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I. INTRODUCTION

Over the last years, simulations of Quantum Chromodynamics (QCD) have advanced remarkably and are, nowadays,
being carried out at close-to-physical values for the parameters of the theory. Therefore, ab initio calculations of hadron
structure within lattice QCD yield results that can be connected to experiment more reliably than ever before. A
number of lattice groups are producing results on nucleon form factors and first moments of structure functions at or
close to the physical regime both in terms of pion mass as well as in terms of the continuum limit (see Ref. [1] and
references therein). At the same time properties of other hadrons that are difficult to study experimentally are being
pursued within lattice QCD. These include the axial charges of resonances such as the ∆ [2] or other nucleon excited
states [3], hyperons [4–6] and charm baryons [6]. For all these quantities, one needs the renormalization functions
in order to obtain the continuum predictions. Moments of generalized parton distributions (GPDs) are connected to
generalized form factors and provide detailed information on the internal structure of hadrons in terms of both the
longitudinal momentum fraction and the total momentum transfer squared. Beyond the information that the form
factors yield, such as size, magnetization and shape, GPDs encode additional information, relevant for experimental
investigations, such as the decomposition of the total hadron spin into angular momentum and spin carried by quarks
and gluons. In lattice QCD one calculates matrix elements of fermion operators between the relevant hadron states
and unless these operators correspond to a conserved current they must be renormalized in order to extract the
physical information one is after. In many cases, calculation of renormalization functions (RFs) can be carried out
using lattice perturbation theory, which proves to be extremely helpful in cases where there is a mixing with operators
of equal or lower dimension, such as the chromomagnetic operator [7, 8] and the operator measuring the glue of the
nucleon [9, 10]. However, perturbation theory is reliable for a limited range of values of the coupling constant, g, and
of the renormalization scale, µ. For this reason, a non-perturbative computation on the RFs is preferable.
In this work we will combine both perturbative and non-perturbative computations in order to obtain an improved

evaluation for the RFs of the quark field, ultra-local and one-derivative fermion operators within the twisted mass
formulation of Wilson lattice QCD [11]. In particular, we compute lattice artifacts to all orders in the lattice spacing,
a, using one-loop perturbation theory and we subtract them from the non-perturbative results for the RFs. This
subtraction suppresses lattice artifacts considerably depending on the operator under study and leads to a more
accurate determination of the renormalization functions. We show that lattice artifacts are non-negligible in most
cases, and are significantly larger than statistical errors.
We use the Rome-Southampton method (RI′ scheme) [12] to compute the renormalization coefficients of arbitrary

quark-antiquark operators non-perturbatively. In this approach the renormalization conditions are defined similarly
in perturbative and non-perturbative calculations. The RFs are obtained for different values of the renormalization
scale, and on several ensembles corresponding to different pion masses, so that the chiral limit can be safely taken.
Since the goal is to make contact with phenomenological and experimental studies, which almost exclusively refer to
operators renormalized in the MS scheme, one needs the renormalization functions leading from the bare operators on
the lattice to the MS operators in the continuum. The conversion to the MS and the evolution to a reference scale of
2 GeV is performed using three-loop perturbation theory. An alternative procedure that has been under investication
is the use of the RI/SMOM scheme [13] which has a non-exceptional, symmetric subtraction point. Such a scheme
is expected to have infrared improved kinematics with suppressed non-perturbative affects. However, the synergy of
our perturbative and non-perturbative procedures quaranties elimination of the lattice artifacts to a large extent.
The paper is organized as follows: Section II presents the lattice formulation and gives details on the gauge

configurations and the parameters of each ensemble. Section II includes the definition of the operators under study,
as well as the renormalization conditions for the RI′ scheme. The methodolody of the non-perturbative computation
is described in Section III. Section IV focuses on the perturbative procedure for the evaluation of the one-loop lattice
artifacts to all orders in the lattice spacing denoted by O(g2 a∞). This is a crucial component of this work, since the
subtraction of the O(g2 a∞) contributions from the non-perturbative estimates of the RFs leads to removal of the
bulk of lattice artifacts. The main part of the paper is Section V, which presents the results of this work, including
their chiral extrapolation, the conversion to the MS scheme and the evolution to a reference scale of 2 GeV, via the
intermediate Renormalization Group Invariant scheme. Particular focus is given to the O(g2 a∞)-corrected data for
the RFs, and we show, for selected cases, a comparison with the O(g2 a2)-corrected expressions. The final values of the
chirally extrapolated RFs at the limit (a p)2 → 0 are presented in Table III. In Section VII we give our conclusions.
For completeness we provide in Appendix A all necessary formulae for the conversion to the MS scheme, and in
Appendix B we present the O(g2 a∞)-corrected RFs for all the previous twisted mass fermions ensembles [14, 15],
recomputed in the framework of this work.
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II. FORMULATION

A. Simulation details

The gauge field configurations were generated by the European Twisted Mass Collaboration (ETMC) employing
the twisted mass fermion action. We use ensembles generated with Nf=4 light degenerate quarks [16] with the
twisted mass action, as well as Nf=2 degenerate quarks [17], in which a clover term is also included in the fermion
action with csw=1.57551. We note that the renormalization functions computed using the Nf=4 ensembles will be
applied to renormalize matrix elements computed using Nf=2+1+1 gauge field configurations [18]. We adopt the RI′

renormalization scheme, which is mass independent, and consequently the RFs are defined at zero quark mass. For
this reason, the Nf=2+1+1 ensembles cannot be used to compute the RFs due to the fact that the mass of the strange
and charm quarks are fixed to their physical values, and extrapolation to the chiral limit is not possible. Therefore,
in order to compute the renormalization functions needed to obtain physical observables, ETMC has generated Nf=4
ensembles at the same values of β so that the chiral limit can be taken. Details on the simulations can be found in
Refs. [17, 19].
Automatic O(a) improvement for twisted mass fermions may be achieved with maximal twist, by tuning the mPCAC

quark mass to zero. For the case of Nf=4 configurations, achieving maximal twist is difficult particularly if the lattice
spacing is not very fine, which is associated with a change in the slope of mPCAC with respect to 1/(2κ) [20]. In order
to tackle this issue, Monte Carlo simulations are performed in pairs not exactly at maximal twist but with opposite
values of mPCAC. As proposed in Ref. [21], by averaging the RFs computed on ensembles with opposite values of
mPCAC, O(a) improvement is achieved (see also Ref. [22] and references therein).
In the gluon sector we use, for all ensembles, the Iwasaki improved gauge action [23], which includes besides the

plaquette term U1×1
x,µ,ν also rectangular (1× 2) Wilson loops U1×2

x,µ,ν

Sg =
β

3

∑

x

(

b0

4
∑

µ,ν=1
µ<ν

{

1− ReTr(U1×1
x,µ,ν)

}

+ b1

4
∑

µ,ν=1
µ6=ν

{

1− ReTr(U1×2
x,µ,ν)

}

)

(1)

with β=2Nc/g
2
0, b1 = −0.331 and the (proper) normalization condition b0 = 1− 8b1 = 3.648.

