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Abstract: The separation of quark and gluon initiated jets can be an important way to im-

prove the sensitivity in searches for new physics or in measurements of Higgs boson properties.

We present a simplified version of the shower deconstruction approach as a novel observable

for quark-gluon tagging. Assuming topocluster-like objects as input, we compare our observ-

able with energy correlation functions and find a favorable performance for a large variety

of jet definitions. We address the issue of infrared sensitivity of quark-gluon discrimination.

When this approach is applied to dark matter searches in mono-jet final states, limitations

from small signal-to-background ratios can be overcome. We also show that quark-gluon

tagging is an alternative way of separating weak boson from gluon-fusion production in the

process p+ p→ H + jet + jet +X.
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1 Introduction

Quark-gluon tagging of jets can be an important tool to separate signal from backgrounds. For

instance, it is of interest to search for dark matter production by using the process in which

produced dark matter particles recoil against a single jet, as described in [1]. Particularly

when the mediator between the dark matter and the Standard Model particles is a scalar that

couples preferably to the third-generation fermions, the associated jet is likely to be gluon

initiated. One of the dominant Standard Model backgrounds however is the production of

a jet plus a Z boson, in which the Z boson decays to νν̄. In the tree level diagram for

the background, the jet can be either quark initiated or a gluon initated. Thus if we can

preferentially reject quark jets and keep gluon jets, we can improve the ratio of signal events

retained to background events retained.

Conversely, many measurements of Higgs boson properties and couplings rely on the

weak-boson-fusion production process qq → Hqq [2–5]. In particular, if one wants to measure

the Higgs boson coupling to gauge bosons, one wants to look at this process and not the

dominating gluon-fusion process gg → Hgg [6]. In qq → Hqq, there are two quark jets, while

in gg → Hgg, there are two gluon jets. Hence, here we would prefer to reject gluon jets and

keep quark jets to improve the precision of the measurement.

A third example would be the decays of squarks into jets and the lightest supersymmetric

particle. Heavy squarks of the first and second generation decay almost exclusively into

quarks and gauginos, while jets and missing transverse energy (MET) backgrounds have a

larger gluon-jet component.

In all examples above, exploiting the different admixture of gluon and quark initiated

jets can help to improve the signal-to-background ratio. Consequently, several observables

have been proposed to exploit the differences in the radiation profiles of quarks and gluons

[7–13] and have been studied in data by ATLAS [14] and CMS [15].

Suppose that we want to accept quark jets and reject gluon jets. Typically, one can

adjust the parameters of the algorithm we use so as to obtain a desired fraction εs of quark

jets accepted. Then ε−1
b , the inverse of the fraction of gluon jets accepted, will depend on

εs. In this paper, we present “ROC” curves showing ε−1
b (εs) versus εs. We want ε−1

b to

be as large as possible for any given εs. However, this performance metric is not the only

issue that we need to address. We also need to know with reasonable accuracy the value of

ε−1
b (εs) for a given εs. This information can come from experiment if the function ε−1

b (εs) is

characteristic of quark-initiated versus gluon-initiated jets independently of how the jets are

produced. We will investigate whether this is so in section 4. Information on ε−1
b (εs) for a

given tagging method can also come from perturbation theory and simulation using parton

shower event generators. Here, the findings of [14] indicate the need for the inclusion of certain

detector effects in phenomenological analyses and the benefit of observables that are largely

insensitive to non-perturbative effects. In this paper, we try to avoid sensitivity to parton

splitting processes at very small momentum scales. For instance, we use observables that

are technically infrared safe. However, we will discover that it is precisely parton splitting
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processes at quite small momentum scales that best distinguish the substructure of a quark

jet from that of a gluon jet. Thus we cannot avoid a certain degree of infrared sensitivity.

We return to this issue in section 4.

In this paper, we explore the use of several methods to distinguish between quark in gluon

jets in p+ p→ Z + jet +X and p+ p→ jet + jet +X events. We evaluate the performance

and simulation uncertainties of the shower deconstruction method [16–18] and compare it to

the use of energy correlation functions [10].

The structure of the paper is as follows: In section 2 we describe our analysis setup and

the algorithms applied for quark/gluon tagging, emphasizing a method based on shower de-

construction. In section 3, we discuss their performance and uncertainties of these algorithms.

We apply quark/gluon tagging based on shower deconstruction to dark matter searches and

p + p → H + jet + jet + X production and evaluate by how much the signal-to-background

ratio can be improved in section 5. In section 6 we offer a summary and our conclusions.

2 Jet substructure for quark-gluon tagging

In this section, we first describe the analysis setup for the paper. Then we discuss the

input objects that we use for quark-jet versus gluon-jet discrimination. Next, we turn to the

observables that we use.

2.1 The analysis setup

Our aim in this paper is to test the performance of algorithms designed to discriminate

between quark-initiated jets and gluon-initiated jets. For this, we use two types of of events

generated using Pythia 8 [19] with initial state radiation and underlying event switched on.

The first type, and the one on which we will focus most, is a single jet with an associated

invisible Z boson - qg → qZ(νν̄), qq̄ → gZ(νν̄). The other, which we use to show how much

the tagging efficiency is affected by the event color flow, is dijet production qq/gg → qq,

qq̄/gg → gg. We generate four sets of each type in order to compare the performance at

different limits for the transverse momentum in the hard scattering: pT > 200, 400, 600, 1000

GeV.

For each event, we begin with input objects. The input objects can be hadrons, tracks,

or certain calorimeter based objects, as described in the following subsection. We cluster

the input objects into jets and select the leading jet: the one with the greatest transverse

momentum. This is the “fat jet” that we wish to tag as being a probable quark jet or a

probable gluon jet. To proceed, there should be at least one jet in the rapidity range |y| < 5

for Z + jet events or two such jets for dijet events. For the clustering into jets, we use the

C/A algorithm with a standard radius Rfj = 0.4 and a transverse momentum that reflects

the event generation limit pT fj > pT limit. With R = 0.4, the fat jet is not so fat. This choice

follows from the fact that we are analyzing the QCD radiation in the jet rather than looking

for the decay of a heavy particle as is the case in many jet substructure studies. We also use

a larger radius jet definition at Rfj = 0.8 for some analyses.
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2.2 Input objects

The observable quantities that we analyze for their ability to distinguish quark jets from

gluon jets are built from certain input objects. We study four different classes of input

objects: hadrons, tracks, and two sorts of calorimeter based objects.

