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Using our recently developed relativistic three-particle quantization condition [1, 2], we study
the finite-volume energy shift of a spin-zero three-particle bound state. We reproduce the result
obtained using non-relativistic quantummechanics by Meißner, Ŕıos and Rusetsky [3], and generalize
the result to a moving frame.
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I. INTRODUCTION

There has been considerable recent progress using lat-
tice QCD to study resonances (as reviewed, for example,
in Refs. [4–6]). This is mainly based on a line of theoret-
ical work, begun by Lüscher in Refs. [7, 8], that relates
the spectrum of multiple-particle states in a finite volume
(FV) to infinite-volume scattering amplitudes. Until re-
cently, this work has been restricted to resonances (or
bound states) that couple only to two-particle channels.
Since many resonances and bound states couple to chan-
nels containing more than two particles, it is necessary
to extend the theoretical formalism to three or more par-
ticles.
Recently, we derived a generalization of Lüscher’s work

that applies for three identical, spinless relativistic par-
ticles [1, 2]. Specifically, we obtained a quantization
condition that relates three-particle energies in a cubic
box of size L to the two-particle scattering amplitude
M2 and an infinite-volume three-particle scattering K-
matrix Kdf,3, as well as a set of integral equations re-
lating Kdf,3 and M2 to the physical three-particle scat-
tering amplitude M3. Our result assumes that the two-
particle K-matrix has no poles on the real energy axis
in the kinematic region of interest, and also assumes a
symmetry that decouples even- and odd-particle-number
states. The first restriction must be imposed because
two-particle K-matrix poles give rise to finite-volume ef-
fects that we did not include in our derivation. The
second restriction reduces the classes of diagrams that
contribute and thus simplifies the derivation.
Other than this, the result is completely general.

Both the derivation and the final expressions are, how-
ever, rather complicated, and it is important to provide
cross-checks of the formalism. We have completed one
such check in Ref. [9] by comparing the FV energies of
the state nearest to the three-particle threshold to re-
sults obtained using non-relativistic quantum mechan-
ics (NRQM) [10–12] and relativistic perturbation the-
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ory [13].

The purpose of this paper is to provide another, com-
pletely independent check on the formalism, by using it to
determine the leading volume dependence of the binding
energy of a spin-zero three-particle bound state. Using
NRQM, Meißner, Rı́os and Rusetsky have calculated this
dependence in Ref. [3] (referred to as MRR henceforth).
In that work, the authors restrict attention to a system
with two-particle interactions near the unitary limit, so
that Efimov-like three-particle bound states appear [14].
Here we determine the leading energy dependence for the
same system, using our relativistic formalism, and find
complete agreement with the NRQM result.

The derivation of this result in our formalism is quite
involved. In particular, as noted above, the quantization
condition depends on the intermediate, regularization-
dependent quantity, Kdf,3, whereas the final result for
the energy shift must depend only on physical quanti-
ties. Seeing how this happens gives us insight into the
workings of the formalism.

MRR consider the case of a bound state at rest in the
finite volume. It has been found for two-particle bound
states that the leading volume dependence can be can-
celed by combining results for bound states with differing

total momenta, ~P [15]. Thus it is interesting to generalize
the three-particle analysis also to moving bound states.
It turns out that our derivation of the finite-volume en-
ergy shift can readily be generalized to ~P 6= 0, as we
describe in Sec. VII.

The remainder of this article is organized as follows.
In the next section we describe the result of MRR. Then,
in Sec. III, we use our quantization condition to de-
rive a general prediction for the leading-order energy
shift, ∆E(L), in terms of unsymmetrized versions of the
residue factors (which are the on-shell limit of unsym-
metrized Bethe-Salpeter amplitudes). This section is the
core of the paper. Next, in Sec. IV, we relate the residue
factors to the components of the Fadeev wavefunction
in the NRQM analysis. With these results in hand, in
Sec. V we evaluate our expression for ∆E(L), finding the
MRR result. In Sec. VI, we briefly compare our analy-
sis with that for a two-particle bound state, and then,
in Sec. VII, we discuss the generalization to nonzero to-
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tal momentum for both two- and three-particle bound
states. We conclude in Sec. VIII. Technical details are
relegated to three appendices. In the first we explain
why several approximations made in the main text do
not impact the leading-order volume dependence. In the
second we relate the on-shell Bethe-Salpeter amplitudes
to the three-particle Schrödinger wavefunction. In the
final appendix we derive an identity for the Schrödinger
wavefunction of the Efimov state.

II. PRELIMINARIES AND THE MRR RESULT

Following MRR we consider identical spinless scalar
particles (of mass m) in the unitary limit in which the
two-particle s-wave scattering length diverges. We adopt
the convention p cot δ(p) = −1/a + · · · , and take the
scattering length, a, to be negative so that there are no
two-particle bound states near threshold. It is well known
that such a system has a tower of three-particle bound
states, known as Efimov states [14]. Focusing attention
on any one of these states, we write the associated pole
in the infinite-volume three-to-three scattering amplitude
as

M3(~p, â
′∗;~k, â∗) ∼ −Γ(~p, â′∗)Γ(~k, â∗)

E∗2 − E2
B

. (1)

Here M3 is a function of center-of-mass (CM) frame en-
ergy, E∗, as well as two copies of on-shell three-particle
phase space (the parametrization of which will be ex-
plained below). The ∼ indicates that the difference of
the two sides is finite at the pole. We also introduce the
binding momentum κ, defined by

EB = 3m− κ2

m
. (2)

As in MRR, we assume a shallow bound state, so that
κ≪ m.
The residue of the pole is determined by the matrix

elements

(2π)4δ4(P − PB)iΓ(~p, â
′∗) ≡ 〈3φ, out|EB〉 , (3)

(2π)4δ4(P − PB)iΓ(~k, â
∗) ≡ 〈EB|3φ, in〉 , (4)

between the bound state and the three-particle asymp-
totic states, analytically continued below threshold. Here
P is the four-momentum of the three-particle states and
PB the four-momentum of the bound state. The states
in Eqs. (3) and (4) have standard, relativistic normaliza-
tion, so that Γ and Γ are dimensionless. These quantities
are functions of on-shell three-particle phase space eval-
uated at the fixed subthreshold CM energy EB.
In the above we have used the coordinate system for

three on-shell particles introduced in Ref. [1]. Specifi-
cally, we consider three particles with fixed total energy

and momentum, E and ~P . Although our quantization
condition holds for general total momentum, for most of

this work we restrict attention to ~P = 0, since this is the
case studied in MRR. Thus there is no distinction be-
tween CM-frame and moving-frame energies, so we use
E rather than E∗ in the following sections. We relax this
restriction in Section VII, where we consider nonzero to-
tal momentum.
To specify the coordinate system we fix the momentum

of one of the three particles to be ~k (the “spectator mo-
mentum”), and, since the particle is on-shell, its energy
is

ωk =
√
k2 +m2 , (5)

where k ≡ |~k|. The total energy-momentum of the other

two particles is then constrained to be (E − ωk,−~k). In
their CM frame, these two particles thus have total en-
ergy

E∗
2,k =

√
(E − ωk)2 − k2 , (6)

and individual momenta

q∗k =
√
E∗2

2,k/4−m2 . (7)

The subscripts “k” here are a reminder that these two
quantities are fixed once the total energy-momentum and
spectator momentum are specified. The only remaining
degree of freedom is the direction of the momenta of one
of the non-spectator pair in the two-particle CM frame,

which we denote â∗. In summary, with E and ~P fixed,
the configuration of three on-shell particles is specified

by (~k, â∗). It is also useful to decompose the dependence
on â∗ into spherical harmonics, e.g.

Γ(~k, â∗) =
√
4π
∑

ℓm

Yℓm(â∗)Γℓm(~k) . (8)

Up to this stage, the bound state has an unspecified
total angular momentum. We now follow MRR and make
two assumptions: first that s-wave two-particle channels
dominate, and second that the total angular momentum
of the bound state is zero. Given this, we can set ℓ = m =
0, so that only Γ00 contributes. In addition, we note that

Γ00(~k) and Γ00(~p) cannot depend on the directions of ~k
and ~p, since, for each function, there is no other direction
defined in the CM frame. We then use the abbreviation
Γ(k) ≡ Γ00(~k), and similarly for Γ(p). Thus the pole
form (1) becomes

M3(~p;~k) ∼ − Γ(p)Γ(k)

E∗2 − E2
B

. (9)

We now confine this system to a finite spatial cube with
side-length L and apply periodic boundary conditions.
The infinite-volume bound-state energy is then shifted
to a FV value given by

EB(L) = EB +∆E(L) . (10)
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We are interested in the large L regime,

1

L
≪ κ≪ m, (11)

in which the energy shift ∆E(L) is much smaller in mag-
nitude than the binding energy κ2/m. Our aim is to find
the leading dependence on L as L → ∞. We stress that
this is probably not a practical limit [since achieving the
hierarchy of Eq. (11) requires very large boxes] but since
we control the L-dependence analytically we can consider
arbitrarily large values.
MRR determine the energy shift using NRQM in the

unitary limit, assuming only two-particle potentials (i.e.
including no three-particle potential), and also assuming
that s-wave scattering dominates. They find

∆E(L) = c|A|2κ
2

m

1

(κL)3/2
e−2κL/

√
3 + · · · , (12)

where the ellipsis indicates terms suppressed by addi-
tional powers of κ/m or 1/(κL), as well as subleading ex-
ponentials. We will use the ellipsis in this fashion hence-
forth.
The numerical coefficient c in Eq. (12) is determined

in MRR from the solution to the Fadeev equation. It is

c = −9

2
· 33/4

√
π sh(πs0) sh

2
(πs0

2

)

×
(
3

4
sh(πs0)−

3πs0
4

− 4π√
3
sh
πs0
3

+
2π√
3
sh

2πs0
3

)−1

,

(13)

where “ sh” is an abbreviation for “sinh” and s0 is the
solution to

s0 cosh
πs0
2

=
8√
3
sinh

πs0
6
. (14)

The numerical values are s0 ≃ 1.00624 and c ≃ −96.351.
The factor |A|2 in Eq. (12) is a normalization coef-

ficient. It arises because the three-body wavefunction
used to derive the result in MRR (and also used indi-
rectly in the present article) is not strictly a solution to
the Schrödinger equation. It has the correct asymptotic
form when the three particles are well separated, but fails
at short distances. Nonetheless, the approximate wave-
function gives the correct leading prediction for ∆E(L),
as long as one accounts for a possible normalization dis-
crepancy. If ψtrue is the true wavefunction and ψasymp is
the approximation used here (both normalized), then A is
defined by ψtrue/ψasymp −→ A where the arrow indicates
the limit of all particles being well separated. In other
words Aψasymp (and not just ψasymp) is the wavefunc-
tion that correctly predicts the the energy shift. In the
present study, the approximate wave function is needed
to determine the value of the residue factors Γ and Γ
in the unitary theory. Thus the coefficient A enters our
prediction for the energy shift through these quantities.

It is interesting to compare Eq. (12) to the correspond-
ing result for two particles [16]

∆E2(L) = −12
κ22
m

1

κ2L
e−κ2L + · · · . (15)

Here we have assumed that the system is near the unitary
limit, with a large positive scattering length so that there
is a bound state. The binding momentum κ2 is defined
so that the binding energy is

EB2
= 2m− κ22

m
. (16)

The result (15) follows directly from Lüscher’s quanti-
zation condition [8] (as we review in Sec. VI). We see
that it differs from the three-particle result not only in
the exponent and power of L, but also in having a much
simpler overall constant. We return to the comparison
between two- and three-particle results in Secs. VI and
Sec. VII.

