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I. INTRODUCTION

In a series of recent articles [1–4], we have shown that superconformal algebra allows the construction of relativis-
tic light-front (LF) semiclassical bound-state equations in physical spacetime which can be embedded in a higher
dimensional classical gravitational theory. This new approach to hadron physics incorporates basic nonperturbative
properties which are not apparent from the chiral QCD Lagrangian; it includes the emergence of a mass scale and
confinement out of a classically scale-invariant theory, the occurrence of a zero-mass bound state, universal Regge
trajectories for both mesons and baryons, and the breaking of chiral symmetry in the hadron spectrum. This holo-
graphic approach to hadronic physics gives remarkable connections between the light meson and nucleon spectra [2],
as well as specific relations which can be derived for heavy-light hadrons. Remarkably, even though heavy quark
masses break conformal invariance, an underlying dynamical supersymmetry still holds [3].
Our analysis is based on a procedure developed by de Alfaro, Fubini and Furlan, and Fubini and Rabinovici [1, 2, 5–

7]. In our approach, it leads to the natural emergence of a mass scale into the Hamiltonian of a theory while retaining
essential elements of both conformal invariance and supersymmetry. In the case of superconformal (graded) algebra,
a generalized Hamiltonian can be constructed as a linear superposition of superconformal generators which carry
different dimensions; the Hamiltonian thus remains within the superconformal algebraic structure. This procedure
determines a unique form of a quark confinement potential in the light-front Hamiltonian for light mesons and baryons,
and it reproduces quite well significant features of the hadron spectrum and dynamics. The resulting bound-state
equations depend explicitly on orbital angular momentum, and thus chiral symmetry is broken from the outset in
the Regge excitation spectra: The ρ meson and the nucleon have no chiral partners. A striking feature of the
formalism is that the supermultiplets consist of a meson wave function with internal LF angular momentum LM and
a corresponding baryon wave function with angular momentum LB = LM − 1 and identical mass. The lightest meson
state with LM = 0 and total quark spin zero is massless in the chiral limit and is identified with the pion; it has no
supersymmetric partner.
It is not known why the effective theory based on superconformal quantum mechanics and its light-front holographic

embedding captures so well essential aspects of the confinement dynamics of QCD. However, underlying aspects of
the superconformal holographic construction, conformal symmetry and supersymmetry, as well as the LF cluster
decomposition required by the holographic embedding, could help us understand fundamental features of QCD in its
nonperturbative domain.
As it is the case for conformal quantum mechanics [5], where the action remains invariant under conformal trans-

formations, classical QCD in the limit of massless quarks has no mass scale, but confinement and a mass gap can
emerge from its quantum embodiment. The cluster decomposition of the constituents of baryons corresponding to a
quark-diquark structure is necessary in order to describe baryons in light-front holographic QCD (LFHQCD) since
there is only a single holographic variable [8]. The required LF clustering follows from the mapping of anti-de Sitter
(AdS) equations to QCD bound-state equations in light-front physics [9], where one identifies the holographic variable
z in the AdS classical gravity theory with the boost-invariant transverse separation ζ between constituents in the
light-front quantization scheme [10, 11]. In the case of mesons, ζ2 = b2⊥x(1− x) is conjugate to the invariant mass of
the qq̄ in the LF wave function; it is the invariant variable of the LF Hamiltonian theory [12]. The resulting symmetry
between mesons and baryons is consistent with an essential feature of color SU(NC): a cluster of NC − 1 constituents
can be in the same color representation as the anti-constituent; for SU(3) this means 3̄ ∈ 3× 3 and 3 ∈ 3̄× 3̄. Thus,
emerging hadronic supersymmetry can be rooted in the dynamics of color SU(3) [13, 14].
Our basic model describes the confinement of massless quarks [1, 2, 4]. Indeed, for light quark masses it makes

sense to apply superconformal dynamics and to treat the quark masses as perturbations: The dynamics is then not
significantly changed for nonzero quark mass, and the resulting confinement scale remains universal for the resulting
hadronic bound states [4]. In contrast, in the case of heavy quark masses, we cannot rely on conclusions drawn from
conformal symmetry; however, the presence of a heavy mass need not also break supersymmetry since it can stem from
the dynamics of color confinement [18]. Indeed, as we have shown in Ref. [3], supersymmetric relations between the
meson and baryon masses still hold to a good approximation even for heavy-light, i.e., charm and bottom, hadrons.
In addition to the constraints imposed by supersymmetry, we will use additional features imposed by the holographic

embedding in order to constrain the specific form of the confinement potential in the heavy-light sector. We will also
use the heavy-quark flavor symmetry of QCD [19] to determine the dependence of the confinement scale on the heavy
quark mass in the heavy mass limit, since this symmetry is compatible with the light-front holographic approach [20].
Other holographic approaches to the heavy-light sector, including the recent holographic approach given in Ref. [21],
which includes chiral and heavy quark symmetry, have been been proposed in Refs. [22–27].
Light quark masses are not only essential for approximate conformal symmetry, but they also guarantee the de-

