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We present the construction of unintegrated double parton distribution functions which include
dependence on transverse momenta of partons. We extend the formulation which was used to ob-
tain the single unintegrated parton distributions from the standard, integrated parton distribution
functions. Starting from the homogeneous part of the evolution equations for the integrated double
parton distributions, we construct the unintegrated double parton distributions as the convolu-
tions of the integrated double distributions and the splitting functions, multiplied by the Sudakov
form factors. We show that there exist three domains of external hard scales which require three
distinct forms of the unintegrated double distributions. The additional transverse momentum de-
pendence which arises through the Sudakov form factors leads to non-trivial correlations in the
parton momenta. We also discuss the non-homogeneous contribution to the unintegrated double
parton distributions, which arises due to the splitting of a single parton into daughter partons with
high transverse momenta. We analyze two cases, the unfolding of the transverse momenta depen-
dence from the last step of the evolution of two partons, and the case where the transverse momenta
are generated directly from the single parton splitting.
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I. INTRODUCTION

The Large Hadron Collider opened a completely new kinematic domain for exploring the dynamics of the strong
interactions. At these very high energies the incoming hadrons are characterized by the large parton densities driven
by the fast increase of the gluon density at low values of Bjorken x. Typically, for most hadron encounters only a single
partonic interaction occurs. However, at large energies, it is also possible to have more than one partonic interaction
per one collision of incoming hadrons. This is referred to as a multi-parton interaction. Such events were first observed
by the AFS Colaboration at CERN [1] and followed by the measurements performed by the collaborations at the
Tevatron collider [2–4]. Later, a systematic experimental analysis was performed at the Large Hadron Collider [5–7].

The theoretical description of single hard parton interactions is well established within the perturbative QCD. The
standard approach is to use the collinear factorization [8, 9] with perturbatively calculable partonic cross sections and
integrated parton distribution functions (PDFs) which obey the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
evolution equations [10–12]. Such factorization is well defined when the hard scale, like the transverse energy of the
jet, invariant mass of the Drell-Yan pair or the mass of the produced heavy quark, is present in the process.

For the multiparton interactions, the theoretical description within the perturbative QCD is also possible in the
presence of the sufficiently hard scales. The computation of double parton scattering (DPS) cross sections within the
collinear framework makes use of the double parton distribution functions (DPDFs) [13–40]. Recently, a significant
progress has been made towards a complete proof of the factorization theorem for the double parton interaction in
the case of the double Drell-Yan production [41]. In the leading logarithmic approximation, the DPDFs obey QCD
evolution equations similar to the DGLAP equations for the PDFs [13, 14, 17, 18, 23, 42], (see also [43, 44] for the
analogous formulation of the evolution equations for double parton correlations inside jets).

The standard collinear approach with integrated PDFs may be, however, insufficient when trying to describe more
exclusive processes, see for example [45]. In this case the more complete information about the kinematics of the
partonic process should be included. This can be done by using the unintegrated parton distributions which in
addition to the parton longitudinal momentum fractions also include their transverse momentum dependence.

The unintegrated parton distribution functions (UPDFs)1 naturally appear in the small x formalism, where the so
called kT -factorization is utilized [46] with off-shell matrix elements and the unintegrated parton distributions. For
example, the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [47–49] can be interpreted as an evolution equation in
log x for the unintegrated parton distributions. The Catani-Ciafaloni-Fiorani-Marchesini (CCFM) equation [50–53]

1 They belong to a general class of transverse momentum dependent parton distributions (TMDs).
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is a further example of the evolution equation for the UPDFs, which in addition to the transverse momentum also
depends on the hard scale of the process. Yet another formulation is the transverse momentum dependent (TMD)
factorization, (for a comprehensive formulation see [54]), which is valid to the leading power in the hard scale.

A very useful approach to the UPDFs was formulated in [55–57], where the UPDFs were constructed from the
integrated PDFs through the derivative of the latter additionally dressed with the Sudakov form factor. The inclusion
of the Sudakov form factor leads to the emergence of the dependence on two scales, the transverse momentum of
the parton and the hard scale. The hard scale plays the role of the cutoff in the angular ordering of the emitted
soft gluons. This construction is relatively convenient as it allows for obtaining the UPDFs without actually solving
separate equations (like the CCFM equation which is quite complicated) but rather using the standard integrated
PDFs. The UPDFs obtained in this framework are widely used in phenomenology, where they are applied in the kT
factorization formalism together with the off-shell matrix elements, see [58] and references therein for recent analysis.

In this article, we extend the construction [55, 57] to the case of the unintegrated double parton distribution
functions (UDPDFs)2. Starting from the evolution equations for the integrated double distribution functions (DPDFs)
we recast them in the form that allows to extract the unintegrated versions of these distributions. We show that for
the homogeneous part of the solution to these equations, the extension requires the convolution of the integrated
DPDFs with splitting functions and multiplication by the appropriate Sudakov form factors. Since there are two hard
scales in this case, we find that the form of the UDPDFs depends on the relation between the two hard scales. Also,
we find that the cutoffs which regularize the real emission integrals and the Sudakov form factors induce nontrivial
correlations between the longitudinal momenta of the two partons.

We also discuss the non-homogenous contribution to the UDPDFs which corresponds to the splitting of one parton
into two daughter partons with large transverse momenta. We present the results of the unfolding of the transverse
momenta dependence from the last step in the evolution of two partons in the non-homogeneous part of the solution to
the evolution equations for the DPDFs. We also consider the contribution due to the parton splitting which includes
transverse momentum dependence, derived in the light-front approach.

Our paper is organized as follows. In Sec. II we recapitulate the construction of the UPDFs presented in [55, 57]
in both the Mellin space and the x-space. In Sec. III we recall the evolution equations for the integrated DPDFs
and also show their formulation in the Mellin space. In Sec. IV we present the details of the construction of the
UDPDFs for the homogeneous part of the solution the evolution equations for the DPDFs. We also briefly discuss the
correlations between kinematic variables in the UDPDFs, induced by the regularization of the real emission integrals
and the Sudakov form factors. In Sec. V we construct the non-homogeneous contribution to the UDPDFs, by first
applying the construction performed for the homogeneous solution and also by the explicit derivation of the parton
splitting term with the transverse momenta dependence on the light-front. Finally, in the last section we present the
summary and conclusions.

II. UNINTEGRATED PARTON DISTRIBUTIONS

Let us first recapitulate the main points of the construction of the single unintegrated parton distribution functions
proposed by Kimber-Martin-Ryskin (KMR) [55, 57]. The starting point are the DGLAP evolution equations for the
single integrated parton distributions Da(x, µ), where a denotes quark/antiquark flavors and also gluon, x is the
longitudinal momentum fraction and µ is the scale for this distribution. The DGLAP equations with real and virtual
parts separated read

∂Da(x, µ)

∂ lnµ2
=
∑

a′

∫ 1−∆

x

dz

z
Paa′(z, µ)Da′

(x
z
, µ
)
−Da(x, µ)

∑

a′

∫ 1−∆

0

dzzPa′a(z, µ) . (1)

The splitting functions Paa′ can be computed order by order in perturbation theory and thus are given in powers of
the running strong coupling constant, αs(µ)/(2π). In the leading logarithmic in µ2 approximation we have

Paa′(z, µ) =
αs(µ)

2π
P

(0)
aa′ (z) , (2)

where P
(0)
aa′ are the LO Altarelli-Parisi splitting functions. The upper limits in the divergent integrals in Eq. (1) are

regularized by a parameter ∆ < 1 to be specified later. In the DGLAP equations ∆→ 0 because singularities between

2 They are also called double transverse momentum dependent distributions (DTMDs) in the current literature, see recent [59].
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D(k⊥)

T (k⊥, µ)

FIG. 1: Schematic representation of the UPDFs, Eq. (8). The longitudinal momentum structure is suppressed on this plot.
The horizontal line denotes the real parton emission with the splitting functions Pab and the circular blobs on the vertical lines
indicate the Sudakov form factor.

real and virtual terms cancel, but we will keep ∆ finite to be able to manipulate these equations. The first (real) term
on the r.h.s of Eq. (1) can be interpreted as a number of partons which are emitted in the interval µ2 ≤ k2

⊥ ≤ µ2 +δµ2.
The second (virtual) term does not change the transverse momentum of the parton and therefore can be integrated
as we shall show below.

Let us take for the factorization scale parton transverse momentum, µ = |k⊥| ≡ k⊥ and rewrite these equations in
the following form

∂Da(x, k⊥)

∂ ln k2
⊥

+Da(x, k⊥)
∑

a′

∫ 1−∆

0

dzz Pa′a(z, k⊥) =
∑

a′

∫ 1−∆

x

dz

z
Paa′(z, k⊥)Da′

(x
z
, k⊥

)
. (3)

After multiplying both sides of this equation by the Sudakov form factor3,

Ta(Q, k⊥) = exp

{
−
∫ Q2

k2⊥

dp2
⊥

p2
⊥

∑

a′

∫ 1−∆

0

dzzPa′a(z, p⊥)

}
, (4)

where k2
⊥ ≤ Q2, the l.h.s. can be written as a full derivative, and Eq. (3) reads

∂

∂ ln k2
⊥

[Ta(Q, k⊥)Da(x, k⊥)] = Ta(Q, k⊥)
∑

a′

∫ 1−∆

x

dz

z
Paa′(z, k⊥)Da′

(x
z
, k⊥

)
. (5)

The Sudakov form factor is interpreted as the probability that the parton a with transverse momentum k⊥ will not
split into a pair of partons during the evolution in p2

⊥ up to the scale Q2. Integrating both sides of Eq. (5) over k⊥
in the limits Q0 ≤ Q, where Q0 is an initial scale for the DGLAP evolution, we find on the l.h.s.