The simulation details, the parameters and the values of the pion mass [24] of each ensemble used in this work are
given in Tables I - II, for the Nf=2 and Nf= 4 ensembles, respectively. The values of the lattice spacing have been
determined using the nucleon mass [18, 25].

aµ κ aMPS lattice size

β = 2.10, a = 0.093 fm, csw = 1.57551

0.0009 0.13729 0.0621(2) 483 × 96

0.0030 0.1373 0.110(4) 243 × 48

0.0060 0.1373 0.160(4) 243 × 48

TABLE I: Simulation details for the Nf=2 twisted mass ensembles with a clover term. The lattice spacing is determined using
the nuleon mass computed using the same Nf=2 ensembles.

The number of configurations in each ensemble varies between 10 to 50 separated by 20-100 trajectories, depend-
ing on the ensemble. The small size of these ensembles, is more than sufficient for use of the momentum source
method, which offers high statistical accuracy, easily below 0.5% even for 10 configurations (see Section III). In our
computation, we mostly use “democratic momenta” in the spatial direction, such as:

(a p) ≡ 2π

(

nt

Lt

+
1

2Lt

,
nx

Ls

,
nx

Ls

,
nx

Ls

)

, (2)

where Lt (Ls) is the temporal (spatial) extent of the lattice and nt and nx take values within the range:

nt ǫ [2, 20] , nx ǫ [1, 10] , (3)

depending on the lattice size of each ensemble, so that they correspond to momentum up to (a p)2∼7. To fill in some
gaps between the momentum ranges we also include a few non-democratic momenta of the form (nt, nx, nx, nx ± 1),
which show similar behaviour with neighbouring democratic momenta. Alternatively, one can consider using twisted
boundary conditions [26].



4

aµ κ aµsea
PCAC aMPS lattice size

β = 1.90, a = 0.0934 fm

0.0080 0.162689 +0.0275(4) 0.280(1) 243 × 48

0.163476 −0.0273(2) 0.227(1)

0.0080 0.162876 +0.0398(1) 0.279(2) 243 × 48

0.163206 −0.0390(1) 0.241(1)

β = 1.95, a = 0.082 fm

0.0020 0.160524 +0.0363(1) 243 × 48

0.161585 −0.0363(1)

0.0085 0.160826 +0.0191(2) 0.277(2) 243 × 48

0.161229 −0.0209(2) 0.259(1)

0.0180 0.160826 +0.0163(2) 0.317(1) 243 × 48

0.161229 −0.0160(2) 0.292(1)

β = 2.10, a = 0.064 fm

0.0030 0.156042 +0.0042(1) 0.127(2) 323 × 64

0.156157 −0.0040(1) 0.129(3)

0.0046 0.156017 +0.0056(1) 0.150(2) 323 × 64

0.156209 −0.0059(1) 0.160(4)

0.0064 0.155983 +0.0069(1) 0.171(1) 323 × 64

0.156250 −0.0068(1) 0.180(4)

0.0078 0.155949 +0.0082(1) 0.188(1) 323 × 64

0.156291 −0.0082(1) 0.191(3)

TABLE II: Simulation details for the Nf=4 ensembles of twisted mass fermions. The lattice spacing is determined using the
nucleon mass computed with Nf=2+1+1 twisted mass configurations at the same values of β.

B. Definition of operators and renormalization prescription

In this work we consider ultra-local fermion operators:

Oa
S = χ̄τaχ =

{

ψ̄τaψ a = 1, 2

−iψ̄γ51ψ a = 3
(4)

Oa
P = χ̄γ5τ

aχ =

{

ψ̄γ5τ
aψ a = 1, 2

−iψ̄1ψ a = 3
(5)

Oa
V = χ̄γµτ

aχ =











ψ̄γ5γµτ
2ψ a = 1

−ψ̄γ5γµτ
1ψ a = 2

ψ̄γµτ
3ψ a = 3

(6)

Oa
A = χ̄γ5γµτ

aχ =











ψ̄γµτ
2ψ a = 1

−ψ̄γµτ
1ψ a = 2

ψ̄γ5γµτ
3ψ a = 3

(7)

Oa
T = χ̄σµντ

aχ =

{

ψ̄σµντ
aψ a = 1, 2

−iψ̄γ5σµν1ψ a = 3
(8)

Oa
Tp = χ̄γ5σµντ

aχ =

{

ψ̄γ5σµντ
aψ a = 1, 2

−iψ̄σµν1ψ a = 3
(9)
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and the following one-derivative fermion operators:

O
{µ ν}
DV = χγ{µ

←→
D ν}τ

aχ =











ψγ5γ{µ
←→
D ν}τ

2ψ a = 1

−ψγ5γ{µ
←→
D ν}τ

1ψ a = 2

ψγ{µ
←→
D ν}τ

3ψ a = 3

(10)

O
{µ ν}
DA = χγ5γ{µ

←→
D ν}τ

aχ =











ψγ{µ
←→
D ν}τ

2ψ a = 1

−ψγ{µ
←→
D ν}τ

1ψ a = 2

ψγ5γ{µ
←→
D ν}τ

3ψ a = 3

(11)

O
µ {ν ρ}
DT = χγ5σµ{ν

←→
D ρ}τ

aχ =

{

ψγ5σµ{ν
←→
D ρ}τ

aψ a = 1, 2

−i ψσµ{ν
←→
D ρ}1ψ a = 3

, (12)

all given in the twisted and physical basis as shown above. The covariant derivative is defined as:

↔

D =
1

2

[ (
−→
∇µ +

−→
∇∗

µ)

2
−

(
←−
∇µ +

←−
∇∗

µ)

2

]

(13)

where

−→
∇µψ(x) =

1

a

[

Uµ(x)ψ(x + aµ̂)− ψ(x)

]

and
−→
∇∗

µψ(x) = −
1

a

[

U †
µ(x− aµ̂)ψ(x − aµ̂)− ψ(x)

]

(14)

and

ψ(x)
←−
∇µ =

1

a

[

ψ(x+ aµ̂)U †
µ(x)− ψ(x)

]

and ψ(x)
←−
∇∗

µ = −
1

a

[

ψ(x− aµ̂)Uµ(x− aµ̂)− ψ(x)

]

. (15)

For completeness we include in the list Oa
Tp even though its components are related to those of Oa

T . We denote the
corresponding RFs of the ultra-local fermion bilinears by Za

S , Z
a
P, Z

a
V, Z

a
A, Z

a
T, Z

a
Tp. In a massless renormalization

scheme, such as the RI′, the RFs are defined in the chiral limit, where iso-spin symmetry is recovered. Hence, the
renormalization functions become independent of the isospin index a = 1, 2, 3 and we drop the a index from here on.
Still note that, for instance, the physical ψ̄γµτ

1ψ is renormalized with ZA while ψ̄γµτ
3ψ needs ZV, which differ from

each other even in the chiral limit.
The one-derivative operators are symmetrized over two Lorentz indices and are made traceless:

O{σ τ} ≡
1

2

(

Oσ τ +Oτ σ
)

−
1

4
δσ τ

∑

λ

Oλλ , (16)

which avoids mixing with lower dimension operators. The corresponding RFs of the one-derivative operators are de-
noted by Za

DV, Z
a
DA, Z

a
DT . The one-derivative operators fall into different irreducible representations of the hypercubic

group, depending on the choice of indices. Hence, we distinguish among them according to the following

ODV1 = ODV with µ = ν (17)

ODV2 = ODV with µ 6= ν (18)

ODA1 = ODA with µ = ν (19)

ODA2 = ODA with µ 6= ν (20)

ODT1 = ODT with µ 6= ν = ρ (21)

ODT2 = ODT with µ 6= ν 6= ρ 6= µ . (22)

Thus, ZDV1 will be different from ZDV2, but renormalized matrix elements of the two corresponding operators will
be components of the same tensor in the continuum limit.