coupling of transverse degrees of freedom – expressed through the LF variable ζ in the hadron LF wave function
– from the longitudinal degrees of freedom which depends on the longitudinal LF momentum fraction x [28]. The
holographic mapping derived from the geometry of AdS space encodes the kinematics in 3+1 physical spacetime, and
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the modification of the AdS action – usually described for mesons in terms of a dilaton profile ϕ(z) – generates the
confining LF potential U(z) in the light-front bound-state equations [29].
Since light constituents are present in the heavy-light bound states of mesons or baryons, the system is still

ultrarelativistic; thus the heavy-light bound states need to be described by relativistic LF bound-state equations. This
means that the heavy-light system has properties common to both the chiral and the heavy-quark flavor sectors [19, 21].
It also suggests that we can holographically connect the supersymmetric theory to a modified AdS space; this will be
possible if the separation of the dynamical and kinematical variables also persist, at least to a good approximation,
in the heavy-light domain. As we will show, we can again derive a unique confinement potential for both mesons and
baryons in the heavy-light sector, even when conformal symmetry is broken by a heavy quark mass. The resulting
embedding leads to a LF harmonic confinement potential for the heavy-light hadrons and thus to Regge trajectories;
however, as we shall show, the confinement scale and Regge slope depends on the mass of the heavy quark. We
will investigate this dependence using Heavy Quark Effective Theory (HQET) [19]. The procedure discussed in this
article not only reproduces the observed data to a reasonable accuracy, but it also allows us to make predictions for
yet unobserved states.
This article is organized as follows: In Sec. II we will briefly review the construction of the LF Hamiltonian from

supersymmetric quantum mechanics [30] using the methods developed in Refs. [1, 2, 6]. In Sec. III we extend our
approach to systems containing a heavy, charm or bottom, quark. Notably, we discuss the constraints imposed by the
holographic embedding on the supersymmetric potential, which in turn determine the form of the light front potential.
We compare our predictions with experiment in Sec. IV, and in Sec. V we discuss the constraints on the confinement
scale imposed by HQET. Some final comments are given in Sec. VI. In the Appendix A we give expressions for the
LF wave functions and hadron distribution amplitudes which are compatible with our general approach. This article
is the continuation of Ref. [3].

II. THE SUPERSYMMETRIC LIGHT-FRONT HAMILTONIAN

The light-front Hamiltonian derived in the framework of supersymmetric quantum mechanics [30, 31] contains two
fermionic generators, the supercharges, Q and Q† with the anticommutation relations

{Q,Q} = {Q†, Q†} = 0, (1)

and the Hamiltonian H

H = {Q,Q†}, (2)

which commutes with the fermionic generators [Q,H ] = [Q†, H ] = 0, closing the graded Lie algebra. Since the
Hamiltonian H commutes with Q†, it follows that the states |φ〉 and Q†|φ〉 have identical non-vanishing eigenvalues.
In addition, if |φ0〉 is an eigenstate of Q with zero eigenvalue, it is annihilated by the operator Q†: Q†|φ0〉 = 0. This
implies that the lowest mesonic state on a given trajectory has no supersymmetric baryon partner [2]. This shows
the special role of the pion in the supersymmetric approach to hadronic physics as a unique state of zero mass in the
chiral limit.
In matrix notation

Q =

(

0 q

0 0

)

, Q† =

(

0 0

q† 0

)

, (3)

and

H =

(

q q† 0

0 q†q

)

, (4)

with

q = − d

dζ
+
f

ζ
+ V (ζ), (5)

q† =
d

dζ
+
f

ζ
+ V (ζ), (6)

where ζ is the LF invariant transverse variable and f is a dimensionless constant. One can add to to the Hamiltonian
(2) a constant term proportional to the unit matrix µ2I

Hµ = {Q,Q†}+ µ2I, (7)
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where the constant µ has the dimension of a mass; thus we obtain the general supersymmetric light-front Hamiltonian
derived in Ref. [3]

Hµ =

(

− d2

dζ2 +
4L2

M−1
4ζ2 + UM (ζ) 0

0 − d2

dζ2 +
4L2

B−1
4ζ2 + UB(ζ)

)

+ µ2
I, (8)

where LB + 1
2 = LM − 1

2 = f and UM and UB are, respectively, the meson and baryon LF confinement potentials:

UM (ζ) = V 2(ζ)− V ′(ζ) +
2LM − 1

ζ
V (ζ), (9)

UB(ζ) = V 2(ζ) + V ′(ζ) +
2LB + 1

ζ
V (ζ). (10)