While hadrons as input objects provide the most detailed information in the substructure

of a jet, they are unlikely to be accessible in an experimental environment.

Using tracks allows very good angular resolution, but only for charged particles, while

being blind to neutral particles. For tracks, we do not include a detector simulation, so that

we do not take into account track efficiencies or energy smearing of tracks. Thus we likely

overestimate the performance of the observables with track inputs.

Most of the analyses that we present are based on input objects built from idealized

calorimeter cells. In general purpose experiments such as ATLAS [20] and CMS [21], often

the calorimeter cells are not directly used to make jets. Instead, a combination of cells is

used.

ATLAS uses “topoclusters” [22–24]. A topocluster is a group of topologically connected

calorimeter cells, which are chosen based on an algorithm to suppress calorimeter noise. The

algorithm starts by choosing a “seed” calorimeter cell, which has a signal over noise ratio

over a specific threshold. It then combines it with neighbour cells that satisfy a minimum

signal-to-noise ratio criterion iteratively. This method improves the jet algorithm inputs

signal-to-noise ratio. Although it has the positive effect of improving the calorimeter’s signal-

to-noise ratio [24], it imposes a limitation in the angular resolution of the experiments. While

the algorithm used to create topoclusters is clearly defined, the angular resolution limitation

is not explicit in the algorithm. It depends on the calorimeter’s noise average and cell sizes,

which vary in both ATLAS and CMS, depending on the jet position.

Following a somewhat different approach, CMS uses so-called particle-flow (PF) objects

[25]. PF objects consist of all visible particles in an event, i.e. muons, electrons, photons,

charged hadrons, and neutral hadrons. Charged hadrons, electrons and muons are predom-

inantly reconstructed from tracks in the tracker, while photons and neutral hadrons are

reconstructed from energy deposits in topoclusters. Combining the topocluster and tracking

system information, CMS can greatly improve the PF jets’ spatial resolution with respect to

calorimeter jets, e.g. by exploiting tracking information [26–29]. However, the jet-energy-

resolution deteriorates quickly for jets with R ≤ 0.2 [30]. Hence, the way CMS uses its PF

objects currently results in a lower limit on the spatial resolution of jets, just as the angular

resolution is limited by the size of topoclusters in ATLAS.

We conclude that jet substructure methods must take into account the finite angular

resolution of calorimeter objects used as substructure inputs. In this phenomenological study,

we approximate this resolution limitation by using Cambridge-Aachen (CA) [31, 32] jets with

an R parameter of 0.1 and pT > 1 GeV as input to the algorithms. We use two sorts of

calorimetric input objects, which we call “massive topoclusters” and “massless topoclusters.”

ATLAS topoclusters are forced to be massless. That is, after measuring the energy,
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pseudorapidity and azimuthal angle of the topocluster, its three-momentum is scaled to create

a vector with p2 = 0. We create massless topoclusters with this rescaling. However, we mostly

use massive topoclusters, in which the topocluster momentum p is the sum of the momenta

of the constituent particles, so that p2 > 0.

We mostly use massive instead of massless input objects because we find that neglecting

their masses leads to a deterioration in quark-gluon discrimination. One could imagine using

a similar procedure to that described in [33] to calibrate the masses of small jets, analogous

to our “massive topoclusters.”

2.3 Observables for quark-gluon tagging

We will use two classes of jet substructure observables in order to distinguish quark jets from

gluon jets. One is based on shower deconstruction, the other is based on energy correlations.

We begin with shower deconstruction.

2.3.1 Shower deconstruction

Shower deconstruction [16–18] is a general method for distinguishing events created by a

sought signal process from events created by other, less interesting, processes. In this case,

the “signal” process creates a quark-initiated jet and we wish to distinguish this quark jet

from “background” gluon jets. (Of course, we could reverse the roles of signal and background

here.) We start with a list of the momenta {p}m = {p1, p2, . . . , pm} of m microjets – small

radius jets – constructed from the contents of the larger fat jet. We calculate an approximation

P ({p}m|q) that the observed microjets could be the result of a parton shower that starts with

a quark parton and ends with m partons with momenta {p}m. We similarly calculate an

approximate probability P ({p}m|g) to obtain the observed microjets starting from a quark.

Then we form the likelihood ratio

χ(q, g) =
P ({p}m|q)
P ({p}m|g)

, (2.1)

where the first argument indicates the signal hypothesis, i.e. quarks, and the second argument

the background hypothesis, i.e. gluons. Note that χ(g, q) = 1/χ(q, g). A large value of χ(q, g)

indicates a likely quark jet, while a small value of χ(q, g) indicates a likely gluon jet. Thus

imposing a cut χ(q, g) > χcut tags quark jets and imposing a cut χ(g, q) > χcut tags gluon

jets.

The idea of the shower deconstruction method here is to distinguish the radiation pattern

created by an initial quark from the radiation pattern of a gluon. This is rather different

from our previous applications of shower deconstruction, in which the aim is to distinguish

the pattern of partons produced by the decay of a heavy particle, such as a top quark, from

the pattern of partons produced by normal QCD radiation. Distinguishing quark jets from

gluon jets is harder. We have normal QCD radiation in either case, but gluon jets have, on

average, more radiation because gluons have a larger color charge. We expect to see two

differences between quark and gluon jets. First, gluon jets ought to be more likely to contain
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more microjets than quark jets. Second, the virtuality p2
i of the highest pT microjet is likely

to be larger in the gluon case than in the quark case because the microjet contains more

radiation inside it even though the radiation is clustered into a single microjet.

