point

of xH = −0.8, the lower bound on αX is increasing.

maximum annihilation cross section for the fixed values of αX , mZ′ and mDM ≃ mZ′/2

is achieved for xH = −0.8. Since the function F (xH) is symmetric about the point of

xH = −0.8, the results shown in the left panel indicate the constraint −1.6 ≤ xH ≤ 0 to

satisfy the cosmological bound for the fixed values of mZ′ = 4 TeV and αX = 0.027.

In Fig. 2 we show the lower bounds on αX as a function of mZ′ for various values of xH ,

to reproduce the observed DM relic abundance in the range of 0.1183 ≤ ΩDMh2 ≤ 0.1213.

The solid lines from top to bottom corresponds to xH = −3, +1, −2, 0 and −1, respectively.

For fixed αX and mZ′ , the DM annihilation cross section becomes maximum for xH ≃ −0.8

with the minimum Z ′ boson decay width. As an input xH value is going away from the

point of xH = −0.8, the decay width becomes larger and the DM annihilation cross section

is reducing. As a result, the lower bound on the gauge coupling is increasing.

IV. LHC RUN-2 CONSTRAINTS

In 2015, the LHC Run-2 started its operation with a 13 TeV collider energy. The most

recent results by the ATLAS and the CMS collaborations with the combined 2015 and 2016

data were reported at the ICHEP 2016 conference. The ATLAS and the CMS collaborations
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continue their search for Z ′ boson resonance with di-lepton final states at the LHC Run-

2. Their results have shown significant improvements for the upper limits of the Z ′ boson

production cross section [51, 52] from those obtained by the LHC Run-1 [57, 58]. In this

section, we will employ the most recent LHC Run-2 results to derive LHC constraints on

the model parameters, αX , mZ′ and xH .

Let us calculate the cross section for the process pp → Z ′ + X → ℓ+ℓ− + X . The

differential cross section with respect to the invariant mass Mℓℓ of the final state di-lepton

is given by

dσ

dMℓℓ

=
∑

q,q̄

∫ 1

M2
ℓℓ

E2
CM

dx
2Mℓℓ

xE2
CM

fq(x,Q
2)fq̄

(

M2
ℓℓ

xE2
CM

, Q2

)

σ̂(qq̄ → Z ′ → ℓ+ℓ−), (13)

where fq is the parton distribution function for a parton (quark) “q”, and ECM = 13 TeV

is the center-of-mass energy of the LHC Run-2. In our numerical analysis, we employ

CTEQ6L [59] for the parton distribution functions with the factorization scale Q = mZ′.

Here, the cross section for the colliding partons is given by

σ̂(qq̄ → Z ′ → ℓ+ℓ−) =
π

1296
α2
X

M2
ℓℓ

(M2
ℓℓ −m2

Z′)2 +m2
Z′Γ2

Z′

Fqℓ(xH), (14)

where the function Fqℓ(xH) is given by

Fuℓ(xH) = (8 + 20xH + 17x2
H)(8 + 12xH + 5x2

H),

Fdℓ(xH) = (8− 4xH + 5x2
H)(8 + 12xH + 5x2

H) (15)

for q being the up-type (u) and down-type (d) quarks, respectively. By integrating the

differential cross section over a range of Mℓℓ set by the ATLAS and the CMS analysis,

respectively, we obtain the cross section to be compared with the upper bounds obtained by

the ATLAS and the CMS collaborations.

In the analysis by the ATLAS and the CMS collaborations, the so-called sequential SM Z ′

(Z ′
SSM) model [61] has been considered as a reference model. We first analyze the sequential

Z ′ model to check a consistency of our analysis with the one by the ATLAS collaboration.