The superpotential V is only constrained by the requirement that it is regular at the origin. For the special case
V = 0, the Hamiltonian is also invariant under conformal transformations, and one can extend the supersymmetric
algebra to a superconformal algebra [6, 32]. In fact, the use of this procedure in supersymmetric quantum mechanics

determines a unique form for the superconformal potential in (5): It is given by V =
√
λ ζ [1, 2]. Thus, in the

conformal limit µ2 → 0, and we have

UM (ζ) → λ2Mζ
2 + 2λM (LM − 1), (11)

UB(ζ) → λ2Bζ
2 + 2λB(LB + 1), (12)

with λM = λB = λ. The Hamiltonian (8) acts on the spinor

|φ〉 =
(

φM

φB

)

, (13)

where the upper component φM corresponds to a meson wave function with angular momentum LM and a lower
component φB , which corresponds to the leading-twist positive chirality component of a baryon ψ+ [1, 8] with angular
momentum LB = LM−1. The supersymmetric framework described here also incorporates a doublet consisting of the
non-leading twist minus-chirality component ψ− of a baryon which has angular momentum LB + 1 and a its partner
tetraquark with angular momentum LT = LB [4]. The tetraquark sector is discussed in more detail in Ref. [4].

III. EXTENSION TO THE HEAVY-LIGHT HADRON SECTOR

In LF holographic QCD the confinement potential for mesons UM (9) follows from the dilaton term eϕ(x) in the
AdS5 action following Ref. [33]. It is given by [34]

Udil(ζ) =
1

4
(ϕ′(ζ))2 +

1

2
ϕ′′(ζ) +

2LM − 3

2ζ
ϕ′(ζ), (14)

for JM = LM . In the conformal limit a quadratic dilaton profile, ϕ = λζ2 leads to the potential (11).
The dilaton ϕ is not constrained by the superconformal algebraic structure in the presence of heavy quark masses,

and thus its form and the form of the superpotential V are unknown a priori. Additional constraints do appear,
however, by the holographic embedding which can be derived by equating the potential (14), given in terms of the
dilaton profile ϕ, with the meson potential (9) written in terms of the superpotential V . We have:

1

4
(ϕ′)2 +

1

2
ϕ′′ +

2L− 1

2ζ
ϕ′ = V 2 − V ′ +

2L+ 1

ζ
V, (15)

where L = LM − 1.
We shall make the ansatz:

ϕ′(ζ) = 2λζ α(ζ), (16)

V (ζ) = λζ β(ζ). (17)

Then we obtain:

Udil = λ2ζ2α2 + 2Lλα+ λζα′, (18)

Ususy = λ2ζ2β2 + 2Lλβ − λζβ′, (19)
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and therefore

λ2ζ2(α2 − β2) + 2Lλ(α− β) + λζ(α′ + β′) = 0. (20)

Introducing the linear combination

σ(ζ) = α(ζ) + β(ζ),

δ(ζ) = α(ζ)− β(ζ), (21)

it follows that

λ2ζ2σ(ζ)δ(ζ) + 2Lλ δ(ζ) + λζ σ′(ζ) = 0. (22)

This yields

δ(ζ) = − λζ σ′(ζ)

λ2ζ2 σ(ζ) + 2Lλ
, (23)

and therefore:

α(ζ) =
1

2

(

σ(ζ) − λζ σ′(ζ)

λ2ζ2 σ(ζ) + 2Lλ

)

, (24)

β(ζ) =
1

2

(

σ(ζ) +
λζ σ′(ζ)

λ2ζ2 σ(ζ) + 2Lλ

)

. (25)

Using (16) and (24) we obtain upon integration the dilaton profile for a meson with angular momentum LM = L+1

ϕ(ζ) =

∫

dζ

(

λζ σ(ζ) − λ2ζ2 σ′(ζ)

λ2ζ2 σ(ζ) + 2(LM − 1)λ

)

. (26)

On the other hand, from (17) and (25) it follows that this profile for arbitrary σ(ζ) is compatible with the SUSY
potential

V (ζ) =
1

2

(

λζ σ(ζ) +
λ2ζ2 σ′(ζ)

λ2ζ2 σ(ζ) + 2(LM − 1)λ

)

. (27)

The baryon equations give no further constraints.
In LFHQCD the AdS geometry fixes the nontrivial aspects of the kinematics, whereas additional deformations of

AdS space encodes the dynamical features of the theory [29]. In particular, the dilaton, which describes the dynamics
of confinement for mesons in holographic QCD, must be free of kinematical quantities and thus must be independent
of the angular momentum LM . This is only possible if the derivative σ′(ζ) = 0 in (26) and (27), thus σ(ζ) = A with
A an arbitrary constant. From (26) and (27) it follows that

ϕ(ζ) =
1

2
λAζ2 +B, V (ζ) =

1

2
λAζ. (28)

