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In principle, the strong-interaction sector of the Standard Model is characterised by a unique
renormalisation-group-invariant (RGI) running interaction and a unique form for the dressed–gluon-
quark vertex, Γµ; but, whilst much has been learnt about the former, the latter is still obscure. In
order to improve this situation, we use a RGI running-interaction that reconciles top-down and
bottom-up analyses of the gauge sector in quantum chromodynamics (QCD) to compute dressed-
quark gap equation solutions with 1,660,000 distinct Ansätze for Γµ. Each one of the solutions is
then tested for compatibility with three physical criteria and, remarkably, we find that merely 0.55%
of the solutions survive the test. Evidently, even a small selection of observables places extremely
tight bounds on the domain of realistic vertex Ansätze. This analysis and its results should prove
useful in constraining insightful contemporary studies of QCD and hadronic phenomena.

1. Introduction. Strongly-interacting theories can gen-
erate mass dynamically [1]. Discussions of this phe-
nomenon of dynamical chiral symmetry breaking (DCSB)
in the context of gluons dressing the quark propagator be-
gan with Refs. [2, 3] and have since continued vigorously.
A natural tool for studying DCSB is the gap equation:

S−1(k) = iγ · k A(k2) +B(k2) (1a)

= Z2 (iγ · k +mbm) + Σ(k) , (1b)

Σ(k) = Z1

∫ Λ

dq

g2Dµν(k − q)λ
a

2
γµS(q)Γaν(q, k), (1c)

where the dressed-gluon propagator may be expressed via

p2Dµν(p) = ∆(p2)Tµν , (2)

Tµν = δµν − pµpν/p2; Γaν = (λa/2)Γν is the quark-gluon

vertex;
∫ Λ

dq
indicates a Poincaré invariant regularisation

of the integral, with Λ the regularisation scale; mbm is the
current-quark bare mass and Z1,2, respectively, the ver-
tex and quark wave-function renormalisation constants,
with ζ = 19 GeV the renormalisation point herein [4–7].

Whether or not DCSB emerges in the Standard Model
is decided by the structure of the gap equation’s kernel.
Hence the basic question is: Just what form does that
kernel take? Owing to asymptotic freedom, the answer
is known on the perturbative domain [5–9], viz. on A =
{(k, q) | p2 = (k − q)2 ' k2 ' q2 & 2 GeV2}:

g2

4πDµν(p)Z1 Γν(q, k)
A
= αs(p

2)D0
µν(p)Z2

2 γν , (3)

where αs(p
2) is QCD’s running coupling. The question

thus actually relates only to the infrared domain.
Much has been learnt about the infrared behaviour of

the running coupling and dressed-gluon propagator [10–
12]; and the current state of understanding is described
in Ref. [13]. Namely, one may write:

Z1g
2Dµν(p)→ Z2 4π p2d̂(p2)D0

µν(p) , (4)

where d̂(p2) is a renormalisation-group-invariant (RGI)
interaction strength, which is expressed as follows:

p2d̂(p2) = αs(ζ
2)∆(p2; ζ2)/[1 +G(p2; ζ2)]2 , (5)

with ∆ in Eq. (2) and G defining the transverse piece of
the gluon-ghost vacuum polarisation that appears in ap-
plying the pinch-technique (PT) [14, 15] to QCD’s gauge
sector [10, 16, 17]. The interaction in Eq. (5) has been
computed [18] and may usefully be represented by [13]:

d̂(s) ≈ 2π

ω5
ς3 e−s/ω

2

+
2πγm F(s)

ln[τ + (1 + s/Λ2
QCD)2]