∫ Q2

Q2
0

dk2
⊥

k2
⊥

∂

∂ ln k2
⊥

[Ta(Q, k⊥)Da(x, k⊥)] = Da(x,Q)− Ta(Q,Q0)Da(x,Q0) , (6)

since Ta(Q,Q) = 1. Thus, Eq. (5) takes the following form

Da(x,Q) = Ta(Q,Q0, )Da(x,Q0) +

∫ Q2

Q2
0

dk2
⊥

k2
⊥

{
Ta(Q, k⊥)

∑

a′

∫ 1−∆

x

dz

z
Paa′(z, k⊥)Da′

(x
z
, k⊥

)}
. (7)

The first term on the r.h.s. corresponds to the absence of splitting during the evolution from Q0 to Q while the second
one describes a sequence of partonic emissions interlaced with the probabilities for no emissions. This constitutes the
Monte Carlo scheme for generation of parton cascades.

The expression in the curly brackets in Eq. (7) defines the unintegrated parton distribution functions (UPDFs),

fa(x, k⊥, Q) ≡ Ta(Q, k⊥)
∑

a′

∫ 1−∆

x

dz

z
Paa′(z, k⊥)Da′

(x
z
, k⊥

)
, (8)

3 Due to relations between the LO splitting functions, one power of z under the integral can be removed at the price of introducing an
overall factor 1/2 in the argument of the exponent.
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defined for each flavor a (including gluon) for the transverse momenta in the range Q0 ≤ k⊥ ≤ Q, which structure
is shown in Fig. 1. The region below Q0 merges into the non-perturbative domain and is effectively described by
the initial distribution Da(x,Q0) in the first term on the r.h.s. of Eq. (7). For small values of x, parton saturation
effects become important in this region of transverse momenta and special attention is necessary in phenomenological
approaches to the description of physical processes in this kinematic region, see e.g. [60]. The discussion of such
effects, however, is beyond the scope of the present paper.

In order to fully fix the UPDFs, the cutoff parameter ∆ in Eqs. (4) and (8) needs to be specified. In Ref. [55] the
cutoff was set in the spirit of the DGLAP ordering of parton real emission in transverse momenta to

∆ =
k⊥
Q
. (9)

Thus, from the upper integration limit, x < (1−∆), the UPDFs are nonzero for k⊥ < Q(1− x). The Sudakov form
factor Ta(Q,Q0) in Eq. (7) is also regulated with the corresponding cutoff ∆0 = Q0/Q.

The prescription was further modified in Ref. [56, 57] to account for the angular ordering in parton emissions in
accord with the CCFM evolution scheme [50–53],

∆ =
k⊥

k⊥ +Q
. (10)

In such a case, the nonzero values of the UDPFs are given for k⊥ < Q(1/x− 1). The upper cutoff now is bigger than
in the DGLAP scheme. This is particularly important for the small x values which allows for a smooth transition of
transverse momenta in the CCFM scheme into the region k⊥ � Q, see Ref. [56, 57] for more details.

A. Alternative derivation

In this subsection we shall construct an alternative derivation of the unintegrated single parton density. The aim is
to prepare the ground and methods for the construction of the unintegrated double parton distributions. The solution
of the DGLAP equations (1) can be written in terms of the parton-to-parton evolution distributions Eab(x, µ0, µ),
which obey the following equation

∂

∂ lnµ2
Eab(x, µ, µ0) =

∑

a′

∫ 1

x

dz

z
Paa′(z, µ)Ea′b

(x
z
, µ, µ0

)
− Eab(x, µ, µ0)

∑

a′

∫ 1

0

dzzPa′a(z, µ) , (11)

with the initial condition

Eab(x, µ0, µ0) = δab δ(1− x) . (12)

In the above we have regularized singularity of the splitting functions at z = 1 by introducing a small parameter ε,

e.g. P
(0)
qq (z) ∼ 1/(1− z + ε) for z → 1. These distributions generate the evolution of the PDFs

Da(x, µ) =
∑

b

∫ 1

x

dz

z
Eab

(x
z
, µ, µ0

)
Db(z, µ0) , (13)

since the parton distributions obtained from this relation obey the standard DGLAP evolution equations. This can
be easily proven by using the Mellin transform

Ã(n) =

∫ 1

0

dxxnA(x) . (14)

Using the above definition, Eq. (11) reads

∂

∂ lnµ2
Ẽab(n, µ, µ0) =

∑

a′

P̃aa′(n, µ) Ẽa′b(n, µ, µ0)− Ẽab(n, µ, µ0)
∑

a′

∫ 1

0

dzzPa′a(z, µ) , (15)

with the initial condition Ẽab(n, µ0, µ0) = δab, while Eq. (13) is given by

D̃a(n, µ) =
∑

b

Ẽab(n, µ, µ0) D̃b(n, µ0) . (16)
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Multiplying both sides of Eq. (15) by D̃b(n, µ0) and summing over b, we obtain Eq. (1) in the Mellin moment space

∂

∂ lnµ2
D̃a(n, µ) =

∑

a′

P̃aa′(n, µ) D̃a′(n, µ)− D̃a(n, µ)
∑

a′

∫ 1

0

dzzPa′a(z, µ) . (17)

To find the UPDFs, we set µ = k⊥ in Eq. (15) and multiply both sides by the Sudakov form factor,

Ta(Q, k⊥) = exp

{
−
∫ Q2

k2⊥

dp2
⊥

p2
⊥

∑

a′

∫ 1

0

dzzPa′a(z, k⊥)

}
, (18)

to obtain

∂

∂ ln k2
⊥

[
Ta(Q, k⊥)Ẽab(n, k⊥, µ0)

]
= Ta(Q, k⊥)

∑

a′

P̃aa′(n, k⊥) Ẽa′b(n, k⊥, µ0) . (19)

Integrating both sides of this equation over k⊥ from µ0 ≡ Q0 to Q, we find

Ẽab(n,Q,Q0) = Ta(Q,Q0) δab +

∫ Q2

Q2
0

dk2
⊥

k2
⊥
Ta(Q, k⊥)

∑

a′

P̃aa′(n, k⊥) Ẽa′b(n, k⊥, Q0) , (20)

and using Eq. (16), we obtain

D̃a(n,Q) = Ta(Q,Q0)D̃a(n,Q0) +

∫ Q2

Q2
0

dk2
⊥

k2
⊥
Ta(Q, k⊥)

∑

a′

P̃aa′(n, k⊥) D̃a′(n, k⊥) . (21)

The expression under the integral in the above equation is the unintegrated parton distribution (8) in the Mellin
moment space. Transforming it into the x space, we find the following equation

fa(x, k⊥, Q) = Ta(Q, k⊥)
∑

a′

∫ 1

x

dz

z
Paa′(z, k⊥)Da′

(x
z
, k⊥

)
, (22)

which is equivalent to Eq. (8) after switching from the ε regularization of the splitting functions to the regularization
with (1−∆) in the upper integration limit, both in the above equation and in the Sudakov form factor (18).

III. DOUBLE PARTON DISTRIBUTIONS

We start this section from recalling the evolution equations for the integrated double parton distribution functions,
Da1a2(x2, x2, Q1, Q2), following results of Ref. [21] appended by virtual corrections4. The evolution of the DPDFs
can be cast in the following form

Da1a2(x1, x2, Q1, Q2) =
∑

a′,a′′

{∫ 1−x2

x1

dz1

z1

∫ 1−z1

x2

dz2

z2
Ea1a′

(x1

z1
, Q1, Q0

)
Ea2a′′

(x2

z2
, Q2, Q0

)
Da′a′′(z1, z2, Q0, Q0)

+

∫ Q2
min

Q2
0

dQ2
s

Q2
s

∫ 1−x2

x1

dz1

z1

∫ 1−z1

x2

dz2

z2
Ea1a′

(x1

z1
, Q1, Qs

)
Ea2a′′

(x2

z2
, Q2, Qs

)
D

(sp)
a′a′′(z1, z2, Qs)

}
, (23)

where Q2
min = min{Q2

1, Q
2
2}, and the distributions Eab obey evolution equation (11). The integration limits take into

account kinematic constraints x1, x2 > 0 and x1 + x2 ≤ 1.