This result implies that the LF potential in the heavy-light sector, even for strongly broken conformal invariance,
has the same quadratic form as the one dictated by the conformal algebra. The constant A, however, is arbitrary, so
the strength of the potential is not determined. Notice that the interaction potential (14) is unchanged by adding a
constant to the dilaton profile, thus we can set B = 0 in (28) without modifying the equations of motion.
The LF eigenvalue equationH |φ〉 =M2|φ〉 from the supersymmetric Hamiltonian (8) leads to the hadronic spectrum

Mesons: M2 = 4λQ (n+ L) + µ2,

Baryons: M2 = 4λQ (n+ L+ 1) + µ2,
(29)

where, as we will see below, the slope constant λQ = 1
2λA can depend on the mass of the heavy quark. The constant

term µ contains the effects of spin coupling and quark masses. This term has been derived for light hadrons in
Ref. [4], yielding very satisfactory results, as well as giving clear evidence for the universality of the confinement scale
λ for light quarks. More generally, we can allow for a small breaking of the supersymmetry due to the different light
quark masses in the meson or nucleon, µ2

M ≃ µ2
B ≃ µ2. We shall discuss a possible extension for heavy quarks in

the Appendix A, but we will initially treat their masses as unconstrained constants in a fit to all the heavy-light
trajectories.
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FIG. 1. Heavy-light mesons and baryons with one charm quark: D = qc̄, Ds = sc̄, Λc = udc, Σc = qqc, Ξc = usc. In (a) and
(c) s = 0 and in (b) and (d) s = 1, where s is the total quark spin in the mesons or the spin of the quark cluster in the baryons.
The data is from Ref. [35].

IV. COMPARISONS WITH DATA

In Figs. 1 and 2 we display confirmed data for the heavy-light mesons and baryons containing one charm or one
bottom quark together with the trajectory fit from (29). The internal spin s in these figures refers to the total quark
spin in the mesons or the spin of the diquark cluster in the baryons [4]. The results presented in Figs. 1 and 2
constitute a test of the linearity of the trajectories predicted by the SUSY holographic embedding, and it allows us to
determine the dependence of the slope λQ on the heavy quark mass scale. The trajectory intercepts are fixed by the
lowest state in each trajectory, but are determined later by the model in the Appendix A. Unfortunately the data for
heavy-light hadrons are sparse, compared with those for light hadrons. Only the D/Λc trajectory, Fig. 1 (a) provides
an independent test for the predicted harmonic potential. Thus, future data on heavy-light hadrons will be essential
to test the assumptions stated in Sec. I for the light front holographic model described here.

In Fig. 3 the fitted values for
√

λQ are presented for the different trajectories. In the abscissa we indicate the
lowest mass meson for that meson-baryon trajectory. The triangles indicate the fitted values, and the horizontal lines
show the mean over all channels of hadrons containing the same heavy-light meson. For comparison, we also give the
corresponding values for a fit to the much more abundant data for light hadrons [4]. It is obvious that the dispersion
of the data is significantly smaller for the case where the model is approximately constrained by conformal symmetry,
as compared to the case where it is strongly broken by heavy quark masses, and only supersymmetry remains as a
constraint.

All of the results for the charmed hadrons are collected in Table I; the predictions for bottom hadrons are summarized
in Table II. The slopes for charm hadrons are definitely larger than those for the light hadrons, but they agree within
±10% for all charm hadrons. The agreement of the data with the theoretical predictions from (29) is of the same order
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FIG. 2. Heavy-light mesons and baryons with one bottom quark: B = qb̄, Bs = sb̄, Λc = udb, Σb = qqb, Ξc = usb. In (a)
and (c) s = 0 and in (b) and (d) s = 1, where s is the total quark spin in the mesons or the spin of the diquark cluster in the
baryons. The data is from Ref. [35].

as for light hadrons. The average deviation is 55 MeV, but the data are rather sparse. The model, however, makes
predictions for higher orbital (and radial) excitations with an accuracy of approximately ±100 MeV. The values for
the mean of the modulus of deviation between theoretical and experimental values is 55 MeV, the standard error is 72
MeV; this deviation is comparable to that obtained for light hadrons [3, 4]. We have added in Table I the predicted
missing superpartners and all mesons with angular momentum LM ≤ 2 and baryons with LB ≤ 1.
We have omitted the Σc and the Σb baryons from the figures and the tables, since it is not clear whether they

should be included in the same trajectories with the pseudoscalar or the vector meson, as will be discussed in more
detail at the end of the Appendix A.