III. DETERMINING THE ENERGY SHIFT

FROM THE QUANTIZATION CONDITION

In this section we demonstrate that our quantization
condition leads to the following prediction for the energy
shift in the unitary limit

∆E(L) = − 1

2EB

[
1

L3

∑

~k

−
∫

~k

]
Γ
(u)
(k) Γ(u)(k)

2ωkMs
2(k)

+ · · · .

(17)

Here ~k is the spectator momentum described in the pre-
vious section (with k its magnitude). It is summed over
all integer three-vectors multiplied by 2π/L, whereas for
the integral we use the shorthand

∫
~k

≡
∫
d3k/(2π)3.

Ms
2(k) is the two-to-two s-wave scattering amplitude,

evaluated at the CM energy E∗
2,k of the nonspectator

pair. Since this energy depends on k, we follow the no-
tation of Ref. [1] and denote this explicitly. Ms

2(k) also
depends on the total energy E, which is here set to the
bound-state energy EB . The residue factors Γ(u) and

Γ
(u)

are those defined in in Eqs. (3) and (4), except that
they are projected to the s-wave and unsymmetrized. We
define them precisely in Eq. (74) below.

To set up the derivation of Eq. (17) we need to recall
some details of the three-particle quantization condition.
It turns out to be convenient to reformulate the quan-
tization condition of Ref. [1] using the developments of
Ref. [2].1 Thus, rather than consider a general three-
particle correlator as in Ref. [1], we focus on the quan-
tity M3,L, which is defined in Ref. [2] and referred to

1 This is the same reformulation that simplifies the development
of the threshold expansion [9].
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there as the “finite-volume three-particle scattering am-
plitude”. From the point of view of the quantization
condition, M3,L is just a particular three-particle corre-
lator in finite spatial volume,2 so the positions of its poles
determine the FV spectrum. It indeed leads to the same
quantization condition as given in Ref. [1]. Its advantage
here is that it goes over to the standard infinite-volume
scattering amplitude, M3, when L → ∞, which allows
us to make contact with the known pole-form (9) of the
standard scattering amplitude.3

Combining Eqs. (39) and (68) of Ref. [2] we have

M3,L = S
[
M(u,u)

3,L

]
, (18)

where S is the symmetrization operator, and

M(u,u)
3,L ≡ D(u,u)

L + L(u)
L

1

1 +Kdf,3F3
Kdf,3R(u)

L , (19)

is the unsymmetrized finite-volume scattering amplitude.
The form of the quantization condition used here is that

the FV spectrum is given by the poles in M(u,u)
3,L . These

occur at energies such that det(1 + Kdf,3F3) = 0, which
is the original form of the quantization given in Ref. [1].
Equation (19) is written in a compact notation that we

now explain. First, we note that all quantities are ma-
trices in the space of discrete spectator momenta.4 For
example F3 = F3;k′k where k′ and k are shorthand for
~k′, ~k ∈ (2π/L)Z3. Generally these matrices also have two
sets of angular momentum indices, but these are absent in
the present case, since we only include the s-wave compo-
nent of both two and three-particle scattering quantities.
This approximation mirrors that made by MRR.
We next explain the unsymmetrized nature of the

quantities in Eq. (19), indicated by the superscript (u).
This lack of symmetrization is defined in the context of

a diagramatic description of M(u,u)
3,L . For diagrams that

involve a two-to-two vertex next to the external legs of
either the initial or final state, the (u) indicates that this
insertion always scatters the two particles with total mo-

mentum −~k (the non-spectator pair). M(u,u)
3,L and D(u,u)

L
have two superscripts because this rule applies to both

initial and final momenta, while L(u)
L and R(u)

L have one
each since they involve, respectively, only the final and
initial momenta. Thus the indices k′ and k denote the
momenta of the particles that are unscattered by the out-
ermost two-to-two vertices. The operator S symmetrizes
the momenta by setting the initial state momentum index

to the three possible values {~k,~a,−~k − ~a}, and the final

2 The time direction has infinite extent.
3 The L → ∞ limit must be taken in a particular way with an iǫ
prescription as explained in Ref. [2].

4 Strictly speaking, this holds only for the “internal” momenta
that are summed over in matrix products. External momenta
can take any values. This subtlety is discussed in Ref. [2].

state index to the corresponding three choices, and then
summing the resulting nine terms. For further details see
Refs. [1, 2].
We now turn to Kdf,3, the divergence-free three-

particle K matrix. This is the only quantity in Eq. (19)
that (for fixed external indices) has no volume depen-
dence. We define this modified K matrix in Ref. [1] and
give its relation to the standard three-to-three scattering
amplitude in [2]. Indeed, the relation between Kdf,3 and
the scattering amplitude, M3, is derived in Ref. [2] by
first proving Eq. (18) and then taking a careful infinite-
volume limit. Within our formalism, Kdf,3 plays the role
of an effective, quasilocal three-particle interaction. It is,
however, not a physical quantity as it depends on a cutoff
function (H , to be described shortly).
Finally, we give the explicit forms for the various finite-

volume matrices appearing in Eq. (19). We begin with

the part of M(u,u)
3,L that involves only two-particle inter-

actions:

D(u,u)
L ≡ − 1

1 +M2,LG
M2,LG[2ωL

3]M2,L , (20)

where
[
2ωL3

]
k′k

≡ δk′k2ωkL
3 . (21)

M2,L is the two-particle finite-volume scattering ampli-
tude

M2,L ≡ Ms
2

1

1 + F iǫMs
2

, (22)

with the matrix form of the s-wave scattering amplitude
being

Ms
2;k′k = δk′kMs

2(k) , (23)

while F iǫ is the moving-frame s-wave Lüscher zeta func-
tion,

F iǫ
k′k = δk′k

1

2

[
1

L3

∑

~p

−
∫

~p

]

× H(~k)H(~p )H(~bkp)

2ωp2ωkp(E − ωk − ωp − ωkp + iǫ)
,

(24)

with

ωkp =
√
b2kp +m2 , ~bkp = −~p− ~k . (25)

H(~k) is a smooth cutoff function that vanishes when k
becomes large enough (of O(m)) that the nonspectator
pair has an energyE∗2

2,k ≤ 0. The precise form ofH , given

in Ref. [1], will not be needed here. The propagator G is

Gpk ≡ H(~p )H(~k )

2ωkp(E − ωk − ωp − ωkp)

1

2ωkL3
. (26)

This arises from the parts of Feynman diagrams where
three particles propagate between two-to-two vertices in
which the scattering pair changes.
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The quantities in the second term in Eq. (19) are

L(u)
L =

1

3
− 1

1 +M2,LG
M2,LF , (27)

R(u)
L =

1

3
− F

2ωL3

1

1 +M2,LG
[2ωL3]M2,L , (28)

F3 =
F

2ωL3
L(u)
L , (29)

where F differs from F iǫ by a phase-space term:

Fk′k = F iǫ
k′k + ρk′k , (30)

ρk′k ≡ δk′kH(~k)ρ̃(E∗
2,k) , (31)

ρ̃(P2) ≡
1

16π
√
P 2
2

×
{
−i
√
P 2
2 /4−m2 (2m)2 < P 2

2 ,

|
√
P 2
2 /4−m2| 0 < P 2

2 ≤ (2m)2 .

(32)

We stress again that all of these quantities have been
projected to the s-wave component of the spectator pair
angular dependence. We can now see more clearly why
this is appropriate, given that we are matching to the
MRR calculation in which there are only s-wave two-

particle potentials. Begin by considering D(u,u)
L , defined

in Eq. (20), which is the first term in M(u,u)
3,L , itself de-

fined in Eq. (19). Expanding the denominator in a ge-
ometric series, we find a sum of terms each containing
alternating factors of the two-particle finite-volume scat-
tering amplitude, M2,L, and the three-particle propaga-
tor G. If the two-particle scattering is dominated by the
s-wave channel, i.e if M2 ≈ Ms

2, then M2,L is also pure
s-wave,5 and this projects the G factors onto their s-wave
components. This projection has already been included
in the equations above.

Next we turn to the second term in M(u,u)
3,L . Here the

same projection onto s-wave components works for G.
For Kdf,3, however, there is no such projection, due to the

factors of 1/3 in L(u)
L and R(u)

L . Thus we must assume
that Kdf,3 itself contains only s-wave nonspectator-pair
components. This is reasonable as the MRR calculation
has no three-body potential. Naively, one might think
that this would imply that we could set Kdf,3 = 0, in
which case the second term in Eq. (19) would simply van-

ish. However, since D(u,u)
L depends on the cutoff H , it is

not physical by itself. The Kdf,3 term is needed to cancel
its high-momentum cutoff dependence. Kdf,3 is thus a
short-distance quantity, and an s-wave approximation is
reasonable.

We now return to the aim of this section: using
Eq. (19) to derive the result (17). Our approach is simply

5 This follows from the general form M2,L = M2 −M2F iǫM2 +
· · · , which holds for arbitrary angular momenta with the general
form for F iǫ.

to pull out the leading L-dependence contained in D(u)
L ,

L(u)
L , R(u)

L and F3, and then make use of the fact that

M(u,u)
3,L and M3 have nearby poles. It is pedagogically

simpler to proceed in two stages, first setting Kdf,3 = 0
and then considering the general case.

A. Analysis for Kdf,3 = 0

As noted above, the choice Kdf,3 = 0 can only approx-
imately correspond to the MRR calculation. It implies

that M(u,u)
3,L = D(u,u)

L and M3 = S
[
D(u,u)

L

]
, so that M3

depends on the cutoff function H . Nevertheless, it is in-
structive to first consider this case to see how Eq. (19)
arises in a simpler context.
As can be seen from Eq. (20), L-dependence enters

D(u,u)
L through the factors of F iǫ contained in M2,L, and

through the presence of momentum sums (rather than
integrals) in the matrix products, as well as the explicit
factor of 2ωL3. It turns out, as we show in App. A, that
the F iǫ contributions are subdominant, suppressed by a
factor of 1/(κL). Thus to obtain the leading volume de-
pendence we can set F iǫ = 0, implying [via Eq.(22)] that
we can replace M2,L with Ms

2. Dropping the superscript
s to reduce notational clutter, we thus have

D(u,u)
L = − 1

1 +M2G
M2G[2ωL

3]M2 + · · · . (33)

To pull out the FV dependence, we must first under-

stand the L→ ∞ limit of D(u,u)
L , which we call D(u,u). In

general, this limit must be taken carefully, since the sum-
mands (and, in particular, the factors of G) have poles
that require a prescription when the sums become inte-
grals. As explained in Ref. [2], the appropriate choice is
to first shift the poles in G by iǫ, then send L→ ∞, and
finally take ǫ→ 0.6 This is the choice of limits that sends
M2,L to M2 and M3,L to M3. Thus we have7

D(u,u)(~k, ~p)

≡ − lim
ǫ→0

lim
L→∞

[
1

1 +M2G
M2G[2ωL

3]M2

]

kp

, (34)

a quantity already introduced in Eq. (85) of Ref. [2]. It
satisfies the integral equation

D(u,u)(~k, ~p) = −M(~k)G∞(~k, ~p)M(~p)

−
∫

~ℓ

1

2ωℓ
M(~k)G∞(~k, ~ℓ)D(u,u)(~ℓ, ~p) , (35)

6 Strictly speaking, when, as here, we consider below-threshold
energies, the sums and integrals never run over the poles, so no
iǫ is needed. Nevertheless, we include these factors so that the
results hold also above threshold.

7 This equation defines D(u,u) also if all factors of M2 are replaced

by M2,L, i.e. if the full D
(u,u)
L

is used. Similarly, Eq. (35)
remains true in the general case.
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where the infinite-volume propagator is

G∞(~p,~k) ≡ H(~p)H(~k)

2ωkp(E − ωk − ωp − ωkp + iǫ)
. (36)

Our aim now is to express the finite-volume matrix

D(u,u)
L in terms of the infinite-volume function D(u,u).