4 The DPDFs also depend on the transverse momentum vector r⊥, which we set to zero. For r⊥ = 0, the DPDFs in the lowest order
approximation are probabilities to find two partons with longitudinal momentum fractions x1,2, see [27] for more details.
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Q0

Q2

Q1

Q0

Q2

Qs

Q1

FIG. 2: Schematic illustration of the two contributions to the DPDFs (23). Left: homogeneous term; right: inhomogeneous
term. It is understood that all the ladders are cut diagrams.

The first, homogenous, term on the r.h.s. of Eq. (23), is proportional to the double parton density and corresponds
to the independent evolution of two partons from the initial scale Q0 to Q1 and from Q0 to Q2. The second, non-
homogeneous, term contains the distribution

D
(sp)
a′a′′(x1, x2, Qs) =

αs(Qs)

2π

∑

a

Da(x1 + x2, Qs)

x1 + x2
Pa→a′a′′

(
x1

x1 + x2

)
, (24)

which describes the splitting of the parton a→ a′a′′. Notice the single PDFs, Da, at the splitting scale Qs along with

the real emission LO splitting functions (2), Pa→a′a′′(z) = P
(0)
a′a(z) on the r.h.s. . In the LO, the second parton flavor

a′′ is uniquely determined from the splitting a → a′. The two contributions in Eq. (23) are schematicaly shown in
Fig. 2.

The presented results can also be written in the Mellin moment space introducing the double Mellin transform

Ã(n1, n2) =

∫ 1

0

dx1

∫ 1

0

dx2 x
n1
1 xn2

2 θ(1− x1 − x2)A(x1, x2) . (25)

Then Eq. (23) reads

D̃a1a2(n1, n2, Q1, Q2) = D̃(h)
a1a2(n1, n2, Q1, Q2) + D̃(nh)

a1a2(n1, n2, Q1, Q2) (26)

where the homogeneous part of the double distributions is given by

D̃(h)
a1a2(n1, n2, Q1, Q2) =

∑

a′,a′′

Ẽa1a′(n1, Q1, Q0) Ẽa2a′′(n2, Q2, Q0) D̃a′a′′(n1, n2, Q0, Q0) (27)

while the non-homogeneous one reads

D̃(nh)
a1a2(n1, n2, Q1, Q2) =

∫ Q2
min

Q2
0

dQ2
s

Q2
s

Ẽa1a′(n1, Q1, Qs) Ẽa2a′′(n2, Q2, Qs) D̃
(sp)
a′a′′(n1, n2, Qs) (28)

and

D̃
(sp)
a′a′′(n1, n2, Qs) =

αs(Qs)

2π

∑

a

D̃a(n1 + n2, Qs)

∫ 1

0

dzzn1(1− z)n2Pa→a′a′′(z) . (29)

In the case of equal scales, Q1 = Q1 ≡ Q, Eq. (26) is a solution in the Mellin moment space to the well known
evolution equations [17, 18, 23] for double parton distributions. The proof of this fact is given in Appendix A.

IV. UNINTEGRATED DOUBLE PARTON DISTRIBUTIONS

In this section we shall define the unintegrated double parton distribution functions by essentially generalizing
the procedure introduced in [55, 57] for the single PDFs, reviewed in Sec. II. In what follows, we shall discuss the
homogeneous and non-homogeneous parts separately as their treatment in the presence of the transverse momentum
dependence is rather different.



7

Homogeneous part of DPDF evolution

7

D(k?1, k?2)

T (k?1, Q1)
T (k?2, Q2)

Q1 ⇠ Q2 � Q0

D(Q0, k?2)

T (Q0, Q1)

T (k?2, Q2)

Q2 � Q1 ⇠ Q0

D(k?1, Q0)

T (k?1, Q1)

T (Q0, Q2)

Q1 � Q2 ⇠ Q0

FIG. 2: Schematic representation of the UDPDFs for the three indicated below regions of hard scales, Q1 and Q2, given by
Eqs. (33)-(35) or (37)-(40). The longitudinal momentum structure is suppressed on these plots. The horizontal lines correspond
to the real parton emission with the splitting functions and the circular blobs on the vertical lines indicate Sudakov form factors.

Multiplying term by term we obtain

D̃(h)
a1a2

( n1, n2, Q1, Q2) = Ta1(Q1, Q0) Ta2(Q2, Q0) D̃a1a2(n1, n2, Q0, Q0)

+

Z Q2
2

Q2
0

dk2
2?

k2
2?

⇢
Ta1

(Q1, Q0) Ta2
(Q2, k2?)

X

b

P̃a2b(n2, k2?)
hX

a00

Ẽba00(n2, k2?, Q0)D̃a1a00(n1, n2, Q0, Q0)
i�

+

Z Q2
1

Q2
0

dk2
1?

k2
1?

⇢
Ta1(Q1, k1?) Ta2(Q2, Q0)

X

b

P̃a1b(n1, k1?)
hX

a0

Ẽba0(n1, k1?, Q0)D̃a0a2(n1, n2, Q0, Q0)
i�

+

Z Q2
1

Q2
0

dk2
1?

k2
1?

Z Q2
2

Q2
0

dk2
2?

k2
2?

⇢
Ta1

(Q1, k1?) Ta2
(Q2, k2?)

⇥
X

b,c

P̃a1b(n1, k1?) P̃a2c(n2, k2?)
h X

a0,a00

Ẽba0(n1, k1?, Q0)Ẽca00(n2, k2?, Q0)D̃a0a00(n1, n2, Q0, Q0)
i�

. (32)

The first term in the sum on the rhs of the above equation corresponds to the evolution of the two partons from the
initial scale Q0 to the hard scales, Q1 and Q2, without real parton emissions. The two Sudakov form factors sum the
virtual corrections to such a process by integrating transverse momenta of the virtual partons up to the hard scales.
Thus, the two partons which enter the hard scattering retain their initial transverse momenta, k1,2? = Q0.

The expressions in the curly brackets under the integrals in Eq. (32) are the unintegrated double parton distribution

functions (UDPDFs), f̃
(h)
a1a2 , defined in three di↵erent regions of hard scales. Notice that the expressions in the square

brackets are the homogeneous DPDFs (30), taken at appropriate scales.
Thus, when Q2

1 ⇠ Q2
0 and Q2

2 � Q2
0, we find from the first integral

f̃ (h)
a1a2

(n1, n2, k1? = Q0, k2?, Q1, Q2) = Ta1(Q1, Q0) Ta2(Q2, k2?)
X

b

P̃a2b(n2, k2?) D̃
(h)
a1b(n1, n2, Q0, k2?) , (33)

Similarly, for Q2
1 � Q2

0 and Q2
2 ⇠ Q2

0, we have from the the second integral

f̃ (h)
a1a2

(n1, n2, k1?, k2? = Q0, Q1, Q2) = Ta1(Q1, k1?) Ta2(Q2, Q0)
X

b

P̃a1b(n1, k1?) D̃
(h)
ba2

(n1, n2, k1?, Q0) . (34)

Finally, for Q2
1,2 � Q2

0, the third integral gives

f̃ (h)
a1a2

(n1, n2, k1?, k2?, Q1, Q2) = Ta1(Q1, k1?) Ta2(Q2, k2?)

⇥
X

b,c

P̃a1b(n1, k1?) P̃a2c(n2, k2?) D̃
(h)
bc (n1, n2, k1?, k2?) . (35)

The transverse momentum structure of the above expressions is illustrated in Fig. 2.
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Multiplying term by term we obtain

D̃(h)
a1a2

( n1, n2, Q1, Q2) = Ta1(Q1, Q0) Ta2(Q2, Q0) D̃a1a2(n1, n2, Q0, Q0)

+

Z Q2
2

Q2
0

dk2
2?

k2
2?

⇢
Ta1

(Q1, Q0) Ta2
(Q2, k2?)

X

b

P̃a2b(n2, k2?)
hX

a00

Ẽba00(n2, k2?, Q0)D̃a1a00(n1, n2, Q0, Q0)
i�

+

Z Q2
1

Q2
0

dk2
1?

k2
1?

⇢
Ta1(Q1, k1?) Ta2(Q2, Q0)

X

b

P̃a1b(n1, k1?)
hX

a0

Ẽba0(n1, k1?, Q0)D̃a0a2(n1, n2, Q0, Q0)
i�

+

Z Q2
1

Q2
0

dk2
1?

k2
1?

Z Q2
2

Q2
0

dk2
2?

k2
2?

⇢
Ta1

(Q1, k1?) Ta2
(Q2, k2?)

⇥
X

b,c

P̃a1b(n1, k1?) P̃a2c(n2, k2?)
h X

a0,a00

Ẽba0(n1, k1?, Q0)Ẽca00(n2, k2?, Q0)D̃a0a00(n1, n2, Q0, Q0)
i�

. (32)

The first term in the sum on the rhs of the above equation corresponds to the evolution of the two partons from the
initial scale Q0 to the hard scales, Q1 and Q2, without real parton emissions. The two Sudakov form factors sum the
virtual corrections to such a process by integrating transverse momenta of the virtual partons up to the hard scales.
Thus, the two partons which enter the hard scattering retain their initial transverse momenta, k1,2? = Q0.

