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The reaction γN → ηN is studied in the high-energy regime (with photon lab energies
Elab
γ > 4 GeV) using information from the resonance region through the use of finite-energy sum

rules (FESR). We illustrate how analyticity allows one to map the t-dependence of the unknown
Regge residue functions. We provide predictions for the energy dependence of the beam asymmetry
at high energies.

I. INTRODUCTION

Pseudoscalar-meson photoproduction on the nucleon
is of current interest for hadron reaction studies. At low
energies it provides information about the nucleon spec-
trum [1–7] while at high energies it reveals details of the
residual hadron interactions due to cross-channel particle
(Reggeon) exchanges [8]. These two regimes are analyti-
cally connected, a feature that can be used to relate prop-
erties of resonances in the direct channel to Reggeons in
the cross channels. In practice this can be accomplished
through dispersion relations and finite-energy sum rules
(FESR) [9].

In the resonance region there is abundant data on
η photoproduction on both proton and deuteron tar-
gets including polarization measurements (see for exam-
ple Refs. [10–15]). On the other hand, higher energies
(Elab > 4 GeV), only the unpolarized differential cross
section has been measured [16, 17], providing little con-
strain on theoretical models. However, this is about to
change thanks to the forthcoming data from the GlueX
experiment at Jefferson Lab [18, 19].

Even though photons couple to both isospin I = 0, 1
states, there are some notable differences between high
energy photoproduction of the η (I = 0) and the π0 (I =
1). The neutral pion differential cross section has a dip
in the momentum transfer range, −t ∼ 0.5 − 0.6 GeV2,
whereas the η meson differential cross section is rather
smooth there. The dip in neutral pion photoproduction
is likely to be associated with zeros in the residues of
the two dominant Regge exchanges, the ρ and the ω [20–
22]. It is an open question, however, what mechanisms
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are responsible for filling in the dip in eta photoproduc-
tion. It is often assumed that large unnatural contri-
butions come into play [23–26]. Finite-energy sum rules
can provide clues here by relating the t-dependence of
Regge amplitudes to that of the low-energy amplitude,
usually described in terms of a finite number of partial
waves. Early attempts could not resolve this issue due
to the low quality of the data and the large uncertain-
ties in the parametrization of the partial waves [24, 25].
Nowadays, however, there are several models that have
been developed for the resonance region of η photopro-
duction [1–4, 7] allowing for a more precise FESR analy-
sis. Our main objective is to settle the discussion on the
dip mechanism by invoking information from the low-
energy regime. To this end, a Regge-pole model is fitted
to the available high-energy cross-section data and com-
pared to low-energy models through FESR. This work
on η photoproduction and ongoing work on π0 photopro-
duction [27] will set the stage for a combined low- and
high-energy analysis of related reactions.

As we discuss in this paper, the largest uncertainty in η
photoproduction stems from the unnatural parity Regge
exchanges that in principle can be isolated through the
photon beam asymmetry measurement. Such measure-
ment will soon be published by the GlueX collaboration.
The experiment uses linearly polarized photons with en-
ergy Elab

γ ∼ 9 GeV and it has simultaneously measured

η and π0 production. This novel high-energy data will
help to reduce the systematic uncertainties and to pro-
vide a better constrain on Regge amplitudes for these
reactions. Through the FESR analysis of η photopro-
duction we make new predictions based on the hypoth-
esis of Regge-pole dominance to be compared with the
forthcoming result from GlueX.

This paper is organized as follows. In Section II we dis-
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cuss the formalism and set up all conventions with further
details given in the Appendices. Central to Regge the-
ory, the topic of factorization is introduced in Section III.
Section IV focuses on the dispersion relation used in the
derivation of the FESR. The latter is presented in Sec-
tion V. In Section VI we present the method used to an-
alytically continue the low-energy amplitudes below the
physical threshold which is needed in the calculation of
the dispersive integral. The predictions arising from the
low-energy side of the FESR, i.e. left-hand side (LHS)
of the sum rules, are discussed in Section VII and com-
pared to the high-energy data and the Regge model in
Section VIII. The interpretation of the results and fur-
ther development of the Regge model, in which we dis-
cuss possible contributions from the enigmatic ρ2 and ω2

exchanges, is given in Section IX. Our conclusions are
summarized in Section X.

II. FORMALISM: SCALAR AMPLITUDES

We describe the kinematics of η photoproduction on a
nucleon target, the s-channel reaction,

γ(k, µγ) +N(pi, µi) −→ η(q) +N ′(pf , µf ) , (1)

by specifying particle four-momenta and helicities. We
use MN and µ to denote the nucleon and η masses, re-
spectively. For all other particles we denote their masses
by mx. Throughout this paper we use the standard Man-
delstam variables

s = (k + pi)
2 , t = (k − q)2 , u = (k − pf )2 , (2)

related by s + t + u = Σ = 2M2
N + µ2. We refer to

Appendix A for further details on the kinematics. The u
channel, in which the variable u represents the physical
center-of-mass energy squared of the γN → ηN reaction,
is related to the s-channel by charge conjugation. To
make this symmetry explicit, we use the crossing variable

ν =
s− u
4MN

=
s

2MN
+
t− Σ

4MN
= Elab +

t− µ2

4MN
. (3)

Hence, the t channel corresponds to γη → NN . In or-
der to formulate the dispersion relations, it is necessary
to isolate and remove kinematical singularities. For this
reason, it is convenient to work with the invariant am-
plitudes that are kinematic singularity free functions of
the Mandelstam invariants. These amplitudes multiply
four independent covariant tensors that contain the kine-
matical singularities. The tensor basis is constructed by
combining the photon polarization vector εµ ≡ εµ(k, µγ)
and particle momenta [28],

M1 =
1

2
γ5γµγνF

µν , (4)

M2 = 2γ5qµPνF
µν , (5)

M3 = γ5γµqνF
µν , (6)

M4 =
i

2
εαβµνγ

αqβFµν . (7)

Here P = (pi + pf )/2 and Fµν = εµkν − kµεν . In terms
of these covariants the s-channel amplitude is given by

Aµf ,µi µγ = uµf (pf )

(
4∑
k=1

AkMk(µγ)

)
uµi(pi) , (8)

where the Ak stand for the kinematic singularity and zero
free amplitudes which contain the dynamical information
on resonances and Regge exchanges. It is convenient to
decompose the invariant amplitudes in terms of ampli-
tudes with well-defined isospin in the t-channel, As and
Av for I = 0 and I = 1, respectively,

Aabi = Asi δ
ab +Avi τ

ab
3 , (9)

where a and b are the isospin indices of the two nucleons.
Hence,

Api = Ai(γp→ ηp) = Asi +Avi , (10a)

Ani = Ai(γn→ ηn) = Asi −Avi . (10b)

We will use the collective notation Aσi for the isospin
components (σ = s, v). For isoscalar, e.g. η meson pho-
toproduction, the s and u channel correspond to fixed
I = 1/2. It follows from the symmetry properties of the
covariants Mi under s↔ u crossing that the amplitudes
Aσi with i = 1, 2, 4 (i = 3) are even (odd) functions of ν,
i.e.

Aσi (−ν − iε, t) = ξiA
σ
i (ν + iε, t) , (11)

with ξ1 = ξ2 = −ξ3 = ξ4 = 1 and ε > 0. The t-
channel quantum numbers of the invariant amplitudes
can be identified by projecting onto the t-channel parity-
conserving helicity amplitudes. The latter can be de-
composed in terms of the L − S basis allowing for iden-
tification of the spin and parity (see Ref. [22] and ref-
erences therein). For γN → ηN , we list the invari-
ant amplitudes in Table I together with the correspond-
ing quantum numbers and possible t-channel exchanges.
We note that the amplitude A′2 = A1 + tA2, instead of
A2, has good t-channel quantum numbers [22]. We will
work with the set of amplitudes (A1, A

′
2, A3, A4) which

allow to separate natural from unnatural parity t-channel
contributions. The γη state couples to C = −1 ex-
changes in the t-channel, which for the NN state implies
C = (−1)L+S = −1. For the NN state, parity is given by
P = (−1)L+1. Thus, for positive parity the total angu-
lar momentum is odd (J = L), while for negative parity,
J is either odd or even (J = L ± 1, L). Furthermore,
since C = −1 the NN state has G-parity equal to −1
for I = 0 and +1 for I = 1. Beside known resonances,
t-channel exchanges with JPC = (2, 4, ...)−− are also al-
lowed, but no mesons with these quantum numbers have
been clearly observed1 to date [31]. These quantum num-
bers are not exotic (only the 0−− is) and both the quark

1 There are some experimental indications of the existence of ρ2
and ω2 mesons [29, 30]. However, these states are observed by
a single group and poorly established and thus need confirma-
tion [31].
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model and lattice QCD results predict the existence of
such states [32, 33]. At high energies the dominant t-
channel contributions in η photoproduction are expected
from the natural exchanges, which according to Table I
feed into the A1 and A4 amplitudes. The C-parity con-
servation prohibits exchanges of the signature partners
of the ρ and ω, the a2(1320) and f2(1270), respectively.
The amplitudes for isovector exchanges (ρ, b and ρ2) on
proton and neutron differ by sign. Schematically, the
net contribution of t-channel exchanges considered here
is given by

γp→ ηp , A = (ω + h+ ω2) + (ρ+ b+ ρ2) , (12)

γn→ ηn , A = (ω + h+ ω2)− (ρ+ b+ ρ2) . (13)

TABLE I. Invariant amplitudes Ai with corresponding t-
channel exchanges. I is isospin, G is G-parity, J is total
spin, P is parity, C is charge conjugation, η = P (−1)J is the
naturality.