, (6)

where γ
Nf=4
m = 12/25, ΛQCD = 0.57 GeV (MOM

scheme); τ = e2 − 1 F(s) = {1 − exp(−s/[4m2
t ])}/s,

mt = 0.5 GeV; and ς = 0.55 GeV, ω = 0.6 GeV [4].
Eqs. (4)–(6) bridge a gap between “top-down” anal-

yses of QCD’s gauge sector and “bottom-up” studies
of its matter sector and thus represent a unification
of these approaches to determining QCD’s RGI inter-
action. This advance was enabled by an appreciation
of the dressed–gauge-boson–quark vertex’ importance to
DCSB, and vice versa, which had grown over many years,
e.g. Refs. [19–39], combined with the ability to quantify
its impact on hadron properties [31, 33, 40–42]. It brings
us to a point from which a new branch of enquiries should
begin; namely, how sensitive are DCSB and hadron prop-
erties to the form of the dressed gluon-quark vertex?

2. Gluon-Quark Vertex. The gluon-quark vertex in
the SM Lagrangian is simple: Γaµ = Γa0

µ = (λa/2)γµ.
It remains relatively simple on A : interactions pro-
duce momentum-dependent logarithmic corrections, but
no new structures become significant. However, Ward-
Green-Takahashi (WGT) identities [35, 36, 43–46] en-
tail that DCSB destroys that simplicity at infrared mo-
menta [35, 36]. Then Γaµ(q, k) has up to twelve indepen-
dent terms, each linked to a different Poincaré-covariant
Dirac-matrix structure. Half of them are only nonzero
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in the chiral limit owing to DCSB, so they might act as
amplifiers in the gap equation’s kernel. Given the role
DCSB plays in forming hadron observables, Nature must
then place constraints on the strength of these terms.

In order to describe one way of elucidating natural con-
straints on the vertex, we first decompose it (t = q + k):
Γν(q, k) = ΓBC

ν (q, k) + ΓT
ν (q, k),

iΓBC
ν (q, k) = iγνΣqkA + tν [i 1

2γ · t∆qk
A + ∆qk

B ] , (7a)

ΓT
ν (q, k) =

8∑
i=1

T iντ
qk
i , (7b)

where λqk1 = ΣqkA = [A(q2) + A(k2)]/2, λqk2 = ∆qk
A ,

λqk3 = ∆qk
B , ∆qk

F = [F (q2) − F (k2)]/[q2 − k2], F = A,B.
The first term, Eq. (7a), expresses that part of the vertex
which satisfies the Abelian WGT identity, appropriate
to the PT RGI interaction and also a fair representation
of existing lattice-QCD results [30]. The second term,
Eq. (7b), defined using the basis in Eq. (12), describes
all purely transverse contributions. Its particular form is
unknown, despite continuing efforts using continuum and
lattice methods [19–36, 38–40, 47–50]; but, motivated by
a combination of perturbation theory and the transverse
WGT identities, we propose an Ansatz [35, 51]:

τ qk1 = a1∆qk
B , τ qk3 = −a32 k · q∆qk

A , τ qk4 = a4
4∆qk

B

tT · tT
,

τ qk5 = a5∆qk
B , τ qk8 = a8∆qk

A , (8)

with similar expressions for τ2,6,7, where {ai, i = 1, . . . , 8}
are dimensionless constants whose values modulate the
strength of the associated vertex term. This Ansatz is
simple, involving only those functions appearing in the
quark propagator, but general enough to enable a mean-
ingful study of the vertex’ impact on the gap equation’s
solution and hence the constraints that observables im-
pose thereupon. (In using Eq. (7a) as part of the canon-
ical gluon-quark vertex, some ghost-field effects are im-
plictly absorbed into ΓT

ν ; and Eqs. (8) entail that some
effects which might originate in the transverse-WGTIs’
gauge-field-dependent line integrals might be expressed
in the values of the parameters {ai}.)
3. Natural Constraints on the Vertex. We are
about to undertake a challenging task, so it is sensible to
first remark that extant studies of the meson spectrum
[40, 42] suggest that the T 2,6,7