The expressions in the curly brackets under the integrals in Eq. (32) are the unintegrated double parton distribution

functions (UDPDFs), f̃
(h)
a1a2 , defined in three di↵erent regions of hard scales. Notice that the expressions in the square

brackets are the homogeneous DPDFs (30), taken at appropriate scales.
Thus, when Q2

1 ⇠ Q2
0 and Q2

2 � Q2
0, we find from the first integral

f̃ (h)
a1a2

(n1, n2, k1? = Q0, k2?, Q1, Q2) = Ta1(Q1, Q0) Ta2(Q2, k2?)
X

b

P̃a2b(n2, k2?) D̃
(h)
a1b(n1, n2, Q0, k2?) , (33)

Similarly, for Q2
1 � Q2

0 and Q2
2 ⇠ Q2

0, we have from the the second integral

f̃ (h)
a1a2

(n1, n2, k1?, k2? = Q0, Q1, Q2) = Ta1(Q1, k1?) Ta2(Q2, Q0)
X

b

P̃a1b(n1, k1?) D̃
(h)
ba2

(n1, n2, k1?, Q0) . (34)

Finally, for Q2
1,2 � Q2

0, the third integral gives

f̃ (h)
a1a2

(n1, n2, k1?, k2?, Q1, Q2) = Ta1(Q1, k1?) Ta2(Q2, k2?)

⇥
X

b,c

P̃a1b(n1, k1?) P̃a2c(n2, k2?) D̃
(h)
bc (n1, n2, k1?, k2?) . (35)

The transverse momentum structure of the above expressions is illustrated in Fig. 2.
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Multiplying term by term we obtain

D̃(h)
a1a2

( n1, n2, Q1, Q2) = Ta1(Q1, Q0) Ta2(Q2, Q0) D̃a1a2(n1, n2, Q0, Q0)

+

Z Q2
2

Q2
0

dk2
2?

k2
2?

⇢
Ta1

(Q1, Q0) Ta2
(Q2, k2?)

X

b

P̃a2b(n2, k2?)
hX

a00

Ẽba00(n2, k2?, Q0)D̃a1a00(n1, n2, Q0, Q0)
i�

+

Z Q2
1

Q2
0

dk2
1?

k2
1?

⇢
Ta1(Q1, k1?) Ta2(Q2, Q0)

X

b

P̃a1b(n1, k1?)
hX

a0

Ẽba0(n1, k1?, Q0)D̃a0a2(n1, n2, Q0, Q0)
i�

+

Z Q2
1

Q2
0

dk2
1?

k2
1?

Z Q2
2

Q2
0

dk2
2?

k2
2?

⇢
Ta1

(Q1, k1?) Ta2
(Q2, k2?)

⇥
X

b,c

P̃a1b(n1, k1?) P̃a2c(n2, k2?)
h X

a0,a00

Ẽba0(n1, k1?, Q0)Ẽca00(n2, k2?, Q0)D̃a0a00(n1, n2, Q0, Q0)
i�

. (32)

The first term in the sum on the rhs of the above equation corresponds to the evolution of the two partons from the
initial scale Q0 to the hard scales, Q1 and Q2, without real parton emissions. The two Sudakov form factors sum the
virtual corrections to such a process by integrating transverse momenta of the virtual partons up to the hard scales.
Thus, the two partons which enter the hard scattering retain their initial transverse momenta, k1,2? = Q0.

The expressions in the curly brackets under the integrals in Eq. (32) are the unintegrated double parton distribution

functions (UDPDFs), f̃
(h)
a1a2 , defined in three di↵erent regions of hard scales. Notice that the expressions in the square

brackets are the homogeneous DPDFs (30), taken at appropriate scales.
Thus, when Q2

1 ⇠ Q2
0 and Q2

2 � Q2
0, we find from the first integral

f̃ (h)
a1a2

(n1, n2, k1? = Q0, k2?, Q1, Q2) = Ta1(Q1, Q0) Ta2(Q2, k2?)
X

b

P̃a2b(n2, k2?) D̃
(h)
a1b(n1, n2, Q0, k2?) , (33)

Similarly, for Q2
1 � Q2

0 and Q2
2 ⇠ Q2

0, we have from the the second integral

f̃ (h)
a1a2

(n1, n2, k1?, k2? = Q0, Q1, Q2) = Ta1(Q1, k1?) Ta2(Q2, Q0)
X

b

P̃a1b(n1, k1?) D̃
(h)
ba2

(n1, n2, k1?, Q0) . (34)

Finally, for Q2
1,2 � Q2

0, the third integral gives

f̃ (h)
a1a2

(n1, n2, k1?, k2?, Q1, Q2) = Ta1(Q1, k1?) Ta2(Q2, k2?)

⇥
X

b,c

P̃a1b(n1, k1?) P̃a2c(n2, k2?) D̃
(h)
bc (n1, n2, k1?, k2?) . (35)

The transverse momentum structure of the above expressions is illustrated in Fig. 2.

k1?

k2?

Q0

Q0

Four distinct regions of 
phase space depending on 

the ordering of scales.

20
Anna Stasto, ISMD2016FIG. 3: Different regions of the transverse momenta contributing to Eq. (31). The smallest region with the transverse momenta

below Q0 corresponds to the first term in Eq. (31). In this region the transverse momenta have been integrated over in the
corresponding expression. The regions for which either k1⊥ ≤ Q0 or k2⊥ ≤ Q0 correspond to the two subsequent terms in
Eq. (31). In each case, the smaller transverse momentum has been integrated over. The largest region, with k1⊥, k2⊥ > Q0,
corresponds to the last term in Eq. (31).

A. Homogeneous part in the Mellin space

Let us first concentrate on the homogeneous part of the double parton distributions (27). Substituting Eq. (20)
with the regularized splitting functions there,

D̃(h)
a1a2(n1, n2, Q1, Q2) =

∑

a′,a′′

{
Ta1(Q1, Q0) δa1a′ +

∫ Q2
1

Q2
0

dk2
1⊥

k2
1⊥

Ta1(Q1, k1⊥)
∑

b

P̃a1b(n1, k1⊥) Ẽba′(n1, k1⊥, Q0)

}

×
{
Ta2(Q2, Q0) δa2a′′ +

∫ Q2
2

Q2
0

dk2
2⊥

k2
2⊥

Ta2(Q2, k2⊥)
∑

b

P̃a2b(n2, k2⊥) Ẽba′′(n2, k2⊥, Q0)

}
D̃a′a′′(n1, n2, Q0, Q0) , (30)

and multiplying term by term, we obtain

D̃(h)
a1a2(n1, n2, Q1, Q2) = Ta1(Q1, Q0)Ta2(Q2, Q0) D̃a1a2(n1, n2, Q0, Q0)

+

∫ Q2
2

Q2
0

dk2
2⊥

k2
2⊥

{
Ta1(Q1, Q0)Ta2(Q2, k2⊥)

∑

b

P̃a2b(n2, k2⊥)D̃
(h)
a1b

(n1, n2, Q0, k2⊥)

}

+

∫ Q2
1

Q2
0

dk2
1⊥

k2
1⊥

{
Ta1(Q1, k1⊥)Ta2(Q2, Q0)

∑

b

P̃a1b(n1, k1⊥)D̃
(h)
ba2

(n1, n2, k1⊥, Q0)

}

+

∫ Q2
1

Q2
0

dk2
1⊥

k2
1⊥

∫ Q2
2

Q2
0

dk2
2⊥

k2
2⊥

{
Ta1(Q1, k1⊥)Ta2(Q2, k2⊥)

∑

b,c

P̃a1b(n1, k1⊥) P̃a2c(n2, k2⊥) D̃
(h)
bc (n1, n2, k1⊥, k2⊥)

]}
(31)

where we used definition (27) of the homogeneous double parton distributions on the rhs of the above equation. For
example, the distribution in the second line reads

D̃
(h)
a1b

(n1, n2, Q0, k2⊥) =
∑

a′,a′′

δa1a′ Ẽba′′(n2, k2⊥, Q0) D̃a′a′′(n1, n2, Q0, Q0) , (32)

since Ẽa1a′(n1, Q0, Q0) = δa1a′ .
Similar to (31), but not identical, equation for the DPDFs was postulated in Ref. [26] in the x-space (for the

transverse momentum vector r⊥ ≡ ∆ 6= 0). It contains the first three terms of Eq. (31) with some modifications in
the second and the third term. Namely, the Sudakov form factors indepndent of k⊥ are missing, and the initial scale
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FIG. 4: Schematic representation of the UDPDFs for the three unintegrated DPDFs given by Eqs. (33)-(35), from left to right
respectively. The longitudinal momentum structure is suppressed on these plots. The horizontal lines correspond to the real
parton emission with the splitting functions and the circular blobs on the vertical lines indicate the Sudakov form factors.

Q0 in the homogeneous double parton distributions is replaced by Q1 and Q2, respectively. This means that the full
DGLAP evolution was performed for the corresponding partons. Thus, substituting the evolution operators (20) for
this evolution, we find Eq. (31) with the fourth term multiplied by a factor of two. This observation suggests double
counting in the equation proposed in Ref. [26].