V. THE SCALE DEPENDENCE OF λQ FROM HEAVY QUARK EFFECTIVE THEORY (HQET)

It has been known for a long time [36], and has been formally proved in HQET [19], that in the case of masses of
heavy mesons MM , the product

√
MM fM approaches, up to logarithmic terms, a finite value

√

MM fM → C, (30)

a relation which can also be derived using the light-front holographic approach [20]. In the present holographic
framework this means that the confinement scale λQ has to increase with increasing quark mass. Indeed, using the
results of the Appendix A, we can write the decay constant fM (A9) expressed through the wave function (A4)

fM =
1

√

∫ 1

0
dx e−m2

Q
/λ(1−x)

√
2NCλ

π

∫ 1

0

dx e−m2

Q/2λ(1−x)
√

x(1 − x), (31)



8

ò ò ò ò

ò

ò ò
ò

ò

ò ò
ò

Π K Ρ K*
D Ds D* Ds

*

B Bs B* Bs
*

0.2

0.4

0.6

0.8

1.0

1.2

Channel

Λ
Q
HG

ev
L

FIG. 3. The fitted value of
√

λQ for different meson-baryon trajectories, indicated by the lowest meson state on that trajectory.

where, for simplicity, we consider the case where m1 = 0; the heavy quark mass is m2 = mQ.
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We introduce ν2 ≡ m2
Q/λ and use the saddle-point method to evaluate the integral of the numerator for large values

of ν2. One expands the numerator around the value x0 = 1
ν2 +O

(

1
ν4

)

, where the integrand is maximal and obtains:

e−
1

2
ν2/(1−x)

√

x(1 − x) = e−ν2/2−log ν−1/2+O( 1

ν ) e
1

4
(x−x0)

2 (m4+O(ν2)). (32)

This Gaussian integral yields:

∫ 1

0

dx e−
1

2
ν2/(1−x)

√

x(1 − x) =
e−ν2/2

√
e ν2

π

ν2

(

1 + erf

(

1

2

))

. (33)

The integral in the denominator of (31) can be performed analytically

∫ 1

0

dx e−ν2/(1−x) =

∫ ∞

1

dy

y2
e−ν2 y = e−ν2 − ν2 Γ

(

0,
1

ν2

)

= e−ν2

(

1

ν2
+O

(

1

ν4

))

. (34)

Thus in the large mQ limit:

fM =

√

6

e

(

1 + erf

(

1

2

))

λ3/2

m2
Q

. (35)
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TABLE I. Charmed Hadrons. The quark spin s is the total quark spin of the meson or the diquark cluster, λQ is the fitted value
for the trajectory and ∆M is the difference between the observed and the theoretical value according to (29). The lowest lowest
lying meson mass determines de value of µ2 in (29) for each trajectory. We have added predictions, if only one superpartner
has been observed and for LM ≤ 2, LB ≤ 1.

status particle I(JP ) quark spin n,L
√

λQ ∆M
content [GeV] [MeV]

obs D(1869) 1

2
(0−) cq̄ 0 0, 0 0.655 0

obs D1(2400)
1

2
(1+) cq̄ 0 0, 1 0.655 139

obs Λc(2286) 0( 1
2

+
) cqq 0 0, 0 0.655 4

obs Λc(2595) 0( 1
2

−
) cqq 0 0, 1 0.655 -36

obs Λc(2625) 0( 3
2

−
) cqq 0 0, 1 0.655 -6

obs Λc(2880) 0( 5
2

+
) cqq 0 0, 2 0.655 -59

pred D2(2630 )
1

2
(2−) cq̄ 0 0, 2 0.655 ?

pred D2(2940 )
1

2
(3+) cq̄ 0 0, 3 0.655 ?

obs D∗(2007) 1

2
(1−) cq̄ 1 0, 0 0.736 0

obs D∗
2(2460)

1

2
(2+) cq̄ 1 0, 1 0.736 -29

obs Σc(2520) 1( 3
2

+
) cqq 1 0, 0 0.736 28

pred D∗
3(2890 )

1

2
(3−) cq̄ 1 0, 2 0.736 ?

pred Σc(2890 ) 1( 5
2

−
) cqq 1 0, 1 0.736 ?

pred Σc(2890 ) 1( 3
2

−
) cqq 1 0, 1 0.736 ?

pred Σc(2890 ) 1( 1
2

−
) cqq 1 0, 1 0.736 ?

obs Ds(1958) 0(0−) cs̄ 0 0, 0 0.735 0

obs Ds1(2460) 0(1+) cs̄ 0 0, 1 0.735 23

obs Ds1(2536) 0(1+) cs̄ 0 0, 1 0.735 73

obs Ξc(2467)
1

2
( 1
2

+
) csq 0 0, 0 0.735 31

obs Ξc(2575)
1

2
( 1
2

+
) csq 0 0, 0 0.735 113

obs Ξc(2790)
1

2
( 1
2

−
) csq 0 0, 1 0.735 -67

obs Ξc(2815)
1

2
( 3
2

−
) csq 0 0, 1 0.735 -41

pred Ds2(2856 ) 0(2−) cs̄ 0 0, 2 0.735 ?