The renormalization functions are computed in the RI′ scheme at different renormalization scales, µ. The RFs are
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determined by imposing the following conditions:

Zq =
1

12
Tr
[

(SL(p))−1 SBorn(p)
]

∣

∣

∣

p2=µ2

(23)

Z−1
q ZO

1

12
Tr
[

ΓL(p) ΓBorn−1(p)
]

∣

∣

∣

p2=µ2

= 1 , (24)

where the momentum p is set to the renormalization scale µ. The trace is taken over spin and color indices, SBorn is
the tree-level result for the propagator, and ΓBorn is the tree-level expressions for the fermion operators, that is

ΓBorn(p) = 11, γ5, γµ, γ5 γµ, γ5 σµν , σµν (25)

for the ultra-local bilinears, and

O
{µν}
DV =

1

2

[

Ψ γµ
↔

D ν Ψ+Ψ γν
↔

D µ Ψ
]

−
1

4
δµν

∑

τ

Ψ γτ
↔

D τ Ψ (26)

O
{µν}
DA =

1

2

[

Ψ γ5γµ
↔

D ν Ψ+Ψ γ5γν
↔

D µ Ψ
]

−
1

4
δµν

∑

τ

Ψ γ5γτ
↔

D τ Ψ (27)

O
µ{νρ}
DT =

1

2

[

Ψ γ5σµν
↔

D ρ Ψ+Ψ γ5σµρ
↔

D ν Ψ
]

−
1

4
δνρ
∑

τ

Ψ γ5σµτ
↔

D τ Ψ (28)

for the one-derivative operators. The presence of SBorn and ΓBorn ensure that Zq = 1, ZO = 1 when the gauge field

is set to unity. The RI′ values for the RFs are translated to the MS scheme at µ =2 GeV using an intermediate
Renormalization Group Invariant scheme.

III. NON-PERTURBATIVE CALCULATION

For the non-perturbative evaluation we follow the same procedure as our previous work [14, 15], and here we
summarize the important steps of the calculation. We first write the operators in the form

O(z) =
∑

z′

u(z)J (z, z′)d(z′) , (29)

where u and d denote quark fields in the physical basis and J denotes the operator we are interested in. For example
J (z, z′) = δz,z′γµ corresponds to the local vector current. For each operator we define a bare vertex function given
by

G(p) =
a12

V

∑

x,y,z,z′

e−ip(x−y)〈u(x)u(z)J (z, z′)d(z′)d(y)〉 , (30)

where p is a momentum allowed by the boundary conditions, V is the lattice volume, and the gauge average, denoted
by the brackets, is performed over gauge-fixed configurations. The Dirac and color indices of G(p) are suppressed for
simplicity.
We employ the approach, introduced in Ref. [27], which uses directly Eq. (30) without employing translation

invariance 1, and one must now use a source that is momentum dependent but can couple to any operator. For
twisted mass fermions, we use the symmetry Su(x, y) = γ5S

d†(y, x)γ5 between the u− and d−quark propagators,
and therefore, with a single inversion one can extract the vertex function for a single momentum. The advantage of
the momentum source approach is a high statistical accuracy and the evaluation of the vertex for any operator at no
significant additional computational cost. The drawback is that we need a new inversion for each momentum. We

1 In an alternative approach that relies on translation invariance, one may shift the coordinates of the correlators in Eq. (30) to position
z = 0 [22].
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fix to Landau gauge using a stochastic over-relaxation algorithm [28], converging to a gauge transformation which
minimizes the functional

F =
∑

x,µ

Re tr
[

Uµ(x) + U †
µ(x− µ̂)

]

. (31)

The propagator in momentum space, in the physical basis, is defined by

Su(p) =
a8

V

∑

x,y

e−ip(x−y) 〈u(x)u(y)〉 , Sd(p) =
a8

V

∑

x,y

e−ip(x−y)
〈

d(x)d(y)
〉

, (32)

and an amputated vertex function is given by

Γ(p) = (Su(p))−1G(p) (Sd(p))−1 . (33)

Finally, the corresponding renormalized quantities are assigned the values

SR(p) = ZqS(p) , ΓR(p) = Z−1
q ZOΓ(p) . (34)

In the twisted basis at maximal twist, Eq. (30) takes the form

G(p) =
a12

4V

∑

x,y,z,z′

e−ip(x−y)
〈

(1+ iγ5)u(x)u(z)(1+ iγ5)J (z, z
′)(1− iγ5)d(z

′) d(y)(1− iγ5)
〉

, (35)

which simplifies when using the relation between the u- and d-quark propagators, that is Su(x, z) = γ5S
d†(z, x)γ5.

After integration over the fermion fields it becomes

G(p) = −
a12

4V

∑

z, z′

〈

(1− iγ5)S̆d
†
(z, p)(1− iγ5)J (z, z

′)(1− iγ5)S̆
d(z′, p)(1− iγ5)

〉G

, (36)

where 〈...〉G denotes the integration over gluon fields, and S̆(z, p) =
∑

y e
ipyS(z, y) is the Fourier transformed propa-

gator with respect to one of its arguments, on a particular gauge background. It can be obtained by inversion using
the Fourier source

baα(x) = eipxδαβδab , (37)

for all Dirac α and color a indices. The propagators in the physical basis given in Eq. (32) can be obtained from

Sd(p) =
1

4

∑

z

e−ipz〈(1− iγ5)S̆
d(z, p)(1− iγ5)〉

G

Su(p) = −
1

4

∑

z

e+ipz〈(1− iγ5)S̆d
†
(z, p)(1− iγ5)〉

G , (38)

which only need 12 inversions (instead of 24) despite the occurrence of both u and d quarks in the original expression.
We evaluate Eq. (35) and Eq. (38) for each momentum separately employing Fourier sources over a range of (a p)2

for which perturbative results can be trusted and finite a corrections are reasonably small. The amputated vertex
functions of Eq. (33) computed for each operator, as well as the inverse quark propagator, enter the renormalization
prescription of Eqs. (23) - (24).