ν terms in ΓT
ν are of lesser

importance. Hence, we neglect them hereafter, setting
a2 = a6 = a7 = 0. Additionally, following some algebra
it becomes evident that the gap equation’s kernel does
not depend separately on a4, a5, but, instead, only on
the combination a4̂5 = a4 − 3a5. Allowing for these sim-
plifications, we proceeded to scan the vertex parameter
space spanned by the constants a1,3,4̂5,8, chosen within

V4 = {(a1, a3, a4̂5, a8)

| a1, a3 ∈ [−1, 1], a4̂5 ∈ [−7, 5], a8 ∈ [−5, 1]} . (9)

As will subsequently become apparent, it is unnecessary
to explore a larger subset of R4.

The scanning method is simple. Working in the chi-
ral limit, we randomly generated a quadruplet q =
(a1, a3, a4̂5, a8) and therewith formed the gluon-quark
vertex, q Γν ; solved the gap equation with that ver-
tex and the RGI interaction in Eq. (6); and cate-
gorised the solutions as acceptable if: (i) they expressed
DCSB of physically reasonable strength, i.e. M0 :=
M(0) ∈ (0.25, 0.45) GeV, (ii) the associated dressed-
quark anomalous chromomagnetic moment (ACM) was
negative-definite, as required in order satisfy constraints
of perturbative QCD (pQCD) [33], and (iii) the pion’s
leptonic decay constant was within 5% of its chiral-limit
value, f0

π ≈ 0.088 GeV [52].
The ACM distribution is explained in Refs. [33, 51] and

may be estimated using (c = 1− a1/2)

κ(m) = 2m [a5 − c]δB + m(1− a8)δA
σA + 2m2(a3 − 1)δA + 2mcδB

, (10)

where σA = Σmm
A , δA,B = ∆mm

A,B , and M(k2) =

B(k2)/A(k2) =: m , is the dressed-quark mass-function.
Concerning fπ, absent a solution to the pion’s Bethe-
Salpeter equation, two approximating formulae exist:
fPS
π (Eq. (11), Ref. [53]) and fCR

π (Eq. (4.5), Ref. [54]).
We use the latter because it is more accurate [31], but
the difference between them is understood and they are
identical in the chiral limit when the necessary correc-
tions to both are included [55].

3.1 Case A: a1 = 0 = a3. Owing to the known impor-
tance of a5,8 in determining κ(m) [33], we always include
nonzero values for these coefficients. Therefore, we first
selected 360,000 independent values of q = (0, 0, a4̂5, a8),
solved the gap equation for each, and catalogued the so-
lutions as described above. Only 6% of the parameter
space survived the first cut. The volume fell to 3% when
(i) and (ii) were applied together. Finally, just 0.4% of
the 360,000 vertices considered could simultaneously sat-
isfy (i)–(iii). The paucity of such Ansätze is highlighted
by the upper panel of Fig. 1: the sample space is actu-
ally larger than the planar area drawn. The lower panel
of Fig. 1 shows that in this case the three criteria we’ve
applied enforce M0 ∈ (0.26, 0.31) GeV.

3.2 Case B : a1 = 0. Here we generated 400,000 vertices.
Proceeding as above, one obtains the domain of accept-
able coefficients depicted in the upper panel of Fig. 2.
The mass functions obtained in this instance are similar
to those obtained in Case A, as illustrated by the lower
panel of Fig. 2: the largest attainable value in solutions
consistent with our criteria is M0 = 0.31 GeV. Notably,
including a3 6= 0, acceptable solutions can be obtained
within a larger domain of a8 values: these two tensor
structures mutually compensate. However, comparing
the lower panels of Figs. 1 and 2, one sees that a3 6= 0
does not much affect the mass-function’s k2-dependence.