The four terms in Eq. (31) are defined over four distinct regions of the transverse momenta, which are schematically
shown in Fig. 3. The first term in the sum on the r.h.s. of Eq. (31) corresponds to the evolution of the two partons
from the initial scale Q0 to the hard scales, Q1 and Q2, without real parton emissions. This term is defined in the
region of the lowest transverse momenta, k1⊥, k2⊥ ≤ Q0, and does not depend on transverse momenta which have
been integrated out.

The expressions in the curly brackets in Eq. (31) are unintegrated double parton distribution functions (UDPDFs),

f̃
(h)
a1a2 , defined in the three remaining regions of transverse momenta. Thus, for k1⊥ ≤ Q0 and k2⊥ > Q0, we find from

the first integral

f̃ (h)
a1a2(n1, n2, k2⊥, Q1, Q2) = Ta1(Q1, Q0)Ta2(Q2, k2⊥)

∑

b

P̃a2b(n2, k2⊥) D̃
(h)
a1b

(n1, n2, Q0, k2⊥) . (33)

The dependence of the transverse momentum k1⊥ is integrated over up to Q0 in such a case and k1⊥ is not present
among the arguments of the defined function. The effect of such an integration is hidden in the integrated DPDFs
on the r.h.s. taken at the scale Q0 for the first parton. Similarly, for k1⊥ > Q0 and k2⊥ ≤ Q0, we have from the the
second integral

f̃ (h)
a1a2(n1, n2, k1⊥, Q1, Q2) = Ta1(Q1, k1⊥)Ta2(Q2, Q0)

∑

b

P̃a1b(n1, k1⊥) D̃
(h)
ba2

(n1, n2, k1⊥, Q0) . (34)

Now the momentum k2⊥ is integrated up to the scaleQ0 and only k1⊥ dependence is present. Finally, for k1⊥, k2⊥ > Q0

the third integral gives the dependence on both transverse momenta,

f̃ (h)
a1a2(n1, n2, k1⊥, k2⊥, Q1, Q2) = Ta1(Q1, k1⊥)Ta2(Q2, k2⊥)

×
∑

b,c

P̃a1b(n1, k1⊥) P̃a2c(n2, k2⊥) D̃
(h)
bc (n1, n2, k1⊥, k2⊥) . (35)

The three unintegrated DPDFs are schematically represented in Fig. 4.
In principle, all the regions of the transverse momenta need to be included for any configuration of the external

hard scales Q1 and Q2. It is clear though, that some regions will be subdominant depending on the scales, due to the
suppression originating from the Sudakov form factors. For example, the first term in Eq. (31) is going to be very
small whenever any of the scales is much larger than Q0.
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B. Homogeneous part in the x-space

The corresponding expressions in the x-space can be easily found. For example, for Eq. (35) we obtain

f (h)
a1a2(x1, x2, k1⊥, k2⊥, Q1, Q2) = Ta1(Q1, k1⊥)Ta2(Q2, k2⊥)

×
∑

b,c

∫ 1−x2

x1

dz1

z1

∫ 1−z1

x2

dz2

z2
Pa1b

(x1

z1
, k1⊥

)
Pa2c

(x2

z2
, k2⊥

)
D

(h)
bc (z1, z2, k1⊥, k2⊥) . (36)

Similarly to the case of the single parton distributions, the integrals over z1,2 need to be regularized since the splitting
functions can be singular for z1 = x1 and z2 = x2. So far in order to be able to manipulate these equations we
have implicitly assumed the regularization through the modification of the splitting function by the parameter ε, as
indicated earlier. Following the original scheme presented in Sec. II A, we now introduce the regularization through
the cutoff in the limits of the integrals over the longitudinal momenta. After changing the integration variables,
z1 → x1/z1 and z2 → x2/z2, the singularities occur for z1,2 = 1, thus we change the upper integration limits form 1
to 1→ (1−∆1,2) to finally find

f (h)
a1a2(x1, x2, k1⊥, k2⊥, Q1, Q2) = Ta1(Q1, k1⊥)Ta2(Q2, k2⊥)

×
∑

b,c

∫ 1−∆1

x1
1−x2

dz1

z1

∫ 1−∆2

x2
1−x1/z1

dz2

z2
Pa1b(z1, k1⊥)Pa2c(z2, k2⊥)D

(h)
bc

(x1

z1
,
x2

z2
, k1⊥, k2⊥

)
. (37)

The same regularization is necessary for the Sudakov form factors, Ta1 and Ta2 , with ∆1 and ∆2 respectively, see
Eq. (8). Following the presentation of the single UPDFs, we choose

∆i =
ki⊥
Qi

. (38)

Applying the same procedure to the rest of the UDPDFs, we find for the distribution (33)

f (h)
a1a2(x1, x2, k2⊥, Q1, Q2) = Ta1(Q1, Q0)Ta2(Q2, k2⊥)

×
∑

b

∫ 1−∆2

x2
1−x1

dz2

z2
Pa2b(z2, k2⊥)D

(h)
a1b

(
x1,

x2

z2
, Q0, k2⊥

)
. (39)

Similarly, we have for the distribution (34)

f (h)
a1a2(x1, x2, k1⊥, Q1, Q2) = Ta1(Q1, k1⊥)Ta2(Q2, Q0)

×
∑

b

∫ 1−∆1

x1
1−x2

dz1

z1
Pa1b(z1, k1⊥)D

(h)
ba2

(x1

z1
, x2, k1⊥, Q0

)
. (40)

Remember that the lack of the transverse momenta, k1⊥ or k2⊥, among the arguments in the above formulas means
that they were integrated over up to the scale Q0.

Eqs. (37)-(40) constitute the main results of our analysis in the x-space. They define the homogeneous part of
the unintegrated double parton distribution functions in three distinct domains of the hard scales shown in Fig. 3.
Similarly to the single PDF case, the transverse momentum dependence is generated by the last step in the evolution
where the distributions become dependent on the transverse momentum and the hard scales. The three unintegrated
distributions were also discussed in [27] but only for real emission. Our results follow from a systematic derivation
with virtual corrections included. Notice that in the convention adopted in this paper the defined UDPDFs are
dimensionless quantities like the integrated DPDFs.

In the presented analysis we neglected the spin and color dependence of the double parton distributions and
considered only the color singlet, spin averaged sector. For more information on this aspect see [27, 61] an reference
therein. We also do not consider here the dependence on the momentum transfer, setting it to zero.
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C. Correlations imposed by cutoffs

Let us analyze whether the double integration over longitudinal momentum fractions z1 and z2 in Eq. (36) imposes
any restrictions on the choice of the cutoffs ∆1,2 > 0. The integration over z1 gives meaningful result if

1−∆1 >
x1

1− x2
=⇒ 0 < ∆1 <

1− x1 − x2

1− x2
. (41)

Notice that nonzero values of ∆1 exist for any value of parton momentum fractions since (1− x1 − x2)/(1− x2) > 0.
On the other hand, the limits of the integration over z2 should fulfill

1−∆2 >
x2

1− x1/z1
=⇒ 0 < ∆2 < 1− x2

1− x1/z1
, (42)

and the nonzero value of ∆2 is allowed if

1− x2

1− x1/z1
> 0 =⇒ z1 >

x1

1− x2
. (43)

The last condition is always true, which implies that for any fixed values of x1,2, the nonzero range of the cutoff values
is possible. This means that with the choice (38), the transverse momenta of partons are bounded between zero and
some maximal values which depend on x1,2 and Q1,2.

With given cutoffs ∆1,2, the nonzero UDPDFs are defined in a region of x1,2 values which are smaller than that
defined by the usual conditions, x1,2 > 0 and x1 + x2 ≤ 1. In particular, Eq. (42) constrains the lower limit of the z1

integration,

x1

1− x2/(1−∆2)
≤ z1 ≤ 1−∆1, (44)

which leads to the following condition

1− x1

1−∆1
− x2

1−∆2
≥ 0. (45)

The region defined by the above condition is indeed smaller than the standard one, (1−x1−x2) ≥ 0. In view of these
results, with the transverse momentum dependent cutoffs (38), the variables (x1, x2, k1⊥, k2⊥, Q1, Q2) are strongly
correlated in the UDPDFs.

V. NON-HOMOGENEOUS PART OF UDPDFS

We shall now turn to the discussion of the inhomogeneous term in the parton evolution. As we shall see, the
inclusion of the transverse momentum dependence for this contribution is much more complicated than for the
homogeneous part. This is because, there is another source of the transverse momentum dependence in the double
parton distributions. The parent parton can perturbatively split into two daughter partons with transverse momenta
k1⊥, k2⊥ ≥ Q0. This mechanism is a source of parton correlations which is purely perturbative.