To see how this works, we apply shower deconstruction for qg → qZ(νν̄), qq̄ → gZ(νν̄)

events, taking massive topoclusters as the the input objects and using them to define a fat

jet using a jet radius R = 0.8. The massive topoclulsters in the original fat jet are grouped

into microjets using the kT algorithm with radius Rmj = 0.3 and a minimum transverse

momentum pmin
Tmj = 10 GeV. Then the likelihood variable χ from eq. (2.1) is calculated for

each event. Different events have different numbers of microjets. In the right hand plot of

figure 1, we plot the number of microjets in the gZ sample (blue) and in the qZ sample

(green). Not surprisingly, quark jets are more likely than gluon jets to produce just one

microjet, while gluon jets produce more microjets. This feature can help distinguish quark

jets from gluon jets. However, when we look at the distribution of χ for those events with

exactly one microjet, we find better quark-gluon discrimination than when we look for χ for

those events with exactly two microjets, as illustrated in the left-hand plot of figure 1. This

suggests that there is a lot of discriminating power in the shower-deconstruction χ for the

simple case of one microjet. In fact, we find that when we simply calculate χ for the fat jet

as a whole, without decomposing it into microjets, we get quark-gluon discriminating power

that is often better than when the fat jet is decomposed into several microjets. This behavior

is in sharp contrast to applications in which one wants to distinguish ordinary QCD jets from

jets arising from the decay of a heavy particle like a top quark: it is important that a top

quark decays into at least three jets.

Because using shower deconstruction with just one microjet works quite well, it is of

interest to understand what shower deconstruction does in this case. The formula for χ for

just one microjet is simply a ratio of Sudakov factors:

χ =
P ({p}m|q)
P ({p}m|g)

=
e−Sq

e−Sg
= e−(SqqgΘ(Sqqg>0)−SgggΘ(Sggg>0)−nfSgqq) . (2.2)

where

Sqqg =
CF

πb20

{
ln

(
αS(µ2

J)

αS(k2
J)

)[
1

αS(R2
fjk

2
J)
− 3b0

4

]
+

1

αS(µ2
J)
− 1

αS(k2
J)

}
,

Sggg =
CA

πb20

{
ln

(
αS(µ2

J)

αS(k2
J)

)[
1

αS(R2
fjk

2
J)
− 11b0

12

]
+

1

αS(µ2
J)
− 1

αS(k2
J)

}
,

Sgqq =
TR

3πb0
ln

(
αS(µ2

J)

αS(k2
J)

)
.

(2.3)

Here µJ is the jet mass, kJ is the jet transverse momentum, and b0 = (33− 2nf)/(12π).
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Figure 1. Left: quark (signal) vs gluon (background) ROC curves for χ with exactly one or exactly

two microjets. Right: microjet multiplicity distribution.

In the case that we evaluate χ with simply the whole jet as the single microjet, we see

that χ is a function of only two variables, the jet mass µJ and the jet transverse momentum

kJ . The function lnχ is an approximation to the likelihood ratio

lnL(q, g) = lnPMC(µ2
J , k

2
J |q)− lnPMC(µ2

J , k
2
J |g) .

If we use only the two variables µ2
J and k2

J to describe fat jets in each event, then lnL(q, g)

provides the optimum way to distinguish quark jets from gluon jets as long as PMC(µ2
J , k

2
J |q)

and PMC(µ2
J , k

2
J |g) provide accurate representations of nature. Thus one way to test whether

the shower deconstruction variable χ is doing a good job is to construct the lnL(q, g) and

compare lnχ to lnL(q, g).

To build the likelihood function L(q, g), we use the normalized (µ2
J , k

2
J) histogram for

the leading jets in Z + q and Z + g events. Then the likelihood in each bin is the ratio of

the probability between the quark and gluon samples for that bin. However, the latter are

strongly influenced by statistical fluctuations. We attempt to ameliorate this by “spreading”

the probability of each bin. We use the gaussian kernel-density estimator [34] to smear

the probability contained in each bin into a 2-dimensional gaussian distribution with the

same normalization. The volume and mean of the gaussian kernel is fixed by the data, but

the standard deviation is a free parameter that determines the “smoothing” effect. Even

though the best way to determine this bandwidth parameter is through a cross-validation

metric, we choose the parameter by visual comparison with the histograms. This leads to the

distributions and contours in figure 2. The axes represent our two variables, µ2
J and k2

J . In

the bottom figure, we overlay three plots. The first is a scatter plot for the events in Z+q jets

and in Z+ g jets. The second, in yellow, is plot of contour lines of lnL(q, g) (after smoothing
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Figure 2. Gaussian kernel-density estimate of the R = 0.4 leading jets’ mass and transverse

momentum distribution in Z + q (left) and Z + g (right) events. In the bottom plot we overlay

a scatter plot of the two distributions, contours of the likelihood derived from the gaussian kernel-

density estimator and another contour plot of the shower deconstruction variable χ.

as described above). The third, in green, is a plot of contour lines of lnχ. We conclude that

lnχ is a reasonably good approximation to lnL(q, g).

In the analyses that follow, we mostly apply shower deconstruction to smaller, R = 0.4,

fat jets, taking massive topoclusters as the input and using just one microjet, which is then

equal to the whole fat jet.

2.3.2 Energy correlation functions

We now turn to an established family of observables with the potential to distinguish between

quark and gluon jets: energy correlation functions and ratios derived from these functions
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Figure 3. Distributions of r2 (left) and ln(χ) (right) in Z+jet events. The leading jet with |yj | < 1.5

is reconstructed from massive topoclusters.

[10] [35]. The energy correlation functions are defined by

ECF (0, β) = 1,

ECF (1, β) =
∑
i∈J

pT,i,

ECF (2, β) =
∑
i<j∈J

pT,ipT,j (Rij)
β ,

ECF (N, β) =
∑

i1<i2<..<in∈J

(
N∏
a=1

pT,ia

)(
N−1∏
b=1

N∏
c=b+1

Ribic

)β
,

(2.4)

From these, we can define the ratios

r
(β)
N =

ECF (N + 1, β)

ECF (N, β)
,

C
(β)
N =

r
(β)
N

r
(β)
N−1

=
ECF (N + 1, β)ECF (N − 1, β)

ECF (N, β)2
.