Ai IG JPC η Leading exchanges

A1 0−, 1+ (1, 3, 5, ...)−− +1 ρ(770), ω(782)

A′2 0−, 1+ (1, 3, 5, ...)+− −1 h1(1170), b1(1235)

A3 0−, 1+ (2, 4, ...)−− −1 ρ2(??), ω2(??)

A4 0−, 1+ (1, 3, 5, ...)−− +1 ρ(770), ω(782)

At large s the expression for the differential cross sec-
tion and the photon beam asymmetry (Σ) simplifies and
in terms of the scalar amplitudes is given by

dσ

dt
=

1

32π

(
|A1|2 − t |A4|2 + |A′2|

2 − t |A3|2
)
, (14)

Σ
dσ

dt
=

1

32π

(
|A1|2 − t |A4|2 − |A′2|

2
+ t |A3|2

)
, (15)

while the exact expression for the differential cross sec-
tion reads

dσ

dt
=

1

64πs |k|2
1

2

∑
µf ,µi=±

∣∣Aµf ,µi 1

∣∣2 , (16)

since negative photon helicities are related by parity con-
servation.

III. TESTS OF FACTORIZATION

One of the main purposes of this paper is to investigate
whether the high-energy data can be described entirely
in terms of factorizable Regge poles [34], or other contri-
butions are needed. Specifically we investigate the impli-
cations of angular-momentum conservation which gives a
stronger constraint on Regge amplitudes as compared to

its implications for the scattering amplitude in general.
In the s → ∞ limit, s-channel angular-momentum con-
servation implies that the s-channel helicity amplitudes
in Eq. (8) have the following behavior as t→ 0 (see Ap-
pendix B)

Aµf ,µi µγ ∼
t→0

(−t)n/2 , (17)

where n = |(µγ − µi)− (−µf )| ≥ 0 is the net s-channel
helicity flip. This is a weaker condition than the one
imposed by angular-momentum conservation on factor-
izable Regge amplitudes,

Aµf ,µi µγ ∼
t→0

(−t)(n+x)/2 , (18)

where n + x = |µγ | + |µi − µf | ≥ 1. We summarize the
expected behavior for the four independent helicity am-
plitudes in Table II. It can be seen that when factoriza-
tion is imposed, all helicity amplitudes in the Regge-pole
model vanish at t = 0. If only the condition given in
Eq. (17) is imposed, the s-channel nucleon helicity flip
amplitude A−,+ 1 can be finite at t = 0.

At leading order in s, and for small |t|, the s-channel
helicity amplitudes are related to the invariants, Ai
by [22, 24]

1√
2s

(A+,+ 1 +A−,− 1) =
√
−tA4 (19)

1√
2s

(A+,− 1 −A−,+ 1) =A1 (20)

1√
2s

(A+,+ 1 −A−,− 1) =
√
−tA3 (21)

1√
2s

(A+,− 1 +A−,+ 1) =−A′2 = −(A1 + tA2) (22)

Thus, at high energies the invariants A3 and A4 (A1 and
A′2) correspond to the s-channel nucleon-helicity non-flip
(flip), respectively. Combining Eqs. (20) and (22) we
obtain

A−,+ 1 = − s√
2

(A′2 +A1) . (23)

We find that angular-momentum conservation does not
require any of the invariant amplitudes Ai to vanish at
t = 0, but the stronger condition of Eq. (18) implies that
the Regge residues of A1 and A′2 ought to vanish.

The FESR test factorization by relating the t = 0 be-
havior of the high-energy, Regge amplitudes to one at
low energy, obtained for example from the phase-shift
analysis.

IV. DISPERSION RELATIONS

We assume that the scalar amplitudes have only the
real axis dynamical cuts imposed by unitarity, and we
write the dispersion relations for Aσi (ν, t) at constant t
using the contour in the ν-plane shown in Fig. 1.
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TABLE II. Behavior of the s-channel helicity amplitudes
Aµf ,µi 1 for given nucleon helicities, as predicted by Eqs. (17)
and (18).

Aµf ,µi 1 n n+ x

A−,− 1 1 1

A−,+1 0 2

A+,− 1 2 2

A+,+1 1 1

FIG. 1. Contour in the complex ν plane used for the disper-
sion relations. The s- and u-channel nucleon pole and πN
threshold and cut are shown.

In Fig. 1 we identify the nucleon pole and a cut starting
from the πN threshold. We relate the residues of the s
and u channel poles to the phenomenological couplings
by identifying them with the Born terms calculated using
an effective Lagrangian [35] as shown in Fig. 2,

LγNN =− eNγµ
1 + τ3

2
NAµ

+
e

4MN
N(κs + κvτ3)σµνNF

µν , (24)

LηNN =− iζgηNNNγ5Nφη + (1− ζ)
gηNN
2MN

Nγµγ5N∂
µφη,

(25)

where κs = 1
2 (κp + κn) and κv = 1

2 (κp − κn) are the
isoscalar and isovector nucleon anomalous magnetic mo-
ments and σµν = i

2 [γµ, γν ]. The two limiting cases are
the ζ = 0 pseudovector (PV) and ζ = 1 pseudoscalar
(PS) coupling. The role of these two couplings has been
explored in dynamical models for the scattering ampli-
tude based on effective Lagrangians [35–37]. In the Born
terms, however, the difference between the two interac-
tions leads to a non-pole contribution that does not con-
tribute to the on-shell scattering amplitude for which the
dispersion relation is written. The derivative term re-
duces indeed to the other one upon use of the equation
of motion.

For the Born terms the two diagrams in Fig. 2 give

FIG. 2. Nucleon pole contributions to the dispersion relations.

(see Appendix C)

Aσ,pole
1 (ν, t) =

egηNN
4MN

[
1

ν − νN
− 1

ν + νN

]
, (26)

Aσ,pole
2 (ν, t) = −egηNN

4M2
N

[
1

(ν − νN )(ν + νN )

]
= − egηNN

(t− µ2)2MN

[
1

ν − νN
− 1

ν + νN

]
,

(27)

Aσ,pole
3 (ν, t) = −egηNN

MN

κσ

4MN

[
1

ν − νN
+

1

ν + νN

]
,

(28)

Aσ,pole
4 (ν, t) = −egηNN

MN

κσ

4MN

[
1

ν − νN
− 1

ν + νN

]
,

(29)

where νN = (t− µ2)/(4MN ). The coupling gηNN is less
known than gπNN . Using the latter and SU(3) symmetry
one finds g2

ηNN/4π = 0.9− 1.8 (where the uncertainty is

induced by the uncertainty on the F/D ratio) [35, 38].
On the other hand from fits to the η photoproduction
data using effective and chiral Lagrangian models [36,
37], one obtains a smaller value, g2

ηNN/4π = 0.4 − 0.52.

Similar results are found in the quark models of Refs. [39,
40], while other constituent-quark models find an even
smaller value, g2

ηNN/4π = 0.04 [41]. In the following we

choose g2
ηNN/4π = 0.4 as a canonical value. On the real

axis the dispersion relations for (ξi=1,2,4 = +1) are given
by

Re Aσi (ν, t) = Bσi (t)
2νN

ν2
N − ν2

+
2

π
P
∫ +∞

νπ

ν′
Im Aσi (ν′, t)

ν′2 − ν2
dν′ ,

(30)

and for (ξi=3 = −1) by

Re Aσi (ν, t) = Bσi (t)
2ν

ν2
N − ν2

+
2ν

π
P
∫ +∞

νπ

Im Aσi (ν′, t)

ν′2 − ν2
dν′ .

(31)

The residues Bσi (t) of the nucleon poles are tabulated in
Table III.

V. FINITE-ENERGY SUM RULES

For the high-energy part of the amplitude, we use a
Regge parametrization. The contribution of a Regge pole
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TABLE III. Pole contributions to the dispersion relations in
Eqs. (30)–(31).

σ = s σ = v

Bσ1 −egηNN
4MN

−egηNN
4MN

e = 0.303

Bσ2
egηNN
2MN

1

t− µ2

egηNN
2MN

1

t− µ2
g2ηNN/4π = 0.4

Bσ3
egηNN
4MN

κs

MN

egηNN
4MN

κv

MN
κs = −0.065

Bσ4
egηNN
4MN

κs

MN

egηNN
4MN

κv

MN
κv = 1.845

with signature τ = (−1)J to scalar amplitudes Ai is given

by [42]

Ai,R(ν, t) = −βi(t)
τ(riν)α(t) + (−riν)α(t)

sinπα(t)
(riν)−1 , (32)

= −βi(t)
τ + e−iπα(t)

sinπα(t)
(riν)α(t)−1 , (33)

where Eq. (33) is the reduction on the real axis of the
more general expression in Eq. (32). The ri is a scale
parameter of dimension GeV−1 and the residues βi(t)
are dimensionless. Under crossing

Ai,R(−ν, t) = −τAi,R(ν, t) , (34)

where τ = −1 (+1) for vector (tensor) exchanges. The
Ai ∼ να−1 behavior corresponds to the typical να behav-
ior for the s-channel helicity amplitudes (see Eqs. (19)–
(22)). Regge theory does not determine the residues β(t)
uniquely. They can be fixed, for example by comparing
with the data. It follows from unitarity, however, that
in the s-channel physical region, both β(t) and α(t) are
real. The Regge amplitudes in Eq. (32), being analyt-
ical functions of ν, can be represented via a dispersive
integral,

Re Aσi,R(ν, t) =
1

π
P
∫ +∞

0

Im Aσi,R(ν′, t)