IV. ONE-LOOP CALCULATION OF ARTIFACTS TO ALL ORDERS IN THE LATTICE SPACING

An improvement over previous work [14, 15], where we evaluated the O(g2 a2) perturbative artifacts, is the com-
putation of the one-loop perturbative artifacts to all orders in the lattice spacing, O(g2 a∞). These artifacts are
unavoidably present in the non-perturbative vertex functions of the fermion propagator and fermion operators under
study. In our previous work [14, 15], the O(g2 a2) perturbative artifacts were subtracted from the non-perturbative
RFs, leading to improved estimates. However, for large values of the scale (a p)2, the O(g2 a2) terms tend to increase
becoming, thus, unreliable.
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As will be demonstrated by our results, the lattice artifacts depend on the operator under study, as well as on several
parameters such as the coupling constant, the fermion and gluon action parameters, the lattice size, the lattice spacing
and the renormalization scale. Thus, a proper subtraction of the finite lattice size effects from the non-perturbative
values requires a separate perturbative evaluation of the O(g2 a∞) terms for each ensemble and each value of the four-
momentum, in order to match our non-perturbative computation. In other words, the O(g2 a∞) contributions that are
subtracted from each black circle point shown in the plots of Section V requires a separate perturbative computation.
Unlike the case of the O(g2 a2)-subtraction used in our previous work for the renormalization functions [14, 15, 29],
the O(g2 a∞) contributions cannot be given in a closed form.

There are six Feynman diagrams that enter the perturbative computation: Two for the fermion propagator and four
for the fermion operators, as shown in Figs. 1 - 2. The operator insersion is represented by a cross. In this work we
restrict ourselves to forward matrix elements (i.e. 2-point Green’s functions, zero momentum operator insertions). The
Feynman diagrams are evaluated using our symbolic package in Mathematica, and details on the algebraic operations
can be found in Ref. [29].

1 2

FIG. 1: One-loop diagrams contributing to the fermion propagator. Wavy (solid) lines represent gluons (fermions).

FIG. 2: One-loop diagrams contributing to the computation of the fermion operators. A wavy (solid) line represents gluons
(fermions). A cross denotes an insertion of the operator under study. In the case of the ultra-local operators, only the upper
right diagram contributes due to the absense of gluons in the vertices.

As a general strategy in our perturbative computations for the RFs we employ a variety of fermionic and gluonic
actions, in order to obtain results that are applicable to simulations performed by various research groups. In this
paper, however, we only present the results for the twisted mass action including a clover term. The latter is kept
as a free parameter and can be sent to zero as required for the Nf=4 ensembles presented in Table II. Although
the clover parameter is treated as free throughout the perturbative computation, for our final estimates in the Nf=2
ensembles it is set to its tree-level value suggested by one-loop perturbation theory, csw = 1.
The computation of the O(g2 a∞) terms was first employed by the QCDSF Collaboration [30, 31] for Clover fermions

and Wilson gluons, and was later generalized to include more complicated fermion and gluon actions [32]. The main
difference between the computation of the O(g2 a∞) and the O(g2 a2) terms, is that the latter are extracted by
performing a Taylor expansion with respect to a. The O(g2 a∞) terms, however, cannot be given in a closed form
in terms of a (since it is included in the propagators) and a separate calculation is performed for each value of the
momentum, (a p)2. Of course, from the resulting expression one must omit the O(g2 a0) terms since we are interested
only in the lattice artifacts. Note that, in most cases, the latter contributions include logarithms (O(g2 log(a)) ),
which are also subtracted. In a nutshell, the lattice artifacts to all orders in the lattice spacing are computed in the
procedure summarized in the following expressions, in which the O(g2 a0) terms computed in Ref. [29], are omitted:

DZq(a, p) = (Vq(a, p)− Vq(0, p))
∣

∣

∣

p2=µ2

(39)

DZO(a, p) =

(

Vq(a, p)

VO(a, p)
−
Vq(0, p)

VO(0, p)

)

∣

∣

∣

p2=µ2

, (40)
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where

Vq(a, p) =
1

12
Tr
[

(SL(a, p))−1 SBorn(p)
]

, VO(a, p) =
1

12
Tr
[

ΓL(a, p) ΓBorn−1(p)
]

(41)

and SL(a, p), ΓL(a, p) are the results up to one loop and to all orders in a. Finally, the perturbative O(g2a∞)-terms
are subtracted form the non-perturbative values

ZRI′,sub
q (p, a) = ZRI′

q (p, a)−DZq(a, p) (42)

ZRI′,sub
O (p, a) = ZRI′

O (p, a)−DZO(a, p) . (43)

In Figs. 3 - 8 we plot DZq(a, p)/g
2 and DZO(a, p)/g

2 for the ultra-local bilinears corresponding to the Iwasaki
improved action using a lattice size of 243×48 and several values of (a p)2 within the range of 0-4. For comparison we
also include the corresponding O(g2 a0)/g2 terms computed in Ref. [29]. Since a clover term is included in the Nf=2
ensembles, we consider both values: csw = 0 (left figures) and csw = 1 (right figures). An immediate observation
is that momenta with the same (a p)2 lead to different lattice artifacts, which is expected, since beyond O(a0) these
terms depend not only on the length, but also on the direction of the four-vector p, due to the presence of Lorentz
noninvariant structures, such as:

a2
p4

p2
≡

∑

ρ a
4p4ρ

∑

ρ a
2p2ρ

, (44)

appearing to O(g2a2). It is also interesting to see that the lattice artifacts depend on the operator under study in
a non-predictible way since in some cases (Zq, ZV, ZT) the inclusion of a clover term diminishes the artifacts, while
in another (ZS) it enhances them. For the case of ZA and ZP the lattice artifacts for csw = 0, 1 are comparable. As
expected, comparison between O(g2 a2) and O(g2 a∞) for small values of the momenta ((a p)2 ≪ 1) reveals a very
good agreement, since the O(g2 a2) terms are the leading contributions of the lattice artifacts. For larger momenta
the difference between O(g2 a2) and O(g2 a∞) is more apparent, as will be discussed in Section V.
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FIG. 3: DZq(a, p)/g
2 as a function of (a p)2 with the Iwasaki gluon action and a 243 × 48 lattice for csw = 0 (left) and csw = 1

(right).
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FIG. 4: DZS(a, p)/g
2 as a function of (a p)2. The notation is the same as for Fig. 3.
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FIG. 5: DZP (a, p)/g
2 as a function of (a p)2. The notation is the same as for Fig. 3.
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FIG. 6: DZV (a, p)/g2 as a function of (a p)2. The notation is the same as for Fig. 3.
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FIG. 7: DZA(a, p)/g
2 as a function of (a p)2. The notation is the same as for Fig. 3.
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FIG. 8: DZT (a, p)/g
2 as a function of (a p)2. The notation is the same as for Fig. 3.