To do so we expand the former in powers of M2

D(u,u)
L =

∞∑

n=2

D(n,u,u)
L , (37)

D(n,u,u)
L ≡ −[−M2G]

n−2M2G[2ωL
3]M2 . (38)

Defining D(n,u,u) to be the infinite-volume limit of

D(n,u,u)
L , we also have

D(u,u) =

∞∑

n=2

D(n,u,u) . (39)

We now can relate D(n,u,u)
L to D(n,u,u) order by order.

The lowest order is simple:

D(2,u,u)
L,kp = D(2,u,u)(~k, ~p) = −M(~k)G∞(~k, ~p)M(~p) . (40)

For n = 3 we find

D(3,u,u)
L = M2GM2G[2ωL

3]M2 , (41)

= M2G[2ωL
3]M2

1

2ωL3M2
M2G[2ωL

3]M2 , (42)

= D(3,u,u)(~k, ~p)

+

[
1

L3

∑

~ℓ

−
∫

~ℓ

]D(2,u,u)(~k, ~ℓ)D(2,u,u)(~ℓ, ~p)

2ωℓM2(ℓ)
.
(43)

In the second line we multiplied and divided by
[2ωL3]M2 and in the third we expressed the implicit sum
as an integral plus a sum-integral difference.
To continue this pattern to higher orders it is helpful

to use a compact notation in which we write Eq. (43) as

D(3,u,u)
L = D(3) +D(2)C(−1)D(2) . (44)

Here we have dropped the u superscripts on the right-
hand side and have introduced C(−1) to represent the
sum-integral difference “cut”. Its precise definition can
be inferred by comparing Eqs. (43) and (44). The (−1)
superscript indicates that the cut has one factor ofM2 in

the denominator. Since D(n,u,u)
L is defined by the number

of M2 insertions, it is convenient to track these in the
decomposition on the right-hand side. In particular, the
superscripts of the second term must sum to three. This
pattern persists to all orders, so that the decomposition

of D(n,u,u)
L may be defined as the sum of all possible terms

built from alternating factors of D(m) and C(−1) whose
superscripts sum to n. For example, the n = 4 result is

D(4,u,u)
L = D(4) +D(3)C(−1)D(2)

+D(2)C(−1)D(3) +D(2)C(−1)D(2)C(−1)D(2) . (45)

Continuing in this fashion to all orders and summing
the result gives

D(u,u)
L =

∞∑

n=0

D(u,u)
[
C(−1)D(u,u)

]n
+ · · · . (46)

This can be succinctly written as an integral equation

D(u,u)
L (~k, ~p) = D(u,u)(~k, ~p)

+

[
1

L3

∑

~ℓ

−
∫

~ℓ

]
D(u,u)(~k, ~ℓ)

1

2ωℓM2(ℓ)
D(u,u)

L (~ℓ, ~p)+· · · .

(47)

Here we have extended the definition of D(u,u)
L (~k, ~p) to

continuous values of ~k and ~p. This extension is straight-
forward given the definitions of the building blocks in
Eqs. (21)-(32) as was already discussed in Ref. [2].
Now we observe that, since (with Kdf,3 = 0) M3 =

S[D(u,u)], and recalling that M3 has the pole form (9),
then D(u,u) itself must have a pole associated with the
bound state. Symmetrization cannot lead to the devel-
opment of a pole. We parametrize the pole in D(u,u) as

D(u,u)(~k′, ~k)

∣∣∣∣
Kdf,3=0

∼ −Γ(u)(k′) Γ
(u)
(k)

E2 − E2
B

, (48)

where we have added an explicit reminder that we are
working in the Kdf,3 = 0 approximation. We also know

that M(u,u)
3,L = D(u,u)

L must have a nearby pole, cor-
responding to the bound state with its energy slightly
shifted:

D(u,u)
L (~k′, ~k)

∣∣∣∣
Kdf,3=0

∼ − Γ
(u)
L (k′) Γ

(u)

L (k)

E2 − (EB +∆E(L))2
. (49)

Here we have also allowed for a finite-volume dependence
in the residue factors.
Substituting Eqs. (48) and (49) into Eq. (47), multi-

plying by both poles and dividing by the common residue
factors, we find that the residue factors are volume inde-
pendent

Γ
(u)
L (k′)Γ

(u)

L (k) = Γ(u)(k′)Γ
(u)

(k) + · · · , (50)

and that

− [E2 − E2
B ] = −[E2 − (EB +∆E(L))2]

+

[
1

L3

∑

~ℓ

−
∫

~ℓ

]
Γ
(u)
(ℓ) Γ(u)(ℓ)

2ωℓM2(ℓ)
+ · · · . (51)

Both of these results have corrections that are of higher
order in ∆E(L) if one accounts for the finite residues
beneath the poles in Eqs. (48) and (49). In particular,
there areO(∆E2) corrections to Eq. (51). However, these
are suppressed relative to the leading terms and thus can
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be dropped in our calculation. The final step is to solve
Eq. (51) for ∆E(L), which, after and dropping terms of
O(∆E2), leads to the desired result, Eq. (17).
We emphasize that all of the approximations leading

to Eq. (17) are justified by our aim to only determine
the leading finite-volume shift of the three-particle bound
state. In particular, all neglected terms lead to contri-
butions to ∆E(L) that vanish faster than the term we
are after in the large L limit. This is motivated not only
by the aim to approximate ∆E(L) for large volumes, but
also because we are pursuing the same expansion as MRR
in order to reproduce their result.

B. Analysis for general Kdf,3

We now extend the analysis to nonzero Kdf,3, requir-
ing that we keep the second, Kdf,3-dependent term in
Eq. (19). As for Kdf,3 = 0, we argue in App. A that
finite-volume effects from factors of F iǫ are subleading
compared to those we keep. This considerably simplifies
the analysis.
We expand the second term in Eq. (19) in powers of

Kdf,3 and focus first on the contribution containing a
single factor of Kdf,3

M(u,u)
3,L ⊃ L(u)

L Kdf,3R(u)
L . (52)

Setting F iǫ = 0 (so that F → ρ) we have

L(u)
L =

1

3
− 1

1 +M2G
M2ρ+ · · · , (53)

R(u)
L =

1

3
− ρ

2ωL3

1

1 +M2G
[2ωL3]M2 + · · · . (54)

We expand in powers of G to reach

L(u)
L Kdf,3R(u)

L =

∞∑

m,n=1

L(m,u)
L Kdf,3R(n,u)

L , (55)

where

L(0,u)
L = 1

3 −M2ρ , (56)

L(n,u)
L = −[−M2G]

nM2ρ (n > 1) , (57)

and similarly for R(n,L).
For the terms with one or more factors of G, the in-

termediate sums from contracted indices are now decom-
posed into integrals and sum-integral differences as in
Eqs. (41)-(43) above. For example

L(1,u)
L Kdf,3 = M2GM2ρKdf,3 , (58)

= [−M2G[2ωL
3]M2]

1

2ωL3M2
[−M2ρKdf,3] , (59)

= L(1,u)Kdf,3

+

[
1

L3

∑

~ℓ

−
∫

~ℓ

]D(2,u,u)(~p, ~ℓ) L(0/ρ,u)Kdf,3(~ℓ,~k)

2ωℓL3M2(ℓ)
.

(60)

Here L(1,u) is understood as an integral operator

L(1,u)Kdf,3 ≡

M2(~p)

∫

~ℓ

1

2ωℓ
G(~p, ~ℓ)M2(~ℓ)ρ(~ℓ)Kdf,3(~ℓ,~k) . (61)

We have also introduced

L(0/ρ,u) ≡ −M2ρ ≡ L(0,u) − 1
3 . (62)

Switching to the shorthand introduced in Eq. (44) we
rewrite Eq. (60) as the action of

L(1,u)
L = L(1) +D(2)C(−1)L(0/ρ) (63)

on Kdf,3. The next order is given by

L(2,u)
L = L(2) +D(3)C(−1)L(0/ρ)

+D(2)C(−1)L(1) +D(2)C(−1)D(2)C(−1)L(0/ρ) . (64)

The pattern generalizes as in the previous subsection:
the nth order result is the sum of all terms built from
alternating factors of D and C(−1), followed by a factor
of L, subject to the condition that the superscripts sum

to n. Repeating the exercise for R(u)
L , substituting into

Eq. (55), and summing over powers of G, we find

L(u)
L Kdf,3R(u)

L =

[
L(u)+

∞∑

n=1

[
D(u,u)C(−1)

]n
(L(u)− 1

3 )

]

×Kdf,3

[
R(u) + (R(u) − 1

3 )

∞∑

n=1

[
C(−1)D(u,u)

]n ]
. (65)

Here L(u) =
∑∞

n=0 L(n,u) is the infinite-volume limit of

L(u)
L , and similarly for R(u).8

The factors of (−1/3) in Eq. (65) arise because of the

difference between L(0,u)
L and L(0/ρ,u)—see Eq. (62). It

turns out, however, that these factors lead to contribu-
tions with subleading dependence on L, as explained in
App. A. Thus we can drop them and obtain

L(u)
L Kdf,3R(u)

L =

( ∞∑

n=0

[
D(u,u)C(−1)

]n
)
L(u)

×Kdf,3

∞∑

n=0

R(u)
([

C(−1)D(u,u)
]n)

+ · · · . (66)

We observe that the leading volume dependence comes
from an alternating series of factors of D(u,u) and C(−1)

that appear only on the ends of the expression. This is

8 Explicit forms for L(u) andR(u) are given in Eqs. (92) and (94) of
Ref. [2], respectively. In that work these quantities are, however,
denoted with a double superscript, e.g. L(u,u).



8

the same series that appears in the expression for D(u,u)
L ,

Eq. (46).
To complete the pattern we need to study the next

contribution to the second term in Eq. (19), that with

two factors of Kdf,3. The factors of L(u)
L and R(u)

L on
the ends lead to the same volume-dependent factors as
in Eq. (66). What is new are the finite-volume effects
between the two factors of Kdf,3. We find

−Kdf,3F3Kdf,3 = −Kdf,3
ρ

2ωL3
L(u)
L Kdf,3 (67)

= −Kdf,3ρM2
1

2ωL3M2
L(u)
L Kdf,3 (68)

= Kdf,3

{
−F3

+R(u)C(−1)
∞∑

n=0

[
D(u,u)C(−1)

]n
L(u)

}
Kdf,3 . (69)

In the first line we have used the definition of F3, Eq. (29),
and in the second we have multiplied and divided by
M2. The expression is then ready for our standard ma-
nipulation of replacing each sum with an integral plus a
sum-integral difference. After some algebra, again using
the result that terms containing C(−1)(−1/3)Kdf,3 may
be dropped, we find the result (69). The new quantity
F3 is the infinite-volume limit of F3, i.e.

Kdf,3F3Kdf,3 ≡ lim
ǫ→0

lim
L→∞

Kdf,3F3Kdf,3 . (70)

We are now in position to complete the all orders sum-
mation. To do so we organize the terms order by order
in C(−1). First we note that the sum of all terms with no
factors of C(−1) gives

D(u,u) + L(u)
∞∑

n=0

[−Kdf,3F3]
n Kdf,3R(u) ≡ M(u,u)

3 .

(71)

Here we have finally given the precise definition of

M(u,u)
3 .9 We then observe that M(u,u)

3 is also the ob-

ject that emerges in terms containing factors of C(−1),
leading to

M(u,u)
3,L =

∞∑

n=0

M(u,u)
3

[
C(−1)M(u,u)

3

]n
+ · · · . (72)

Summing the series we find that M(u,u)
3,L and M(u,u)

3 sat-

isfy the same relation as do D(u,u)
L and D(u,u) in Eq. (47)

9 M
(u,u)
3 may also be defined as the finite iǫ, L → ∞ limit of

M
(u,u)
3,L . This infinite-volume object becomes the standard three-

to-three scattering amplitude upon symmetrization, but since
symmetrization is not invertible an independent definition is re-
quired.

above, i.e.

