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17IPNL, Université Lyon 1, CNRS/IN2P3, F-69622 Villeurbanne Cedex,
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We present the first measurement of the CP violating charge asymmetry in B±
→ µ±νµD

0 decays
using the full Run II integrated luminosity of 10.4 fb−1 in proton-antiproton collisions collected with
the D0 detector at the Fermilab Tevatron Collider. We measure a difference in the yield of B− and
B+ mesons in these decays by fitting the reconstructed invariant mass distributions. This results

in an asymmetry of AµD0

= [−0.14 ± 0.20] %, which is consistent with standard model predictions.

PACS numbers: 13.25.Hw, 11.30.Er, 14.40.Nd

I. INTRODUCTION

Direct CP violation (CPV) in the semileptonic decay

B+ → µ+νµD
0
does not occur in the standard model

(SM). Any CPV in this decay would indicate the exis-
tence of non-SM physics. The anomalously large CP-
violating effects in the like-sign dimuon asymmetry mea-
sured by the D0 Collaboration [1] could be explained
by the presence of direct CPV in semileptonic decays.
This article presents the first measurement of the direct
CP-violating charge asymmetry. We use the full Run II
integrated luminosity of 10.4 fb−1 of proton-antiproton
collisions collected with the D0 detector at the Fermilab
Tevatron Collider. Charge conjugate states are assumed
in this paper.
The CPV charge asymmetry is defined as

AµD0

=
Γ(B− → µ−νµD

0)− Γ(B+ → µ+νµD
0
)

Γ(B− → µ−νµD0) + Γ(B+ → µ+νµD
0
)
. (1)

We assume that there is no production asymmetry be-
tween B+ and B− mesons in proton-antiproton collisions
and we estimate that any production asymmetry of b

baryons and other B mesons that decay to µ+D
0
is small

(see below for further discussion). The measurement is
performed using the raw asymmetry

Araw =
Nµ−D0 −N

µ+D
0

Nµ−D0 +N
µ+D

0

, (2)

where Nµ−D0 (N
µ+D

0) is the number of reconstructed

B− → µ−νµD
0 (B+ → µ+νµD

0
) decays. This includes

all decay processes of B+ mesons that result in a D0

meson and an appropriately charged muon in the final
state. Neglecting any terms that are second or higher
order in the asymmetry the charge asymmetry in B±

decays is given by

Araw = fB+AµD0

+Adet +Aphys, (3)

where fB+ is fraction of the µ+νµD
0
events produced

by the decay of a B+ meson, Adet is due to reconstruc-
tion asymmetries in the detector, and Aphys is the charge
asymmetry resulting from the decay of other particles in
the sample.

II. DATA SELECTION

The D0 detector has a central tracking system consist-
ing of a silicon microstrip tracker (SMT) and the central
fiber tracker (CFT), both located within a 2 T super-
conducting solenoidal magnet [2, 3]. A muon system,
covering |η| < 2 [4], consists of a layer of tracking de-
tectors and scintillation trigger counters in front of 1.8 T
toroidal iron magnets, followed by two similar layers after
the toroids [5].
The polarities of the toroidal and solenoidal magnetic

fields are reversed on average every two weeks so that the
four solenoid-toroid polarity combinations are exposed to
approximately the same integrated luminosity. This al-
lows for a cancellation of first-order effects related to in-
strumental charge and momentum reconstruction asym-
metries. To ensure a more complete cancellation of the
uncertainties, the events are weighted according to the
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number of µ+νµD
0
decays collected in each configura-

tion of the magnet polarities (polarity weighting). The
weighting is based on the number of events containing
D0 decay products that pass the selection criteria and
the likelihood selection (described below), and that are
in the K+π− invariant mass range used for the fit.
The data are collected with a suite of single and

dimuon triggers. B+ mesons are selected using their

semileptonic decays B+ → µ+νµD
0
by applying crite-

ria similar to those used in Ref. [6]. Muons are required
to have hits in more than one muon chamber, an as-
sociated track in the central tracking system with hits
in both SMT and CFT, transverse momentum pµT > 2
GeV/c as measured in the central tracker, pseudorapid-
ity |ηµ| < 2, and total momentum pµ > 3 GeV/c. The
muons that satisfy the selection criteria pass through 12.8
to 14.5 hadronic interaction lengths. The background
from hadrons faking muons is negligible.
All charged particles in a given event are clustered into

jets using the DURHAM clustering algorithm [7] with the
cut-off parameter set to 15 GeV/c. Events with more
than one identified muon in the same jet or with a recon-
structed J/ψ → µ+µ− decays are rejected.