In the sequential Z ′ model, the Z ′
SSM boson has exactly the same couplings with quarks and

leptons as the SM Z boson. With the couplings, we calculate the cross section of the process

pp → Z ′
SSM +X → ℓ+ℓ− +X like Eq. (13). By integrating the differential cross section in

the region of 128 GeV≤ Mℓℓ ≤ 6000 GeV [57], we obtain the cross section of the di-lepton

production process as a function of Z ′
SSM boson mass. Our result is shown as a solid line in
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FIG. 3. Left panel: the cross section as a function of the Z ′
SSM mass (solid line) with k = 1.28,

along with the ATLAS results in 2016 [51] and 2015 [60] from the combined di-electron and di-muon

channels. Right panel: the cross sections calculated for various values of αX with k = 1.28, for the

minimal B − L model limit (xH = 0). The solid lines from left to right correspond to αX = 10−5,

10−4.5, 10−4, 10−3.5, 10−3, 10−2.5, 10−2, and 10−1.5, respectively.

the left panel on Fig. 3, along with the plot presented by the ATLAS collaboration [51, 60].

In the ATLAS paper [51], the lower limit of the Z ′
SSM boson mass is found to be 4.05 TeV,

which is read off from the intersection point of the theoretical prediction (diagonal dashed

line) and the experimental cross section bound (lower horizontal solid curve (in red)). Here,

we have also shown the plot presented in Ref. [60] (upper horizontal solid curve (in red)).

We can see the dramatic improvement from the 2015 results [60] to the 2016 results [51].

In order to take into account the difference of the parton distribution functions used in the

ATLAS and our analysis and QCD corrections of the process, we have scaled our resultant

cross section by a factor k = 1.28, with which we can obtain the same lower limit of the

Z ′
SSM boson mass as 4.05 TeV. We can see that our result with the factor of k = 1.28 (solid

line) is very consistent with the theoretical prediction (diagonal dashed line) presented in

Ref. [51]. This factor is used in our analysis of the Z ′ boson production process in the

following.

Now we calculate the cross section of the process pp → Z ′ +X → ℓ+ℓ− +X for various

values of αX , mZ′ and xH . For xH = 0 (the minimal B−L model limit), we show our results

in the right panel of Fig. 3, along with the plots in the ATLAS papers [51, 60]. The diagonal

solid lines from left to right correspond to αX = 10−5, 10−4.5, 10−4, 10−3.5, 10−3, 10−2.5,
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FIG. 4. Left panel: the cross section ratio as a function of the Z ′
SSM mass (solid line) with k = 1.61,

along with the CMS results in 2015 [62] and 2016 [52] from the combined di-electron and di-muon

channels. Right panel: the cross section ratios calculated for various values of αX with k = 1.61 for

xH = 0. The solid lines from left to right correspond to αX = 10−4.5, 10−4, 10−3.5, 10−3, 10−2.5,

10−2, and 10−1.75, respectively.

10−2, and 10−1.5. From the intersections of the lower horizontal curve (in red) and diagonal

solid lines, we can read off the lower bounds on the Z ′ boson mass for the corresponding

αX values. For example, mZ′ > 3.1 TeV for αX = 0.001. In this way, we have obtained the

upper bound on αX as a function of the Z ′ boson mass. For various values of xH we do the

same analysis and find the upper bound.

We apply the same strategy and compare our result for the Z ′
SSM model with the one by

the CMS collaboration [52, 62]. According to the CMS analysis, we integrate the differential

cross section in the range of 0.95 ≤ Mℓℓ/mZ′

SSM
≤ 1.05. In the CMS analysis, a limit has

been set on the ratio of the Z ′
SSM boson cross section to the Z/γ∗ cross section in a mass

window of 60 to 120 GeV, which is predicted to be 1928 pb. Our result is shown as a diagonal

solid line in the left panel of Fig. 4, along with the plot presented in Ref. [52]. The analysis

in this CMS paper leads to the lower limit of the Z ′
SSM boson mass as 4.0 TeV, which is

read off from the intersection point of the theoretical prediction (diagonal dashed line) and

the experimental cross section bound (lower horizontal solid curve (in red)). Here, we have

also shown the plot presented in Ref. [62] (upper horizontal solid curve (in red)). As in the

left panel of Fig. 3, we can see the dramatic improvement from the 2015 results [62] to the