M(u,u)
3,L (~p,~k) = M(u,u)

3 (~p,~k)

+

[
1

L3

∑

~ℓ

−
∫

~ℓ

]
M(u,u)

3 (~p, ~ℓ)
1

2ωℓM2(ℓ)
M(u,u)

3,L (~ℓ,~k)+· · · .

(73)

We stress that this result will hold whenever it is legiti-
mate to treat the F iǫ and “−1/3 terms” as subleading.
To use Eq. (73) we follow the same steps as for Kdf,3 =

0, Eqs. (48)-(51), except now we are making no approxi-
mations aside from keeping only the leading volume de-
pendence. Specifically, the pole form (9) for M3 implies

a similar form for M(u,u)
3 :

M(u,u)
3 (p, k) ∼ −Γ(u)(p)Γ

(u)
(k)

E2 − E2
B

. (74)

The only difference from (9) is that the residue factors
are unsymmetrized. The unsymmetrized finite-volume
amplitude has the corresponding pole form

M(u,u)
L (~k′, ~k) ∼ − Γ

(u)
L (k′) Γ

(u)

L (k)

E2 − (EB +∆E(L))2
. (75)

Substituting these in Eq. (73) we find Eqs. (50) and (51),
except now without the need for the Kdf,3 = 0 approx-
imation. Expanding out (51) in powers of ∆E(L) leads
to the desired result, Eq. (17).

IV. DETERMINING THE BOUND STATE

RESIDUE FACTORS

In this section we study the unsymmetrized, s-wave

projected residue factors Γ(u)(k) and Γ
(u)

(k). Expres-
sions for these can be found by deriving a relation to
the nonrelativistic Schrödinger wavefunction. The lat-
ter is known analytically (as reviewed, for example, in
Ref. [17]) and this leads to an analytic result for the
residue factors, given in Eq. (100) below.
We begin by introducing the three-particle wavefunc-

tion ψ(~r1, ~r2, ~r3), which satisfies

[
− 1

2m

∑

i

∂2

∂~r 2
i

+
∑

ij

V (~ri − ~rj)

]
ψ(~r1, ~r2, ~r3)

= −κ
2

m
ψ(~r1, ~r2, ~r3) . (76)

Here ~ri are the coordinates of the individual particles.
Following MRR we suppose that the particles only inter-
act through pairwise potentials. If we restrict attention
to the center of mass frame, then one of the coordinates
becomes redundant. It is convenient to express the wave-
function using Jacobi coordinates

~xi = ~rj − ~rk , ~yi =
1√
3
(~rj + ~rk − 2~ri) , (77)
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where ijk can be assigned any cyclic permutation of 123.
ψ can then be expressed as a function of any ~xi, ~yi pair.
As described in MRR, in the unitary limit, Eq. (76) is

approximately solved by the wavefunction

ψ(~x3, ~y3) =

3∑

i=1

φ(R,αi) , (78)

where

φ(R,α) = Aκ
√
D0

Kis0(
√
2κR)

R2

sinh(s0(π/2− α))

sinh(πs0/2) sin(2α)
.

(79)
Here the hyperradius R and Delves hyperangles αi are
given by

R2 =
~x 2
i + ~y 2

i

2
(i = 1, 2, or 3) , (80)

αi = tan−1

( |~xi|
|~yi|

)
. (81)

Note that the wavefunction (78) depends on fewer vari-
ables (four) than the full complement (six). This is be-
cause of the neglect of components with higher angular
momenta than s-wave [17]. The coefficient D0 is

D0 = − 4

27 · 31/4π7/2
c , (82)

where c is the constant given earlier in Eq. (13), while A
is normalization coefficient discussed following Eq. (14).
We have chosen the normalization to be

1

6

∫
d3x3d

3y3 J |ψ(~x3, ~y3)|2 = |A|2 , (83)

where J = 3
√
3/8 is the Jacobian of the transformation

from normal to Jacobi coordinates, and the 1/6 is due
to our use of identical particles. This differs from the
normalization convention used in MRR: the wavefunction
used here is obtained by multiplying that in MRR by√
6/J .
The decomposition into three terms in Eq. (78)

comes from rewriting the Schrödinger equation in Fadeev
form [17]. For example, the Fadeev equation satisfied by
the part dependent on α3 is

(
−κ

2

m
+

1

m

∂2

∂~x 2
3

+
1

m

∂2

∂~y 2
3

)
φ(R,α3)

= V (~x3)ψ(~x3, ~y3) , (84)

and explicitly involves only the potential between par-
ticles 1 and 2. This is the analog in the Schrödinger
analysis of considering an unsymmetrized scattering am-
plitude, in which the first interaction involves only a spe-
cific particle pair (here 1 and 2). Thus for this part of the
wavefunction one can think of particle 3 as the spectator,
while the other two parts effect the symmetrization.

We will need the Fourier transform of the wavefunction
and its components. In terms of the momenta of the
individual particles, ~pi, we use the variables

~k12 =
1

2
(~p1 − ~p2) , ~k3 =

1

3
(~p1 + ~p2 − 2~p3) . (85)

Since ~P =
∑

i ~pi = 0, we can also write ~k3 = −~p3, etc..
The Fourier transform is then

ψ̃(~k12, ~k3) ≡
∫
d~x3

∫
d~y3 J

× exp

(
−i
∑

i

~ri · ~pi
)
ψ(~x3, ~y3) , (86)

with

∑

i

~ri · ~pi = ~x3 · ~k12 −
√
3

2
~y3 · ~k3 . (87)

The normalization of the momentum-space wavefunction
is then

1

6

∫

~k12

∫

~k3

|ψ̃(~k12, ~k3)|2 = |A|2 . (88)

A similar definition is used for φ, e.g.

φ̃3(~k12, ~k3) ≡
∫
d~x3

∫
d~y3 J

× exp

(
−i
∑

i

~ri · ~pi
)
φ(R,α3) , (89)

for the component in which particle 3 is the spectator.

As shown in App. B, the residue factor Γ(u)(~k) is re-
lated to the one component of the wavefunction (with
our normalization) via

Γ(u)(k)

4
√
3m2

= lim
on shell

(
−κ

2

m
−H0

)
φ̃3(~k12, ~k3) , (90)

where

H0 =

3∑

i=1

~p2i
2m

. (91)

The on-shell limit is effected by setting ~k3 = −~p3 → −~k
(the spectator momentum) and sending ~k12 to a (com-
plex) value such that H0 = −κ2/m. As we will see by
explicit calculation, the result for Γ(u) only depends on

k = |~k|, and not on the direction of ~k nor on the re-
maining on-shell angular variable â∗ (defined in Sec. II).
This is expected since the s-wave projection removes de-

pendence on â∗. Dependence on k̂ is also removed as
this can only appear in a scalar product, and no other
directions are defined for Γ(u) in the CM frame.
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To evaluate the right-hand side of Eq. (90), we first
return to position space. As we show in App. C, given the
explicit form for φ, Eq. (79), one can derive the identity

(
−κ

2

m
+

1

m

∂2

∂~x 2
3

+
1

m

∂2

∂~y 2
3

)
φ(R,α3)

= −4πA
√
D0

κ

m

Kis0(κ|~y3|)
|~y3|

δ3(~x3) . (92)

Comparing to the Fadeev equation (84) we see that the
approximate form of the wavefunction we are using cor-
responds to a potential proportional to a delta function.
Fourier transforming, we use Eq. (90) to obtain

Γ(u)(k) = −4
√
3m2

∫
d3x3

∫
d3y3 J exp

(
−i
∑

i

~ri ·~pi
)

× 4πA
√
D0

κ

m

Kis0(κ|~y3|)
|~y3|

δ3(~x3) . (93)

We have not specified the on-shell limit because it
turns out to be trivial. Using the form of the Fourier

transform phase given in Eq. (87), and setting ~k3 = −~k,
we see that the trivial ~x3 integral removes all dependence

on ~k12:

Γ(u)(k) = −4
√
3m24πA

√
D0

κ

m
J

×
∫
d3y3

Kis0(κ|~y3|)
|~y3|

ei
√
3~y3·~k/2 . (94)

Substituting the value of
√
D0 and simplifying then

gives

Γ(u)(k) = −4 · 33/8
π3/4

A
√
−c κmg(

√
3k/2) , (95)

where

g(q) ≡
∫
2πd(cos θ)y23dy3

Kis0(κy3)

y3
eiy3q cos θ . (96)

Evaluating the angular integral then gives

g(q) =
4π

κq

∫ ∞

0

dz sin(zq/κ)Kis0(z) . (97)

The remaining integral may also be evaluated analyti-
cally:

g(q) =
2π2

κ2 sinh(s0π/2)

× sin[s0 sinh
−1(q/κ)]

q/κ

1√
1 + q2/κ2

. (98)

The function g(q) is singular at q2 = −κ2, due to both
factors on the second line. The expansion about the sin-
gular point has the form

g(q) =
2π2

κ2

[
1√

1 + q2/κ2
− s0 coth(s0π/2)

+O
(√

1 + q2/κ2
)]
. (99)

The leading singularity will lead to the dominant finite-
volume effects.
We conclude that the leading contribution to ∆E(L) is

given by evaluating the expression derived in the previous
section [Eq. (17)] with

Γ(u)(k) = −8 · 33/8π5/4A
√
−cm

κ

[
1 +

3k2

4κ2

]−1/2

. (100)

Repeating the exercise for Γ
(u)

(k), one finds the same
form up to a complex conjugate which has no effect other
than A→ A∗.

V. DETERMINATION OF ∆E(L)

In this section we use the result for Γ(u) derived in
the previous section to evaluate the energy shift ∆E(L)
using Eq. (17).
To do so we need the expression for Ms

2(k) in the uni-
tary limit. This requires the kinematic quantities E∗

2,k

and q∗k [defined in Eqs. (6) and (7), respectively]

E∗
2,k =

√
(3m− κ2/m− ωk)2 − k2 ,

= 2m
[
1− (κ2 + 3k2/4)/(2m2) + · · ·

]
,

q∗k =
√
−κ2 − 3k2/4 + · · · ,

(101)

with the ellipses indicating higher-order terms in the non-
relativistic expansion (assuming k2 ∼ κ2 ≪ m2). We
see that the momentum q∗k is pure imaginary, as ex-
pected since we are studying a subthreshold energy. Be-
low threshold the scattering amplitude takes the form

M2(k) =
16πE∗

2,k

q∗k cot δ(q
∗
k) + |q∗k|

, (102)

where we use q∗k cot δ(q
∗
k) = −1/a+r(q∗k)

2/2+ · · · , with a
the scattering length and r the effective range, to perform
the analytical continuation. In the unitary limit, a →
−∞, we therefore have

M2(k) −→
16πE∗

2,k

|q∗k|
[1 +O(q∗kr)] . (103)

Inserting the results from Eq. (101), and dropping sup-
pressed terms, gives the form we need for our computa-
tion:

1

M2(k)
=

κ

32πm

[
1 +

3k2

4κ2

]1/2
+ · · · . (104)

The energy shift, Eq. (17), can now be written, using
Eqs. (100) and (104), as

∆E(L) = c|A|264 · 33/4π5/2m
2

κ2
κ

32πm

1

2EB

×
[
1

L3

∑

~k

−
∫

~k

]
1

2ωk

[
1 +

3k2

4κ2

]−1/2

+ · · · . (105)
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Applying the Poisson summation formula we find