V. NON-PERTURBATIVE EVALUATION

A. Chiral extrapolation

In order to obtain the renormalization functions in the chiral limit we perform an extrapolation using a linear fit
with respect to m2

π. We find that the RFs obtained in this work have a very mild dependence on the pion mass for all
ensembles. In fact, with the exception of a few small values of (a p)2, there is no visible pion mass dependence within
the small statistical errors. Allowing a slope and performing a linear extrapolation with respect to m2

π the data yield
a slope consistent with zero. Figs. 9 - 12 demonstrate the pion mass dependence of the RFs using the Nf=2 and
Nf=4 ensembles at β=2.10. The statistical errors are too small to be visible. Figs. 9 - 11 provide a more general
picture of the mπ-dependence by displaying the RFs as a function of the renormalization scale (µ2 = p2), while the
two plots of Fig. 12 show the data at (a p)2 = 3 as a function of the twisted mass a µsea. These plots show clearly
that the slope of the fit is consistent with zero.
In this discussion the renormalization function of the pseudoscalar density, ZP, has been excluded since there is

pion pole contamination that needs to be taken into account. Thus, a polynomial fit with respect to the pion mass is
not suitable. An approriate chiral extrapolation of ZP and the ratio ZP/ZS is discussed in the following Subsection.
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FIG. 9: Pion mass dependence of Zq and the RFs of the ultra-local bilinears for Nf=2 at β=2.10 as a function of the
renormalization scale.
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FIG. 10: Pion mass dependence of the RFs of the one-derivative vector and axial operators for Nf=2 at β=2.10 as a function
of the renormalization scale.
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FIG. 11: Pion mass dependence of the RFs of the one-derivative tensor operator for Nf=2 at β=2.10 as a function of the
renormalization scale.
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FIG. 12: Pion mass dependence of Zq and the RFs of the ultra-local bilinears (left plot) and the one-derivative operators (right
plot) for Nf=4 at β=2.10 as a function of aµsea at (a p)2 = 3.

B. Pion-pole subtraction of ZP and ZP/ZS

The correlation functions of the pseudoscalar operator have pion-pole contamination which needs to be treated
carefully. In order to subtract the pole contribution we use a 2- and 3-parameter Ansatz for the pseudoscalar
amputated vertex function, ΓP , of the form:

F
(2)
P = aP +

cP
m2

π

, (45)

F
(3)
P = aP + bP m

2
π +

cP
m2

π

. (46)

The fit parameters depend on both the momentum and the value of β (i.e. aP ≡ aP (β, p)), and thus we estimate
them separately on each value of p and β. Similar to the case of SLiNC fermions we find that the coefficient bP is very
small and competes with cP in the 3-parameter fit. In addition, they both carry large statistical errors, which result
in a large error in the final determination of ZP once the term cP /m

2
π is subtracted from the pseudoscalar matrix

elements:

Γsub
P = ΓP −

cP
m2

π

. (47)

A way around this problem is to employ the 2-parameter fit of Eq. (45) directly to the ratio:

VP (p, mπ) =
ΓP (p, mπ)

Zq(p, mπ)C
RI′,MS
P (p, 2GeV)

, (48)

where CRI′,MS
P (p, 2GeV) is the conversion to the MS scheme and the evolution to a scale of 2 GeV. The procedure we

actually follow is to apply the 2-parameter fit (given in Eq. (45)) to the ratio of Eq. (48). This fit allows us to obtain

directly ZMS
P in the MS-scheme and at the chiral limit from the extracted parameter aP via: ZMS

P = 1/aP .
2 from

1/aP . In a similar manner, we obtain directly ZS/ZP from the pion mass independent coefficient, aP , computed by
applying Eq. (45)

VSP (p,mπ) =
ΓP (p,mπ)

ΓS(p,mπ)
. (49)

As an example of the pion pole contamination and its subtraction we show, in Fig. 13, VP (p, mπ) and VSP (p, mπ)
using the Nf=2 ensembles at β=2.10 for each value of the pion mass before and after the sutraction of the pion pole

term, cP (p2)
m2

π
. Fig. 14 is similar to Fig. 13 for the Nf=4 and β=2.10 ensembles. The range of the y-axis is the same

for the unsubtracted and subtracted cases in order to see clearly the effectiveness of the pion-pole subtraction.

2 Alternative fit functions and their stability are discussed in Ref. [32].
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FIG. 13: Upper panels: Eq. (48) (left plot) and Eq. (49) (right plot) for Nf=2 at β=2.10 as a function of (a p)2 for each value
of the pion mass before the pole subtraction. Lower panels: Eq. (48) (left plot) and Eq. (49) (right plot) for Nf=2 at β=2.10
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C. MS-scheme

In order to compare lattice values to experimental results one must convert to a universal renormalization scheme
and use a reference renormalization scale. Typically one chooses the MS-scheme at a scale µ of 2 GeV. For the
conversion from the RI′ to the MS scheme we use the intermediate Renormalization Group Invariant (RGI) scheme,
which is scale independent and relates the RI′ and MS results are follows:

ZRGI
O = ZRI′

O (µ)∆ZRI′

O (µ) = ZMS
O (2GeV)∆ZMS

O (2GeV) . (50)

The conversion factor can be read from the above relation:

ZMS
O (2GeV) ≡ CRI′,MS

O (µ, 2GeV)ZRI′

O (µ) , CRI′,MS
O (µ, 2GeV) =

∆ZRI′

O (µ)

∆ZMS
O (2GeV)

, (51)

where the scheme dependent quantity ∆ZS
O(µ) can be expressed in terms of the β-function and the anomalous

dimension, γSO ≡ γ
S of the operator O (for definitions see Appendix A):

∆ZS
O(µ) =

(

2β0
gS(µ)

2

16π2

)−
γ0
2β0

exp

{

∫ gS (µ)

0

dg′
(

γS(g′)

βS(g′)
+

γ0
β0 g′

)

}

. (52)

We employ the 3-loop approximation which simplifies to:

∆ZS
O(µ) =

(

2β0
gS(µ)

2

16π2

)−
γ0
2β0

(

1 +
gS(µ)2

16π2

β1γ0 − β0γ
S
1

2β2
0

+ (53)

gS(µ)
4

(16π2)2
−2β3

0γ
S
2 + β2

0(γ
S
1 (2β1 + γS1 ) + 2β2γ0)− 2β0β1γ0(β1 + γS1 ) + β2

1γ
2
0

8β4
0

)

,

where the coupling constant, gS(µ), is needed in both the MS and RI′ schemes; their expressions coincide to three
loops and read [33] 3:

gMS,RI′(µ)
2

16π2

∣

∣

∣

3−loop
=

1

β0 L
−
β1
β3
0

logL

L2
+

1

β5
0

β2
1 log

2 L− β2
1 logL+ β2β0 − β

2
1

L3
) , L = log

µ2

Λ2
MS

. (54)

For ΛMS we employ the value 315 MeV and 296 MeV for Nf=2 [34, 35] and Nf=4 [36], respectively.

VI. RESULTS

In this section, we present our results for the renormalization functions in the MS scheme at a scale of 2 GeV. The
final data correspond to the non-perturbative values after subtracting the lattice artifacts to O(g2 a∞). Although,
with the exception of ZP, the dependence of the RFs on the pion mass is not significant, we nevertheless perform
a chiral extrapolation of the RFs using data at the same β and Nf ensembles obtained for different pion masses as
discussed in subsection VA.
As can be seen in Figs. 16 - 23 the O(g2 a∞)-subtracted RFs (magenta diamond points) have a very mild dependence

on (ap)2 which is almost linear, and it is removed by extrapolating to zero, using the Ansatz

ZO(a p) = Z
(0)
O + Z

(1)
O · (a p)2 , (55)

where Z
(0)
O corresponds to our final value on the renormalization functions. To extract the RFs reliably one needs to

consider momenta in the range ΛQCD < p < 1/a. We relax the upper bound to be ∼ 4/a to 7/a, which is justified
by the weak dependence of our results on (a p)2. Therefore, for each value of β we consider momenta (a p)2 ≥ 2 for
which perturbation theory is trustworthy and lattice artifacts are still small enough.