(2.5)

The sums run over the constituents i of the jet J . We tested several jet shapes from this family

(r0, r1, r2, C1, C2). We also examined the variable D2, defined in [35], and N-subjettiness

variables [8] (τ1, τ2, τ2/τ1, τ3/τ2) with the angular exponent in all cases set to β = 0.2 for

quark/gluon tagging, as suggested by the authors. Of those, C1, r1, and r2 provided the best

background rejection. If we express C1, and r2 explicitly using equations 2.4 and 2.5 we find
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C1 =

∑
i<j∈J

pT,ipT,j (Rij)
0.2

∑
i,j∈J

pT,ipT,j
,

r2 =

∑
i<j<k∈J

pT,ipT,jpT,k (RijRikRkj)
0.2

∑
i<j∈J

pT,ipT,j (Rij)
0.2 .

(2.6)

It is evident that the numerator of C1 is larger if the radiation within the jet is split

evenly between two or more distinct directions than if most of the energy is clustered within

a small angular area. Therefore, C1 is differentiates between 1-prong and 2-prong jets. The

variable r2 is larger if the radiation is localised in three directions and smaller for 2-prong

and 1-prong jets.

The justification for the relatively small angular exponent comes from eq. (3.22) in [10].

The authors find a power law relation between the cumulative distributions of the C1 variable

for gluon and quark jets. A small β increases the magnitude of the power that relates the

two distributions, thereby directly contributing to a better ROC curve. Note, however, that

perturbative splitting probabilities have singularities at Rij = 0. Thus the positive powers of

Rij are needed to keep the observables from being infrared unsafe against collinear splittings.

With a power β = 0.2, our observables are technically infrared safe, but they are quite

sensitive to infrared effects.

As a result of the asymmetry in the quark and gluon-jet distributions in figure 3, we find

a different ROC curve for quark compared to gluon tagging∗. For example, if we want to tag

a quark and impose a cut on ln(χ(q, g)) > 0.3, we achieve εs ' 0.21 and εb ' 0.017. If we

instead tag a gluon by requiring ln(χ(g, q)) to be bigger than a specific value, for εs ' 0.21

we find only εb ' 0.05.

A preliminary study of quark tagging with energy correlation variables uncovers some

trends. As expected from the discussion in [10], we find that the variable C1 is favored over r2

over a large variety of jet parameters as long as the jets are reconstructed from hadrons. This

can be seen in the bottom rows of figures 4 and 5, where its background fake rate is about

∗According to eq. (3.7) in [10], if we were to perform quark tagging using C1, the background fake rate as

a function of the signal efficiency would be given by

εb(εs) = εCA/CF
s = ε2.25s . (2.7)

Thus the gluon fake rate at 50% quark efficiency is εb(0.5) ≈ 0.21. If we were to do the opposite and tag

gluon jets at the expense of quark jets, then we would have to make the cut in the opposite direction of the

C1 distribution. Using the same relation between quark and gluon acceptances, we conclude that, when we

retain 50% of the gluon jets in a sample, the fake rate from quark jets is 1 − (1 − 0.5)
1

2.25 ≈ 0.27. Therefore,

the same discriminating variable can perform differently depending on the type of tagging we would like to do.

This asymmetry is strongly in favour of quark tagging for all of the variables that we study, as will become

evident in the following sections.
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Figure 4. ROC plots comparing r2 and C1 performance at different jet pT . The top row uses massive

topoclusters as inputs and the bottom uses hadrons. The left (right) column uses jets with small

(large) radius.

70% to 60% of that obtained with r2 at moderate signal efficiency. This difference diminishes

at small signal efficiency. A common trend among the energy correlation variables is that

increasing the radius of the jet reduces the performance at moderate and large εs, but leads

to improvement at low signal efficiency. This effect is true for any jet type as can be seen in

the four plots of figure 5. Another trend in figure 4 is that for jets built from hadron inputs,

a larger pT limit increasingly improves background rejection as the signal cut becomes more

stringent. This effect does not translate to topocluster inputs where the discrimination of the
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Figure 5. ROC plots comparing r2 and C1 performance at different jet radii. The top row uses

massive topoclusters as inputs and the bottom uses hadrons. The left (right) column uses jets with

small (large) boost.

energy correlation variables remains largely independent of the jet’s transverse momentum.

3 Comparisons of tagging results

In this section, we compare methods for distinguishing quark jets from gluon jets.

We begin in figure 6 with a study of the dependence of four observables on the choice

of input objects: hadrons, tracks, massless topoclusters, and massive topoclusters. In each
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Figure 6. ROC curves of the leading jet with |y| < 1.5 for C1 (upper left), r2 (upper right), χ (lower

left), λ2 (lower right) and using hadrons, charged tracks, massless and massive topoclusters as inputs.

panel of figure 6, we show the dependence on input objects for one observable, C1, r2, χ from

shower deconstruction with a single microjet, and the angularity variable λ2 [11] defined by

λ2 =
∑
i∈J

pT,i θ
2
i

/(∑
i∈J

pT,i

)
. (3.1)

If the input constituents i are massless, λ2 is approximately 2M2
J/p

2
T,J , where MJ is the jet

mass. We show λ2 because it is rather similar to χ if the input objects are all massless.

However, χ is sensitive to the masses of the input objects while λ2 is not. The ROC curves

we show are obtained from distributions like the ones in figure 3 by swiping a cut from one

end to the other.