3.3 Case C : a3 = 0. We selected 360,000 independent
values of q = (a1, 0, a4̂5, a8) and proceeded as before,
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FIG. 1. Case A. Upper panel – Domain of coefficients q =
(0, 0, a4̂5, a8) satisfying cuts (i)–(iii). Bands: light (grey),
M0 ∈ (0.25, 0.30) GeV; dark (blue), M0 ∈ (0.30, 0.35) GeV.
Lower panel – Mass functions produced by the vertices iden-
tified in the upper panel lie within the like-shaded bands;
and, inset, the associated anomalous chromomagnetic mo-
ment (ACM), Eq. (10). (mE is the Euclidean constituent-
quark mass, i.e. the solution of M(mE) = mE .)

with the result expressed in the upper panel of Fig. 3.
Qualitatively, the outcome is similar to Case A. Succes-
sive cuts progressively restrict the space of acceptable
vertex Ansätze, so that finally M0 ∈ (0.25, 0.36) GeV.

A new feature is the effect of a1 on M(k2): for a fixed
value of M0, an increase in a1 produces a steeper decline
in M(k2). [We return to this point in connection with
Fig. 5 below.] This might have been anticipated because,
with a1 6= 0, the vertex includes a new term that depends
linearly on both the magnitude and k2-dependence of the
dynamically generated mass function.

3.4 Case D – all four coefficients nonzero. We randomly
selected 540,000 vertices, solved the gap equation in each
case, and filtered the solutions: just 0.55% could simulta-
neously satisfy (i)–(iii). The allowed Ansätze are identi-
fied in the upper panel of Fig. 4, with the associated mass
functions depicted in the lower panel.

All features stressed already are preserved: changes in
a3 and a8 compensate each other, but otherwise a3 is only
loosely constrained; a1, a4̂5, a8 influence observables and
are thereby tightly constrained; and, within the space
we have searched, only a1 has a material impact on the
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FIG. 2. Case B. Upper panel – Domain of coefficients q =
(0, a3, a4̂5, a8) satisfying cuts (i)–(iii): the space of Ansätze is
three-dimensional and the inset displays the volume that sur-
vives all cuts and the correlation between coefficients. Lower
panel – Mass functions generated by the vertices identified in
the upper panel lie within the like-shaded bands and produce
the ACM drawn in the inserted panel. (Legend as in Fig. 1.)

k2-dependence of the mass function, illustrated in Fig. 5,
left panel.

Further highlighting a plausible connection between
the action of a1 and a zero in the proton’s electric form
factor, GEp, Fig. 5, left panel, also depicts a comparison
between the impact of a1 on the k2-dependence of the
mass-function and that assumed for the effect of DCSB
and vertex feedback in Ref. [56]: the similarity between
the curves supports the conclusions drawn therein.

It is also worth remarking that the size of M0 is
largely determined by a4̂5: given a value of a4̂5, a1,3,8 can
vary within material subdomains of their search spaces
without much affecting M0. For instance, a value of
M0 = 0.275 GeV is maintained to within 0.2% when
a4̂5 ∈ [−1.16,−0.68] (4%) and a1 ∈ [−0.6, 1.0] (80%),
a3 ∈ [−1, 1] (100%), a8 ∈ [−3.4, 0.3] (60%), where the
percentages indicate the size of the subdomain relative
to that specified for the coefficient in Eq. (9).

The behaviour of the quark wave function renormalisa-
tion, Z(p2) = 1/A(p2), is commonly overlooked in studies
of DCSB and the gluon-quark vertex, possibly because its
effects are often (implicitly) absorbed into the model in-
teraction. This can lead, however, to results for Z(p2)
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FIG. 3. Case C. Upper panel – Set of (a1, 0, a4̂5, a8) satisfying
cuts (i)–(iii). Inset shows 3D volume that survives all cuts
and correlations between coefficients. Bands: light (grey),
M0 ∈ (0.25, 0.30) GeV; dark (blue), M0 ∈ (0.30, 0.35) GeV;
darker (red), M0 ∈ (0.35, 0.40) GeV. Few acceptable vertices
lie in the last category. Lower panel – Associated mass func-
tions (like-shaded bands) and ACMs (inset).

that conflict with known constraints, e.g. pQCD requires

that in Landau gauge Z(p2) → 1− as p2 → ζ2− [57].
This feature is preserved by all Ansätze that survive the
cuts we apply. It is not sufficient, however, to ensure
Z(p2) is monotonic on p2 ∈ [0, ζ2]. That outcome is only
guaranteed if one also requires M0 & 0.35 GeV.