∆E(L) = c|A|2 π
3/2

31/4
1

κ

∑

~s6=0

×
∫

d3k

(2π)3
eiL~s·~k 1

2ωk

[
1 +

3k2

4κ2

]−1/2

+ · · · , (106)

with ~s a vector of integers. We have also set EB = 3m,
which holds up to corrections down by κ2/m2 . We fur-
ther simplify by evaluating the angular integral and using
the symmetry of the resulting integrand to extend the k
integral to the entire real axis:

∆E(L) = c|A|2 33/4

24
√
πiκmL

∞∑

s=1

νs
s

×
∫ ∞

−∞
dkk eiskL

[(
1 +

k2

m2

)(
1 +

3k2

4κ2

)]−1/2

+ · · · ,

(107)

where νs is the number of integer vectors ~s with mag-
nitude s (e.g. ν1 = 6, ν2 = 12, · · · ). We next deform
the contour so as to wrap around the branch cut along
the positive imaginary axis, and introduce ℓ = ±ik to
parametrize the integral along the discontinuity,

∆E(L) = c|A|2 33/4

12
√
πκmL

∞∑

s=1

νs
s

×
∫ ∞

2κ/
√
3

dℓℓ e−sℓL

(
3ℓ2

4κ2
− 1

)−1/2

+ · · · . (108)

Note that at this stage we have set (1 + k2/m2)−1/2 to
unity. This factor is required to ensure convergence of the
integral but, after the contour has been deformed, it can
be expanded in powers of k2/m2. Upon integration these
contribute subleading powers of κ2/m2 that we neglect.
It is now apparent that the integral will have an expo-

nential fall-off proportional to exp(−s2κL/
√
3). Thus we

need only keep the sixfold degenerate s = 1 term. Doing
so, and evaluating the integral, we reach

∆E(L) = c|A|2κ
2

m

2

31/4
√
πκL

K1

(
2κL√

3

)
+ · · · . (109)

Substituting the asymptotic form of the Bessel function
we obtain the MRR result, Eq. (12).

VI. COMPARISON WITH TWO-PARTICLE

BOUND STATE ENERGY SHIFT

In this section we compare the result just obtained,
along with its derivation, with the corresponding result
and derivation for the energy shift for a spin-zero two-
particle bound state, ∆E2(L).

The leading-order volume dependence of ∆E2(L) has
been quoted in Eq. (15). We first recall the standard
derivation of this result. This uses Lüscher’s quantiza-
tion condition (assuming s-wave dominance), which in
our notation reads [18]

1/Ms
2 + F iǫ

2 (E2,~0) = 0 . (110)

The two-particle zeta-function for total momentum ~P is
given by

F iǫ
2 (E2, ~P ) ≡

1

2

[
1

L3

∑

~k

−
∫

~k

]

× H(~k)H(~P − ~k)

2ωk2ωkP (E − ωk − ωkP + iǫ)
, (111)

where ωkP =

√
m2 + (~P − ~k)2. F iǫ

2 is related to the

function F iǫ(~ℓ) defined in Eq. (A8) by

F iǫ
2 (E2, ~P ) = F iǫ(− ~P )

∣∣∣∣
E−ωP=E2

. (112)

Here we consider a state at rest, and so set ~P = 0. We
parametrize the two-particle energy as E2 = 2m−κ22/m,
with κ2 at this stage arbitrary except that κ2 ≪ m. Then
we have [16]10

F iǫ
2 (E2,~0) = − 3

16πmL
e−κ2L , (113)

up to terms suppressed by κ22/m
2. The scattering am-

plitude is given by Eq. (102), where now |q∗k| = κ2 and
E∗

2,k ≈ 2m. Using the effective range expansion, and as-

suming that the scattering length dominates,11 one finds

1

Ms
2

=
κ2 − 1/a

32πm
. (114)

Ms
2 thus has a pole when κ2 = 1/a, corresponding to

the bound state energy in infinite volume of EB2
= 2m−

1/(a2m). Inserting (114) into the quantization condition
(110), and using the fact that the energy shift is small,
we find

∆κ2(L) =
6

L
e−L/a , (115)

where

EB2
(L) = EB2

+∆E2(L) = 2m− [κ2 +∆κ2(L)]
2

m
.

(116)
This leads to the result quoted earlier, Eq. (15).

10 This result agrees with that from Eq. (A10).
11 Since here we are studying momenta q∗

k
∼ κ2 = 1/a, the effective

range term in q∗
k
cot δ is suppressed by a relative factor of r/a.
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We now repackage this derivation using a method anal-
ogous to that used for three particles. We consider the
two-particle finite-volume scattering amplitude, M2,L,
which satisfies

M2,L = Ms
2 −Ms

2F
iǫ(~0)M2,L , (117)

as can be seen from Eq. (22). This is the analog of
Eq. (73), except that here there are no subleading sources
of finite-volume dependence (except those proportional
to e−mL, which are dropped throughout). Substituting
the pole ansätze

M2 = − Γ2Γ2

E2 − E2
B,2

, (118)

M2,L = − Γ2,LΓ2,L

E2 − [EB2
+∆E2(L)]2

, (119)

and following steps analogous to Eqs. (48)-(51) above, we
find

∆E2(L) =
1

2EB2

Γ2F
iǫ
2 (EB2

,~0)Γ2 . (120)

This is the analog of Eq. (17), except that here the
residues are numbers rather than functions and the sum-
integral difference is not explicit but instead included in
the definition of F iǫ

2 .12 The residues can be obtained by
matching the pole ansatz for M2, Eq. (118), with the
specific result (114), leading to13

Γ2Γ2 = 256πm/a . (121)

Inserting this into the new form for ∆E2(L), Eq. (120),
along with the result (113) for F iǫ

2 , we find again the
energy shift quoted in Eq. (15).
We now compare the recast two-particle result (120)

with the three-particle result, Eq. (17), in more detail.
Both have a form analogous to a leading order correc-
tion in perturbation theory: a “matrix element” evalu-
ated between unperturbed “wavefunctions”. The “opera-
tor” in both cases involves a sum-integral difference—this
is explicit in Eq. (17) and contained in F iǫ

2 in the two-
particle case. This is expected, since it is the difference
between sums and integrals that leads to finite-volume
effects. The results differ in the nature of the process
occurring in the sum-integral difference. For two parti-
cles, it is just a subthreshold loop of two free particles,

12 We can cast the result into a form even more similar to Eq. (17)
by using the quantization condition to write F iǫ = −1/Ms

2. This
result holds when E2 = EB2

+∆E2(L), which is an equally valid
choice for the energy at which to evaluate the right-hand side of
Eq. (120). However, this substitution leads only to the vacuous
result ∆E

2, ~P
(L) = ∆E

2, ~P
(L) and is thus not useful.

13 It is also possible to derive this result from the Schrödinger wave-
function for a two-particle weakly bound state using an analog
of the relation Eq. (90).

as can be seen from the form of F iǫ
2 , or by returning to

the original derivation, e.g. in Ref. [18]. For three par-
ticles this does not simply generalize to a subthreshold
three-particle loop—such loops give rise to the F iǫ terms
that are shown in App. A to be subleading by a factor
of 1/L. Instead, what appears is a process in which two
of the three particles are scattering. This leads to the
appearance of the explicit factor of 1/Ms

2 in Eq. (17), as
well as to the singularities in the residues.

VII. GENERALIZATION TO A MOVING

BOUND STATE

In this section we extend the result derived above to
the case where the three-particle bound state has nonzero

momentum, ~P , in the finite-volume frame. This momen-
tum is constrained by the boundary conditions to satisfy
~P = (2π/L)~nP , with ~nP a vector of integers. We study

the case in which ~nP is fixed, so that ~P ∼ 1/L ≪ m.

The alternative in which one holds ~P ∼ m is also inter-
esting (since it more closely approximates moving frames
used in present simulations) but this leads to more com-
plicated expressions and goes beyond the scope of this
work.
Generalizing to nonzero momentum turns out to be

straightforward. We define the energy shift to be that in
the CM-frame bound-state energy, so that the energy of
the FV state in the moving frame is

EB(~P , L) ≡
√
[EB +∆E~P (L)]

2 + ~P 2 . (122)

The steps of Sec. III go through unchanged,14 and one
arrives again at Eq. (73). The only subtlety is that the

energy of the nonspectator pair now depends also on ~P .

If the spectator momentum is ~k, then the two-particle
CM frame energy becomes

E∗
2,k(

~P ) =

√
(E − ωk)2 − (~P − ~k)2 , (123)

and the individual CM frame momenta are

q∗k(~P ) =
√
E∗

2,k(
~P )2/4−m2 . (124)

Since the quantitates that enter the finite-volume energy

shift, i.e. Ms
2, Γ

(u) and Γ
(u)

, are Lorentz scalars, express-

ing these as functions of q∗k, rather than of ~k, results in
expressions that hold in all frames.15 For example, the

14 The only caveat is that the arguments given in App. A that
certain terms are suppressed at large L need to be reconsidered.
They continue to hold when ~P ∼ 1/L, the case considered here,

but it is unclear whether they hold when ~P ∼ m.
15 The correspondence to the previous notation is, for example,

Γ(u)[q∗
k
(~0)] = Γ(u)(k).
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generalization of the pole form for M(u,u)
3 , Eq. (9), is

M3(~p;~k) ∼ −
Γ[q∗p(~P )]Γ[q

∗
k(
~P )]

E∗2 − E2
B

, (125)

where E∗2 = E2 − ~P 2. A similar form holds for M(u,u)
3,L ,

except with EB replaced with EB +∆E~P (L).
Substituting these pole forms into Eq. (73), and pro-

ceeding as before, we find

∆E~P (L) = − 1

2EB

[
1

L3

∑

~k

−
∫

~k

]
1

2ωk

× Γ
(u)
[q∗k(

~P )] Γ(u)[q∗k(
~P )]

M2[q∗k(
~P )]

+ · · · . (126)

This is to be evaluated at the infinite-volume moving-
frame bound state energy,

EB(~P ) =

√
E2

B + ~P 2 . (127)

We note thatMs
2 is already expressed in terms of Lorentz

scalars in Eq. (103), while Γ(u) in Eq. (100) can be rewrit-
ten in invariant form using Eq. (101):

Γ(u)[q∗k(~P )] = −8 · 33/8π5/4A
√
−c m

|q∗k(~P )|
. (128)

Since
∫
~k
(1/ωk) is also invariant, we see that the only

noninvariant part of the expression for ∆E~P (L) is the
sum.
Applying the Poisson summation formula, and drop-

ping terms suppressed by powers of κ, we find

∆E~P (L) = c|A|2π
3/2

31/4

∑

~s

∫
d3k

(2π)3
eiL~s·~k

2ωk

1

|q∗k(~P )|
+· · · .