2016 results [52]. In order to obtain the same lower mass limit of mZ′

SSM
≥ 4.0 TeV, we have

introduced a factor k = 1.61. We can see that our result (solid line) are very consistent with
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FIG. 5. The lower bound on mZ′/gX as a function of xH . We have employed the final LEP 2

data [55] at 95% confidence level.

the theoretical cross section (dashed line) presented in Ref. [52].

With the factor of k = 1.61, we have calculated the cross section of the process pp →
Z ′ +X → ℓ+ℓ− +X for various values of αX , mZ′ and xH . For the minimal B − L model

limit, we show our results in the right panel of Fig. 4, along with the plots in the CMS

papers [52, 62]. The diagonal solid lines from left to right correspond to αX = 10−4.5, 10−4,

10−3.5, 10−3, 10−2.5, 10−2, and 10−1.75. From the intersections of the lower horizontal curve

and the diagonal solid lines, we can read off the lower bounds on the Z ′ boson mass for

the corresponding αX values. For example, mZ′ > 3.8 TeV for αX = 10−2.5. In this way,

we have obtained the upper bound on αX as a function of the Z ′ boson mass. For various

values of xH we do the same analysis and find the upper bound.

The search for effective 4-Fermi interactions mediated by a Z ′ boson at the LEP leads to

a lower bound on mZ′/gX [54, 55]. Employing the limits from the final LEP 2 data [55] at

95% confidence level, we follow Ref. [63] and derive a lower bound on mZ′/gX as a function

of xH . Our result is shown in Fig. 5. For example, we find

mZ′

gX
≥ 6.94 TeV. (16)

for the minimal B − L model limit, which is consistent with the result found in Ref. [64].

We find that for any values of xH , the LEP constraints are always weaker than the LHC

Run-2 constraints for mZ′ ≤ 5 TeV.
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FIG. 6. Left panel: the upper bounds on αX as a function of mZ′ for xH = −1, 0 and +1 from top

to bottom for both of the solid and dashed lines, respectively. The solid lines denote the bounds

from the ATLAS results [51] while the dashed lines denote the bounds from the CMS results [52].

Right panel: the upper bounds on αX after combining the ATLAS and the CMS results shown in

the left panel. The solid lines correspond to the combined upper bounds for xH = −1, 0 and +1

from top to bottom, respectively. The perturbativity bounds of Eq. (17) for xH = −1, 0 and +1

are shown as the horizontal dashed-dotted lines from top to bottom, respectively.

As a theoretical constraint, we may impose an upper bound on the U(1)X gauge coupling

to avoid the Landau pole in its renormalization group evolution αX(µ) up to the Plank mass,

1/αX(MP l) > 0, where MP l = 1.22 × 1019 GeV. Let us define the gauge coupling αX used

in our analysis for the dark matter physics and LHC physics as the running gauge coupling

αX(µ) at µ = mZ′ . Employing the renormalization group equation at the one-loop level

with m1
N = m2

N = mΦ = mZ′ , for simplicity, we find

αX <
2π

bX ln
[

MPl

m
Z′

] , (17)

where bX = (72 + 64xH + 41x2
H)/6 is the beta function coefficient.