A. Transverse momenta from evolution of two partons

Let us consider the non-homogeneous part of Eq. (26) which describes the splitting contribution,

D̃(nh)
a1a2(n1, n2, Q1, Q2) =

∫ Q2
min

Q2
0

dQ2
s

Q2
s

∑

a′,a′′

Ẽa1a′(n1, Q1, Qs) Ẽa2a′′(n2, Q2, Qs) D̃
(sp)
a′a′′(n1, n2, Qs) , (46)

where Q2
min = min{Q2

1, Q
2
2}. We see that there are two potential sources of the transverse momentum dependence in

the this formula, from the splitting vertex itself, and from the evolution above the splitting vertex. In this section,
we will discuss the latter possibility by applying the procedure developed for the homogeneous part of the UDPDFs.
In that way we shall explicitly see the limits of the applicability of this formulation.
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Due to the integration over Q2
s, the splitting contribution (46) is sizable only in the case Q2

1,2 � Q2
0, the condition

we consider from now on. Substituting Eq. (20) in Eq. (46) and multiplying the obtained expressions term by term,
we find the formula similar to that for the homogeneous part (31),

D̃(nh)
a1a2(n1, n2, Q1, Q2) =

∫ Q2
min

Q2
0

dQ2
s

Q2
s

[
Ta1(Q1, Qs)Ta2(Q2, Qs) D̃

(sp)
a1a2(n1, n2, Qs)

+

∫ Q2
2

Q2
s

dk2
2⊥

k2
2⊥

{
Ta1(Q1, Qs)Ta2(Q2, k2⊥)

∑

b

P̃a2b(n2, k2⊥)
∑

a′′

Ẽba′′(n2, k2⊥, Qs) D̃
(sp)
a1a′′(n1, n2, Qs)

}

+

∫ Q2
1

Q2
s

dk2
1⊥

k2
1⊥

{
Ta2(Q2, Qs)Ta1(Q1, k1⊥)

∑

b

P̃a1b(n1, k1⊥)
∑

a′

Ẽba′(n1, k1⊥, Qs) D̃
(sp)
a′a2(n1, n2, Qs)

}

+

∫ Q2
1

Q2
s

dk2
1⊥

k2
1⊥

∫ Q2
2

Q2
s

dk2
2⊥

k2
2⊥

{
Ta1(Q1, k1⊥)Ta2(Q2, k2⊥)

∑

b,c

P̃a1b(n1, k1⊥) P̃a2c(n2, k2⊥)

×
∑

a′,a′′

Ẽba′(n1, k1⊥, Qs) Ẽca′′(n2, k2⊥, Qs) D̃
(sp)
a′a′′(n1, n2, Qs)

}]
. (47)

Notice that the transverse momenta are confined to the perturbative region only, k1⊥, k2⊥ ≥ Q0, see the blue rectangle
in Fig. 3. Introducing the relation

∫ Q2
i

Q2
s

dk2
i⊥

k2
i⊥

=

∫ Q2
i

Q2
0

dk2
i⊥

k2
i⊥

θ(k2
i⊥ −Q2

s) , i = 1, 2 , (48)

one can change the order of the integrations over Q2
s and transverse momenta k2

i⊥ in Eq. (47). Thus, from the third
integral in the square brackets we find the following non-homogenenous part of the UDPDFs,

f̃ (nh)
a1a2 (n1, n2, k1⊥, k2⊥, Q1, Q2) = Ta1(Q1, k1⊥)Ta2(Q2, k2⊥)

∑

b,c

P̃a1b(n1, k1⊥) P̃a2c(n2, k2⊥)

×
∫ Q2

min

Q2
0

dQ2
s

Q2
s

θ(k2
1⊥ −Q2

s) θ(k
2
2⊥ −Q2

s) D̃(sp)
bc (n1, n2, k1⊥, k2⊥, Qs) , (49)

where we defined new distributions

D̃(sp)
bc (n1, n2, k1⊥, k2⊥, Qs) =

∑

a′,a′′

Ẽba′(n1, k1⊥, Qs) Ẽca′′(n2, k2⊥, Qs) D̃
(sp)
a′a′′(n1, n2, Qs) . (50)

The new distributions have the same structure as the homogeneous distributions D̃
(h)
bc in Eq. (35), corresponding to

two independent DGLAP evolutions from the scale Qs (where the collinear splitting of a single parent parton to two
daughter partons occurs) up to the scales given by the transverse momenta. The initial conditions for such evolutions

are given by the known distributions D̃
(sp)
a′a′′(n1, n2, Qs), defined in Eq. (28).

The regularized expression for the distribution (49) in the x-space can be found in the same way as for the
homogeneous part,

f (nh)
a1a2 (x1, x2, k1⊥, k2⊥, Q1, Q2) = Ta1(Q1, k1⊥)Ta2(Q2, k2⊥)

×
∫ 1−∆1

x1
1−x2

dz1

z1

∫ 1−∆2

x2
1−x1/z1

dz2

z2

∑

b,c

Pa1b(z1, k1⊥)Pa2c(z2, k2⊥)

×
∫ Q2

min

Q2
0

dQ2
s

Q2
s

θ(k2
1⊥ −Q2

s) θ(k
2
2⊥ −Q2

s)D(sp)
bc

(x1

z1
,
x2

z2
, k1⊥, k2⊥, Qs

)
, (51)
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where ∆1,2 are given by Eq. (38), and D(sp)
bc are the distributions (50) transformed back to the x-space.

The three remaining terms in Eq. (47) correspond to the situation in which one or two partons from the splitting
do not evolve. For example, if the first parton does not evolve, we find the following expression,

f̃ (nh)
a1a2 (n1, n2, k2⊥, Q1, Q2) = Ta2(Q2, k2⊥)

∑

b

P̃a2b(n2, k2⊥)

×
∫ Q2

min

Q2
0

dQ2
s

Q2
s

θ(k2
2⊥ −Q2

s)Ta1(Q1, Qs) D̃(sp)
a1b

(n1, n2, Qs, k2⊥, Qs) (52)

where the new distributions on the r.h.s. now read,

D̃(sp)
a1b

(n1, n2, Qs, k2⊥, Qs) =
∑

a′,a′′

Ẽa1a′(n1, Qs, Qs) Ẽba′′(n2, k2⊥, Qs) D̃
(sp)
a′a′′(n1, n2, Qs) , (53)

since Ẽa1a′(n1, Qs, Qs) = δa1a′ . Comparing Eq. (52) to its homogenenous counterpart (33), we see that in both
expressions the transverse momentum k1⊥ is not present. In Eq. (33), the momentum k1⊥ is integrated out in the
non-perturbative domain, k1⊥ ≤ Q0,, thus, we may set the first parton on shell (k1⊥ = 0) in the k⊥-factorized cross
sections with off-shell matrix elements. In the case of the distribution (52), however, the transverse momentum k1⊥ is
integrated out in the perturbative region, Q0 ≤ k1⊥ ≤ Qs. Therefore, such a procedure is no longer justified and the
distributions (52) cannot be used in the k⊥-factorized cross sections. The same conclusion is valid when the second
parton or both partons do not evolve. In summary, only formula (51) in the x-space is acceptable for the UDPDFs
in the non-homogenous case.

B. Parton splitting from light-front perturbation theory

In order to address the issues of the transverse momentum dependence coming directly from the perturbative
splitting of a single parent parton into two daughter partons, we shall utilize the methods of the light-front perturbation
theory.

Let us first start with the rederivation of the splitting term for the integrated parton densities using this framework.
The definition of the integrated parton density using the light-front wave functions can be cast in the following form,
(see [62])

Da(x) =
1

x

∑

n

∫
d2k⊥

2(2π)3

n−1∏

i=1

dyi
yi

d2κi⊥
2(2π)3

|Ψn({yi,κi⊥};x,k⊥, a)|2(2π)3δ(2)(k⊥ +

n−1∑

i=1

κi⊥)δ(1 − x −
n−1∑

i=1

yi) , (54)

where Ψn({yi,κi⊥};x,k⊥, a) is the light-front wave function for n partons. Following [62] we shall use the convention
where {yi,κi⊥} are n − 1 spectator partons with longitudinal momentum fractions yi and transverse momenta κi⊥.
The density Da(x) is defined with respect to the parton of type a (where a could be gluon g, quark q or antiquark q̄)
with longitudinal momentum fraction x. The transverse momentum k⊥ of this parton is integrated out and therefore,
the above definition is UV divergent and needs to be regulated as we shall see below. In the above definition we
implicitly assumed the summation over the colors of the outgoing particles as well as their polarizations. As usual for
the light-front calculation, we shall be working in the light cone gauge A+ = 0.