[
1

ν′ − ν
+

ξi
ν′ + ν

]
dν′ . (35)

If, for a particular energy Λ, the scalar amplitudes Aσi can
be approximated by the Regge form Aσi (ν, t) = Aσi,R(ν, t)

for ν > Λ, then Eqs. (30), (31) and (35) lead to the
FESR [43],

πBσi (t)

Λ

(νN
Λ

)k
+

∫ Λ

νπ

Im Aσi (ν′, t)

(
ν′

Λ

)k
dν′

Λ

=βσi (t)
(riΛ)

α(t)−1

α(t) + k
, (36)

which are used for even (odd) integer k corresponding to
ξi = −1 (ξi = 1), respectively. The energy Λ denotes
the transition energy between the low- and high-energy
regime. In order to derive Eq. (36), one expands the com-
bination of Eqs. (30), (31) and (35) in powers of ν′/ν < 1
(since ν′ < Λ and ν > Λ), after which the result follows
from the condition for the coefficients of (1/ν)k. Hence,
in principle Eq. (36) is satisfied for all even (odd) inte-
ger k for each crossing odd (even) invariant amplitude.
Alternatively, one can derive Continuous-Moment Sum
Rules (CMSR) which also require the real part of the
low-energy amplitude [44, 45]. The LHS of the FESR is
a function of t determined by the low-energy behavior of
the scattering amplitude. The right hand side (RHS) is
a function of t determined by the high-energy behavior,
which we parametrize by Regge poles. Amplitude zeros

or other features of the t-dependence seen on the LHS
side will be linked to the residue functions β(t).

VI. SUBTHRESHOLD CONTINUATION

The integral on the LHS of the FESR of Eq. (36) starts
at the lowest s-channel threshold, i.e. the πN threshold,
and it is necessary to analytically continue the scalar am-
plitudes below the physical ηN threshold (see Fig. 3).

Low energy parametrizations that are currently avail-
able are based on the partial-wave series expansion. The
series diverges in the unphysical domain and approxima-
tions are required. In the following we collectively de-
note the electric (El±) and magnetic (Ml±) multipoles,
byMl±. Specifically, we use the η-MAID 2001 [4] model
and an approach similar to Ref. [46] to continue the mul-
tipoles in s = W 2. For individual moments we identify
resonances that give the dominant contributions close
to threshold and continue them below threshold using
the Breit-Wigner parametrization used in the η-MAID
2001 model [4]. The formalism is summarized in Ap-
pendix D. At the ηN threshold, the multipoles behave as

Ml± ∼
|q|→0

|q|l, where q is the relative three-momentum

in the ηN center-of-mass frame, and from Eq. (A5) it
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z = +1

z = -1

N π N η N

Λ

0.0 0.5 1.0 1.5
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

ν (GeV)

t(
G
eV

2
)

FIG. 3. Overview of the kinematic domains. The red band is
the unphysical subthreshold region where we continue the am-
plitudes. The solid red lines indicate the πN and ηN branch
points at

√
s = 1.07 GeV and 1.49 GeV, respectively. The

red dashed line shows the nucleon pole. The solid black lines
show the boundaries t(zs ≡ cos θ = ±1) of the physical do-
main, which is indicated by the dark shade. The white domain
between the ηN and physical boundary lines shows the un-
physical domain above threshold where we use the multipole
expansion to reconstruct the amplitudes. The black dashed
line shows the upper boundary Λ of the low-energy dispersion
integral in Eq. (36).

follows that cos θ |q| is linear in t and finite at thresh-
old (except on the boundary of the physical region where
it is 0). Thus, even though individual multipoles are
suppressed at threshold they give a finite contribution at
fixed t. Some multipoles are dominated at threshold by a
well-known resonance. For example, in the ηN photopro-
duction channel, the E0+ is substantial at threshold in
the physical region due to the S11(1535) resonance, which
couples strongly to the ηN channel. But there are also
multipoles where it is not clear how much they should
contribute below the ηN threshold. In practice, we iden-
tify the main multipole contributions to the invariant am-
plitudes at the ηN threshold and we continue them below
threshold until no discontinuities are notable at thresh-
old within the considered domain 0 ≤ −t ≤ 1 GeV2. We
hereby start from the lowest multipole order l = 0 and
add subthreshold-continued higher-order multipoles until
the invariant amplitudes below the ηN threshold (gener-
ated from a lower number of partial waves) sufficiently
reproduce the amplitudes at threshold. The resulting
isospin components of the continued invariant amplitudes
are shown in Fig. 4. We note that the continuation be-
comes less reliable as −t increases and we restrict the
analysis to the range 0 ≤ −t ≤ 1 GeV2.

VII. LEFT-HAND SIDE OF THE FESR

We proceed with the discussion of the LHS of
the FESR (36). Various features of the observed t-
dependence will be analyzed in the context of the Regge
parametrization in the following section.

To compute the LHS we use a single parametrization
for the low-energy amplitudes from the η-MAID 2001
model [4]. Three main restrictions hinder the use of other

available models. First, the sum rules in Eq. (36) require
isospin decomposable amplitudes, meaning that a pro-
ton and neutron version of the low-energy model must
be available. Second, the ingredients of the low-energy
model should be simple enough and well tabulated in
the corresponding references in order to allow for a re-
construction of the model. The latter is mandatory to
enable a subthreshold continuation of the model ampli-
tudes. For example, the Bonn-Gatchina model [1] does
provide a set of isospin decomposed multipoles. How-
ever, we were unable to continue the invariant ampli-
tudes below the ηN threshold starting from the provided
multipoles. A third restriction is that the low-energy
models should be valid up to sufficiently high energies
(W & 2 GeV). A different version of the η-MAID model
(dubbed η-MAID 2003) was presented in Refs. [47, 48]
with the aim to remedy the overestimated D15(1675) con-
tribution in the η-MAID 2001 model. The model includes
Regge contributions. However, since their parametriza-
tion is significantly different from the standard definition
in Eq. (32), we do not include it in our analysis.

After carrying out the FESR analysis with the η-MAID
2001 amplitudes, we will compare the results to the
Bonn-Gatchina 2014-02 (BoGn) [1], ANL-Osaka (ANL-
O) [2] and Julich-Bonn (JuBo) [3] model for the proton
target. For the latter two models, only the proton am-
plitudes are available. Furthermore, as discussed earlier,
for all these other models, it is unclear how to extrapo-
late the invariant amplitudes outside the physical region
|cos θ| ≤ 1.

Fig. 3 illustrates the domain where the LHS of the
FESR are evaluated and the different kinematic do-
mains covered therein. Note that the s- and u-channel
πN thresholds start to overlap at νπ(tπ) = 0 or tπ =
−0.243 GeV2 (see Eq. (A8)). In principle, at higher −t,
the Schwarz reflection principle is no longer applicable,
since the scattering amplitude is no longer real on a part
of the real axis. From analyticity of the scattering am-
plitude in t, it is assumed that the dispersion relations
can be applied beyond −tπ. The η-MAID 2001 model
is applicable from threshold up to Wmax = 2 GeV or
Elab
γ,max = 1.66 GeV. Therefore, we are forced to take

Λ = Elab
γ,max + (t− µ2)/4MN .

The η-MAID 2001 model incorporates the nucleon
Born terms, real t-channel ρ and ω exchanges, and nu-
cleon resonances up to the F15 partial wave. Hence, the
imaginary part of the model amplitudes can be recon-
structed by including the l ≤ 3 multipoles. The results
for the LHS of the FESR are shown in Fig. 5. Below
we comment on the specific features observed in its t-
dependence. We concentrate on moments with k > 1,
since Eq. (36) assumes α + k > 0 and in order to re-
duce sensitivity to the subthreshold continuation. We
also show the LHS of the FESR for a single moment in
Fig. 6, where the contribution of the Born terms is illus-
trated. It turns out that the main features (i.e. relative
strength and zeros) in the LHS can be attributed to the
dispersive integral. Therefore, we discuss Fig. 5 in terms
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FIG. 4. Isoscalar and isovector invariant amplitudes (A1, A
′
2, A3, A4) of the η-MAID 2001 model [4] at t = 0,−0.5 and −1 GeV2.
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FIG. 5. LHS of the FESR Eqs. (30)–(31). We ignore the lowest moment, in order to soften the dependence on the unphysical
subthreshold region. The results depicted on the top (bottom) four panels are for the isoscalar (isovector) component of the
amplitude.

of the dispersive term only. To facilitate the discussion
on factorization, we also include the sum rules for the s-
channel helicity amplitude A−,+ 1 (see Eq. (23)) in Fig. 7.

• Comparing the LHS for the two isospin components
of A1, we find a dominant isovector contribution.
Considering As,v1 in Fig. 4 at e.g. t = −0.5 GeV2,
the large LHS(Av1) can be traced back to strong
resonance contributions just above threshold and
a smaller contribution at W = 1.6 − 1.7 GeV
which both carry the same sign in Av1. While
the bump around W = 1.5 GeV also dominates
As1, its isoscalar component is substantially smaller
than its isovector part. Also, the second bump at
W = 1.6 − 1.7 GeV enters the isoscalar amplitude
with an opposite sign and reduces the dispersive
integral in LHS(As1). The large LHS(Av1) is con-
sistent with the expectation for the high-energy
side of the sum rule, which is related to a large
s-channel nucleon-helicity flip component of the t-

channel ρ exchange. The small LHS(As1) is related
to a negligible helicity-flip component of the ω (see
Section VIII for details).