(129)

To further simplify we change the variable of integration

to ~k∗, defined by boosting the four-vector (ωk, ~k) to the
three-particle CM frame. The only non-invariant factor
is the exponent, and this can be written

~s · ~k = ~s ·
(
~k∗ +

ωk∗

EB

~P

)
+ (γ − 1)

(~s · ~P )(~k∗ · ~P )
~P 2

,

(130)

where γ = EB(~P )/EB . Since we are scaling ~P as 1/L,
we can set γ = 1 and drop the last term. Also, since the
integral is dominated by nonrelativistic momenta, and
given that κ ≪ m, we can set ωk∗/EB = 1/3. Thus we
arrive at

~s · ~k = ~s ·
(
~k∗ +

~P

3

)[
1 +O

(
1

(mL)2
,
κ2

m2

)]
. (131)

This is the result that one expects from a Galilean boost,
in which each of the three particles picks up momentum
~P/3. Substituting this into Eq. (129), we reach

∆E~P (L) = c|A|2 π
3/2

31/4
1

κ

∑

~s

ei(2π/3)~s·~nP

×
∫

d3k∗

(2π)3
eiL~s·~k∗

2ωk∗

[
1 +

3k∗2

4κ2

]−1/2

+ · · · . (132)

We now observe that the integral appearing in (132)
is identical to that in the rest-frame expression (106).
Indeed, the only difference between the expressions is the
presence of the phase factor exp[i(2π/3)~s · ~nP ] in (132).
Keeping only the dominant s = 1 terms in the Poisson
sum we find that the energy shifts in different frames are
related by a simple prefactor

∆E~P (L) = f3[~nP ]∆E(L) + · · · , (133)

with

f3[~nP ] =
1

6

∑

ŝ

ei(2π/3)ŝ·~nP . (134)

We stress that the sum here is only over the six unit
vectors ŝ. This prefactor varies dramatically with the
value of momentum. For example, the lowest momenta
give

f3[(0, 0, 0)] = 1 , f3[(0, 0, 1)] = 1/2 ,

f3[(0, 1, 1)] = 0 , f3[(1, 1, 1)] = −1/2 .
(135)

This result is very similar to that for a two-particle
bound state, as described in Ref. [15]. We can obtain the
results in our approach by noting that Eq. (120) gener-
alizes to

∆E2, ~P (L) =
1

2EB2

Γ2F
iǫ
2 (EB2

(~P ), ~P )Γ2 , (136)

where EB2
(~P )2 = E2

B2
+ ~P 2. The residues are indepen-

dent of ~P and given by Eq. (121).
Assuming fixed ~nP as L→ ∞, the leading order form

for F iǫ
2 (~P ) is [15]

F iǫ
2 (EB2

(~P ), ~P ) = − 1

32πmL
e−κ2L

∑

ŝ

eiπ~nP ·ŝ + · · · ,

(137)
where again the sum over ŝ runs over the six unit vectors.
It follows that the energy shifts for different ~nP have a
similar form to the three-particle case:

∆E2, ~P (L) = f2[~nP ]∆E2(L) + · · · , (138)

where

f2[~nP ] =
1

6

∑

ŝ

eiπŝ·~nP . (139)

The values of f2 for the lowest momenta are

f2[(0, 0, 0)] = 1 , f2[(0, 0, 1)] = 1/3 ,

f2[(0, 1, 1)] = −1/3 , f2[(1, 1, 1)] = −1 .
(140)
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VIII. CONCLUSIONS

The main motivation for this work was to provide a
further nontrivial check of our three-particle quantiza-
tion condition. While many technical steps are required
to carry out this check, the key result for the energy shift,
Eq. (17), is rather simple. We have derived this result for
a particular type of three-particle bound state, namely a
spin-zero state for which the two-particle interaction is
near the unitary limit. It would be interesting to know,
however, whether Eq. (17) gives the leading volume de-
pendence in a more general context, or whether contri-
butions that are higher order here, such as ∆EF (L) in
Eq. (A7), must be considered.

Our extension of the result for the energy shift to a
moving frame shows the utility of having a formalism

that holds for any momentum ~P . It also opens up the
possibility of generalizing the work of Ref. [15] from two-
to three-particle bound sates. The idea is determine lin-
ear combinations of three-body bound state energies (ob-
tained from different frames) for which the leading finite-
volume dependence cancels.

Indeed, from our results here it is already clear that
such a cancellation occurs if one averages the CM-frame

energies extracted from the ~P = (2π/L)(0, 0, 1) and
~P = (2π/L)(1, 1, 1) frames. Even more striking is the
observation that the leading finite-volume effects vanish

for the ~P = (2π/L)(0, 1, 1) frame, implying that energies
extracted in this frame are closer to the infinite-volume
three-particle bound state energy than those obtained in
the rest frame. It is important to keep in mind, however,
that here the subleading terms that are not canceled are
suppressed only by a power of 1/(κL), whereas those in
the two-particle case are exponentially suppressed.
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Appendix A: Justifying approximations

In this appendix we justify various approximations
used in the main text. We do so in three steps. First, we
show that the FV effects in ∆E(L) arising from factors
of F iǫ are subleading in the calculation for Kdf,3 = 0.
Second, we argue that the same holds for the calculation
of ∆E(L) with nonzero Kdf,3. Finally, we argue that
the −1/3 terms contained in Eq. (65), and implicitly in
Eq. (69), also lead to subleading corrections to ∆E(L).

1. Dropping F iǫ terms if Kdf,3 = 0

We start from the general form of D(u,u)
L [Eq. (20)]

and use the result (22) to expand M2,L in powers of F iǫ.
After some algebra we find the following matrix equation

(
[2ωL3]M2,L +D(u,u)

L

)
=
(
[2ωL3]Ms

2 +D(u,u)
G

)

−
(
[2ωL3]Ms

2 +D(u,u)
G

) F iǫ

[2ωL3]

(
[2ωL3]M2,L + D(u,u)

L

)
,

(A1)

where

D(u,u)
G ≡ − 1

1 +M2G
M2G[2ωL

3]M2 , (A2)

is simply the approximation for D(u,u)
L used in Sec. III A,

i.e. Eq. (33). It satisfies Eq. (47) without approximation:

D(u,u)
G (~k, ~p) = D(u,u)(~k, ~p)

+

[
1

L3

∑

~ℓ

−
∫

~ℓ

]
D(u,u)(~k, ~ℓ)

1

2ωℓM2(ℓ)
D(u,u)

G (~ℓ, ~p) .

(A3)

We now repeat in two stages the argumentation given
at the end of Sec. III A. First we use the pole form
for D(u,u), Eq. (48), which, using Eq. (A3), implies that

D(u,u)
G has the pole form

D(u,u)
G (~k′, ~k)

∣∣∣∣
Kdf,3=0

∼ − Γ(u)(k′) Γ
(u)
(k)

E2 − (EB +∆EG(L))2
, (A4)

with the energy shift

∆EG(L) = − 1

2EB

[
1

L3

∑

~k

−
∫

~k

]
Γ
(u)
(k) Γ(u)(k)

2ωkMs
2(k)

+ · · · .

(A5)
This is the energy shift (17) determined in Sec. III A in
the approximation of dropping factors of F iǫ.
The second stage is to substitute the pole forms for

D(u,u)
G and D(u,u)

L , given respectively in Eqs. (A4) and
(49), into the matrix equation, Eq. (A1). A key observa-
tion here is that the contributions proportional to M2,L

and Ms
2 do not have poles near the position of the bound

state, and thus can be treated as part of the slowly vary-
ing “background” underneath the pole.16 As noted al-
ready in the main text, these lead only to higher order
energy shifts. Thus, when looking for the dominant en-
ergy shift we can ignore these terms. The structure of

16 The factors of L3 convert δk′k into (2π)3δ3(~k′−~k) in the L→ ∞

limit, and do not lead to poles.
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(A1) then mirrors that of Eq. (A3), and by the same
argument as in the first stage we find

∆E(L) = ∆EG(L) + ∆EF (L) + · · · , (A6)

∆EF (L) =
1

2EB

1

L3

∑

~ℓ

Γ
(u)
(ℓ)

F iǫ(~ℓ)

2ωℓ
Γ(u)(ℓ)

∣∣∣∣
E=EB

.

(A7)

Here F iǫ(~ℓ) is obtained from the matrix version of the
same quantity, Eq. (30), by removing the δk′k:

F iǫ(~ℓ) ≡ 1

2

[
1

L3

∑

~k

−
∫

~k

]

× H(~k)H(~ℓ)H(~bkℓ)

2ωk2ωkℓ(E − ωk − ωℓ − ωkℓ + iǫ)
.

(A8)

We note that the sum over ~ℓ in (A7) arises from the
matrix product in (A1). We also observe that for the
subthreshold energies that we consider here we can set
ǫ→ 0.

Our task is thus to evaluate ∆EF (L) and show
that it is suppressed relative to ∆EG(L). We recall
from Eq. (12) in the main text that ∆EG(L) scales as

e−2κL/
√
3/(κL)3/2. In the subsequent evaluation we will

drop all constants and keep track only of L-dependence.

Substituting the residue factors from Eq. (100) we find

∆EF (L) ∝
1

L3

∑

~ℓ

[
1 +

3ℓ2

4κ2

]−1

F iǫ(~ℓ)

∣∣∣∣
E=EB

. (A9)

The zeta-function can be rewritten using the Poisson
summation formula, following Eqs. (43) and (C4)-(C6)
of Ref. [9]:

F iǫ(~ℓ)

∣∣∣∣
E=EB

= − 1

32πmL

∑

~s 6=0

eiπ~s·~nℓ
e−sL

√
κ2+3ℓ2/4

s
.

(A10)

Here ~s is a vector of integers and ~nℓ = L~ℓ/(2π). To obtain
this form we have also expanded in powers of κ2/m2 and
dropped subleading contributions. The cutoff functions
H have also been dropped since they are made redundant
by the natural cutoff in the exponential.

Combining these results, and using the Poisson sum-

mation formula on the sum over ~ℓ, we find

∆EF (L) ∝
1

L

∑

~n

∫
d3ℓ

(2π)3

∑

~s6=0

1

s

×
[
1 +

3ℓ2

4κ2

]−1

eiL(~n+~s/2)·~ℓ−sL
√

κ2+3ℓ2/4 . (A11)

Evaluating the angular integral leads to

∆EF (L) ∝
1

L2

∑

~n

∑

~s 6=0

1

s
Im

∫ ∞

−∞
dℓℓ

× eLf(ℓ)

1 + 3ℓ2/(4κ2)
,

(A12)

f(ℓ) = iq − s
√
κ2 + 3ℓ2/4 , (A13)

q = |~n+ ~s/2| . (A14)

The integral can be evaluated by deforming the contour
to pass through the appropriate stationary point, ℓ0, and
using the steepest descent approximation. The station-
ary point and the corresponding exponent are

ℓ0 =
2iqκ√

3

1√
3s2/4 + q2

, (A15)

f(ℓ0) = −2κL√
3

√
3s2/4 + q2 . (A16)

Since the result of the integral scales as e−Lf(ℓ0) it is now
clear that the dominant contributions arise when s = 1
and q = 1/2. These come from the 12 terms having s = 1
together with ~n = 0 or ~n = −~s.17 Doing the Gaussian
integral we then obtain

∆EF (L) ∝
e−2κL/

√
3

L5/2
+ · · · . (A17)

As claimed above, this is suppressed by a factor of 1/L
compared to ∆EG(L).
Note here that we have expanded all quantities, includ-

ing the poles at ℓ = ±2iκ/
√
3, about the saddle point.

One might be concerned that this leads to the incorrect
scaling since the pole at ℓ = 2iκ/

√
3 lies close to the sta-

tionary point at ℓ0 = iκ/
√
3. This is not the case, how-

ever. As one sends L → ∞ the Gaussian peak becomes
arbitrarily narrow and the effect of the pole is damped
away. We have checked this result numerically by cal-
culating the ratio of the right-hand sides of Eqs. (A12)
and (A17). We find that the quantities indeed asymptote
to the same value, although the convergence is relatively
slow, requiring κL ≈ 125 to reach subpercent agreement.

2. Dropping F iǫ terms for general Kdf,3

When Kdf,3 6= 0, we have not been able to find a simple
expression, akin to Eq. (A1), showing the form of con-
tributions proportional to F iǫ. Thus we will make the

17 The fact that ~n = −~s contributes equally with ~n = 0 implies that
the sum over ~ℓ in the original expression for ∆EF (L) cannot be
replaced by an integral, despite the fact that the summand has
no poles in the subthreshold region. If one were to make this
replacement then one would get an answer too small by a factor
of two.
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argument that these terms can be dropped in a slightly
different way. This approach is more general and would
also work for Kdf,3 = 0. The point is that, in order to

obtain the leading order energy shift from M(u,u)
3,L , we

can simply drop all terms from this quantity that have
subleading volume dependence when E = EB . It is not
important whether the terms we drop contribute to the
energy shift or, say, to a shift in the residues of the pole.
Thus all we need to do is show that terms containing
factors of F iǫ are subleading, then it is legitimate to set
F iǫ → 0 for the purposes of the calculation in the main
text.