All variables show some dependence on the input objects. Hadrons give the best results

for C1 and r2, although detecting neutral as well as charged hadrons is not as realistic as the

other input choices. After that, C1 does best with tracks, while all of the other input choices
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work equally well for r2. The variable λ2 gives results that are rather insensitive to the choice

of inputs, and not sensitive at all to the choice between massive and massless topoclusters. In

contrast, the results for χ are significantly better with massive topocluster inputs than with

massless topocluster inputs. This is to be expected because the topocluster mass µJ is one

of the variables used in the calculation of χ in eq. (2.3). With massless topoclusters as input,

we are forced to set µJ to a minimum value, µJ = 1 GeV, but this loses information. Perhaps

surprisingly, χ works better with massive topocluster inputs than with all hadrons as inputs.

This is because our definition of massive topoclusters drops topoclusters with pT < 1 GeV,

on the grounds that such topoclusters would be experimentally unobservable. Dropping these

low pT topoclusters also helps to suppress unwanted contributions from initial state radiation,

making χ more sensitive to the distinguishing features of quark jets compared to gluon jets.

We compare directly λ2 to χ in figure 7. It is evident that shower deconstruction with

massive topoclusters is better than the angularity variable. The latter is equivalent to the

squared ratio between the jet mass and pT as long as the input objects are massless and nearly

collinear. The former condition is not satisfied in our case; therefore, we add the explicit ratio

as a separate variable in the plot. Although much better than λ2 it still performs worse than

shower deconstruction.
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Figure 7. ROC curves of the leading jet with |y| < 1.5. We compare χ to λ2 and a simple squared

ratio of the jet transverse momentum and mass using massive topoclusters as inputs.

We turn next to a comparison of several observables that can be used for quark-gluon

discrimination. Here, and in the studies that follow, we use massive topocluster inputs. The

ROC curves for the observables are shown in figure 8. For shower deconstruction, we use just

one microjet equal to the whole fat jet. Shower deconstruction χ has the best ROC curve.

However, there is no dominant jet-shape or energy correlation function variable. Instead, there
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is a tier of closely spaced ROC curves. The top tier contains [r2, r1, C1, τ1, τ2] and spreads

within a band of about ∆εb ≈ 20% across the entire εs range. The ratio r2 consistently

performs better at moderate and large signal efficiency and remains competitive at small

efficiency. Therefore, to the benefit of clarity of the results we are going to present, we believe

it is acceptable to compare our choice of χ with r2.
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ln(τ21)  εb (εs =0.5) =0.495

Figure 8. ROC curves for all distributions for quark tagging of Z + jet events. Leading jet with

|y| < 1.5 reconstructed from massive topoclusters.

In figure 9 we show the ROC curves for the observables χ and r2 for quark tagging

(left) and gluon tagging (right) respectively. It is immediately apparent that quark tagging

performs much better than gluon tagging, as already suggested by the analytic approximation

of [10] and the discussion in section 2.3.2. At small efficiencies the gluon rejection in the left

plot is four times better than the quark rejection on the right for shower deconstruction

and two times better for r2. One might anticipate this trend by looking at the probability
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Figure 9. Left: ROC curves for quark tagging and gluon rejection from Z + jet events. Right: ROC

curves for gluon tagging and quark rejection from Z + jet events. The leading jet with |y| < 1.5 is

reconstructed from massive topoclusters.

densities of the variables. It is true for both observables, although more obvious for χ,

that the quark distribution drops off slower at the gluon-like region end (large values) than

the gluon distribution at the quark-like end (low values). This asymmetry allows for the

substantial gluon rejection at small quark efficiency. Another feature is that the single-branch

χ performs better than r2 across the entire signal efficiency range in both quark and gluon

tagging. For quark tagging it is about 20% better at moderate efficiencies and about a factor

of two better at low efficiency. The difference is notably smaller when we attempt gluon

tagging and almost disappears at low efficiency if we replace r2 with a better performing

energy correlation variable at that efficiency region. An obvious feature, although in a region

that we do not explore, in the r2 ROC curve is the plateau at εs < 0.1. It is an artefact

from binning of jets on which the variable cannot be defined. The ratio r2 needs at least

3 jet constituents. The condition is not always met with R = 0.4 jets reconstructed from

topoclusters. More careful treatment of this bin can remove the plateau. It has to be noted

that the energy correlation and N-subjettiness variables are used without optimisation with

the recommended value β = 0.2 for quark and gluon tagging. Hence, there might be room

for further improvements.

The results in figure 9 are obtained from jets with pT > 200 GeV. Collisions at the LHC

can provide sufficient energy for much more boosted jets, either from a heavy particle decay or

from a recoil in a high pT event. In figure 10 we see the effect on quark tagging from increasing

the jet transverse momentum. While we saw in figure 4 that increasing the jet pT beyond

200 GeV has little or no effect on energy correlation variables, there is a distinct improvement

in quark tagging with shower deconstruction as the jet gets more boosted. Moreover, the

improvement is significant at 50% signal efficiency (40% better background rejection) and it

steadily widens the difference between the χ and r2 performance, leading to a factor of three

better gluon rejection by χ than r2 at εs = 0.1.

In the comparisons presented so far, we focused on central jets with rapidity |yj | < 1.5.
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Figure 10. ROC curves for all pT bins for quark tagging of Z + jet events with χ and r2. The

leading jet with |y| < 1.5 is reconstructed from massive topoclusters. The solid lines correspond to

ln(χ) of shower deconstruction and the dashed lines to the energy correlation function ln(r2).

We can ask what happens when we extend the range of jet rapidity to |y| < 2.5. The results

are shown in figure 11. For jets with pT > 200 GeV, the ROC curve for quark tagging using

r2 is changed very little when the jet rapidity window is widened. However, ROC curve for

quark tagging using χ becomes worse. This behavior warrants further investigation. If we

look at the same question for jets with pT > 1 TeV, then the effect of widening the rapidity

window goes away. This may be because there are not many jets with pT > 1 TeV and high

rapidity.