• The bump around W = 1.5 GeV in A1 has a strong
t-dependence due to its D13(1520) content. In both
As1 and Av1 the bump is smallest around t = 0. As
a result, LHS(Av1) tends towards zero for t → 0.
For the isoscalar component on the other hand, the
smaller contribution at higher W dominates the
dispersive integral at t = 0, resulting in a differ-
ent behavior of LHS(As1) as t → 0. This second
contribution to the A1 is mainly attributed to the
D15(1675) and P11(1710) within the η-MAID 2001
model.

• The LHS of the FESR for As4 is large and switches
sign at t ≈ −0.5 GeV2. This behavior is gener-
ated in the low-energy model by the contributions
around W = 1.5 and 1.65 GeV which collectively
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FIG. 6. Matching of the RHS with the LHS of the sum rules. The color band shows the range of the LHS, using a range of
0.04 ≤ g2ηNN/4π ≤ 6.075 couplings. The maximal (minimal) coupling is given by the dot-dashed (dotted) line. The coupling

g2ηNN/4π = 0.4 corresponds to the dashed line. The RHS obtained from the Regge model is indicated by the solid line.

switch sign at t ≈ −0.5 GeV2. In the isovector
component, these two contributions work destruc-
tively. However, the predictions for the LHS are
quite similar to the isoscalar component, since its
dispersive integral is dominated by the resonances
around W = 1.65 GeV and hence, follows its sign
switch. The opposite sign of the LHS(As4) and
LHS(Av4) is therefore mainly an effect induced by
the contributions around W = 1.65 GeV. The rel-
ative size of the As1 and As4 (Av1 and Av4) is related
in the high-energy model to a dominant nucleon-
helicity non-flip (flip) contribution of the ω (ρ).

• The LHS of the Av3 FESR is quite substantial,
which is a feature that is not expected from the
perspective of the high-energy model. In fact, there
are no known mesons which feed into the A3 am-
plitude. Therefore, one would expect the sum rules
for As,v3 to be small compared to the other am-
plitudes. Considering Fig. 4, it appears that this
contribution is mainly related to a bump around
W = 1.5 GeV and to a smaller extent a construc-
tively contributing peak around W = 1.65 GeV.
For the isoscalar part, the dominant peak around
W = 1.5 GeV is substantially smaller than in the
isovector component. On top of that, the second
peak contributes with an opposite sign, resulting
in a smaller LHS for the isoscalar component of
A3. The two bump structures are mainly the re-
sult of the D13(1520) and D15(1675) resonance con-
tent. Since it is known [47] that the D15(1675) is
overestimated within the η-MAID 2001 model, the
non-negligible LHS predictions for Av3 might be a
model-specific feature.

We now focus on specific features (such as zeros) in
the LHS of the FESR that will be used to constrain the
high-energy model.

• The LHS of the FESR for the amplitude Av1, shows

a zero at t ≈ 0.05 GeV2. A zero at t = 0 is expected
from Regge pole factorization. Indeed, it can be
seen from Eqs. (20) that A1 must vanish at t =
0 for factorizable contributions, since all s-channel
helicity amplitudes vanish.

• To study the factorization properties, consider the
LHS of the Av−,+ 1 FESR in Fig. 7. This s-channel
helicity amplitude was shown to be the only am-
plitude which is not forced to be zero at t = 0 by
angular-momentum conservation (see Section III).
The tendency towards zero at t = 0 is not seen
in the isoscalar component of the A−,+1 amplitude
which is a manifest violation of factorization. How-
ever, it should be noted that the As−,+1 is small
and might actually be consistent with zero at t = 0
within uncertainties of the model. The observed
possible departure from factorization has also been
seen in other reactions. A well-known example is
charged pion photoproduction, where the factoriza-
tion of the pion exchange term predicts a dip in the
cross section at t = 0, while the observed cross sec-
tion is finite in the range 0 ≤ −t ≤ m2

π [8]. In the
latter case this may be attributed to the conspir-
ing contribution from s-channel exchanges required
by current conservation [49]. Alternatively it may
be due to absorption, whose effect on the ampli-
tude can be taken approximately into account by
evaluating the numerator of the pion exchange at
t = m2

π, also known as the Williams’ “poor man
absorption” model [50].

• For both the isovector and isoscalar component of
the A4, we observe a zero in the LHS of the FESR
in the vicinity of t ≈ −0.5 GeV2.

• The low energy predictions of the FESR for A′s2
and A′v2 suggest a similar behavior with a relative
strength v/s ≈ 1.5.
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FIG. 7. LHS of the sum rules in Eq. (36) for the s-channel
isoscalar and isovector contribution to the helicity amplitude
in A−,+1 Eq. (23).

More contemporary and coupled-channel models, such
as Refs. [1–3] might provide more decisive information on
some of the above-mentioned observations. For example,
consider Im Ap1 and Im A′p2 at t = 0 in Fig. 8. These
models tend to predict a strong violation of factorization
in the high-energy ω(/ρ) and b/h exchanges compared
to the somewhat older η-MAID 2001 model. Especially
evaluating the A3 FESR with state-of-the-art coupled
channels might shed light on the unexpectedly large A3

contribution. However, such an analysis is currently hin-
dered by the problematic subtreshold region and low pre-
dictive power and instabilities just above threshold, just
outside of the physical region.

VIII. RIGHT-HAND SIDE OF THE FESR

The RHS of the FESR are evaluated using a Regge
pole model. Inspired by the observations made in the
previous section, one is able to determine the t depen-
dence of the Regge pole residues βσi (t) within the do-
main 0 ≤ −t ≤ 1 GeV2. The most direct way of using
the FESR is by computing the LHS of the FESR using a
low-energy model, and extracting the residues (by invert-
ing Eq. (36)) by introducing only assumptions about the
Regge trajectories. However, directly implementing the
low-energy predictions for the residues into a high-energy
model does not necessarily result in a satisfactory repro-
duction of the cross-section data2. We will therefore fit a
LHS-inspired t-dependence of the Regge pole residues to
the high-energy data and subsequently evaluate the RHS
of the FESR in Eq. (36). The latter is then compared to
the LHS of the FESR.

To obtain a better intuition about the Regge exchange
parameters entering the scalar amplitudes Ai we compute
those using a particle exchange instead of a Reggeon ex-
change model (c.f. Fig. 9). For example using Rρ =
1/(t−m2

ρ) for the ρ meson exchange, we obtain the fol-

lowing contributions to Aρi [22]

Aρ1 = gρ1tR
ρ , A′ρ2 = 0 , Aρ3 = 0 , Aρ4 = gρ4R

ρ . (37)

2 This is partly related to the low cut-off energy Λ which is due to
the limited applicable energy domain of the low-energy model.

In the s-channel, g1 (g4) corresponds to a nucleon-helicity
flip (non-flip). For b meson exchange

Ab1 = 0 , A′b2 = tgb2R
b , Ab3 = 0 , Ab4 = 0 . (38)

These indicate the t-factors that are necessary for
angular-momentum conservation and factorizable t-
channel exchanges. It should be stressed however, that
Regge residue factorization is a stronger constraint than
factorization of on-shell couplings since the former im-
poses a relation among the residues for all t.

Among others, the above effective parameters will later
be fitted to the available high-energy data. Below we
derive estimates for the coupling constants in order to
constrain the fit to realistic values. It will be useful for
comparison to relate the couplings g1 and g4 to the stan-
dard electromagnetic tensor gt and vector gv coupling
constants, λV ηγ [4, 35]

gV1 =
eλV ηγ
µ

gVt
2MN

, gV4 = −eλV ηγ
µ

gVv . (39)

As an initial estimate we take the coupling constant for
the ρ and ω exchange from the η-MAID model (see Ta-
ble 2 in Ref. [4])

λωηγ = 0.29 , gωv = 16.0 , gωt = 0 , (40)

λρηγ = 0.81 , gρv = 2.4 , gρt = 14.64 . (41)

Note that λρηγ ≈ 3λωηγ as expected from SU(3) flavor
symmetry. These couplings are related to the gV1 and gV4
according to Eq. (39) yielding

gω1 = 0 , gω4 = −2.57 GeV−1 , (42)

gρ1 = 3.49 GeV−2 , gρ4 = −1.07 GeV−1 . (43)

These estimates show that ω is expected to be domi-
nantly helicity non-flip, while ρ is dominantly helicity
flip. This is consistent with fits to the high-energy data
from the relative helicity-flip and non-flip F/D ratios
in combination with SU(3) flavor symmetry (see for ex-
ample Table AA.4c in Ref. [8]). For the b and h ex-
change little is known about their couplings [31] and the
η-MAID model does not include these exchanges. We
obtain a first estimate based on the predictions from the
low-energy side of the FESR. In Appendix E, we obtain
gb2 = 3.80 GeV−2 for the b-coupling based on SU(3) flavor
symmetry and vector meson dominance.

For the Regge exchange the trajectories αρ and αω

are fixed by considering the resonance spectrum. This
fixes the s-dependence of the Regge-pole contributions.
For V = ρ, ω, we assume weak degeneracy αV (t) =
1 + α′V (t − m2

ρ) where α′V = 0.9 GeV−2. Note that

αV (t0) = 0 for t0 ≈ −0.5 GeV2. For the axial vectors
A = b, h we assume weak degeneracy with the pion tra-
jectory αA(t) = α′A(t−m2

π) with α′A = 0.7 GeV−2 (see
Fig. 10). Within the Regge-pole model a number of con-
straints can be derived for the t-dependence of Regge
residues βσi (t) by comparing with the LHS of the FESR.
The two sides are compared in Fig. 6 and below we sum-
marize the main findings.
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FIG. 8. Comparison of the proton-target amplitudes Api = Asi + Avi of the high-energy Regge prediction to a number of
resonance-region models for t = 0,−0.5 and −1 GeV2 from top to bottom. The models have been constructed using their l ≤ 5
multipoles only.