To derive the splitting term contribution to the double parton density, let us focus from now on the gluon-gluon
splitting, g → gg; the other channels can be derived in the analogous way. This contribution is illustrated in Fig. 5,
where we show the wave function Ψn in which one gluon with momentum (x3,k3⊥) and polarization λ3 undergoes
the splitting into two daughter gluons with momenta (x1,k1⊥) and (x2,k2⊥), with the corresponding polarizations
λ1, λ2. We recall that on the light-front, all of the particles are on-shell and longitudinal ‘+’ and transverse momentum
components are conserved while the ‘−’ components are not. Using the rules of the light-front perturbation theory,
see for example [63], we can write the contribution to the wave function Ψn+1 as

ΨAB
n+1({yi,κi⊥};x1,k1⊥, x2,k2⊥) = V αβµ(k1, k2,−k3) ελ1∗

α (k1) ελ2∗
β (k2) ελ3

µ (k3)fABCθ(k+
1 ) θ(k+

2 )
1

Dn+1

× 1

k+
3

ΨC
n ({yi,κi⊥};x3,k3⊥) , (55)
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k3, λ3

k1, λ1

k2, λ2

Dn+1Dn

FIG. 5: Splitting contribution to the proton wave function in the light-front framework. The wave function Ψn is n component
wave function of the initial hadron. The splitting gives contribution to the Ψn+1 wave function. Vertical dashed lines denote
light-front energy denominators.

where V αβµ(k1, k2,−k3) is the triple gluon vertex (with all momenta outgoing) and ελµ(k) are polarization vectors
defined as

ελµ(k) = (0,
2~ελ⊥ · k⊥
η · k , ~ελ⊥) . (56)

In the above definition, the light-like vector η = (0, 1, 0, 0) and the two-dimensional transverse polarization vectors
are defined as ~ε±⊥ = 1√

2
(±1, i). In the notation of the vectors we have used standard convention on the light-front

where kµ = (k+, k−,k⊥) with k± = k0 ± k3 and k⊥ = (k1, k2), thus k2 = k+k− − k2
⊥. The light-front denominator

Dn+1 is defined as the difference between the light-front energies for the intermediate state and the initial state

Dn+1 = k−1 + k−2 +

n−1∑

i=1

κ−i − P− , (57)

where P− is the light-front energy of the incoming hadron. In Eq. (55) we also reinstated explicit colors of the gluons.
We also introduce the following notation from [64]

vij = ~ε+
⊥ ·
(
ki⊥
xi
− kj⊥

xj

)
, v∗ij = ~ε−⊥ ·

(
ki⊥
xi
− kj⊥

xj

)
, (58)

where xi = k+
i /P

+. It is easy to see that the contraction of the triple gluon vertex with the polarization vectors leads
to the following expressions (see Table 2 in [63])

V +→++ = 2igx3 v21, V +→+− = 2igx1 v
∗
32, V +→−+ = 2igx2 v

∗
13 . (59)

Here, k3 is incoming and k1, k2 are outgoing momenta, i.e. k3 → k1k2. Let us first see how the splitting term in the
collinear kinematics arises from these expressions. In the collinear case, one assumes strong ordering of the transverse
momenta. Hence, k1⊥ ' −k2⊥ ' k⊥ and k⊥ � k3⊥. In this approximation the light-front denominator is given by

Dn+1 '
k2
⊥x3

x1x2

1

P+
, (60)

and the vertices in Eq. (59) reduce to

V +→++ = −2igx2
3

~ε+
⊥ · k⊥
x1x2

, V +→+− = 2igx1
~ε−⊥ · k⊥
x2

, V +→−+ = 2igx2
~ε−⊥ · k⊥
x1

. (61)

Squaring the wave function, summing over the final state polarizations and colors, one obtains, see also [62],

|Ψn+1({yi,κi⊥};x1,k1⊥;x2,k2⊥)|2 = 8παs
x1x2

k2
⊥x

2
3

P (0)
gg

(x1

x3

)
|Ψn({yi,κi⊥};x3,k3⊥)|2 . (62)
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Using this result one can re-derive the standard DGLAP evolution equation for the single parton distribution function
as demonstrated in [62]. However, we are interested in the contribution to the double parton distribution function.
Therefore, after integrating the wave function Ψn+1 over the transverse momenta k1⊥ and k2⊥ and over the spectator
momenta, but keeping both the longitudinal momentum fractions x1 and x2 fixed, we obtain the following contribution
to the non-homogeneous part of the double integrated distribution function:

Dnh
gg (x1, x2) =

1

x1x2

∑

n

∫
d2k1⊥
2(2π)3

∫
d2k2⊥
2(2π)3

n−1∏

i=1

dyi
yi

d2κi⊥
2(2π)3

× |Ψn+1({yi,κi⊥};x1,k1⊥, x2,k2⊥)|2(2π)3 δ(2)(k1⊥ + k2⊥ +

n−1∑

i=1

κi⊥) δ(1− x1 − x2 −
n−1∑

i=1

yi) =

=
1

x1x2

∫
d2k⊥

2(2π)3
8παs

x1x2

k2
⊥x3

P (0)
gg

(x1

x3

) 1

x3

∫
d2k3⊥
2(2π)3

∑

n

n−1∏

i=1

dyi
yi

d2κi⊥
2(2π)3

|Ψn({yi,κi⊥};x3,k3⊥)|2

× (2π)3δ(2)(k3⊥ +

n−1∑

i=1

κi⊥) δ(1− x3 −
n−1∑

i=1

yi) , (63)

where we changed the integrated variables from k1⊥,k2⊥ to the sum and the difference i.e. k3⊥ = k1⊥ + k2⊥ and
k⊥ = 1

2 (k1⊥ − k2⊥). There are two integrals over the transverse momenta k3⊥ and k⊥ that need to be regulated.
Since we are working in the collinear regime (k⊥ � k3⊥) then we have that the k3⊥ integral is regulated by the k⊥
and it gives the integrated parton density

1

x1x2

∫
d2k⊥

2(2π)3
8παs

x1x2

k2
⊥x3

P (0)
gg

(x1

x3

)
Dg(x3, k⊥) . (64)

The integral over k⊥ in the above needs to be regulated as well with a UV cutoff. Introducing the scale µ, we finally
obtain the splitting contribution to the double parton distribution function

αs
2π

∫ µ2

dk2
⊥

k2
⊥

1

x3
P (0)
gg

(x1

x3

)
Dg(x3, k⊥) =

αs
2π

1

x1 + x2
P (0)
gg

( x1

x2 + x1

)∫ µ2

dk2
⊥

k2
⊥
Dg(x1 + x2, k⊥) , (65)

where we used the fact that x3 = x1 + x2. The left hand side of Eq. (63) can be interpreted as the integrated
double parton density Dgg(x1, x2) and thus the last equation gives the splitting contribution to the DPDF. The other
channels can be obtained similarly. Differentiating with respect to µ we have that this gives the contribution to the
inhomogeneous part of the evolution equation

∂

∂ lnµ2
Da1a2(x1, x2, µ, µ) =

αs
2π

∑

a

P (0)
a1a

( x1

x1 + x2

)Da(x1 + x2, µ)

x1 + x2
, (66)

where we reinstated flavor indices a, a1, a2 to include other parton transitions. The above equation is equivalent to
the non-homogeneous part of the evolution equations for the DPDFs, see Eq. (A2) in Appendix A.

C. Transverse momentum dependence in parton splitting

Let us now see, how the transverse momentum dependence can be introduced into the splitting. To this aim,
we can go back to Eq. (63) and analyze the integrand of this expression. In addition we need to keep track of the
transverse momenta after the splitting while still working in the strong ordering approximation. Thus we shall assume,
k⊥ ' k1⊥ ' k2⊥ � k3⊥. We obtain (for the gluon-gluon splitting case)5

fa1a2(x1, x2,k1⊥,k2⊥) =
αs
2π

1

x1 + x2

k2
1⊥k

2
2⊥

k2
3⊥k

2
⊥
P (0)
a1a

( x1

x2 + x1

)
fa(x1 + x2,k3⊥) . (67)

5 In Eq. (67) there is an angular dependence in the transverse momenta k1⊥,k2⊥. The unintegrated function with such a dependence

is therefore integrated in the cross section with the measure d2k1⊥
πk2

1⊥

d2k2⊥
πk2

2⊥
. In the case when there is no angular dependence in the

unintegrated function, like in Eq. (67), the measure needs to be taken as
dk21⊥
k2
1⊥

dk22⊥
k2
2⊥

.
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This contribution has been previously derived in [27], with some modifications which include the polarizations of the
produced partons. In that case there is also a second parton distribution, the Boer-Mulders function [65, 66] which
describes polarized partons in the unpolarized hadron. The contribution from it vanishes when the angular integrals
are performed.

For practical applications we propose to utilize the formula (67) with the unintegrated PDFs modeled according to
the KMR approach, discussed in Sec. II,

fa(x1 + x2, k3⊥, Q) = Ta(Q, k3⊥)
∑

a′

∫ 1−∆

x1+x2

dz

z
Paa′(z, k3⊥)Da′

(
x1 + x2

z
, k3⊥

)
. (68)

In such a case, the unintegrated double distributions (67) become scale dependent with equal scales, Q1 = Q2 = Q,

fa1a2(x1, x2, k1⊥, k2⊥, Q,Q) =
αs
2π

1

x1 + x2

k2
1⊥k

2
2⊥

k2
3⊥k

2
⊥
P (0)
a1a

( x1

x2 + x1

)
fa(x1 + x2, k3⊥, Q) . (69)

The reason for equal scales is that this formula only contains evolution of the unintegrated parton density up to
a scale Q and then the splitting is treated with the transverse momentum dependence. The two partons from the
splitting should evolve now. However, the initial partons have nonzero transverse momenta which may be from the
perturbative region, k1⊥, k2⊥ ≥ Q0. Thus, we should consider QCD radiation with transverse momentum dependent
splitting functions, see e.g. [67, 68]. We postpone considering such a case for a future publication.