3 Sign differences in some terms of Eq. (54) compared to Ref. [33] are related to alternative definition of the β-function
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From our analysis we find that the data for the RFs depend not only on (a p)2, but also on the directions of the
momentum. Noting that, for democratic momenta (in all directions, not only spatial) the value of p4/p22 equals
0.25, we find empirically that data produced on momenta with the ratio of Eq. (44), p4/p22, being > 0.4, have a
behavior that deviates from the general (a p)2 curve. The choice of such a momentum ratio as a criterion is justified
by the fact that such Lorentz non-invariant contributions appear in the perturbative computation at higher orders in
the lattice spacing (e.g., p4/p2 for O(a2)). Thus, high values of this ratio are an indication of large lattice artifacts
from higher loops. As an example, we demonstrate ZA in Fig. 15 including the data obtained at momenta satisfying
P ≡ p4/p2 > 0.4. These are shown by the filled blue circles and filled green diamonds corresponding to unsubtracted
and O(g2 a∞)-subtracted data, respectively. As can be seen, the filled symbols have different behavior than the open
symbols. Although the subtraction of one-loop lattice artifacts reduces the difference, the higher order artifacts are
not negligible. The data for these momenta have been excluded from the final analysis of all RFs. A similar study is
presented in Refs. [14, 15].
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FIG. 15: ZA as a function of the renormalization scale. Filled blue circles and filled green diamonds correspond to unsubtracted
and O(g2 a∞)-subtracted data using momenta with P ≡ p4/p2 > 0.4.

While statistical errors are very small, a careful investigation of systematic errors is required. A small systematic
effect comes from the asymmetry of our lattices, both because they are larger in their time extent and because of the
antiperiodic boundary conditions in the time direction. To address this issue, we average over the different components
corresponding to the same RFs, for instance ZA is defined as:

ZA ≡
1

4

(

Z0
A + Z1

A + Z3
A + Z4

A

)

(56)

where the upper index indicates the Dirac matrix used as current insertion (Zi
A corresponds to insertion γ5 γi). In

addition, remaining systematics are automatically removed by the subtraction of the O(g2 a∞) terms. The largest
systematic error comes from the choice of the momentum range to use for the extrapolation to a2p2 = 0. One way
to estimate this systematic error is to vary the lower or/and upper range used in the fit. Another approach is to fix
a range and then eliminate a given momentum in the fit range and refit. The spread of the results about the mean
gives an estimate of the systematic error. In the final results we give as systematic error the largest one from using
these two procedures, which is the one obtained by modifying the fit range.
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FIG. 16: ZA (upper) and ZV (lower) as a function of the renormalization scale. The arguments a, b of Z(a, b) correspond to
Nf and β, respectively. From top to bottom, the data correspond to increasing the lattice spacing. Non-perturbative values
are shown with the black circles, O(g2 a2)-subtracted with the green crosses and O(g2 a∞)-subtracted with magenta diamonds.
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Fig. 16 corroborates that the magnitude of the lattice artifacts depends not only on the action parameters, but
also on the operator under study, as can be seen for ZA and ZV shown for different values of the coupling constant.
Since both ZV and ZA are scale independent, one expects a flat behavior as a function of the renormalization scale,
(a µ)2 = (a p)2. However, the non-perturbative data before subtraction of the lattice artifacts is carried out, exhibit a
non-zero slope, which becomes negligible once the O(g2 a∞) terms are subtracted. For a proper comparison, we have
kept the y-axis the same as the lattice spacing is increased. In the case of ZA we find that the O(g2 a2) terms computed
for all Nf=4 gauge configurations, despite being the leading contributions, underestimate the total one-loop lattice
artifacts, O(g2 a∞). Our analysis shows non-negligible lattice artifacts between 3 − 6% for momenta in the range
[2,4]. Nevertheless, for the Nf=2 case, the total one-loop lattice artifacts are very small (0.1 − 2% for (a p)2 : [2, 4])
which may be attributed to the inclusion of the clover term. One also observes that the O(g2 a2) terms are no longer
reliable, possibly due to the fact that they are polynomial functions of csw (2−8% for the aforementioned momentum
range). This fact is an evidence that the addition of the clover term in the twisted mass action suppresses lattice
artifacts. This is also observed for other quantities besides renormalization functions, such as in the isospin splitting
in the ∆-system [37, 38].
For ZV, on the other hand, we find that for all ensembles analyzed in this work, there are negligible one-loop

artifacts beyond O(g2 a2), as can be seen in the lower panel of Fig. 16. From our study we find that lattice artifacs
are current-dependent and can be identified a posteriori, from the perturbative computation. This is also confirmed
by examining the results using the Nf=2 ensembles with the clover term shown in Figs. 17 - 23, where for ZP, the
O(g2 a2) and O(g2 a∞) are almost equivalent, especially for (a p)2 < 5; This is not the case for the other RFs shown in
Figs. 17 - 23. The Nf=2 are the most recent gauge configurations produced by ETMC, which are currently being used
for hadron structure studies and thus the values of the RFs are needed to renormalize the hadron observables [39].
Figs. 17 -23 correspond to the RFs upon conversion to the MS scheme at 2 GeV and are plotted against the initial
renormalization scale, (a p)2.
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FIG. 17: Renormalization of the fermion field for Nf=2 twisted mass clover-improved fermions. The data correspond to the
MS scheme at a reference scale of 2 GeV and are plotted against the initial renormalization scale, (aµ)2 = (a p)2. Black circles
(magenta diamonds, green crossed) denote the unsubtracted (O(g2 a∞)-subtracted, O(g2 a2)-subtracted) non-perturbative data.
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FIG. 18: The renormalization function of the scalar operator. The notation is the same as that of Fig. 17.
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FIG. 19: ZP after removal of the pion-pole term. The notation is the same as that of Fig. 17.
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FIG. 20: The ratio ZP/ZS after removal of the pion-pole term. The notation is the same as that of Fig. 17.
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FIG. 21: The renormalization function of the tensor operator. The notation is the same as that of Fig. 17.
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FIG. 22: The renormalization functions of the one-derivative vector and axial operators. The notation is the same as that of
Fig. 17.
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FIG. 23: The renormalization functions of the one-derivative tensor operators. The notation is the same as that of Fig. 17.