obs D∗
s(2112) 0(1−)? cs̄ 1 0, 0 0.766 0

obs D∗
s2(2573) 0(2+)? cs̄ 1 0, 1 0.766 -29

obs Ξc(2646)
1

2
( 3
2

+
) csq 1 0, 0 0.766 28

obs D∗
s3(3030 ) 0(3−)? cs̄ 1 0, 2 0.766 0

pred Ξc(3030 )
1

2
( 5
2

−
) csq 1 0, 1 0.766 ?

pred Ξc(3030 )
1

2
( 3
2

−
) csq 1 0, 1 0.766 ?

pred Ξc(3030 )
1

2
( 1
2

−
) csq 1 0, 1 0.766 ?

In the limit of heavy quarks the meson mass equals the quark mass. From the HQET relation (30) it follows that

λQ = const mQ, (36)

where the constant in (36) has the dimension of mass. This corroborates our statement that the increase of λQ with
increasing quark mass is dynamically necessary. In Fig. 4 we show the value of λQ for the π, K, D, and B mesons
as function of the meson mass MM . From the difference of the values of

√
MM fM for the D and B mesons (see

Appendix A, Table III) we must conclude that, in this region, we are still far away from the heavy quark regime. It
is nevertheless remarkable that the simple functional dependence (36) derived in the heavy quark limit predicts for
the c quark a value

√
λc = 0.653 GeV – after fixing the proportionality constant in (36) at the B meson mass, which

is indeed at the lower edge of the values obtained from the fit to the trajectories (0.655 to 0.766 GeV). It makes no

sense to apply HQET below the mass of the MD. Indeed, there is no sign of an increase of
√
λ between the π and K

mass.
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TABLE II. Bottom Hadrons. The notation is the same as for Table. I.

status particle I(JP ) quark spin n, L
√

λQ ∆M

content [GeV] [MeV]

obs B(5279) 1

2
(0−) bq̄ 0 0, 0 0.963 0

obs B1(5721)
1

2
(1+) bq̄ 0 0, 1 0.963 101

obs Λb(5620) 0( 1
2

+
) bqq 0 0, 0 0.963 1

obs Λb(5912) 0( 1
2

−
) bqq 0 0, 1 0.963 -28

obs Λc(5920) 0( 3
2

−
) bqq 0 0, 1 0.963 -20

pred B2(5940 )
1

2
(2−) cq̄ 0 0, 2 0.963 ?

obs B∗(5325) 1

2
(1−) bq̄ 1 0, 0 1.13 0

obs B∗
2 (5747)

1

2
(2+) bq̄ 1 0, 1 1.13 -45

obs Σ∗
b(5833) 1( 3

2

+
) bqq 1 0, 0 1.13 44

pred B∗
3 (6216 )

1

2
(3−) cq̄ 1 0, 2 1.13 ?

pred Σb(6216 ) 1( 5
2

−
) cqq 1 0, 1 1.13 ?

pred Σb(6216 ) 1( 3
2

−
) cqq 1 0, 1 1.13 ?

pred Σb(6216 ) 1( 1
2

−
) cqq 1 0, 1 1.13 ?

obs Bs(5367) 0(0−) bs̄ 0 0, 0 1.11 0

obs Bs1(5830) 0(1+) bs̄ 0 0, 1 1.11 16

obs Ξb(5795)
1

2
( 1
2

+
) bsq 0 0, 0 1.11 -16

pred Bs2(6224 ) 0(2−) bs̄ 0 0, 2 1.11 ?

pred Ξb(6224 )
1

2
( 1
2

−
) bsq 0 0, 1 1.11 ?

pred Ξb(6224 )
1

2
( 3
2

−
) bsq 0 0, 1 1.11 ?

obs B∗
s (5415) 0(1−)? bs̄ 1 0, 0 1.16 0

obs B∗
s2(5840) 0(2+)? bs̄ 1 0, 1 1.16 -55

obs Ξb(5945)
1

2
( 3
2

+
) bsq 1 0, 0 1.16 55

pred B∗
s3(6337) 0(3−)? bs̄ 1 0, 2 1.16 ?

pred Ξb(6337 )
1

2
( 5
2

−
) bsq 1 0, 1 1.16 ?

pred Ξb(6337 )
1

2
( 3
2

−
) bsq 1 0, 1 1.16 ?

pred Ξb(6337 )
1

2
( 1
2

−
) bsq 1 0, 1 1.16 ?