D
0
candidates are constructed from two tracks of op-

posite sign of curvature associated with the same jet as
the reconstructed muon. Both tracks are required to have
transverse momentum of pT > 0.7 GeV/c. They are re-
quired to form a common vertex with a fit χ2 < 16 for
which the number of degrees of freedom (ndof) is 1. The

distance dDT between the pp̄ collision and D
0
vertices in

the transverse plane is required to exceed 3 standard de-
viations, dDT /σ(d

D
T ) > 3. The tracks of the muon and

D
0

candidate must form a common vertex with a fit
χ2 < 16 (ndof = 1). The mass of the kaon is assigned
to the track having the same sign of curvature as the
muon. The remaining track is assigned the mass of the

charged pion. The mass of the µ+D
0
system is required

to be 2.0 < M(µ+D
0
) < 5.5 GeV/c2. The distance dBT

between the pp̄ collision and B vertices in the transverse
plane must be > 3σ(dBT ).
The K±π∓ mass distribution for the selected sample

and the results of the fit to signal and background com-
ponents are shown in Fig. 1.
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FIG. 1. The sum of the K+π− and K−π+ invariant mass
distributions for selected µD0 candidates. The curve shows
the result of the fit described in the text.

III. RAW ASYMMETRY

We choose a fitting function to give a good represen-
tation of the K+π− mass spectrum over the entire sam-

ple of µ+νµD
0
polarity weighted events shown in Fig. 1.

The signal peak corresponding to the decayD
0 → K+π−

lies at M(K±π∓) = 1.857 GeV/c2. The background in
the mass region above the signal is adequately described
by an exponential function in the Kπ mass M :

fbkg
1 (M) = exp (a0 − a1M) , (4)

where a0 and a1 are fit parameters.
The signal is modelled by the sum of two Gaussians:

f sig(M) =
N sig

√
2π

[

r1
σ1

exp

(

− (M −MD0)2

2σ2
1

)

+
1− r1
σ2

exp

(

− (M −MD0)2

2σ2
2

)]

, (5)

where N sig is the number of signal events, MD0 is the
mean of the Gaussian functions, σ1 and σ2 are their
widths, and r1 is the fractional contribution of the first
Gaussian function.
The peak in the background below the signal region is

due to D mesons decaying to K+π−X , where X is not
reconstructed (X is typically a π0). It is modelled with
a bifurcated Gaussian function:

fbkg
2 (M) =N2

[

r1 exp

(

− (M − µ0)
2

2σ2
R

)

+ (1− r1) exp

(

− (M − µ0)
2

2(SσR)2

)]

for M − µ0 ≥ 0,

=N2

[

r1 exp

(

− (M − µ0)
2

2σ2
L

)

+ (1− r1) exp

(

− (M − µ0)
2

2(SσL)2

)]

for M − µ0 < 0. (6)

Here, µ0 is the mean of the Gaussian function, σL and
σR are the two widths of the bifurcated Gaussian func-
tion, r1 is the fractional contribution of the first Gaussian
function which is constrained to be the same as the frac-
tion in the signal peak, and S = σ2/σ1 from the fitted
signal peak (Eq. 5). These constraints are a result of the
detector mass resolution and are required for the fit to
converge.

The fit yields (3.547± 0.005)× 106 µ+D
0
candidates.

The raw asymmetry (Eq. 2) is extracted by fitting the
K+π− mass spectrum using a χ2 minimization. The fit is
performed simultaneously, using the same model, on the
sum (Fig. 1) and the difference (Fig. 2) of theM(K−π+)
distribution for the µ−D0 candidates and theM(K+π−)

distribution for the µ+D
0
candidates. The functions used

to model the two distributions are

fsum(M) =f sig(M) + fbkg
1 (M) + fbkg

2 (M), (7)

fdiff(M) =Arawf
sig(M) +A1f

bkg
1 (M) +A2f

bkg
2 (M).

(8)

Here, A1 is the asymmetry of the combinatoric back-
ground, and A2 is the asymmetry of the D mesons that
decay to K+π−X , whereX is not reconstructed. The fit-
ted asymmetry parameters are Araw = (−1.12± 0.08)%,
A1 = (−0.50±0.03)% and A2 = (−0.87±0.12)% (Fig. 2)
where the uncertainties are statistical.
Systematic uncertainties on the fitting method are

evaluated by varying the fitting procedure. The mass
range of the fit is shifted from 1.40 < M < 2.20 GeV/c2

to 1.43 < M < 2.17 GeV/c2 in steps of 10 MeV/c2. The
function modelling the high mass background is changed
to a 2nd order polynomial function. The width of the
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FIG. 2. The results of a fit to the differences between the
numbers of µ−D0 and µ+D

0
events as function of the Kπ

mass.

mass bins is varied between 5 and 20 MeV/c2. The un-
certainty for each of these modifications to the fitting
procedure is assigned to be half of the maximal varia-
tion. The resulting systematic uncertainty is 0.0075% on
the raw asymmetry Araw, yielding