Comparing, for instance, ZV and ZA computed using the Nf=4 and Nf=2 ensembles (see Fig. 16), we find that the
O(g2 a∞) lattice artifacts for the Nf=2 ensembles are smaller and lead to good quality plateaus. The extrapolation
to (a p)2 → 0 is performed using the O(g2 a∞)-subtracted data and for momenta with (a p)2 > 2 which is the range
of interest. The data display a very small slope thus leading to a good determination of the continuum value. For ZP

and ZP/ZS there is a stronger dependence on (a p)2 up to (a p)2 ∼ 2− 3. Thus, for ZP and ZP/ZS we use a different
interval for the (a p)2 → 0 fit. For instance, in the Nf=2 ensembles plotted here, we fit in the range [4,7] for ZP and
ZP/ZS, and in the range [2,7] for the remaining RFs. The systematic errors due to the choice of the fit, are computed

by taking the difference in the values of Z
(0)
O (see Eq. (55)) extracted from these ranges and the range [3,5].

In Table III we give our final chiral extrapolated values of Z
(0)
O from O(g2 a∞)-subtracted data (e.g. for Nf=2 the
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filled diamond point in Figs. 16 - 23). ZP and ZP/ZS are obtained only at β=2.10 (for both Nf=2, 4) where we have
enough ensembles for the pion-pole subtraction; the corresponding results are presented in Table IV. Some of these
RFs have been computed in Ref. [22]; the small differences observed between our results and those of Ref. [22] can be
attributed to two factors: a) the different method for calculating non-perturbatively the vertex functions (see footnote
1) and b) the different analysis procedure since the authors use the subtraction of O(g2boosted a

2) lattice artifacts, which
are, in general, larger than the O(g2 a∞) terms, leading, in some cases, to lower estimates. We have checked that
if we apply the O(g2boosted a

2)-subtraction to our non-perturbative estimates, we are in agreement with the results of
Ref. [22]. Since the difference between our approach and that of Ref. [22] is the treatment of lattice artifacts, both
sets of results should agree in the continuum limit, a→ 0. This is indeed the case, as demonstrated in Fig. 24 for the
vector and axial RFs. Our results are also compared to those of Ref. [40]. We find that upon taking the continuum
limit, the differences between the two works become very small, or compatible with zero. We note that in Ref. [40]
the subtraction of lattice artifacts is performed via a hypercubic removal procedure. In addition, they use general
momenta that are not restricted to democratic or near democtratic. Our results may also be compared with the data of
Ref. [41], which are extracted from a three-loop calculation using numerical stochastic Perturbation Theory (NSPT).
Of particular interest are their estimates for ZS, ZP, ZV, ZA using Iwasaki gluons at β=1.95, 2.10. Although the
authors employ Nf=4 Wilson fermions, at the chiral limit their results can be compared to ours. Such a comparison
is quite interesting since both lattice artifacts and finite volume effects have been accounted in their fits. We find that,
within error bars (statistical or systematic) the results of Ref. [41] are in agreement with our O(g2 a∞)-subtracted
data, for both values of β; this is an indication of a successful removal of the bulk of lattice artifacts. Regarding finite
volume effects, a previous study using the twisted mass formulation shows very weak dependence [15].

RFs Nf=2, β=2.10 Nf=4, β=2.10 Nf=4, β=1.95 Nf=4, β=1.90

ZMS
q 0.8366(2)(7) 0.7822(4)(4) 0.7835(2)(25) 0.7480(6)(11)

ZMS
S 0.6606(9)(18) 0.7143(9)(216) 0.7342(1)(21) 0.7835(2)(17)

ZV 0.7565(4)(19) 0.6651(2)(5) 0.6298(5)(29) 0.6015(2)(4)

ZA 0.7910(4)(5) 0.7744(7)(31) 0.7556(5)(85) 0.7474(6)(4)

ZMS
T 0.8551(2)(15) 0.7875(9)(15) 0.7483(6)(94) 0.7154(6)(6)

ZMS
DV1 1.1251(27)(17) 1.0991(29)(55) 1.0624(108)(33) 1.0268(26)(103)

ZMS
DV2 1.1396(16)(13) 1.1398(37)(91) 1.1209(61)(32) 1.0676(44)(190)

ZMS
DA1 1.1494(9)(99) 1.1741(42)(173) 1.1255(27)(328) 1.1151(51)(197)

ZMS
DA2 1.1357(20)(205) 1.1819(47)(147) 1.1555(36)(289) 1.1170(54)(223)

ZMS
DT1 1.1377(160)(13) 1.1562(32)(7) 1.1218(106)(44) 1.0777(37)(122)

ZMS
DT2 1.1472(121)(48) 1.1822(59)(118) 1.1727(121)(73) 1.0965(90)(278)

TABLE III: Our final values of the renormalization functions. The scheme and scale dependent RFs are given in MS at 2
GeV. The number in the first parenthesis is the statistical error, while the number in the second parenthesis corresponds to
the systematic error obtained by varying the fit range in the (a p)2 → 0 extrapolation.

RFs Nf=2, β=2.10 Nf=4, β=2.10

ZMS
P 0.5012(75)(258) 0.5468(15)(176)

ZP/ZS 0.7016(141)(113) 0.7036(23)(195)

TABLE IV: Our final values for ZMS
P (2GeV) and ZP/ZS. The number in the first parenthesis is the statistical error, while

the number in the second parenthesis corresponds to the systematic error obtained by varying the fit range in the (a p)2 → 0
extrapolation.
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FIG. 24: Difference of ZV and ZA computed in this work and in Ref. [22] (Method 1) for the Nf=4 case. The data are plotted
against the lattice spacing, and their extrapolation to the continuum limit is shown with a dashed line. Solid points correspond
to the limit a → 0; they are consistent with zero.

VII. CONCLUSIONS

We present results on the renormalization functions of the fermion field and fermion bilinears with up to one covariant
derivative. The computation is performed non-perturbatively on several ensembles of Nf=4 twisted mass fermions,
as well as Nf=2 twisted mass fermions including a clover term. This work is a continuation of our renormalization
program first addressed in Refs. [14, 15]. Besides the analysis of the Nf=2 twisted mass clover-improved ensembles
we have improved the procedure for the subtraction of lattice artifacts. The procedure that we adopt here for the
perturbative computation of lattice artifacts is improved by taking into account not only leading order lattice artifacts,
O(g2 a2), but also contributions to all orders in the lattice spacing, O(g2 a∞).
The non-perturbative computation uses a momentum-dependent source and the RFs are extracted for all the

relevant operators simultaneously. This leads to a very accurate evaluation of the RFs using only a small ensemble of
gauge configurations (O(10)). The precision of the results allows us to reliably investigate the quark mass dependence,
which is found to be very weak with the exception of ZP. Nevertheless, a linear extrapolation with respect to the pion
mass squared is carried out in order to reach the chiral limit. For the renormalization function of the pseudoscalar
operator, ZP, we find a quark mass dependence due to the pion pole, which we eliminate using a refined procedure
that avoids introduction of artificially large errors. The procedure entails a suitable fit (Eq. (45)) to identify ZP

directly from the constant term, aP , instead of subtracting the pion-pole term (see Eq. (47)).
Our accurate non-perturbative results show that, although the lattice spacings considered in this work are smaller

than 0.1 fm, lattice artifacts are not negligible in most cases, and are significantly larger than statistical errors. Thus,
the subtraction of the O(g2 a∞) perturbative contributions appear to improve significantly the determination of the
RFs, by leading to a milder dependence of the RFs on (ap)2. Residual O(a2p2) effects are removed by extrapolating
our results to (ap)2 = 0. For the scheme and scale dependent RFs, we convert our values to the MS scheme at a scale
of 2 GeV. The statistical errors are, in general, smaller than the systematic ones. The latter are estimated by changing
the window of values of the momentum used to extrapolate to a2p2 = 0. Our final values are given in Tables III - IV.
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Appendix A: β−function and anomalous dimensions