Fig. 5, right panel, depicts both the combined results
from Cases A–D, with neighbourhoods of similar vertex
coefficients sampled in all cases indicated by the domains
of highest intensity, and highlights the interplay between
the filtering criteria and a1,3. Plainly, the criteria do not
tightly constrain a3, although, as remarked earlier, its
presence does permit a larger domain of a8 values in ac-
ceptable Ansätze. In connection with a1, on the other
hand, the allowed range of values depends on the magni-
tude of M0: −0.5 . a1 . 1 for M0 ∈ (0.26, 0.36) GeV.

Now, denoting by G4 that subdomain of considered
vertices whose members each yield a gap equation solu-
tion consistent with criteria (i)–(iii), then

G4 ⊂ {(a1, a3, a4̂5, a8) | a1 ∈ [−0.5, 1], a3 ∈ [−1, 1],

a4̂5 ∈ [−2,−0.4] , a8 ∈ [−4, 1]} ⊂ V4 . (11)
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FIG. 4. Case D. Upper panel – Domain of coefficients sat-
isfying cuts (i)–(iii). The space is four-dimensional and the
insets help display the hyper-volume that survives all cuts
and the correlations between the coefficients. Lower panel –
Mass functions produced by the vertices identified in the up-
per panel lie within the like-shaded bands. (Legend in Fig. 3.)

It is obvious but nevertheless worth highlighting that
the bare vertex, Γa0

µ , is not a member of G4. In fact, us-
ing the RGI running-interaction explained in the Intro-
duction, which unifies the top-down and bottom-up ap-
proaches to charting QCD’s gauge sector, the bare vertex
is incapable of inducing DCSB. Positive feedback, gener-

ated by, e.g. the tν∆qk
B and T4,5 terms in Γaµ, is necessary

to achieve DCSB with a realistic interaction. Plainly,
therefore, in order to secure a successful description of
some subset of hadron observables with the widely-used
rainbow-ladder DSE truncation [5, 25, 27, 58], the gap
equation’s kernel must include an unrealistic magnifica-
tion at infrared-momenta. Hence, one should be cau-
tious when developing an interpretation of results ob-
tained in this way, e.g. those related directly to the point-
wise behaviour of bound-state Bethe-Salpeter amplitudes
will, at most, only be semi-quantitatively reliable [4, 59–
62], and that will also impact upon level-ordering and
-spacing in the hadron spectrum [6, 7, 31, 40, 63–69].

4. Epilogue. Using a renormalisation-group-invariant
(RGI) running-interaction that joins top-down and
bottom-up analyses of the gauge sector in quantum chro-
modynamics (QCD), we computed quark gap equation



5

�=����� [���] �=����� [���]

��� ��� ��� ��� ��� ��� ��� ���

����

����

����

����

����

����

����

����

� [���]

�
(�
)
[�
�
�
]

��� ��� ��� ���

���

���

���

���

���

� [���]

��
���

��

�
�

� ����
���� [���] � ����

���� [���] � ����
���� [���]