In Fig. 6 we show the LHC Run-2 bounds on αX as a function of mZ′ for xH = −1, 0 and

+1. In the left panel, the solid (dashed) lines from top to bottom denote the upper bounds

on αX for xH = −1, 0 and +1, respectively, obtained from the ATLAS results [51] (the CMS

results [52]). For mZ′ . 4 − 4.5 TeV, the CMS bounds are slightly more severe than those

from the ATALS results. Combining the ATLAS and the CMS results, we obtain the upper

bound shown in the right panel. The solid lines corresponds to the combined upper bounds
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FIG. 7. Allowed parameter region for the Z ′-portal RHN DM scenario. The top-left panel shows

the results for the minimal B − L model limit (xH = 0). The (black) solid line denotes the lower

bound on αX as a function of mZ′ to reproduce the observed DM relic abundance. The lower

dashed line (in red) shows the upper bound on αX obtained from the search results for Z ′ boson

resonance at the LHC. The shaded region is the final result after combining the cosmological and

the LHC constraints, leading to the lower mass bound of mZ′ & 3.6 TeV. For a comparison, we

have also shown the upper long-dashed line (in red) obtained in Ref. [40] by using the LHC results

in 2015. The LEP upper bound in Eq. (16) is depicted as the dotted line. We also show the

perturbativity bound on αX as the dashed-dotted line. The top-right, the bottom-left and the

bottom-right panels are same as the top-left panel, but xH = −1, −2 and +1, respectively.

for xH = −1, 0 and +1 from top to bottom, respectively. The perturbativity bounds of

Eq. (17) for xH = −1, 0 and +1 are shown as the horizontal dashed-dotted lines from top

to bottom, respectively.
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V. COMPLEMENTARITY BETWEEN THE COSMOLOGICAL AND THE LHC

CONSTRAINTS

Now we combine the constraints that we have obtained in the previous two sections. The

RHN DM abundance has led to the lower bound on the U(1)X gauge coupling for fixed

mZ′ and xH , while the upper limit on the production cross section of the Z ′ boson at the

LHC has derived the upper bound on the gauge coupling. Therefore, the two constraints

are complementary to each other and, once combined, the model parameter space is more

severely constrained.

We show the results for various xH values in Fig. 7. The top-left panel shows the results

for the minimal B−L model limit (xH = 0). The (black) solid line shows the lower bound on

αX as a function of mZ′ to reproduce the observed DM relic abundance. The lower dashed

line (in red) shows the upper bound on αX obtained from the search results for Z ′ boson

resonance by the ATLAS [51] and the CMS [52] collaborations. Here, the ATLAS and the

CMS bounds are combined as in the right panel on Fig. 6. The shaded region is the final

result after combining the cosmological and the LHC constraints, leading to the lower mass

bound of mZ′ & 3.6 TeV. For a comparison, we have also shown the upper long-dashed line

(in red), which is obtained in Ref. [40] from the ATLAS [60] and the CMS [62] results with

the 2015 data. We can see the dramatic improvement from the previous result of mZ′ & 2.5

TeV. The upper bound on αX from the LEP constraint in Eq. (16) is depicted as the dotted

line, which turns out to be weaker than the LHC bound. We also show the theoretical upper

bound on αX in Eq. (17) as the dashed-dotted line. If we impose this bound, it provides the

most severe upper bound for the range of 4.5 TeV . mZ′ . 5.0 TeV. In Fig. 7, the top-right,

the bottom-left and the bottom-right panels are same as the top-left panel, but xH = −1,

−2 and +1, respectively. We find that the largest allowed region is obtained for xH ≃ −1,

while no allowed region has been found for a xH value outside the range of −2.5 ≤ xH ≤ 1.

Finally, for a fixed mZ′ = 4 TeV, we show the allowed parameter region in Fig. 8. The

(black) solid line shows the lower bound on αX as a function of xH to reproduce the observed

DM relic abundance. As discussed in Sec. III, the minimum αX appears at xH ≃ −0.8. The

dashed line (in red) shows the upper bound on αX obtained from the combined ATLAS

and CMS constraints. The shaded region is the final result for the allowed parameter space

after combining the cosmological and the LHC constraints, leading to the allowed range of

17



-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
0.001

0.002

0.005

0.010

0.020

xH

Α
X

FIG. 8. Allowed parameter region for the Z ′-portal RHN DM scenario for mZ′ = 4 TeV. The

(black) solid line shows the cosmological lower bound on αX as a function of xH . The dashed line

(in red) shows the upper bound on αX obtained from the combined ATLAS and CMS bounds. The

shaded region is the final result for the allowed parameter space after combining the cosmological

and the LHC constraints, leading to the allowed range of −2.1 ≤ xH ≤ 0.3. The LEP bound

appears above the plot range. The dashed-dotted line denotes the theoretical upper bound on αX

in Eq. (17).