VI. SUMMARY AND CONCLUSIONS

In this article we have extended light-front holographic QCD to heavy-light hadrons by using the embedding
of supersymmetric quantum mechanics in a modified higher dimensional space asymptotic to AdS. Remarkably,
this embedding not only yields supersymmetric relations between mesons and baryons, but it also determines the
superconformal potential and thus the effective potential in light-front holographic QCD. If one introduces for mesons
the breaking of the maximal symmetry of AdS5 by a dilaton term, as it is usually done, one finds that only a quadratic
dilaton profile is compatible with the supersymmetric potential; thus, a harmonic LF potential again emerges, as is
the case for light quark hadrons. This implies linear trajectories not only for light hadrons, but also for the heavy-light
mesons and baryons. Although the experimental data are sparse, the existing data are not in contradiction with this
linearity; however, future data on heavy-light hadrons will be critical to test the dynamical assumptions described
here.

In our approach, the heavy quark influences the transverse degrees of freedom only indirectly by modifying the
strength of the harmonic potential; this modification cannot be determined from supersymmetry. However, the
dependence of the confinement scale on the heavy quark mass can be calculated in HQET, and it is in agreement with
the observed increase. Indeed, HQET is compatible with the light front holographic approach to hadron physics [20].
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Appendix A: Wave functions and distribution amplitudes

As mentioned above, the additional term µ2 in Eq. (29) for light hadrons was given in [4] in terms of the internal
spin and the quark masses of the constituents. The spin interaction term has the simple form 2λ s, where s is the
quark spin of the meson or the quark spin of the diquark cluster in the baryon, respectively. There is, however a
problem with the cluster spin assignment of the Σc and Σb, as will be explained at the end of this appendix.
In order to estimate the influence of the quark masses and also to evaluate the decay constants fM , which play a

crucial role in Sec. V, we need to have a good description of the wave functions of the hadrons. We found for a hadron
with LF angular momentum L and radial excitation number n [8]:

ψ
(0)
n,L =

1

N

√

x(x − 1) ζLLL
n(|λ|ζ2) e−|λ|ζ2/2, (A1)

with normalization

N =

√

(n+ L)!

n!π
|λ|(L+1)/2. (A2)

Here LL
n are the associated Laguerre Polynomials, and ζ =

√

x1(1− x1) |b⊥1| for mesons and ζ =
√

x1

1−x1
| (x2b⊥2 +

x3b⊥3) | for baryons; b⊥i is the transverse distance of quark i from the impact line defined by
∑n

i=1 b⊥i = 0.
LFHQCD gives us no hints on the longitudinal dynamics, so we have constructed the wave function for hadrons

with light quarks of mass mi by the principle, that the wave function is determined by the invariant mass of the
constituents

n
∑

i=1

k2⊥i +m2
i

xi
, (A3)

where k⊥i is the transverse momentum of the constituent i. This leads to the wave function for hadrons with small
quark masses:

ψ
(m)
n,L =

1

Nm
e−

1

2λ
∆m2

ψ
(0)
n,L, (A4)

with

∆m2 =

n
∑

i=1

m2
i

xi
δ
(

n
∑

i=1

xi − 1
)

. (A5)

The normalization condition
∫ 1

0 dx1 · · · dxn δ
(

∑n
i=1 xi − 1

)

∫

d2b⊥ |ψ(0)
n,L|2 = 1 implies

N2
m =

∫ 1

0

dx1 · · · dxn δ
(

n
∑

i=1

xi − 1
)

e−
1

λ
∆m2

. (A6)

It is certainly not realistic to assume that these wave functions, derived under the assumption of small quark masses,
can be simply extrapolated to heavy-light hadrons. But on the other hand, the embedding of the supersymmetric
theory into modified AdS demands that the quark masses enter only indirectly through the confining (transverse)
dynamics, namely by a change of the confinement scale λ. We therefore apply, in an exploratory way, the procedure
developed for light quarks [8] to determine also the masses of hadrons containing a heavy quark.
According to [4] the set of constants µ2 in (29) are given in first approximation by:

µ2 = 2λ s+∆M2[m1, · · · ,mn], (A7)

where the first term is the spin term discussed above and

∆M2[m1, · · · ,mn] =

∫

2πζdζ

∫

dx1 · · · dxn ψ(ζ, x1, · · · , xn)2
n
∑

i=1

m2
i

xi
δ
(

n
∑

i=1

xi − 1
)

, (A8)

where ψ is the normalized ground state wave function (A4) with n = 2 for mesons and n = 3 for baryons.
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TABLE III. Leptonic decay constants. Second row: the phenomenological values; third row: theoretical values obtained from
(A11) with the unmodified wave function (A4) and the fitted heavy quark masses mc = 1547, mb = 4922 MeV; last row:
theoretical values obtained with the modified wave function with the scale factor α = 1

2
in (A12). The fitted masses are

mc = 1327, mb = 4572 MeV.