An important comment is in order here. The scale Q which appears on the right hand side in Eq. (69) is the scale
which can be related to the cutoff on the transverse momentum k3⊥. The assumption that we are making is that it
is the same scale which appears on the left hand side of Eq. (69) for the double parton distribution function. This is
motivated by the structure in the integrated form of the non-homogeneous part of Eq. (66). That is Eq. (69), when
integrated over the transverse momentum, leads to Eq. (66).

D. Momentum transfer dependence

Let us briefly discuss here another very important issue, namely the momentum transfer dependence in double
parton scattering. In general, in addition to the transverse momenta k1⊥,k2⊥ there is also a dependence on the
momentum transfer r⊥ which can flow around in the double parton scattering diagrams. To take into account this
dependence, would require generalization of the definition of the double parton density, see for example (63). This
means that one would need to include different momenta in the amplitude and in the complex amplitude, as proposed
for example in [20] and discussed more recently in [69]. That is, in general we should be using double generalized
parton distribution functions in the description of the double parton scattering processes.

In many phenomenological applications this problem is avoided by taking the momentum transfer dependence into
account through a form factor, see for example [20, 36, 37]. However, as pointed out for example in [26] and [24] this
is not sufficient. The form factor may be justified for the homogeneous term, provided the two partons are evolving
through the DGLAP equations from the non-perturbative wave function of the hadron in the initial state. In this
scenario, at least in the case when the evolution is governed by the DGLAP equations, one may assume that the
momentum transfer dependence (which in terms of the conjugate variable is related to the transverse distance of the
partons) can be modelled via two-gluon non-perturbative form factor. This rests on the assumption that the hard
scale in the DGLAP evolution is much larger than the non-perturbative scale which determines the size of the hadron.

This assumption is no longer valid for the inhomogeneous term. There, the perturbative splitting of one parton
into two daughter partons can occur at scales much larger than the non-perturbative scale of the hadron. Thus the
two daughter partons will be correlated on small distance scales, see [24, 26]. In [27] a more general formula for
the contribution to the double parton density from the splitting, which includes the dependence on the momentum
transfer variable, has been derived,

fa1a2(x1, x2,k1⊥,k2⊥, r⊥;Q,Q) =
αs
2π

k2
1⊥k

2
2⊥

κ2
⊥

(k⊥ + 1
2r⊥) · (k⊥ − 1

2r⊥)

(k⊥ + 1
2r⊥)2 (k⊥ − 1

2r⊥)2

fa(x1 + x2, κ⊥, Q)

x1 + x2
P (0)
a1a

(
x1

x1 + x2

)
, (70)

which clearly reduces to the previous formula (69) when r⊥ → 0. Thus, the first step to include the momentum
transfer in the double parton densities, would be to include it through the splitting like in Eq. (70). The QCD
evolution of the two partons after the splitting should include the transverse momentum dependence, see [67, 68].

Still, the above formula is only a leading power approximation as the longitudinal and transverse momenta have
been factorized. It is possible to go beyond the leading power approximation and derive splittings in more exact
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kinematics. This could be performed starting from the perturbative hadron wave function and considering exact
kinematics in the splitting. This would certainly imply additional correlations between longitudinal and transverse
components. We shall leave the systematic analysis of these improvements to a future work.

VI. CONCLUSIONS

We presented a construction of the unintegrated double parton distribution functions which depend on parton
transverse momenta, k1⊥ and k2⊥, in addition to their longitudinal momentum fractions, x1 and x2, and factorization
scales, Q1 and Q2. We follow the KMR method [55] to construct the unintegrated single parton distribution functions,
which relies on unfolding the last step in the DGLAP evolution of the integrated PDFs. We found two contributions
to the unintegrated DPDFs, corresponding to the possibility that the two partons originate either directly from the
proton or from the perturbative splitting of a single parton. In the first case, the unintegrated DPDFs in the x-space
are given by Eqs. (37)-(40). They correspond to four regions of transverse momenta, shown in Fig. 3.

The perturbative case with parton splitting is more involved. We analyzed two cases, the unfolding of the transverse
momentum dependence from the last step in the DGLAP evolution of two partons, and the case where transverse
momenta are generated directly from the single parton splitting into two partons. In the first case, we found that only
formula (51) is acceptable for the unintegrated DPDFs from the point of view of the k⊥-factorization of the double
parton scattering cross sections. In the second case, we propose formula (69), which includes transverse momentum
dependence generated from the perturbative splitting of one parton into two daughter partons. In that case, the KMR
prescription is applied to the single PDF, in order to introduce the transverse momentum dependence, and then the
splitting is treated by including the transverse momentum dependence. We kept the derivation in the strong ordering
approximation to be consistent with the rest of the framework.

It should also be mentioned that in our discussion we neglected the spin and color dependence by considering
the spin averaged and color singlet case. We also set the momentum transfer r⊥ to zero. In practical applications,
such a dependence is usually modeled with an appropriate form factor, see [20, 36, 37]. This may be justified for
the homogeneous term when the hard scales are much bigger than the non-perturbative scale which sets the size
of the hadron. In a more refined approach, however, the r⊥ dependence should be treated with the transverse
momentum dependent splitting kernels in the DGLAP evolution. In addition, for the inhomogeneous term, which is
of the perturbative origin, the momentum transfer dependence should be explicitly included by computing the parton
splitting in more exact kinematics. We postpone such studies to a future work.
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Appendix A: Proof

Eq. (26) with equal scales, Q1 = Q2 ≡ Q, is a solution to the evolution equations for the DPDFs in the leading
logarithmic approximation (LLA). This means that the splitting functions in these equations are proportional to the
strong coupling constant in the LLA, which can be absorbed in the definition of a new evolution parameter

t =
6

33− 2nf
ln

ln(Q2/Λ2
QCD)

ln(Q2
0/Λ

2
QCD)

, (A1)

where nf is the number of active quark flavors. In such a case the evolution equations read [17, 18, 23]

∂

∂t
D̃a1a2(n1, n2, t) =

∑

a′

P̃a1a′(n1)D̃a′a2(n1, n2, t)− Sa1D̃a1a2(n1, n2, t)

+
∑

a′

P̃a2a′(n2)D̃a1a′(n1, n2, t)− Sa2D̃a1a2(n1, n2, t) + D̃(sp)
a1a2(n1, n2, t), (A2)
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where P̃aa′(n) are the LLA splitting functions in the Mellin space (anomalous dimensions), D̃
(sp)
a1a2 is given by Eq. (29),

and

Sa =
∑

a′

∫ 1

0

dzzP̂a′a(z) . (A3)

Eq. (A2) can be written in the matrix form with respect to flavor indices,

∂

∂t
D̃(n1, n2, t) = P(n1) D̃(n1, n2, t) + D̃(n1, n2, t)P†(n2) + D̃(sp)(n1, n2, t) , (A4)

where the matrices D̃ = (D̃ab), D̃
(sp) = (D̃

(sp)
ab ) and P = (P̃ab − Sa δab). To solve Eq. (A4), we postulate the solution

in the form

D̃(n1, n2, t) = Ẽ(n1, t) D̃
0(n1, n2, t) Ẽ

†(n2, t). (A5)

Eq. (A4) is fulfilled if

dẼ(n, t)

dt
= P(n) Ẽ(n, t) , (A6)

with the initial condition Ẽ(n, 0) = 1, and

Ê(n1, t)
dD̂0(n1, n2, t)

dt
Ê†(n2, t) = D̃sp(n1, n2, t) . (A7)

Notice that Eq. (A6) is equivalent to Eq. (15) after changing the evolution variable to t. Thus, Ê(n, t) is the parton-
to-parton evolution distribution introduced in Section II A. The solution to Eq. (A6) reads

Ẽ(n) = eP(n)t , (A8)

therefore, it fulfills the relation

Ẽ(n, t1)Ẽ(n, t2) = Ẽ(n, t1 + t2) , (A9)

which can be used to write Eq. (A7) in the form

dD̃0(n1, n2, t)

dt
= Ẽ(n1,−t) D̃(sp)(n1, n2, t) Ẽ

†(n2,−t) . (A10)

Its solution is given by

D̃0(n1, n2, t) = D̃(n1, n2, 0) +

∫ t

0

dt′Ẽ(n1,−t′) D̃(sp)(n1, n2, t
′) Ẽ†(n2,−t′) , (A11)

where D̃(n1, n2, 0) is an initial condition. Substituting (A11) into (A5), we find the final form of the solution,

D̃(n1, n2, t) = Ẽ(n1, t) D̃(n1, n2, 0) Ẽ†(n2, t) +

∫ t

0

dt′ Ẽ(n1, t− t′) D̃(sp)(n1, n2, t
′) Ẽ†(n2, t− t′) , (A12)

which is equivalent to relation (26).
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