FIG. 9. Single-meson t-channel exchange diagram.

• The vector and axial-vector Regge amplitudes in
Eq. (32) have poles at odd integer values of α.
The poles generated by the sinπα denominator at
even integer α are removed by the signature factor
1 − e−iπα. Poles located at negative integer α are
unphysical and should be canceled by residue zeros.
Such poles can be removed by taking β ∝ 1/Γ(α+1)
but this parametrization is not unique, e.g. one can
write β(t) ∝ (α+ 1)(α+ 2)(α+ 3)... which in com-
bination with the signature factor, forces the am-
plitude to be finite (zero) at negative odd (even)
integer α.

• A single Regge pole with α = 0, physically cor-
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FIG. 10. Chew-Frautchi plot including the π, b, h and ρ
excitations and quark model states 2−− and 4−−. The black
lines show the trajectories α(t) = 0.7(t − m2

π) and α(t) =
1 + 0.9(t−m2

ρ).

responds to a spin-0, t-channel exchange. For
the ρ and ω trajectories, this corresponds to t ≈
−0.5 GeV2. At α = 0, the signature factor removes
the wrong-signature pole generated by sinπα, but
the amplitude remains finite. Since a spin-0 ex-
change cannot flip the nucleon helicity, the Regge
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residues in the t-channel spin-flip amplitudes are
expected to vanish at t ≈ −0.5 GeV2. These are
referred to as the nonsense wrong signature zeros
(NWSZ). Similar zeros are expected, for example
in π0 photoproduction amplitudes [27]. Assuming
factorization, the hadronic vertex in neutral me-
son photoproduction reactions can be related to
πN scattering residues. A zero has also been ob-
served in the t-channel isovector helicity-flip ampli-
tude B(−) in a recent FESR analysis of low-energy
πN scattering models [43].

• The definite parity, singularity free t-channel
helicity-flip amplitudes can be written in terms of
the invariant amplitudes as [22]

F3 = 2MNA1 − tA4 , (44)

F4 = A3 . (45)

The FESR for these amplitudes are depicted in
Fig. 11. For ω exchange the nonsense wrong sig-
nature zeros are clearly present in LHS(As4) and
LHS(As3) and possibly in LHS(As1). However for the
ρ, only the LHS(Av4) has the zero, while LHS(Av1)
and LHS(Av3) are finite near t ≈ −0.5 GeV2. The
absence of the NWSZ for the ρ exchange suggests
the importance of non-factorizable corrections in
this amplitude.

• The presence or absence of NWSZ distinguish
π0 from η photoproduction. In π0 photoproduc-
tion, there is a dip in the cross section near t ∼
−0.5 GeV2 because of the zero for the exchange ω,
which is dominant there (see Eq. (E1)), while for
η, the ρ is dominant which does not have this dip.

• One can force the NWSZ by taking β(t) ∝ α(t)
in the corresponding t-channel helicity flip ampli-
tudes. This procedure is referred to as the non-
sense mechanism [42, 43]. Since ω is dominantly
s-channel helicity non-flip, i.e. Aω1 ∼ 0, one can
approximate Fω3 = −tAω4 and so we take βω4 ∼ α
for simplicity. Since there is no NWSZ in Aρ1, there
is no need to impose such a relation between β
and α for F ρ3 . However, since a zero is observed
in LHS(Aρ4), we do impose βρ4 ∼ α.

• Since the h and b exchanges have quantum numbers
corresponding to t-channel nucleon-helicity non-flip
only, no NWSZ are expected in their residues. The
αb = 0 occurs at t = 0.018 GeV2 and indeed neither
of the LHS(As,v2 ) suggest the presence of a zero at
this t.

• As discussed above, there are no known Reggeons
that would contribute to A3. The A3 corresponds
to quantum numbers of unnatural exchanges. How-
ever, as seen from the LHS of the FESR, this con-
tribution is non-negligible. Figure 12 shows the
contribution of the A3 to the cross section evalu-
ated using the η-MAID 2001 model. At small −t,

-- LHS
- RHS
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FIG. 11. LHS and RHS of the FESR for the two isospin
components of the definite parity, singularity free t-channel
nucleon-helicity flip amplitude F3 (see Eq. (44)) .

its contribution is small increasing towards larger
values of −t. In this section we discuss the high en-
ergy parametrization where a ‘conservative model’
is presented. The model consists solely of known
exchanges and for which As,v3 ≡ 0. In the next sec-
tion, we elaborate an ‘exploratory model’ where we
study the possibility of including Regge trajectories
for mesons which, albeit predicted by lattice QCD
and quark models [32, 33], have not been observed
yet.
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FIG. 12. The η-MAID differential cross section at W = 2.0
GeV. The solid line is the full model, and the dashed line
shows the A3 contribution.

According to the arguments presented above we use the
following parametrization for vector contributions V =
ρ, ω (using the notation of Eq. (32))

βV1 (t) = gV1 t
−πα′V

2

1

Γ(αV (t) + 1)
, (46)

βV4 (t) = gV4
−πα′V

2

1

Γ(αV (t))
(47)

while for the axial vectors A = b, h we use

β′A2 (t) = gA2 t
−πα′A

2

1

Γ(αA(t) + 1)
, (48)

where the prime in β′2 denotes the fact that this is the
A′2 residue. This also explains the factor of t. The factor
−πα′/2 ensures the correct on-shell couplings. The func-
tions 1/Γ(α + 1) and 1/Γ(α) are both equal to 1 at the
pole α = 1, yet they result in a different strength in the
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physical region. The scale parameters ri (cf. Eq. (32))
are found to efficiently compensate for the increased
strength brought in by 1/Γ(α+1) and allows one to hold
on to the on-shell couplings calculated earlier. The ri
parameters affect the slope in t of the amplitudes by in-
troducing an exponential damping exp [(α(t)− 1) ln r] at
large −t since we take r ≥ 1 GeV−1 and α(t) < 1 in the
physical region.

Each exchange e is assigned its own scale parameter in
Eq. (32), which will be denoted by rei . We introduce the
parameter reductions rρ1 = rω1 , rρ4 = rω4 and rb2 = rh2 , and,
therefore, we drop the superscript. In order to further
reduce the number of free parameters, we assume weak
degeneracy and relate the coupling of the h-meson to the
coupling of the b-meson by gh2 = 2gb2/3, according to the
LHS predictions (see Section VII).

So far we have discussed a high-energy model which
incorporates the features observed in the low-energy pre-
dictions of the residues. We have provided realistic esti-
mates for the coupling constants of the leading t-channel
exchanges in order to set the scale of the individual con-
tributions. These estimates are necessary when, in the
next step, we fit the high-energy model to the avail-
able cross-section data by varying coupling constants
and scale parameters. We use data for Elab

γ ≥ 4 GeV
from [16, 17] (for details see Fig. 13). Since the num-
ber of high-energy data points is rather limited (31 cross
section measurements at 3 different beam energies) we
constrain the couplings within a predefined range cen-
tered around the estimates given earlier, in order to avoid
overfitting data. The s dependence of the model is fixed
by the Regge trajectories so only the t dependence and
strength of the contributions is allowed to vary. Our
model involves eight free parameters: five coupling con-
stants gρ1 , gω1 , gρ4 , gω4 and gb2 and three scale parameters
r1, r2 and r4. The coupling constants are constrained
within 30% around the values estimated above. The
exception is gω1 , which we constrain to be in the range
0 ≤ gω1 ≤ 0.2 GeV−2. The scale parameters may as-
sume all values greater than or equal to one. The op-
timal parameters are given Table IV which correspond
to χ2/d.o.f. = 3.04. The largest contributions to the χ2

are related to the data at very forward scattering an-
gles −t < 0.1 GeV2. It should be noted that the cross
section fit does not force hard constraints on gb2. The
resulting model is compared to the data in Fig. 13 and
beam-asymmetry predictions are presented in Fig. 14.

The fit fixes the residues of the high-energy model.
Plugging the results in the RHS of Eq. (36), we obtain
the high-energy prediction of the sum rules. The latter
can be compared to the LHS of the sum rules, originating
from the low-energy model. The RHS of the As,v4 ampli-
tudes show the same shape for the residues as predicted
by the LHS, but is not able to reproduce the sign of one of
the βs,v4 couplings. The cross section on a proton target

TABLE IV. Parameter values of the high-energy model ob-
tained from a constrained χ2 minimization.

Parameter Fit Initial estimates

gρ1 3.434± 0.083 GeV−2 3.49 GeV−2

gρ4 −1.397± 0.085 GeV−1 −1.07 GeV−1

gω1 0.116± 0.074 GeV−2 0
gω4 −3.346± 0.087 GeV−1 −2.57 GeV−1

gb2 4.946± 1.491 GeV−2 3.80 GeV−2

r1 3.001± 0.087 GeV−1 -
r4 1.974± 0.101 GeV−1 -
r2 6.204± 2.484 GeV−1 -

can be decomposed at leading order in s as follows:

dσ

dt
=

1

32π

(
|Aω1 +Aρ1|

2 − t |Aω4 +Aρ4|
2

+
∣∣A′b2 +A′h2

∣∣2) .
(49)

Because of the assumed degeneracy of the ρ and ω tra-
jectories and residues βρ,ω4 we cannot isolate their indi-
vidual contributions. Since only proton target dσ/dt in-

formation is available, our fit is only sensitive to |A4|2 ∼
|gω4 + gρ4 |

2
. The LHS of the FESR suggest a destructively

interfering isoscalar and isovector contribution to the A4.
In our high-energy model, As4 and Av4 require the same
sign in order to properly reproduce the forward bump
around t = −0.1 GeV2. It is not clear from the available
high-energy data which isospin component should have
an opposite sign compared to its LHS prediction.