We next study the effect on quark-gluon discrimination when we increase the radius of

the fat jet from Rfj = 0.4 to Rfj = 0.8. For the larger fat jet size, we try two versions of

shower deconstruction. In the first version, we construct χ using only one microjet, equal
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Figure 11. Effect of changing the rapidity window. The left panel shows ROC curves for quark

tagging and gluon rejection from Z + jet events for massive topocluster jets with pT > 200 GeV for

two choices of the rapidity window. The right panel shows the same comparison for pT > 1 TeV.

to the fat jet, as we have done in the previous studies with the smaller fat jet size. In the

second version, we use the complete shower deconstruction algorithm [16–18] as described in

section 2.3.1. The microjets are Cambridge-Aachen jets with Rmj = 0.1 and pTmj > 5 GeV.

We denote the corresponding likelihood ratio by χ∗.

We compare ROC curves for r2 and χ in in the left plot of figure 12. We see that the

ROC curve for r2 improves in the lower half of the εs range and diminishes somewhat in the

upper half of the range as the fat jet radius increases. However, for most of the εs range,

the ROC curve for the one-microjet version of χ becomes worse with a fatter fat jet. For

Rfj = 0.8, we compare ROC curves for r2 and χ∗ in right plot of figure 12. We find that full

shower deconstruction performs better than r2 across the whole range of signal efficiencies.
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Figure 12. Effect of changing the fat jet radius. The left panel shows ROC curves for ln(χ) and

ln(r2) from R = 0.4 and R = 0.8 Cambridge-Aachen jets built from massive topoclusters. The right

panel shows ROC curves from R = 0.8 jets for ln(r2) and full shower deconstruction (ln(χ∗)). The

microjets for χ∗ are Cambridge-Aachen jets with Rmj = 0.1 and pTmj > 5 GeV.
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4 Sensitivity to the underlying process and parton shower

If we want to use quark-gluon discrimination in a search for new physics or a measurement of

Higgs properties, we need to know the ROC curves for the observables we use as accurately

as possible. Otherwise, the measurements will suffer from substantial systematic uncertainty.

We can imagine calibrating the ROC curves by comparing experiment to results from event

generators for known Standard Model processes. For this to work, we need to be sure that

the performance of the observables we use does not depend on the underlying hard process.

However, it was shown in [36, 37] that jet observables may depend on the event’s colour flow.

Such a conclusion was reached in [13, 14] also for quark and gluon tagging specifically. Thus

we need to check whether this is the case for the observables that we have studied.

In figure 13, using Pythia 8 events, we compare the χ ROC curve for tagging quark jets in

Z + jet events to that for dijet events. There is hardly any difference. We do the same for r2

and again find hardly any difference. When compared to the difference between the χ and r2

methods, it becomes evident that quark tagging with either is reliable for jets from different

hard processes. Even though we only show the results with a single jet definition, we have

confirmed it for jets with larger transverse momentum as well as larger radius parameter.
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Figure 13. ROC curves for χ and r2 applied to the leading jet of Z + jet and dijet events.

We can also ask whether existing parton shower Monte Carlos (with their default tunes)

are sufficiently accurate to predict the ROC curves for χ and r2. To answer this question,

in figure 14 we compare the performance of these observables for Z + jet events generated

by two different parton showers, Pythia 8 [19] and Sherpa [38]. For χ, we see that there is a

rather substantial difference over much of the εs range. For r2, the difference is not quite as

large, but still not negligible.

– 19 –



What accounts for this difference? We can look at Section IV.5 of Ref.[13] for some

insight. The authors of this study looked at quark-gluon discrimination in electron-positron

annihilation using generalized angularity observables that are perturbatively infrared safe

(and some that are not infrared safe, which we do not discuss here). An infrared safe observ-

able is, by definition, not sensitive to parton splittings that are infinitesimally close to the

soft or collinear singularities of perturbation theory. Nevertheless, such an observable can be

sensitive to splittings that are at numerically small momentum scales. The study [13] exam-

ined quark gluon discrimination using several parton shower programs. When hadronization

was turned off, there were very substantial differences in quark-gluon discrimination among

the programs. It is not clear, at least to us, what characteristics of the parton shower pro-

grams led to greater or less quark-gluon discrimination. When hadronization was turned on,

quark-gluon discrimination generally increased, suggesting quark jets hadronize quite differ-

ently from gluon jets and that this difference affects even nominally infrared safe observables.

There were again very substantial differences in quark-gluon discrimination among the pro-

grams, but the differences now appeared to depend heavily on the hadronization model that

the programs used.

Evidently, if parton shower event generators are to be useful in the analysis of quark-

gluon discrimination, they need to better reflect the differences between quark jets and gluon

jets, so that the parton shower dependence seen in figure 14 is reduced. We believe that this

goal is achievable. It seems clear that hadronization has an important effect on variables that

are sensitive to the difference between quark and gluon jets. The hadronization models in

the shower program, as well as certain other parameters in the programs, can be tuned to

match data. We note that the mixture of quark and gluon jets inevitably differ between jets

in p + p → jet + jet and p + p → Z + jet. Thus, if the data used for Monte Carlo tuning

include quark-gluon sensitive observables applied to jets in these two processes, then it seems

at least plausible that the tuned shower programs would do better in describing both quark

jets and gluon jets.

5 Application of quark-gluon tagging

5.1 Dark matter mono-jet

Searches for dark matter at the LHC have become a vibrant field of research in recent years

[39–42]. If the dark matter particle communicates via a mediator with the Standard Model

(SM) sector, given a small enough mass of the dark matter candidate, it can be produced

at the LHC. While the dark matter particle is only weakly interacting with the detector

material, its presence can be inferred indirectly by measuring its associated production with

SM particles that carry large transverse momentum, e.g. jets. As shown in [1], the dominating

backgrounds to high-pT mono-jet searches are Z+jet and W +jet. Due to the large invariant-

mass final state and the structure of parton distribution functions, both of the gauge bosons

are likely to be produced in association with a quark rather than a gluon, see table 1.
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Figure 14. ROC curves for χ and r2 applied to the leading jet of Z+jet events generated with Pythia

and Sherpa.