-� -� -� -� -� -� �

-�

-�

-�

-�

-�

�

�

���

�
�

-��� -��� ��� ��� ���
-���

-���

���

���

���

FIG. 5. Left panel. Impact of a1 on M(k). For fixed M0, a larger a1 value yields a mass-function that runs more rapidly
with k (Mf (k), solid curves) than does a smaller a1 value (Ms(k), dot-dashed curves). Inset : Comparison of this effect, via
the ratio = Mf (k)/Ms(k), with that assumed in Ref. [56] – solid light (grey) curves depict ratio computed from the like curves
in the main figure, dashed light curve is ratio obtained in Ref. [56] using α = 2, the largest suppression of DCSB considered
therein. (α = 1 means no suppression.); solid dark (blue) curves, obtained from like curves in the main figure, and dark dashed
curve, α = 1.4 ratio in Ref. [56]. Right panel. Combined domains of vertex coefficients from Figs. 1–4. Highest intensity regions:
neighbourhoods of similar coefficient values explored in all four cases; and lowest intensity regions, domains reached only in
Case D. Inset – Distribution of allowed vertices in the (a1, a3) plane. Evidently, criteria (i)–(iii) place little constraint on a3,
whereas a1 has a strong influence on the feedback necessary for DCSB, as illustrated in the left panel. Legend as in Figs. 3, 4.

solutions with 1.66-million distinct Ansätze for the gluon-
quark vertex, Γµ. The Ansätze were selected from a class
whose members can uniquely be identified by a vector in
R4, and those studied were selected at random from a
compact subdomain, V4, whose limits were deliberately
chosen to ensure consistency with extant explorations of
the gauge-boson–fermion three-point function.

Each member of the set of gap equation solutions thus
obtained was tested for compatibility with three crite-
ria: (i) does it express a physically reasonable amount
of dynamical chiral symmetry breaking (DCSB); (ii) is
the associated quark anomalous chromomagnetic mo-
ment negative-definite; and (iii) does it produce a value
for the pion’s leptonic decay constant that lies within 5%
of its chiral-limit value? Remarkably, merely 0.55% of the
solutions survived the test. Evidently, even a small se-
lection of observables places very tight constraints on the
domain of realistic vertex Ansätze, G4, so that µ(G4) ≈ 0
within R4, i.e. the hyper-volume occupied by the space
of physically acceptable vertices is extremely small.

Of course, the Standard Model has a unique RGI
running-interaction and a unique Γµ; but so long as it
is necessary for studies of hadron properties to make as-
sumptions about the gluon-quark vertex, then our results
will help ensure those assumptions are realistic.
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Appendix. Here we list the tensors used in Eq (7b):

T 1
ν = i

2 t
T
ν , T

3
ν = γT

ν , T
4
ν = −iT 1

ν σαβqαkβ , (12)

T 5
ν = σνρpρ , T

8
ν = qνγ · k − kνγ · q + iγνσαβqαkβ ,

where tTµ = Tµνtν , etc. To ease comparisons with Ref. [33],
we remark that the vertex arguments must be mapped
as follows: q → pf , pi → k and k → p, t→ 2`. Then, de-
noting the Dirac-tensor basis used therein for the trans-
verse vertex as {T̂ iν , i = 1, . . . , 8}: T̂ 2

ν = T 5
ν , T̂ 3

ν = T 3
ν ,

T̂ 4
ν = −T 8

ν , T̂ 5
ν = −T 1

ν , T̂ 7
ν = −2T 2

ν , T̂ 8
ν = −2T 4

ν , with

T̂ 3,6
ν given by linear combinations of T 6,7

ν , which are not
needed herein. Consequently, the coefficient functions in
Ref. [33] are identified with ours thus: F̂1 = τ3, F̂2 = τ5,

F̂4 = −τ8, F̂5 = −τ1 F̂7 = − 1
2τ2, F̂8 = − 1

2τ4.
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[29] M. S. Bhagwat, A. Höll, A. Krassnigg, C. D. Roberts and

P. C. Tandy, Phys. Rev. C 70, 035205 (2004).
[30] M. S. Bhagwat and P. C. Tandy, Phys. Rev. D 70, 094039

(2004).
[31] L. Chang and C. D. Roberts, Phys. Rev. Lett. 103,

081601 (2009).
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