We cross-check this sign inconsistency between the
LHS and RHS predictions with other models. The com-
parison between the high-energy proton amplitudes and
a number of low-energy models is depicted in Fig. 8. It
is clear from these figures that the A4 amplitude is ill-
constrained among the low-energy models, making it un-
clear whether the A4 inconsistency is due to the choice
of the η-MAID model, or rather to a shortcoming of
the high-energy parametrization. The best agreement
at low −t and W ≤ 2 GeV is obtained with the Bonn-
Gatchina model, which Reggeizes the t-channel contri-
butions. All resonances contribute to the A4 amplitude
(see Eq. (F10)), making it highly sensitive to the model
assumptions. Finally, it should also be noted that, while
the LHS does not match the RHS, the couplings gρ4 and
gω4 do have the same sign as the t-channel contributions in
the low-energy model. One might argue that the missing
strength in the forward direction is related to imposing
factorization of the ω contribution in the Aω1 . However,
we find that when the constraint of a vanishing As1 at
t = 0 is removed, one is unable to reproduce the forward
bump at −t ≈ 0.1 GeV2 when As4 and Av4 contribute with
opposite sign.

The A′s2 and A′v2 are found to be small and represent a
negligible contribution to the cross section. However, the
unnatural contributions cannot be neglected since they
can be clearly identified in the beam-asymmetry (Σ) in
accordance with Stichel’s theorem [51]. At leading order,
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one obtains

Σ =

(
|A1|2 − t |A4|2

)
−
(
|A′2|

2 − t |A3|2
)

(
|A1|2 − t |A4|2

)
+
(
|A′2|

2 − t |A3|2
) . (50)

Hence, for a dominating natural exchange (A1 and A4),
Σ = +1 is expected, while purely unnatural exchange
(A′2 and A3) corresponds to Σ = −1. According to fac-
torization, all amplitudes must vanish as t→ 0. Bearing
in mind the t-factors both explicitly and implicitly writ-
ten in Eq. (50), the expected behavior in both cases at
small t is

Σ ∼
t→0

|A1|2 − |A′2|
2

|A1|2 + |A′2|
2 (ang. mom. conservation) (51)

Σ ∼
t→0

|A4|2 − |A3|2

|A4|2 + |A3|2
(factorization) (52)

We show our predictions for the beam asymmetry at
Elab
γ = 9 GeV in Fig. 14. Some important remarks can

be made here. Since the current model is dominated
by natural exchange, the result is close to Σ = +1. At
t ≈ −0.5 GeV2, a dip is observed, which is generated
by the vanishing A4 contribution from natural exchange.
Assuming factorization and A3 ≡ 0, only Σ = +1 is
possible at t = 0. Any experimentally observed devia-
tion suggests either an A3 contribution or a violation of
factorization. The experimental signature of both possi-
bilities will be demonstrated in the next section.

Our only reference of the relative isospin contributions
in the high-energy data is the strength of the LHS of the
FESR. The upcoming GlueX results on photon asymme-
tries in both pion and eta photoproduction would repre-
sent an invaluable source of information in this respect.
For example, in a combined analysis one may be able
to learn about the h contribution. The relative size of
Σ(γp→ ηp) and Σ(γp→ π0p) at the same kinematics is
related to the relative strength of the unnatural isoscalar
and isovector exchanges in a Regge-pole model [8]. Con-
sidering Eq. (E1), it can easily be seen that the isoscalar
contributions are suppressed by a factor of 9 compared
to the isovector contributions in η photoproduction, rel-
ative to π0 photoproduction. By comparing the beam
asymmetry in both channels, one can extract the rela-
tive strength of the contributions.

For completeness, we compare the high-energy model
(valid for Elab

γ ≥ 4 GeV) to the available low-energy data
in Fig. 15, where the model is extrapolated outside its
scope of application. The Regge model reproduces the
low-energy data on average (except close to threshold),
illustrating the fact that also the real parts of the high-
energy amplitudes are consistent with low-energy data.

IX. AN EXPLORATORY MODEL

Since the LHS of the FESR suggest a non-negligible A3

component, we consider an alternative description of the
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FIG. 13. High energy γp → ηp data compared to the fitted
Regge model. The dotted (dashed) line shows the isovec-
tor (isoscalar) contribution. The solid line represents the full
Regge model. Data are from Refs [16, 17]. The three data
points in brown from Dewire et al. [17] at Elab

γ = 4 GeV were
excluded from the fit due to a systematic inconsistency.
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FIG. 14. Predictions for the beam asymmetry at Elab
γ = 4, 6, 9

GeV for the conservative model.

high-energy amplitudes that is further constrained by the
low-energy prediction for the sum rules. By considering
the residues and scale factors

βσi (t)r
α(t)−1
i = LHSk(Aσi )

α(t) + k

Λα(t)−1
, (53)

one can construct a Regge-pole model directly from the
low-energy model with minimal assumptions. In order to
compute the residues, βs,v3 from Eq. (53), one also needs
a model for the corresponding Regge trajectories. In ab-
sence of experimental information we base our estimate
of the trajectory functions on the quark model predic-
tions. In both the isoscalar and isovector case, a rela-
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FIG. 15. Extrapolation (dashed line) of the high-energy
model, which is valid from Elab

γ = 4.0 GeV (solid line). The
model is evaluated at t = −0.4 GeV2 and data is collected for
0.35 ≤ −t ≤ 0.45 GeV2. Data are from Refs. [14, 16, 17, 52–
56].

tivized quark model [32] predicts two states with masses3

m2−− = 1.7 GeV and m4−− = 2.34 GeV, which, assum-
ing a linear trajectory, leads to α(t) = −0.235 + 0.774t.
The states are depicted in the Chew-Frautschi plot in
Fig. 10 where we notice a compatibility with the b and
the π trajectories. The high-energy amplitude is sensi-
tive to variations in the trajectory slope and intercept. It
should be noted, that for t in the range 0 ≤ −t ≤ 1 GeV2

such that α(t) = 0, the amplitude has an unphysical pole
which needs to be canceled by residue zeros. For the
isoscalar and isovector part of the LHS, a zero is found
at t ≈ −0.7 GeV2 and t ≈ 0.3 GeV2 respectively. These
zeros impose a relation between the slope and intercept
of the trajectories if they are assumed to be related to the
α = 0 point. In the case of the isoscalar amplitude, the
restriction α(t = −0.7 GeV2) = 0 has poor correspon-
dence to the quark-model states. For the isovector part
on the other hand, the constraint α(t = 0.3 GeV2) = 0
is in good agreement with the quark model, which pre-
dicts α(t = 0.304 GeV2) = 0. To study the trajectory
dependence of the high-energy model, we extract the
residues βs,v3 in Eq. (53) using a range of trajectories.
We vary the location of the pole α = 0 within the range
0 ≤ t ≤ 0.4 GeV2 and determine the trajectory slope and
intercept by a least-square fit to the quark-model states.
The range of trajectories is shown in Fig. 10. The effect
on the cross section is illustrated in Fig. 16. The main
experimental sensitivity is at small −t, where a pole close

3 The states reported in Ref. [29] have masses mρ2 = 1.94 GeV,
mρ4 = 2.23 GeV and those in Ref. [30] have masses mω2 =
1.97 GeV and mω4 = 2.25 GeV. Hence, these states suggest a
much steeper trajectory with an intercept α = 0 at higher t.

to the physical region overestimates the data (where it is
not canceled by a residue zero). For a distant pole, the
effect of the A3 contributions is negligible. It should be
noted that the α = 0 point corresponds to an exotic 0−−

state. The increased cross section at low −t is a manifes-
tation of this state. While interesting experimentally, we
do not expect such a signature to be seen in high-energy
experiments.

Using the same procedure, we study the effect on the
beam asymmetry induced by the uncertainty of the tra-
jectory in Fig. 17. In the conservative model, which in-
corporates factorization explicitly, Σ = +1 is obtained
at t = 0, in agreement with Eq. (52). The signature of
factorization is now clear in Fig. 17 where Σ is slightly
smaller than +1. Switching on the A3 contribution gen-
erates a strong dip at forward angles. The further away
from the physical region the α = 0 is located, the weaker
is the contribution from A3. In the latter case, the beam
asymmetry is closer to +1.
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FIG. 16. Predictions for the cross-section within the extended
model for k = 2, 3. The band corresponds to various ρ2 and
ω2 trajectories. The data are scaled as in Fig. 13.