When we expand out M3,L, Eq. (18), in powers of F iǫ,
we find that the latter appears in the forms

D(u,u)F iǫD(u,u) , D(u,u)F iǫKdf,3 ,

Kdf,3F
iǫD(u,u) and Kdf,3F

iǫKdf,3 .
(A18)

For Kdf,3 6= 0, D(u,u)(~k, ~p) will not have the pole form
of Eq. (48). Thus the dependence on its arguments will
not be given by that of Γ(k)Γ(p). In particular, there
is no reason to expect that the singularity present in Γ,
Eq. (100), will still be present in the dependence of D(u,u)

on its arguments. Similarly, we do not expect Kdf,3 to
have any singularities close to threshold, as it corresponds
to a quasi-local vertex. Thus, when all other momenta
are held fixed, we expect the general form of all the terms
in Eq. (A18) to be

1

L3

∑

~ℓ

g(~ℓ)F iǫ(~ℓ)

∣∣∣∣
E=EB

, (A19)

with g(~ℓ) a smooth function in the threshold re-
gion. Assuming this form, the calculation of the pre-
vious subsection shows that this contribution scales as
L−5/2 exp(−2κL/

√
3) and is thus subleading. In fact,

the previous calculation shows that this result will hold

even if g(~ℓ) has a singularity at the same position as that
in Γ(ℓ).

3. Dropping the “−1/3 terms” for general Kdf,3

The final task of this appendix is to argue that the
−1/3 terms in Eq. (65), and implicitly in Eq. (69), lead
to subleading volume dependence. We follow the line
of argument used in the previous subsection, namely we

work directly with M(u,u)
3,L and do not derive an expres-

sion for ∆E(L). The volume dependence from the terms
of interest arises from the forms

D(u,u)C(−1)Kdf,3 , Kdf,3C
(−1)D(u,u) ,

and Kdf,3C
(−1)Kdf,3 . (A20)

These are shorthand for the sum-integral differences, as
described in the main text. For example

D(u,u)C(−1)Kdf,3 =
[
1

L3

∑

~ℓ

−
∫

~ℓ

]
D(u,u)(~p, ~ℓ)

1

2ωℓMs
2(
~ℓ)
Kdf,3(~ℓ,~k) , (A21)

As noted above, we do not know the momentum depen-
dence of D(u,u) when Kdf,3 6= 0, and there is no reason
to expect it to have a singularity near threshold. For

Kdf,3 we take, as above, a smooth dependence on ~ℓ, with
no singularities near threshold. Finally, we recall from
Eq. (104) that 1/Ms

2 has a branch cut at ℓ2 = −4κ2/3.
Putting these ingredients together we find that the sum-
mand/integrands for all of the forms in Eq. (A20) are
expected to have only the square-root branch cut aris-
ing from 1/Ms

2. This is in contrast to the expression for
∆E(L), Eq. (105), in which the summand/integrand has
an inverse square-root singularity at ℓ2 = −4κ2/3.

Thus the contributions from the forms (A20) toM(u,u)
3,L

are expected to be proportional to [cf. Eq. (108)]

1

L

∫ ∞

2κ/
√
3

dℓℓe−ℓL

(
3ℓ2

4κ2
− 1

)1/2

∝ e−2κL/
√
3

L5/2
, (A22)

and are thus suppressed by a power of 1/L compared to
the leading volume dependence.

Appendix B: Relating residue factors to the

Schrödinger wavefunction

In this appendix we derive the relation (90) be-

tween the on-shell residue factors Γ(u) and Γ
(u)

and the
Schrödinger wavefunction ψ.
To do so we first relate the Bethe-Salpeter amplitudes

of the bound state to the wavefunction. Denoting these
amplitudes by χ and χ, we recall that they are defined
via the coefficient of the bound-state pole in the unam-
putated 3 → 3 correlation function, S3:

S3(p
′
1, p

′
2; p1, p2;P ) ∼ χ(p′1, p

′
2)

i

P 2 − E2
B

χ(p1, p2) . (B1)

Note that χ and χ depend on the four-momenta of two
of the three particles (the third determined by energy-
momentum conservation).
The relation between χ and ψ has been given, under

certain assumptions, in Ref. [19]. In particular the refer-
ence assumes that there are only two-particle, instanta-
neous interactions and that the NR limit has been taken.
Since these are also the assumptions made by MRR, the
results of Ref. [19] are sufficient here. The forms of the
relations most useful for our purposes are

χ = β
√

3
4

1
mS1S2S3

[
(EB − 3m−H0)

+
{
S−1
1 V23S23 + S−1

2 V31S31 + S−1
3 V12S12

} ]
ψ̃ , (B2)
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and

χ = β
√

3
4

1
m ψ̃

†[(EB − 3m−H0)

+
{
S23V23S

−1
1 + S31V31S

−1
2 + S12V12S

−1
3

} ]
S1S2S3 ,

(B3)

where we have introduced a normalization factor β. In
Sec. B 2 we show that β = 1 by matching the definitions
of χ and ψ for a finite-volume scattering state.
In Eqs. (B2) and (B3) we are using an abbreviated

notation that we now explain. First we note that ψ̃ de-
pends on two of the three momenta, e.g. ~p1 and ~p2, with
~p3 = −~p1−~p2. [or alternatively on the Jacobi momenta as
in Eq. (86)]. χ and χ depend in addition on the energies
Ei, which are constrained to satisfy E1 +E2 +E3 = EB.
As we show below, only the factor on the first line of
Eqs. (B2) and (B3) enters the relation between the wave-
function and the on-shell residue factors Γ, Γ. Note that
this factor depends on H0, defined in Eq. (91). Si are
single-particle NR propagators,

Si(Ei, ~pi) =

(
Ei −m− ~p2i

2m
+ iǫ

)−1

. (B4)

Sij are two-particle NR propagators that include the po-
tential Vij . In particular, Sij solves the integral equation

Sij(Ei+Ej ; ~pi, ~pj ;~ki) = S0
ij(Ei+Ej; ~pi, ~pj)

× (2π)3δ3(~pi−~ki) +
∫

d3qi
(2π)3

S0
ij(Ei+Ej ; ~pi, ~pj)

× Vij(|~qi − ~pi|)Sij(Ei+Ej ; ~qi, ~qj;~ki) , (B5)

where S0 is the free two-particle propagator

S0
ij(Ei+Ej; ~pi, ~pj)

−1

= Ei + Ej − 2m− ~p2i
2m

−
~p2j
2m

+ iǫ ,
(B6)

= Si(Ei, ~pi)
−1 + Sj(Ej , ~pj)

−1 . (B7)

We do not show the fourth momentum argument of Sij

because total momentum is conserved, i.e. ~pi + ~pj =

~qi + ~qj = ~ki + ~kj . Note that Eqs. (B2) and (B3) con-
tain implicit three-momentum integrals adjacent to the
Sij factors. Their form can be seen by noting that the
shorthand version of Eq. (B5) is

Sij = S0
ij + S0

ijVijSij . (B8)

It will be important that the energy dependence of Sij is
explicit, entering only through the Ei + Ej term in S0

ij .
As discussed in Ref. [19], with these definitions one can

show that ψ satisfies the Schrödinger equation if χ satis-
fies the Bethe-Salpeter equation and vice versa. We have
checked this result. This does not depend on the overall
normalizations in Eqs. (B2) and (B3), and in fact we find
that a different normalization factor from that given in
Ref. [19] is needed in order that ψ is normalized as in
Eq. (83). We explain how we determine the normaliza-
tion factor, β, in Sec. B 2 below. First we describe how
we proceed from Eq. (B2) to the desired result (90).

1. From the Bethe-Salpeter amplitude to Γ(u)

To obtain Γ from χ we must amputate and then go
on shell, and in addition multiply by a factor of −i to
account for the overall sign difference in the pole term.18

Amputation requires multiplying by the product of three
relativistic propagators, whose relation to the NR prop-
agators near the pole is

Srel(pi)
−1 =

p2i −m2 + iǫ

i
(B9)

≈ 2m

i
(Ei − ωpi

+ iǫ) (B10)

≈ 2m

i
Si(Ei, ~pi) , (B11)

with pi a four-vector. Thus we find

Γ = lim
on shell

(−i)β
√

3
4 (8im

2)
[
(EB − 3m−H0)

+
{
S−1
1 V23S23 + S−1

2 V31S31 + S−1
3 V12S12

} ]
ψ̃ . (B12)

We now argue that the terms involving S−1
j vanish due

to the on-shell limit. We imagine taking this limit by first
sending p21/(2m) → E1 − m, then p22/(2m) → E2 − m,
and finally p23/(2m) → E3 − m. The final result must
not depend on this choice of ordering. The first step
sets S−1

1 → 0, removing the S−1
1 term. The second step

similarly removes the S−1
2 term. At this stage we note

that EB − 3m − H0 = S−1
3 , so it appears that the two

remaining terms on the right-hand side of Eq. (B12) are
on an equal footing, and that both vanish when E3 goes
on shell. In fact, the EB − 3m−H0 term does not van-
ish, as we show in the main text by explicit calculation.

This is due to a corresponding divergence in ψ̃. This
divergence does not save the S−1

3 term from vanishing,
however, because of the momentum integral that implic-
itly accompanies the factor of S12. This integral remains
even when the external momenta are set on shell, and
does not diverge. Thus we find

Γ = lim
on shell

β4
√
3m2(EB − 3m−H0)ψ̃ , (B13)

a result that indeed is independent of the manner in
which we approach the on-shell point. Similarly we find

Γ = lim
on shell

β4
√
3m2ψ̃†(EB − 3m−H0) . (B14)

We note that, up to overall normalization factors, the
same expression holds for the relation of Γ to ψ in the
two-particle case.

18 This follows from the fact that amputating G and going on-shell
gives iM3, but the relation between ΓΓ and iM3 differs from
that between χχ and G by an overall sign. The choice of −i
rather than i is for convenience. Note that we must use the same
factor to relate Γ to χ, i.e. −i and not i.
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The final step is to argue that we obtain the unsym-

metrized residue Γ(u) by replacing ψ̃ with φ̃3 in Eq. (B13)

[and similarly for Γ
(u)

]. This leads to the desired result
(90). First, we note that this claim is consistent with
Eq. (B13). This is because the full wavefunction is given
by summing the three components related by permuta-
tions

ψ̃ = φ̃1(~k23, ~k1) + φ̃2(~k31, ~k2) + φ̃3(~k12, ~k3) , (B15)

while the full Γ is obtained by similarly symmetrizing
Γ(u). Second, we use the observation given in the main
text, namely that, if we imagine iteratively solving the
Fadeev equation (84) and its permutations, we obtain

for φ̃3 a sequence of contributions in which the first in-
teraction is always between particles 1 and 2. This is
precisely the definition of the unsymmetrized amplitude

M(u,u)
3 , from which Γ(u) is obtained.