−2.1 ≤ xH ≤ 0.3. The LEP upper bound appears above the plot range. The dashed-dotted

line denotes the theoretical upper bound from the perturbativity of the running αX(µ) up

to the Planck scale.

The maximum value of αX to satisfy the LHC bound appears at xH ≃ −1. This means

that the cross section of the Z ′ boson production at the LHC exhibits its minimum at

xH ≃ −1. This fact can be roughly understood by using the narrow width approximation.

When the decay width of the Z ′ boson is very narrow, we approximate Eq. (14) as

σ̂(qq̄ → Z ′ → ℓ+ℓ−) ≃ π

1296
α2
XM

2
ℓℓ

[

π

mZ′ΓZ′

δ(M2
ℓℓ −m2

Z′)

]

Fqℓ(xH) ∝
Fqℓ(xH)

F (xH)
. (18)

Using the explicit formulas for F (xH) and Fqℓ(xH) given in Eqs. (10) and (15), we can verify

that the function Fqℓ(xH)/F (xH) exhibits a minimum at xH ≃ −1.
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VI. CONCLUSIONS

We have considered the minimal non-exotic U(1)X extension of the SM, which is free from

all the gauge and the gravitational anomalies in the presence of three right-handed neutrinos.

After the breaking of the U(1)X and the electroweak gauge symmetries, the SM neutrino

masses and flavor mixings are generated through the seesaw mechanism. We have extended

this model by introducing a Z2-parity and assigned an odd-parity to one RHN while even-

parities to all the other particles. Thanks to the parity, the Z2-odd RHN is stable and hence

the DM candidate. No extension of the minimal particle content is necessary to incorporate

a DM candidate into the model. With the other two RHNs, the seesaw mechanism works

to account for the neutrino oscillation data with one massless neutrino. In this model, the

RHN DM communicates with the SM particles through the Z ′ boson exchange. We have

investigated this Z ′-portal RHN DM scenario in this paper.

Phenomenology of the scenario is controlled by only four free parameters, namely, the

U(1)X gauge coupling (αX), the RHN DM mass (mDM), the Z ′ boson mass (mZ′) and the

U(1)X charge of the SM Higgs doublet field (xH). We have first considered the cosmological

constraint of the scenario. In order to reproduce the observed DM relic density, we have

found it necessary to enhance the DM annihilation cross section via Z ′ boson resonance.

Therefore, the RHN DM mass is always set to be mDM ≃ mZ′/2, and the number of the

free parameters is reduced to three. The three parameters are constrained by the DM relic

abundance. For example, the lower bound on αX has been obtained as a function of mZ′ for

a fixed xH . We have next considered the LHC constraints on the Z ′ boson production cross

section by employing the most recent results by the ATLAS and the CMS collaborations on

the search for a narrow resonance with the di-lepton final state. We have derived the lower

bound on αX as a function of mZ′ for a fixed xH . In constraining the model parameter

space, the cosmological and the LHC bounds are complementary with each other, and we

have narrowed the phenomenologically viable parameter region by combining them. For

example, we have found the lower limit of the Z ′ boson mass to be mZ′ & 2.7 TeV. In our

analysis, we have also taken into account other phenomenological constraints such as the

LEP bound on the U(1)X symmetry breaking scale and the perturbativity bound on the

running U(1)X gauge coupling below the Planck scale.
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