decay const. [MeV] fK fD fDs fB fBs

fDs

fD

fBs

fB

phenomenology 155 212 249 187 227 1.17 1.22

unmodified w.f. 152 127 159 81 117 1.25 1.44

modified w.f. - 199 216 194 229 1.09 1.18

Since λQ has been determined in the fit to the trajectories and the light quark masses are known from the fits
to light hadrons [8], the only free parameter in these formulæ is the effective heavy quark mass, mQ. For hadrons
containing a charm quark, the best fit to the 8 ground states of the trajectories yields mc = 1547 MeV, for the bottom
quark mass one obtains correspondingly mb = 4922 MeV. The quality of the fit is worse than that to the trajectories,
the standard deviation is 95 MeV.
A more severe test for the adequacy of the wave functions are the leptonic decay constants. The leptonic decay

constant of a pseudoscalar meson M samples the light-front wave function at small distances and is a very sensitive
test for the wave function. Its exact computation is given in terms of the valence light-front wave function [37, 38]

fM = 2
√

2NC

∫ 1

0

dxφ(x), (A9)

where

φ(x) =

∫

d2k⊥

16π3
ψ(x,k⊥), (A10)

is the distribution amplitude (DA). Since φ(x) = ψ(x,b⊥ = 0)/
√
4π, we can write fM in terms of the LFWF at zero

transverse impact distance:

fM =

√

2NC

π

∫ 1

0

dxψ(x,b⊥ = 0), (A11)

which is identical with the result first obtained by van Royen and Weisskopf [39].
The decay constants fM of the heavy-light mesons are not directly observable, since the leptonic decay rates also

depend on the matrix elements of the weak decay of heavy quarks. There are, however, many phenomenological
results, notably from QCD sum rules and lattice calculations, which give a fairly consistent picture. We present in
Table III, second row, the results form [35], Leptonic decays of charged pseudoscalar mesons. For completeness we
have also included the K meson.
The results for the decay constants obtained from (A11) with the wave function (A4) are displayed in Table III,

third row, “unmodified w.f.”. Though qualitative features are reproduced, the magnitude of the decay constants is
grossly underestimated with increasing heavy quark mass. This is due to the fact that the heavy quark carries most
of the longitudinal momentum, as it is formally expressed through the xi dependent exponent ∆m

2 (A5) in (A4). If
the heavy quark mass m2 increases, then x1 is pushed to very small values; this suppresses the decay constant fM .
Since this suppression is evidently too strong, an easy remedy is to multiply the heavy quark mass in the exponential
(A5) of the wave function (A4) by a factor α < 1; thus we modify

e
− 1

2λ

m2

Q

xQ → e
−α2

2λ

m2

Q

xQ , (A12)

in the LF wave function for the heavy quark with mass mQ and longitudinal momentum xQ.
The result for α = 1

2 is shown in Table III, last row, “modified w.f.”. The improvement from errors between 40%
and 60% to errors between 3% and 8% is dramatic, and, most important, there is no sign of an increasing discrepancy
with increasing quark mass. Since the quantity α is mass independent, it does not affect the conclusions from HQET,
drawn in Sec. V, notably the relation (36); only the value of mQ in (35) has to be multiplied by α = 1

2 . The values
for the quark masses, obtained from a fit to the data with this modified wave function are: mc = 1.327 GeV and
mb = 4.572 GeV. The fit is slightly worse than that with the unmodified wave function (A4), the standard deviation
is 125 MeV.
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FIG. 5. Distribution amplitudes for pseudoscalar mesons. From top to bootm: Chiral case, D meson and B meson. The dotted
line for the D and B mesons is obtained with the unmodified wave function (A4), the solid line with the modified wave function
with the scale factor α = 1

2
in (A12).

In Fig. 5 we show the distribution amplitudes (5) for the chiral case and for the heavy pseudoscalar mesons; the
dotted lines for the heavy mesons correspond to the unmodified wave function (A4), the solid ones are obtained from
the modified wave function with the scale factor α = 1

2 in (A12).

The increasing discrepancy between the longitudinal momentum of the light constituents and that of the heavy
quark, with increasing quark mass, could provide a plausible explanation of why the Σc and Σb do not fit on the
trajectories for a pseudoscalar meson. In this case a scalar diquark cluster can be formed only by the heavy and a
light quark, whereas the cluster formed of two light quarks has isopin 1 and hence quark spin 1. The trajectories for
the pseudoscalar mesons are characterized by s = 0, hence they are matched to baryons of scalar diquarks. Due to
the increasing difference between the longitudinal momenta, the formation of a heavy-light cluster becomes less and
less probable with increasing heavy quark mass. This is also observed: the mass difference δM between the Σ∗

b , which
must contain a spin 1 cluster, and the Σb is δM = 20 MeV; in contrast, the Σ∗

c(2520), which must contain a spin 1
cluster, and the Σc(2455) is δM = 65 MeV.
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