2. Deriving the normalization factor

We have found that the simplest way to determine the
overall normalization of Eqs. (B2) and (B3), i.e. the value
of β, is to use a somewhat indirect method.19 We con-
sider the poles in the finite-volume 3 → 3 correlation
function, for which we can directly calculate both χ and
ψ. The derivation of Eq. (B2) relies on χ satisfying the
Bethe-Salpeter equation and ψ the Schrödinger equation,
both of which remain valid in finite volume. The only
change is that momentum integrals become sums, but if
we work in large volumes this difference is a subleading
effect. The motivation of studying a finite-volume corre-
lator is that this has an infinite-tower of poles, and any
one of these can be used to study the relation between
χ and ψ. The derivation of this relation does not rely
on the pole in the correlator corresponding to a bound
state. It can equally well be a finite-volume scattering
state, as long as it is near enough to threshold to be in
the nonrelativistic regime.
Thus our idea is to use the results of Ref. [13], in which

we did a perturbative calculation of the 3 → 3 correlation
function in finite-volume in λφ4 theory. Since the rela-
tions we are testing are essentially kinematical, we can
work here at infinitesimal λ, and keep only the lowest
term in the expansions of the relevant quantities. The
relevant correlator is20

C3(τ) = 〈φ̃~0(τ)3φ̃~0(0)3〉 , (B16)

19 In principle, one should be able to use the normalization equa-
tion satisfied by the Bethe-Salpeter amplitude as well as that
satisfied by the Schrödinger wavefunction to deduce the desired
normalization factor, but we have not been able to complete
the calculation in this manner due to the complicated form of
Eq. (B2).

20 We have checked our method by repeating the calculation for
two particles, and finding the correct relation between χ and ψ
in that case.

where φ̃~0(τ) is the zero-spatial-momentum field at Eu-
clidean time τ . We focus on the contribution of the state
nearest threshold,

C3(τ) ⊃ Z3e
−(3m+∆E3)|τ | . (B17)

What we need from Ref. [13] are the results

Z3 =
3!L9

(2m)3
[
1 +O(λ/L3)

]
and ∆E3 = O(λ/L3) .

(B18)
We also need the form of the wavefunction for this

state, or more precisely (as we will see) the momentum-
space wavefunction at vanishing momenta. At leading
order the state simply consists of three free particles in
a cubic box of size L3 each with zero momentum. It fol-
lows that the position-space wavefunction is a constant,
ψ(~x3, ~y3) = c3 and this constant can be determined from
the normalization condition, Eq. (83) (with here A = 1).
One can rearrange the fundamental domain for three par-
ticles such that the period in each component of the Ja-
cobi coordinates ~x3 and ~y3 are L and 2L/

√
3, respectively.

Using this we have
∫
d3x3d

3y3J |ψ|2 = 6 =⇒ J

J
|c3|2L6 = 6 ,

=⇒ |c3| =
√
6

L3
.

(B19)

Thus we find

ψ̃3(~0,~0) =

∫
d3x3d

3y3Jψ(~x3, ~y3) = c3L
6 . (B20)

Our next step is to Fourier transform C3(τ) in time,
so that it becomes the momentum-space correlator used
to define χ and χ:

∫
dt eiP

0tC3(t) =

∫
(−i)dτeP 0τC3(τ) , (B21)

∼ −iZ32(3m+∆E3)

(3m+∆E3)2 − (P 0)2
, (B22)

where the ∼ indicates that the two sides differ by terms
that are finite at the pole. In the first step we have
analytically continued to Euclidean time; in the second,
we evaluate the integral assuming P 0 < (3m+∆E3) and
then analytically continue to general P 0.
Alternatively, one can evaluate the integral in terms

of the off-shell momentum-space 3 → 3 correlator
S3(k

′
12, k

′
3; k12, k3;P ), where we have used the Jacobi mo-

menta (85) extended to four-vectors, and Pµ = (P 0, ~P ) is
the total four-momentum. Standard manipulations lead
to

∫
dt eiP

0tC3(t) = L3

∫
dk012
2π

∫
dk03
2π

∫
dk′012
2π

∫
dk′03
2π

× S3(k
′
12, k

′
3; k12, k3;P )

∣∣∣∣
~k12=~k3=~k′

12
=~k′

3
=~P=~0

. (B23)
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Using the definition of the Bethe-Salpeter amplitudes at
the pole

S3(k
′
12, k

′
3; k12, k3;P ) ∼

χ(k′12, k
′
3)

i

P 2 − E2
pole

χ(k12, k3) , (B24)

we find
∫
dteiP

0tC3(t) ∼ L3 iXX

(P 0)2 − E2
pole

, (B25)

where

X =

∫
dk012
2π

dk03
2π

χ([k012,~0], [k
0
3 ,~0]) , (B26)

X =

∫
dk012
2π

dk03
2π

χ([k012,~0], [k
0
3 ,~0]) . (B27)

Comparing to Eq. (B22), and keeping the leading terms
in perturbation theory for Z3 and ∆E3, we find

XX =
6Z3m

L3
=

36L6

8m2
. (B28)

We are finally ready to determine the normalization
factor β in Eqs. (B2) and (B3). Replacing EB → Epole =
3m+∆E3, we substitute the wavefunction (B20) to de-
duce the values of χ and χ predicted by these relations.
To simplify the result, note that we can evaluate the
single-particle propagators at Epole as well as vanishing
spatial momenta

S−1
1 =

∆E3

3
+ k012 +

k03
2

+ iǫ , (B29)

S−1
2 =

∆E3

3
− k012 +

k03
2

+ iǫ , (B30)

S−1
3 =

∆E3

3
− k03 + iǫ . (B31)

We now evaluate the integrals, implicit in (B2) and (B3),
and find that it is always possible to close the contour
such that only the Epole−3m−H0 term contributes. For

example, for the S−1
3 term one can close the k012 contour

below and pick up the pole in S1, but the remainder can
be written as a some of terms containing powers of S0

12

[as can be seen by iterating Eq. (B5)]. All these terms
have the k03 pole below the axis, and so vanish when we
close the k03 contour above. Evaluating the integrals for
the Epole − 3m−H0 term, we find

X = (−i)2β
√

3
4

1
m ψ̃(

~0,~0) . (B32)

The same expression holds for X in terms of ψ̃†.
Thus we deduce that the value of XX determined from

Eqs. (B2) and (B3) is

XX = β2 3

4

1

m2
|ψ̃(~0,~0)|2 = β2 3|c3|2L12

4m2
= β2 9L

6

2m2
,

(B33)
where we have used that β is assumed to be a positive,
real number. Comparing this to the direct evaluation,
Eq. (B28), we deduce β = 1 as claimed.

Appendix C: An identity for the Schrödinger

wavefunction

In this appendix we use the explicit form of φ, Eq. (79),
to derive the identity Eq. (92). We first reproduce the
identity
(
−κ2 + ~∇2

x3
+ ~∇2

y3

)
φ(R,α3) = mh(|~y3|)δ3(~x3) , (C1)

h(y) = −4π
b

m

Kis0(κy)

y
, (C2)

b = Aκ
√
D0 , (C3)

and the form of φ

φ(R,α) = b
Kis0(

√
2κR)

R2

sh(s0[π/2− α])

sh(s0π/2)

1

sin(2α)
, (C4)

where, as above, shx = sinhx.
Writing the Laplacian in hyperspherical coordinates

(as described, for example, in Ref. [17]) one easily verifies
that the left-hand side of Eq. (C1) vanishes except at the
end points R = 0 and α3 = 0, where φ diverges. To study
these singular points it is better to use the coordinates ~x3
and ~y3. Given the definition of R, Eq. (80), R vanishes
only when both ~x3 and ~y3 vanish, i.e. when all three
particles are at the same position.21 By contrast, α3, de-
fined in Eq. (81), vanishes when ~x3 = 0 for any finite |~y3|,
i.e when particles 1 and 2 are coincident. We conclude
that the left-hand side of Eq. (C1) vanishes except when
~x3 = 0, and thus that the identity holds for ~x3 6= 0. We
also note that, since φ depends only the magnitudes of ~x3
and ~y3, and given that this property is maintained by the
operator on the left-hand side of Eq. (C1), the function
h can only depend on the magnitude of ~y3, as shown.
To check the ansatz (C1) also at ~x3 = 0, we proceed

in two stages. First, we fix ~y3 to a nonzero value, and
send r = |~x3|/|~y3| → 0. Expanding φ in this regime, and

using |~x3| =
√
2R sinα3, we find

φ(R,α3) =
m

4π

1

|~x3|
h(|~y3|) [1 +O(r)] . (C5)

The operator on the left-hand side of Eq. (C1) gives a fi-
nite result (in fact, zero) when acting on this form except
for

~∇2
x3

1

|~x3|
= −4πδ3(~x3) . (C6)

Thus one finds the right-hand side of the identity.22

21 Kis0 (z) itself has an indeterminate limit at z = 0 since the
function remains finite but oscillates as a function of ln z—see
Eq. (C8). The divergence at R = 0 occurs because of the 1/R2

factor in φ.
22 To check this one can integrate both sides of the equation over

a 3-dim ball in ~x3 of radius ǫ with ǫ → 0+. The integrals of the
two sides indeed agree.
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The second stage is to consider the region where ~x3 →
0 with r fixed, so that both ~x3 and ~y3 are vanishing.
Then the approximation of Eq. (C5) does not apply,
and the issue is whether there could be an additional
term on the right-hand side of Eq. (C1) proportional to
the six-dimensional delta-function δ3(~x3)δ

3(~y3). Such a
term would not have contributed in the first stage of
the argument. To address this possibility we integrate
both sides of (C1) over a six-dimensional ball of radius√
~x23 + ~y23 = ǫ, with ǫκ ≪ 1. A δ3(~x3)δ

3(~y3) term would
then lead to an additional constant, so that the results
from integrating the two sides of (C1) would not agree.
In fact, we find that the results do agree, as we now show.
The integral over the right-hand side gives

IR = −(4π)2b

∫ ǫ

0

yKis0(κy)dy . (C7)

To evaluate this we use the small argument form of the
Bessel function

Kis0(z) ≈ a1 sin(s0 ln z+a2) (0 < z ≪ 1) , (C8)

where a1 and a2 are real constants whose values we will
not need. Then one finds

IR = −ǫ2(4π)2ba1
1

4 + s20

{
2 sin[s0 ln(ǫκ)+a2]

− s0 cos[s0 ln(ǫκ)+a2]

}
+ · · · , (C9)

where the ellipsis indicates terms of higher order in ǫ.
The integral over the left-hand side of (C1) breaks into

two parts. The first comes from the κ2 term and is easily

found to scale as ǫ4, and thus can be dropped. The sec-
ond comes from the action of the six-dimensional Lapla-
cian, and can be rewritten using the six-dimensional di-
vergence theorem as

IL =

∮
êR · ~∇φ =

∮
1√
2

∂φ

∂R

∣∣∣∣∣
R=ǫ/

√
2

. (C10)

Here the integral is over the surface of the ball, êR is the
hyperradial unit vector, and to obtain the second form we
have used ~x23 + ~y23 = 2R2. Using the integration measure
in hyperspherical coordinates [17], the integral becomes

IL = (4π)2
√
2

(
ǫ√
2

)5 ∫
dα sin2(2α)

1√
2

∂φ

∂R

∣∣∣∣∣
R=ǫ/

√
2

.

(C11)
This evaluates to the same result (C9) as IR, thus com-
pleting this check.

Another possibility for additional terms on the right-
hand side of Eq. (C1) is that there could be derivatives
of a six-dimensional delta-function. There is some reason
to expect this for radial derivatives because Kis0(z) oscil-
lates increasingly rapidly as z → 0, as shown by Eq. (C8).
The dependence on α, however, is much smoother, so
we do not expect derivatives with respect to α to occur.
Terms with radial derivatives acting on a delta-function
can be ruled out as follows: integrate the two sides of
Eq. (C1) over the same ball as used above, but now us-
ing the weight functions Rn (with n > 0). If the two sides
match, then such derivative terms must be absent. We
have verified that indeed, for this class of weight func-
tions, the integrals of the two sides of Eq. (C1) agree.
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