X. CONCLUSIONS AND OUTLOOK

We have analyzed γN → ηN using the framework
of finite-energy sum rules. Using these sum rules, one
is able to obtain the t-dependence of the high-energy
Regge residues using low-energy models. We found zeros
in the low-energy predictions of the A4 residues corre-
sponding to nonsense wrong-signature zeros in the high-
energy model. While the t-dependence of the A4 is in
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FIG. 17. Predictions for the beam asymmetry at Elab
γ =

9 GeV for k = 2, 3 without (black solid curve) and with (gray
band) the A3 contributions for various ρ2 and ω2 trajectories.

good agreement with our expectations, a sign mismatch
was found in the comparison between the high- and the
low-energy models. The low-energy model predictions
at t → 0 suggest a factorizable ρ contribution, while
the ω exchanges indicate deviations from factorization.
On the other hand, the behavior of the amplitude at
t ≈ −0.5 GeV2 suggests the very opposite. Through the
use of FESR, we found that a NWSZ seems to be lacking
in the t-channel helicity flip amplitude of the ρ residue.
Including this observation in our model, results in a
mechanism where the dip in η photoproduction is filled
up with natural contributions, rather than genuinely as-
sumed unnatural b exchange [23]. The upcoming GlueX
results will be able to either confirm or refute this ex-
planation: photon beam asymmetry measurements close
to Σ = +1 within the range −t ≈ 0.5− 0.6 GeV2 would
indicate that the absence of a dip in eta photoproduction
should indeed be attributed to natural exchanges.

Inspired by the low-energy predictions, two high-
energy models were presented. In the first one, we con-
sider a conservative model with only t-channel exchanges
that can be associated with observed meson resonances.
Within the high-energy model, the A3 invariant ampli-
tude is expected to be zero, since no known mesons can
contribute to it. However, the low-energy predictions
suggest a large isovector A3 component. Therefore, in the
second model we include exchanges that correspond to,
as yet, unobserved mesons. We provided predictions for
the cross section and beam asymmetry at high-energies
and suggested experimental signatures of factorization
and novel meson exchanges.

A global analysis of low- and high-energy data of re-
lated reactions within the framework of FESR can shed
light onto some of the above-mentioned inconsistencies.
Especially, the inclusion of constraints from related neu-
tral pion photoproduction amplitudes and data can re-
solve some of the issues. In this work, we found that the
lack of dip in the cross section of η photoproduction is
due to a dominant Aρ1 contribution, which does not have
a zero in its residue. In neutral pion photoproduction,
the cross section shows a dip due to a dominant Aω4 ,
which contains a nonsense wrong signature zero. This

work, in combination with an ongoing FESR analysis in
pion photoproduction. [27] prepares the ground for such
a combined analysis.

In future research, it is interesting to study whether
low-energy models can provide a good description of the
data when the A3 invariant amplitude is forced to be
small. In this respect, the FESR can be used to propa-
gate high-energy information to constrain the low-energy
models. Such an analysis is outside the scope of this
work.

All material together with an interactive website for
the model will be made available on-line [57, 58].
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Appendix A: Kinematics and conventions

In the s-channel center-of-mass (c.o.m.) frame, we
write the particle four-momenta as

kµ = (|k| ,k) , qµ = (Eq, q) , (A1)

pµi = (Ei,−k) , pµf = (Ef ,−q) , (A2)

for which the components follow directly from the invari-
ants

|k| = s−M2
N

2
√
s

, Eq =
s−M2

N + µ2

2
√
s

, (A3)

Ei =
s+M2

N

2
√
s

, Ef =
s+M2

N − µ2

2
√
s

. (A4)

The c.o.m. energy W follows from W =
√
s. The eta-

meson three-momentum q and c.m. scattering angle θ
are readily determined using

zs ≡ cos θ =
t− u+ ∆/s

4 |k| |q|
, (A5)

|q| =
√

(s− (MN − µ)2)(s− (MN + µ)2)

2
√
s

, (A6)
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where ∆ = M2
N (M2

N − µ2). Furthermore, we introduce

t′ = t− t(zs = +1) . (A7)

In the high-s limit, t′ → t. We distinguish the πN and
ηN thresholds and the nucleon pole (νπ, νη and νN re-
spectively) which can be computed using the following
expressions

νπ =
2(MN +mπ)2 + t− Σ

4MN
, (A8)

νη =
2(MN + µ)2 + t− Σ

4MN
= µ+

t+ µ2

4MN
, (A9)

νN =
2M2

N + t− Σ

4MN
=
t− µ2

4MN
, (A10)

where Σ = s+ t+ u = 2M2
N + µ2. The photon energy in

the laboratory frame is given by

Elab
γ =

s−M2
N

2MN
. (A11)

Appendix B: Factorization

In Regge theory, factorization follows from unitarity of
the scattering amplitude [34, 59–61]. This section details
the effect of factorization on the Regge-pole amplitude.
First, we derive factors which result from purely angular-
momentum conservation, which must be included in the
general scattering amplitude. Finally, we discuss how
restrictions in the t-channel manifest themselves in the
s-channel amplitudes.

In order to analytically continue the helicity ampli-
tudes, one must identify all kinematic singularities. In
Ref. [62], Wang derived the threshold, pseudo-threshold
and small |t| factors which can lead to singularities in
the parity-conserving helicity amplitudes. Once these are
pulled out of the amplitude, it only contains dynamical
singularities. This is for example required when the t-
channel helicity amplitudes are Reggeized and continued
for large s. In Ref. [63] the implications of these t factors
on the s-channel amplitude were discussed. On top of
that, Leader considered with rigor the effect of factoriza-
tion of the residues of the t-channel contributions.

For convenience of notation, let us denote the γN →
ηN reaction by 1 + 2 → 3 + 4 with helicities µi=1,2,3,4

and λi=1,2,3,4 in the s- and t-channel respectively. Let

A
(s)
µ4µ3,µ2µ1 be the s-channel and A

(t)
λ4λ2,λ3λ1

the t-channel

helicity amplitude 4. The kinematic t-singularities in

4 We will explicitly denote the s- and t-channel between brackets
in superscript in this section only (i.e. A(s) and A(t)). In any
other case, we consider the s-channel amplitudes.

A
(s)
µ4µ3,µ2µ1 stem entirely from the half-angle factor

ξµµ′(zs) =

(
1 + zs

2

) |µ+µ′|
2
(

1− zs
2

) |µ−µ′|
2

, (B1)

µ = µ1 − µ2, µ′ = µ3 − µ4 ,

in the rotation functions dJµµ′(zs) in the partial wave ex-

pansion [64]

A(s)
µ4µ3,µ2µ1

(s, t) =

+∞∑
J=M

(2J + 1)A(s)J
µ4µ3,µ2µ1

(s)dJµµ′(zs) ,

(B2)

M = max{|µ| , |µ′|} .

One defines the s-channel helicity amplitude which is free
from kinematic t singularities via

Â(s)
µ4µ3,µ2µ1

(s, t) = A(s)
µ4µ3,µ2µ1

(s, t)/ξµµ′(zs) . (B3)

Since Â
(s)
µ4µ3,µ2µ1 is known to be free from t-

singularities, and since

zs = 1 +
2st′

S12(s)S34(s)
, (B4)

S2
ij(s) =

[
s− (mi +mj)

2
] [
s− (mi −mj)

2
]
, (B5)

it is easy to see from Eq. (B1) and (B3) that the most

singular behavior of A
(s)
µ4µ3,µ2µ1 is

A(s)
µ4µ3,µ2µ1

∼
t′→0

(−t′)
|µ−µ′|

2 ∼
s→+∞

(−t)
|(µ3−µ1)−(µ4−µ2)|

2 .

(B6)

This behavior states that no net helicity flip is allowed at
zs = +1 if the angular momentum is to be conserved. As
discussed in Section III, the factorization of the Regge
residue forces harder constraints on the small |t| behav-
ior (cf. Eq. (17)) than would be expected from purely
angular-momentum conservation (cf. Eq. (18)).

In order to figure out the dominant small |t| depen-
dence of the amplitudes when factorization of the t-
channel residues is imposed, it is natural to first trace
back all the t-factors in the t-channel. These results in
the t-channel are then rotated to the s-channel, where the
crossing matrix might introduce additional factors. Such
a procedure is straightforward when there are unequal
masses in both the initial and final state of the t-channel
process [63]. For the case of equal masses (such as the
current one), the derivations are tedious and we will out-
line the general idea below. Analogously to Eq. (B2), the

t-channel helicity amplitude A
(t)
λ4λ2,λ3λ1

can be expanded

in terms of the partial wave amplitudesA
(t)J
λ4λ2,λ3λ1

(t), and
a kinematic s-singularity free amplitude can be defined

Â
(t)
λ4λ2,λ3λ1

(s, t) = A
(t)
λ4λ2,λ3λ1

(s, t)ξ−1
λλ′(zt) , (B7)

λ = λ1 − λ3 , λ′ = λ2 − λ4 .
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Here,

zt =
t2 + t(2s− Σ) + (m2

1 −m2
3)(m2

2 −m2
4)

T13(t)T24(t)
, (B8)

T 2
ij(t) =

[
t− (mi +mj)

2
] [
t− (mi −mj)

2
]
.