Suppose the mediator is a scalar particle that couples to SM particles in agreement with

the paradigm of minimal flavor violation, e.g. according to the Lagrangian [43, 44]

Lscalar ⊃ −
1

2
m2

MEDS
2 − gDMS x̄x−

∑
q

gqSMS q̄q −mDMx̄x . (5.1)

The coupling constant gDM denotes the interaction of the messengers with the dark sector

particles. For simplicity we take the dark matter candidate to be a Dirac fermion x. The

messenger’s couplings to quarks are taken to be proportional to the corresponding Higgs

Yukawa couplings yq = mq/v. As a reference and for definiteness we take gDM = yDM and

gqSM = yq. Hence, the mediator couples preferentially to the top quark and decays for large

gDM to dark matter particles. In this case most of the jets produced in association with the

dark matter particles are gluon-induced and the signal strength corresponds to the one of the

SM Higgs boson with mH = 200 GeV and BR(h→ x̄x) ' 1, see table 1.

We use Pythia 8 to calculate signal S + jet and background Z + jet event rates. We

assume the dark matter and mediator masses to be mDM = 20 GeV and mMED = 200 GeV

respectively.

Even for such an optimistic scenario, the signal-to-background ratio S/B is small, i.e.

S/B . 0.07, and systematic uncertainties on measurements , and systematic uncertainties on

measurements with missing transverse energy are generically large [45]. The combined set of

uncertainties in this channel, as shown in table 1 of [1], amounts to 5− 10%. Hence, a signal-

to-background ratio of less than 10% can render this search for cross sections we consider

insensitive. Therefore, due to the lack of useful kinematic observables in this simple 2 → 2
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σ(jet + MET) [fb]

13 TeV LHC

pT,j > 250GeV |y| < 1.5 ε(χ(g, q)) ' 50% ε(χ(g, q)) ' 10%

pp→ (S → x̄x)j 190 139 46.5 8.17

pp→ (S → x̄x)g 96.5 78.6 36.7 6.77

pp→ (S → x̄x)q 93.3 60 9.27 1.14

pp→ (Z → ν̄ν)j 2830 2170 430 62.2

pp→ (Z → ν̄ν)g 334 245 122 24.6

pp→ (Z → ν̄ν)q 2460 1890 299 40.3

S/B 0.067 0.064 0.11 0.13

Table 1. Production cross sections for a top-philic scalar mediator of mass mS = 200 GeV that

decays predominantly into dark matter, see eq. 5.1, and the dominant Standard Model background

Z + jet at
√
s = 13 TeV.

process, applying a quark/gluon tagger can be vital to improve S/B beyond a necessary,

signal cross-section dependent, threshold. After applying cuts on χ(g, q) corresponding to

50% and 10% we find S/B ' 0.11 and S/B ' 0.13 respectively. To transform this gain in

S/B in a sensitivity improvement for dark matter searches, the systematic uncertainties from

quark-gluon tagging should be small. This requires to address points raised in section 4 and,

more specifically, the design of q/g-tagging approaches that show a stable performance for a

wide class of processes.

5.2 Separation of gluon- and weak boson fusion in Hjj

Several ways have been proposed to separate the gluon-fusion from the weak boson-fusion

process in dijet associated Higgs production pp → Hjj. Among the methods proposed are

rapidity gaps [2, 6], mini-jet vetos [46, 47], the matrix element method [48] and event shapes

[49]. We add another arrow to the quiver by applying quark-gluon tagging.

To show the benefit of our approach we calculate the weak boson and the loop-induced

gluon-fusion contributions to pp → Hjj. The former allows to measure Higgs-gauge boson

couplings and shows very small theoretical uncertainties [50–52].

The number of signal events depends on the sum of production processes p and Higgs

decay channel H → Y Y :

σ(H)× BR(Y Y ) ∼

(∑
p

g2
p

)
g2
HY Y∑

modes g
2
i

, (5.2)

assuming no interference between the different production mechanisms, where g denotes the

Higgs couplings involved. The sum in the denominator runs over all kinematically accessible

decay modes. Hence, the precision in measuring any Higgs boson coupling benefits from

separating the production mechanisms.
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σ(pp→ Hjj) [fb]

13 TeV LHC

pT,j > 50 GeV, ∆Rjj > 2.0 ε(WBF) ' 50% ε(WBF) ' 10%

WBF pp→ Hjj 880 440 91

GF pp→ Hjj 900 180 15

GF pp→ Hqq 22 11 2.2

GF pp→ Hgg 450 61 1.8

GF pp→ Hqg 360 90 8

S/B 0.98 2.5 6.1

Table 2. LO production cross sections for gluon- and weak boson fusion of a Higgs boson with

mass mH = 125 GeV, separated into the respective partonic subprocesses. The two columns on the

right show the results after applying a double quark tag with a combined efficiency of 50% and 10%

respectively.

We generate the events using Sherpa, including the full top loop dependence and require

at least two C/A R = 0.4 jets with pT,j > 50 GeV, |yj | < 4.5 and ∆Rjj ≥ 2.0. After the

initial event selection cuts we already find a cross section ratio between gluon and weak boson

fusion of ∼ 1. For this analysis we do not decay the Higgs boson, as this approach can be

applied irrespective of the decay mode of interest. Hence, we abstain from considering other

Standard Model backgrounds which would depend strongly on the Higgs decay.

In table 2 we show by how much this ratio can be improved after applying a double quark

tag on the two hardest jets of the event. We find that the gluon fusion contribution can be

confidently reduced and even be rendered irrelevant if the WBF rates allow for tight quark

tagging.