Araw = [−1.12± 0.08 (stat)± 0.008 (syst)]%. (9)

IV. RECONSTRUCTION ASYMMETRIES

The residual reconstruction asymmetries are described
in Ref. [8]. The residual detector tracking asymmetry
has been studied in Ref. [9] by using K0

S → π+π− and
K∗± → K0

Sπ
± decays. These analyses show no signif-

icant residual track reconstruction asymmetries in the
D0 detector. For this reason no correction for tracking
asymmetries is applied (Atrack ≡ 0). The reconstruc-
tion asymmetry of charged pions has been studied using
Monte Carlo (MC) simulations of the detector [9]. The
asymmetry is found to be less than 0.05% which is as-
signed as a systematic uncertainty and no correction is
made. The muon and the pion have opposite charge,
so any remaining track asymmetries will cancel to first
order.
The residual reconstruction asymmetry of muons is

measured using J/ψ → µ+µ− decays as described in
[9, 10]. This asymmetry is determined as a function of
pT (µ) and |η(µ)|, and the final correction is obtained by
a weighted average over the normalized (pT (µ), |η(µ)|)
yields, as determined from fits to the M(Kπ) invariant

mass distribution. The resulting correction is

Aµ = [ǫ(µ+)− ǫ(µ−)] / [ǫ(µ+) + ǫ(µ−)]

= [0.10± 0.06 (syst)]%, (10)

where ǫ(µ±) are the reconstruction efficiencies of pos-
itively and negatively charged muons. This correction
also includes the systematic uncertainty due to track re-
construction.
The correction for a difference in behavior between

positively and negatively charged kaons is calculated us-
ing the measured kaon reconstruction asymmetry pre-
sented in Ref. [8]. Negative kaons can interact with mat-
ter to produce hyperons, while there is no equivalent in-
teraction for positive kaons. As a result, the mean path
length for positive kaons is larger, the reconstruction effi-
ciency is higher, and the kaon asymmetry AK is positive.
The kaon asymmetry is measured using a dedicated

sample of K∗0(K̄∗0) → K+π−(K−π+) decays, based
on the technique described in Ref. [9]. The K+π− and
K−π+ signal yields are extracted by fitting the charge-
specific M(K±π∓) distributions, and the asymmetry is
determined by dividing the difference by the sum of the
distributions. The track selection criteria in Ref. [8] are
the same as those required in the signal selection in this
analysis.
A strong dependence of the kaon asymmetry on kaon

momentum p(K) and the absolute value of the pseudo-
rapidity η(K) is found. Hence, the final kaon asymme-
try correction is determined from the polarity-weighted
average of AK [p(K), |η(K)|] over the p(K) and |η(K)|
distributions in the signal events. A relative systematic
uncertainty of 5% is assigned to each bin to account for
possible variations in the yield when different models are
used to fit the signal and backgrounds in the K∗0 mass
distribution. Based on studies over a range of fit vari-

ations the relative systematic uncertainty on the µ+D
0

yields per p(K) and |η(K)| bin is 1%. The resulting kaon
asymmetry is found to be:

AK = [ǫ(K+)− ǫ(K−)] / [ǫ(K+) + ǫ(K−)]

= [0.92± 0.05 (syst)]%, (11)

where ǫ(K±) is the reconstruction efficiency of positively
and negatively charged kaons.
Combining the detector effects gives

Adet = −Aµ −AK +Atrack

= [−1.02± 0.08 (syst)]%. (12)

V. SIGNAL COMPOSITION

The fraction of µ+νµD
0
events produced by the decay

of a B+ meson, fB+ , is extracted from MC simulations.

The µ+νµD
0
signal events can also be produced via the

decay of B0
d mesons, B0

s mesons, b baryon decays, and

from prompt D
0
production. We generate a MC sample
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using the pythia event generator [12] modified to use
evtgen [13] for the decay of hadrons containing b or c
quarks. The pythia inclusive QCD production model
is used. Events recorded in random beam crossings are
overlaid on the simulated events to quantify the effect of
additional collisions in the same or nearby bunch cross-
ings. Events are selected that contain at least one muon

and a D
0 → K+π− or D0 → K−π+ decay. The gen-

erated events are processed by the full simulation chain,
and then by the same reconstruction and selection algo-
rithms as used to select events from real data.
The mean proper decay lengths of b hadrons are fixed

in the simulation to values close to, but not exactly equal
to, the current world-average values [11]. To correct for
these differences, an event weighting is applied to all non-
prompt events in the simulation, based on the generated
lifetime of the B candidate, to give the world-average B
meson lifetimes. To estimate the effects of the trigger
selection and the reconstruction on the data, we weight
each event based on the transverse momentum of the
reconstructed muon. The combined weighting applied to
each MC event i is given by wi. Combining all of these
corrections, we find fB+ = 0.56.
The remainder of the events in the signal are semilep-

tonic decays of neutral B mesons (B0
d → µ±D0X and

B0
s → µ±D0X), the combination of a muon and a D0

from different sources including prompt production (com-
binatoric), and hadronic decays of b hadrons where one of
the resulting hadrons decays semileptonically h → µνX
(B± → D0h, B0

d → D0h, B0
s → D0h, and all other b-

hadrons → D0h). The sample composition is given in
Table I.