For completeness we provide in this Appendix the definition of the β−function and the anomalous dimension of
the operators studied in this work, which include up to one covariant derivative. To simplify the expressions we give
the perturbative coefficients in the Landau gauge and in SU(3).
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The perturbative expansion of the anomalous dimension in a renormalization scheme S is given as follows:

γS = −µ
d

dµ
logZS = γ0

gS(µ)2

16π2
+ γS1

(

gS(µ)2

16π2

)2

+ γS2

(

gS(µ)2

16π2

)3

+ · · · (A1)

Similarily, the β−function is defined as:

βS = µ
d

dµ
gS(µ) = −β0

gS(µ)3

16π2
− β1

gS(µ)5

(16π2)2
− βS

2

gS(µ)7

(16π2)3
+ · · · . (A2)

For the conversion from the RI′ to the MS scheme we use the three-loop expressions, to which the coefficients of the
β−function coincide and are given by [42, 43]:

β0 = 11−
2

3
Nf , (A3)

β1 = 102−
38

3
Nf , (A4)

β2 =
2857

2
−

5033

18
Nf +

325

54
N2

f . (A5)

Below we give all necessary expressions to convert to the MS scheme, as well as the references from which they were
taken (see also references therein). Dome signs and multiplicative numerical factors have been adjusted to match the
definition of Eq. (A1). An upper index appears for scheme-dependent quantities, in order to denote the scheme that
they correspond to.
Quark field [44]:

γ0 = 0 , (A6)

γ1 =
134

3
−

8

3
Nf , (A7)

γMS
2 =

20729

18
− 79ζ3 −

1100

9
Nf +

40

27
N2

f , (A8)

γRI′

2 =
52321

18
− 79ζ3 −

1100

9
Nf +

40

27
N2

f , (A9)

(ζ3 = 1.20206...)
Scalar/pseudoscalar [45, 46]:

γ0 = −8 , (A10)

γMS
1 = −

404

3
+

40

9
Nf , (A11)

γRI′

1 = −252 +
104

9
Nf , (A12)

γMS
2 = −2498 +

(

4432

27
+

320

3
ζ3

)

Nf +
280

81
N2

f , (A13)

γRI′

2 = −
40348

3
+

6688

3
ζ3 +

(

35176

27
−

256

9
ζ3

)

Nf −
1712

81
N2

f , (A14)

Tensor [43, 47]:

γ0 =
8

3
, (A15)

γ1 =
724

9
−

104

27
Nf , (A16)

γMS
2 =

105110

81
−

1856

27
ζ3 −

(

10480

81
+

320

9
ζ3

)

Nf −
8

9
N2

f , (A17)

γRI′

2 =
359012

81
−

26144

27
ζ3 +

(

−
39640

81
+

512

27
ζ3

)

Nf +
2288

243
N2

f . (A18)



24

One-derivative vector/axial [30, 48]:

γ0 =
64

9
, (A19)

γMS
1 =

23488

243
−

512

81
Nf , (A20)

γRI′

1 =
48040

243
−

112

9
Nf , (A21)

γMS
2 =

11028416

6561
+

2560

81
ζ3 −

(

334400

2187
+

2560

27
ζ3

)

Nf −
1792

729
N2

f , (A22)

γRI′

2 =
59056304

6561
−

103568

81
ζ3 −

(

2491456

2187
+

416

27
ζ3

)

Nf +
19552

729
N2

f . (A23)

One-derivative tensor [48]:

γ0 = 8 , (A24)

γMS
1 = 124− 8Nf , (A25)

γRI′

1 =
680

3
−

128

9
Nf , (A26)

γMS
2 =

19162

9
−

(

5608

27
+

320

3
ζ3

)

Nf −
184

81
N2

f , (A27)

γRI′

2 =
97052

9
−

4312

3
ζ3 −

(

36848

27
+

176

9
ζ3

)

Nf +
2624

81
N2

f . (A28)

Appendix B: Application of the subtraction to O(g2 a∞) in other ensembles

As discussed in the main part of the paper in our previous works of Refs. [14, 15] we have applied a procedure of
subtracting the lattice artifacts of O(g2 a2). The values of the RFs are used to renormalize hadron quantities such
as the axial charge and the quark momentum fraction, in order to compare them with other lattice discretizations,
as well as with experimental data. For a fair comparison between renormalized matrix elements of the ensembles
presented in this work and the ones given in Refs. [14, 15], we have updated the RFs of the latter publications by
applying the subtraction procedure to one-loop and all orders in the lattice spacing, O(g2 a∞). These correspond
to tree-level Symanzik improved gauge action and Nf=2 twisted mass fermions at three values of the coupling
constant corresponding to β=3.90, 4.05, 4.20. Since the gluon action is different from the ensembles of Table II, and
since employed momentum values are also different, a perturbative computation of the O(g2 a∞) contributions was
required on each ensemble in order to match its parameters, such as the coupling constant, the lattice size and the
values of the renormalization scales. The new data on the Rfs are given in Table V.
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RFs β = 3.9 β = 4.05 β = 4.20

ZMS
q 0.769(1)(2) 0.787(1)(3) 0.783(1)(2)

ZMS
S 0.791(2)(41) 0.748(2)(31) 0.754(1)(16)

ZMS
P 0.527(6)(70) 0.517(2)(33) 0.546(5)(33)

ZP/ZS 0.672(7)(60) 0.700(3)(14) 0.731(5)(25)

ZV 0.646(2)(2) 0.681(2)(6) 0.701(1)(4)

ZA 0.769(2)(1) 0.787(1)(1) 0.791(1)(1)

ZMS
T 0.758(2)(4) 0.796(1)(3) 0.814(1)(3)

ZMS
DV1 1.028(2)(6) 1.080(2)(11) 1.087(3)(12)

ZMS
DV2 1.064(4)(4) 1.123(4)(10) 1.130(4)(4)

ZMS
DA1 1.106(3)(8) 1.157(4)(10) 1.150(4)(15)

ZMS
DA2 1.102(5)(7) 1.161(4)(13) 1.164(3)(6)

TABLE V: Updated results on the RFs of Refs. [14, 15] (Nf=2, β=3.90, 4.05, 4.20, csw = 0) using the subtraction procedure
to O(g2 a∞).
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[27] M. Göckeler, R. Horsley, H. Oelrich, H. Perlt, D. Petters, P. Rakow, A. Schäfer, G. Schierholz, and A. Schiller (QCDSF
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