To give an example how quark-gluon tagging can improve Higgs coupling measurements,

we can consider the process pp → jj(H → ZZ∗ → 4l). In general this process is not

necessarily considered a prime channel to measure the Higgs boson coupling to massive gauge

bosons. Although the process is almost free from reducible backgrounds [53], due to efficient

cuts on the four and two-lepton systems, the total rate after hard WBF cuts is quite small

(� 0.1 fb). Using quark-gluon tagging allows us to retain a larger cross section while keeping

at the same time gluon-fusion induced Higgs production under control. For the branching

ratios of the Higgs and Z bosons we assume Br(H → ZZ∗) ' 2.62 ·10−2 and Br(Z → l+l−) '
0.06, where l represents electrons and muons. The number of measured events is calculated

as

N(WBF) ≡ ε(WBF) · σ(WBF) · Br(H → 4l) · L, (5.3)

and

N(GF) ≡ ε(GF) · σ(GF) · Br(H → 4l) · L, (5.4)
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resulting for an integrated luminosity L = 1000 fb−1 in N(WBF) ' 83 and N(GF) ' 85

before applying quark gluon tags on the accompanying jets. After applying quark-gluon

tagging, for the working point ε(WBF) ' 50% (10%) of table 2, we find N(WBF) ' 42 (9) and

N(GF) ' 17 (1). While the application of quark-gluon tags do not improve on S/
√
S +B, for

which we find S/
√
S +B ' 6.4 before and S/

√
S +B ' 5.4 after quark-gluon tagging with

ε(WBF) = 50% respectively. However, the combination of measurements including quark

gluon tagging at different working points allows to improve the limit setting on deviations

from Standard Model Higgs couplings.

The analytic dependence of the number of observed events on the coupling modifications

can be parametrised as

Ntot = ∆g2
hgg∆g

2
hV VN(GF) + ∆g4

hV VN(WBF), (5.5)

where ∆gi ≡ gi,mod/gi,SM and we assumed for simplicity that all Higgs-gauge boson couplings

are modified the same way, i.e. ∆ghWW = ∆ghZZ = ∆ghV V . Note that interference between

WBF and GF is highly suppressed [54].

In figure 15 we show the couplings that can be excluded to roughly 95% C.L. by requiring

|Ntot − NSM |/
√
NSM . 2. While the sensitivity bands widen for smaller ε(WBF), smaller

gluon fusion contributions change the cross section dependence on ghgg, thus, increasing

sensitivity along otherwise blind directions of coupling combinations. That is, assuming that

the experimental results obtained by using three different working points are all consistent

with the Standard Model, one can exclude every combination of couplings that is outside of

the intersection of the three bands in figure 15.

6 Conclusions

As illustrated in section 5, tagging jets as being likely quark initiated or likely gluon initiated

can be used for separating signal from background in LHC events. In the earlier sections of

this paper, we studied issues related to how such quark-gluon tagging can be performed.

Our studies suggest that, at least for the methods investigated, quark-gluon tagging can

be effective, but has a substantial sensitivity to physics at rather small momentum scales.

This is illustrated by the finding in figure 14 that if we seek to tag quark jets, then the

background rejection factors obtained with events generated by standard Monte Carlo event

generators differ according to which generator, Pythia or Sherpa, we use. The ROC curves

obtained are qualitatively similar but have significant quantitative differences. Another find-

ing, illustrated in figures 4 and 5, that points to the same conclusion is that different results

are obtained by examining the jet substructure beginning with hadrons or beginning with

simulated massive topoclusters. Starting with hadrons gives the most detailed view, while

starting with topoclusters removes some of the information that comes from the final, in-

frared dominated, stages of hadronization. What we see is that including or not this infrared

dominated information affects the results.
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Figure 15. Sensitivity bands for the process pp → (h → ZZ∗ → 4l)jj after applying quark-gluon

tagging with three different working points, assuming a integrated luminosity of L = 1000 fb−1. There

is a four-fold ambiguity for the couplings ghV V and ghgg, for which the same number of events as in

the Standard Model (corresponding to the point ghV V = 1 and ghgg = 1) are observed. Coupling

modifications are defined as ∆gi ≡ gi,mod/gi,SM.

This tentative conclusion suggests that there is a tradeoff in using quark-gluon tagging

between sensitivity to the signals that we are looking for and the reliability of the method.

That is, we can improve background rejection and thus increase our chances of finding, say, a

signal for new physics. However, we may induce a substantial systemic error in the calculation

of the amount of background rejection. Of course, if we can measure the background rejection

factor experimentally, this problem is ameliorated. To this end, it is encouraging that, when

we try to tag quark jets, the background rejection factor seems to be quite independent of

the hard scattering process that creates the jets, as illustrated in figure 13.

We examined several measures of jet substructure that bear on quark-gluon separation.

The most realistic case is to apply these measures to simulated topoclusters rather than

hadrons, both because topocluster results are likely to be less infrared sensitive and because

they are more experimentally practical. In our studies, we retained the mass of each simulated

topocluster rather than scaling the momentum so as to set the topocluster mass to zero. This

goes beyond the method used by ATLAS, but it improves the quark-gluon separation for

– 25 –



the shower deconstruction variable χ. Most of our studies concerned tagging fat jets with

radius parameter Rfj = 0.4. There we found that the variables r1, r2 and C1 exhibited similar

performances, as illustrated in figure 8. For other graphs, we chose r2 as representative of

these three. We compared r2 to the shower deconstruction variable χ. Normally, shower

deconstruction divides the fat jet into several smaller jets, called microjets. That is essential

when seeking to find heavy particles that decay to several jets. However, in distinguishing

quark from gluon QCD jets with a rather small cone size Rfj = 0.4 for the fat jet, we found

that it was better to simply apply the shower deconstruction calculation of χ to a single

microjet, identical to the fat jet. The result, from figure 8, is that the ROC curve for χ shows

better background rejection than that for r2.

We examined quark-gluon discrimination also for fatter fat jets, with Rfj = 0.8, as illus-

trated in figure 12. There we found that the shower deconstruction method with more than

one microjets worked best. However, the improvement over the use of Rfj = 0.4 fat jets was

small.

We conclude, in general agreement with refs. [7–13], that using jet substructure measures

to discriminate between quark initiated jets and gluon initiated jets can be helpful for distin-

guishing signals from backgrounds at the LHC. We have presented results that bear on the

use of these methods, but a final judgement can only be reached by using these observables

by ATLAS and CMS.
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