TABLE I. Composition and mixing probability of the signal
peak determined from MC simulation (the uncertainties are
statistical). The total systematic uncertainty on fB+ and the
other signal fractions is 0.01.

Decay Type P (B0
q → B̄0

q ) Fraction
B±

→ µ±D0X n/a (56.0± 0.2)%
B0

d → µ±D0X∓ 0.211 (35.2± 0.2)%
B0

s → µ±D0X∓ 0.5 (1.8± 0.1)%
Combinatoric n/a (0.3± 0.1)%
B±

→ D0h n/a (0.9± 0.1)%
B0

d → D0h 0.197 (5.1± 0.1)%
B0

s → D0h 1.0 (0± 0.1)%
Other b-hadrons → D0h n/a (0.7± 0.1)%

To determine the systematic uncertainty on fB+ , the
exclusive branching ratios and production fractions of
B mesons are varied by their uncertainties, the B me-
son lifetimes are varied within their uncertainties, and a
coarser pT binning is used in the MC event weighting.
These variations are combined using a toy MC to deter-
mine the size of the systematic uncertainty for the simu-
lation inputs. The total resulting systematic uncertainty
on fB+ and the other signal fractions is 0.01.
CP violation in the mixing of neutral B-mesons is a sig-

nificant background in this analysis. These backgrounds
depend on the fraction of neutral B-mesons that have
oscillated into their antiparticle prior to decay, B0

q → B̄0
q

or B̄0
q → B0

q where q = d, s. This fraction is given by

P (B0
q → B̄0

q ) =
1

2W

∑

i

wi

[

1− cos(∆mqt)

cosh(0.5∆Γqt)

]

(13)

where ∆mq, and ∆Γq are the mass and decay rate dif-
ferences of the mass eigenstates [11], wi is the MC event
weight and W is the sum of the MC event weights. The
fractions for the different B0

d and B0
s samples are given in

Table I. In the case of the B0
s meson, the time-integrated

oscillation probability is essentially 50% and is insensi-
tive to the exact value of ∆ms. The uncertainties on
the mixing fraction are negligible when compared to the
uncertainties on the sample composition.

VI. PHYSICS ASYMMETRIES

The most significant potential contribution to Aphys

is semileptonic charge asymmetries from the mixing of
neutral B mesons and is given by

AB0
q
= aqslP (B

0
q → B̄0

q )fB0
q

(14)

where fB0
q
is the neutral meson signal fraction. The

world average [11] semileptonic charge asymmetry from
B0

d mixing is adsl = (−0.15 ± 0.17)% which would lead
to a contribution to Aphys of −0.011%. The world aver-
age [11] semileptonic charge asymmetry for B0

s mixing is
assl = (−0.75±0.41)% which would lead to a contribution
to Aphys of −0.007%. Combining these asymmetries we
obtain

Aphys = [−0.02± 0.02]%, (15)

where the systematic uncertainty is the combination of
uncertainties in the world averages combined with the
uncertainties on the sample composition. All other po-
tential asymmetry contributions are assumed to be neg-
ligible.

VII. RESULTS

Combining the measured raw asymmetry, and the de-
tector and physics corrections (Eqns 9, 12 and 15) and
the estimated B+ fraction fB+ , we find

AµD0

= [−0.14± 0.14 (stat)± 0.14 (syst)]%. (16)

We can estimate the size of a B± → µ±νµD
0 asymme-

try that would be needed to explain the observed like-sign
dimuon asymmetry [1]. The like-sign dimuon asymmetry
could be explained by a semileptonic charge asymmetry
in neutral B mesons of AB

sl ∼ 0.5%. A MC simulation of
same sign dimuon events where one muon originates from
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a neutral B-meson shows that 62% of these events also
contain a muon from a semileptonic B+ decay. Hence,
0.5%/0.6 = 0.8% would be required to explain the like-
sign dimuon asymmetry. Thus our measurement implies
that direct CPV in B+ decays is unlikely to contribute a
significant fraction of the observed dimuon charge asym-
metry, and that other explanations need to be sought.
In summary, we have made the first measurement of

the direct CP-violating charge asymmetry in B+ mesons

decaying semileptonically to µ+νµD
0
. We find AµD0

=
[−0.14± 0.14 (stat)± 0.14 (syst)] % where the total un-
certainty is 0.20%. This result is in agreement with the
SM expectation of no CPV in this decay.
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