After applying the Sommerfeld-Watson transforma-
tion to the partial-wave expansion of the kinematic-
singularity free, definite parity and signature amplitude,
one obtains the following Regge pole contribution to the
amplitude [42]

A
(t)
λ4λ2,λ3λ1

(s, t) = −(−1)λ
′
(2α(t) + 1)πβλ4λ2,λ3λ1(t)ζτ (t)d

α(t)
λλ′ (zt) , (B9)

ζτ (t) =
τ + e−iπα(t)

2 sinπα(t)
. (B10)

Assuming that the high-energy amplitude can be decom-
posed into a sum of Regge pole contributions Eq. (B9)

A
(t)
λ4λ2,λ3λ1

(s, t) =
∑
n

A
(t)n
λ4λ2,λ3λ1

(s, t) . (B11)

At leading order in zt (or equivalently s), the rotation
functions factorize [63, 65]

dJλλ′(zt) →
zt→+∞

(−1)λ
′
DJλ(zt)DJλ′(zt) , (B12)

where

DJλ(zt) =

[
(−1)λ

(zt
2

)J Γ(2α+ 1)

Γ(α− |λ|+ 1)Γ(α+ |λ|+ 1)

]1/2

. (B13)

In combination with the factorization of the residues
βλ4λ2,λ3λ1

(t) = βλ4λ2
(t)βλ3λ1

(t) [60], the above can be
cast into the factorized form

A
(t)n
λ4λ2,λ3λ1

(s, t) = −A(t)n
λ4λ2

(s, t)A
(t)n
λ3λ1

(s, t) , (B14)

where

A
(t)n
λ3λ1

(s, t) = [(2α+ 1)πζτ ]
1/2

βλ3λ1
Dαλ (zt) . (B15)

Since the crossing matrix [66] also factorizes

Rµ4µ3,µ2µ1

λ4λ2,λ3λ1
(s, t) = Rµ4µ2

λ4λ2
(s, t)Rµ3µ1

λ3λ1
(s, t) , (B16)

we can write

A(s)n
µ4µ3,µ2µ1

(s, t) = −A(s)n
µ4µ2

(s, t)A(s)n
µ3µ1

(s, t) . (B17)

Hence, in the high-s limit, factorization and a single
Regge pole in the t-channel can be linked to factorization
in the s-channel. Obviously, the behavior in Eq. (B6), is
at variance with the latter. It can be shown that the
simplest solution to this problem is to take [63, 65, 67]

A(s)
µ4µ3,µ2µ1

∼
t→0

(−t) 1
2 (|µ3−µ1|+|µ4−µ2|) , (B18)

which is obviously a more stringent constraint compared
to Eq. (B6).

Appendix C: Nucleon pole term

The Born contributions to the reaction amplitudes are
shown diagrammatically in Fig. 2. We decompose the
contributions in the covariant basis in Eqs. (4)–(7)
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Apole(s, t) =As−ch. pole(s, t) +Au−ch. pole(s, t)

=− egηNNu(pf )

[
γ5

/k + /pi +MN

s−M2
N

(
eN/ε +

iκN
4MN

σµνF
µν

)
+

(
eN/ε +

iκN
4MN

σµνF
µν

)
/pf − /k +MN

u−M2
N

γ5

]
u(pi)

= u(pf )

[
eeNgηNN

(
1

s−M2
N

+
1

u−M2
N

)
M1 + 2eeNgηNN

(
1

(s−M2
N )(u−M2

N )

)
M2

− egηNN
2MN

κN

(
1

s−M2
N

− 1

u−M2
N

)
M3 −

egηNN
2MN

κN

(
1

s−M2
N

+
1

u−M2
N

)
M4

]
u(pi) .

(C1)

This clearly highlights the crossing symmetry of the
Ai. Note that eN = 1 (0) for the proton (neutron).

Appendix D: Subthreshold continuation

In this section, we summarize the η-MAID 2001 for-
malism for resonance contributions to eta photoproduc-
tion. A resonance contribution to a multipoleMl± reads

Ml±(W ) =M̃R,l±
mRΓtot

m2
R −W 2 − imRΓtot

fηNCηN , (D1)

where CηN is an isospin factor and

fηN = ζηN

[
1

(2J + 1)π

|k|MN

|q|mR

ΓηN
Γ2
tot

]1/2

, (D2)

Γtot = Γπ + Γη + Γ2π , (D3)

Γπ = βπNΓ

(
|qπ|
|qπ,R|

)2l+1
(
X2 + |qπ,R|2

X2 + |qπ|2

)l
mR

W
,

(D4)

Γη = βηNΓ

(
|q|
|qR|

)2l+1
(
X2 + |qR|2

X2 + |q|2

)l
mR

W
, (D5)

Γ2π = (1− βηN − βπN )Γ

(
|q2π|
|q2π,R|

)4l+2

×

(
X2 + |q2π,R|2

X2 + |q2π|2

)l+2

. (D6)

The ζηN ± 1 is the relative sign between the decay
of the resonance to the πN and the ηN channels, X
is a scale factor related to the range of interactions
responsible for the finite scattering in higher partial
waves l > 0, and βx = Γx(mR)/Γ is the branching ratio
of the resonance into channel x. The qx and qx,R denote
the center-of-mass three-momenta evaluated at W and
W = mR respectively. The parameters M̃R,l± can be
related to the photo-excitation helicity amplitudes, as
shown in Ref. [4]. The CηN , M̃R,l±, Γ, mR, βπN and
βηN were obtained in a fit to the world data in Ref. [4]

for the proton and Ref. [48] for the neutron. For the
subthreshold evaluation of the multipoles, we take |qx| =
Re
[√

(s− (MN −mx)2)(s− (MN +mx)2)/(2
√
s)
]

in

the evaluation of the energy dependent decay widths.
Finally, the CGLN amplitudes, Fi defined in Eq. (F2)

are constructed from the multipoles using the relations
summarized in Eqs. (F3)–(F6).

Appendix E: b1 couplings

Using vector-meson dominance (VMD), SU(3) flavor
symmetry and the OZI rule, one obtains the following
relations between the neutral pseudoscalar-meson photo-
production amplitudes

A(η) =
√

3A
[
Aρ(π

0) +Ab(π
0)

+
1

9
(Aω(π0) +Ah(π0))

]
, (E1)

where the
√

3 is related to ideal ω − φ mixing and
A = 1.55 to η − η′ mixing [24, 68, 69]. The b1 decays
dominantly through b1 → π0ω. In Ref. [70] it is shown
that gb1πω = 9.77 from the corresponding decay width.
Using VMD, one can relate gb1πω to gb1πγ

gb1πγ =
e

fω
gb1πω = 0.189 , (E2)

where fω = 3fρ is the universal coupling constant of the
ω meson. This constant is not well constrained. We
take fρ = 5.2 as in Ref. [21]. After applying Eq. (E1),
one obtains gb1ηγ = 0.51 . The nucleon vertex b1NN
can be estimated through axial-vector meson dominance
(AVMD) as demonstrated in Ref. [21]. Yu et al. [21] have
illustrated that their estimate of gtb1NN = −14 is in good
agreement with more fundamental theories (see Table 4
in Ref. [21] and the discussion thereof). Finally, in our
notation, we obtain

gb2 = gb1ηγ
gtb1NN
2MN

= −3.8 GeV−2 . (E3)
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Appendix F: Amplitude bases

The invariant amplitudes are defined in Eqs (4)–(7).
Here we summarize their relation to the s-channel elec-
tric and magnetic multipoles [28]. In terms of spinor
amplitudes,

A =
4πW

MN
χ†fFχi , (F1)

where χi (χf ) is the initial (final) nucleon Pauli spinor
in the center-of-mass frame and

F =σ · εF1 − iσ · q̂σ · (k̂ × ε)F2

+ σ · k̂q̂ · εF3 + σ · q̂q̂ · εF4 , (F2)

where, q̂ = q/ |q| and k̂ = k/ |k|. The amplitudes Fi are
given in terms of the multipoles Ml± by,

F1 =
∑
l=0

(El+ + lMl+)P ′l+1 + (El− + (l + 1)Ml−)P ′l−1 ,

(F3)

F2 =
∑
l=1

((l + 1)Ml+ + lMl−)P ′l , (F4)

F3 =
∑
l=1

(El+ − lMl+)P ′′l+1 + (El− +Ml−)P ′′l−1 , (F5)

F4 =
∑
l=2

(−El+ +Ml+ − El− −Ml−)P ′′l . (F6)

The derivatives of the Legendre polynomials (P
(n)
l ) are a

function of cos θ, while the multipoles depend on s only.
The invariant amplitudes Ai are obtained from the Fi’s

using

A1 =N
[
W +MN

W −MN
F̃1 − (Ef +MN )F̃2

+MN
t− µ2

(W −MN )2
F̃3 +MN

(Ef +MN )(t− µ2)

W 2 −M2
N

F̃4

]
,

(F7)

A2 =
N

W −MN

[
F̃3 − (Ef +MN )F̃4

]
, (F8)

A3 =
N

W −MN

[
F̃1 + (Ef +MN )F̃2

+

(
W +MN +

t− µ2

2(W −MN )

)
F̃3

+

(
W −MN +

t− µ2

2(W +MN )

)
(Ef +MN )F̃4

]
,

(F9)

A4 =
N

W −MN

[
F̃1 + (Ef +MN )F̃2

+
t− µ2

2(W −MN )
F̃3 +

t− µ2

2(W +MN )
(Ef +MN )F̃4

]
,

(F10)
whereN = 4π/

√
(Ei +MN )(Ef +MN ) and the reduced

Chew-Goldberger-Low-Nambu (CGLN) amplitudes are
defined by

F̃1 = F1 , F̃2 = F2/ |q| ,
F̃3 = F3/ |q| , F̃4 = F4/ |q|2 . (F11)

The factors of |q| remove the kinematic threshold ze-
ros that appear in the multipole decomposition of Fi,
Ml± ∼

|q|→0
|q|l. Explicitly, the reduced CGLN ampli-

tudes up to and including D-waves (l = 2) are

F̃1 =E0+ + E2− + 3M2− + 3(E1+ +M1+) cos θ

+3/2(E2+ + 2M2+)(5 cos2 θ − 1) , (F12)

F̃2 = [M1− + 2M1+ + 3(2M2− + 3M2+) cos θ] / |q| ,
(F13)

F̃3 = [3(E1+ −M1+) + 15(E2+ −M2+) cos θ] / |q| ,
(F14)

F̃4 =3 [−E2− − E2+ −M2− +M2+] / |q|2 . (F15)
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