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ABSTRACT

We compute one loop free energy for D = 4 Vasiliev higher spin gravities based on
Konstein-Vasiliev algebras hu(m;n|4), ho(m;n|4) or husp(m;n|4) and subject to higher
spin preserving boundary conditions, which are conjectured to be dual to the U(N), O(N)
or USp(N) singlet sectors, respectively, of free CFTs on the boundary of AdS4. Ordinary
supersymmetric higher spin theories appear as special cases of Konstein-Vasiliev theories,
when the corresponding higher spin algebra contains OSp(N|4) as subalgebra. In AdS4
with S3 boundary, we use a regularization scheme for individual spins that employs their
character such that the subsequent sum over all spins is finite, thereby avoiding the need
for additional regularization. We find that the contribution of the infinite tower of bulk
fermions vanishes. As a result, the free energy is the sum of those which arise in type A
and type B models with internal symmetries, the known mismatch between the bulk and
boundary free energies for type B model persists, and ordinary supersymmetric higher spin
theories exhibit the mismatch as well. The only models that have a match are type A models
with internal symmetries, corresponding to n = 0. The matching requires identification of
the inverse Newton’s constant G−1

N with N plus a proper integer as was found previously
for special cases. In AdS4 with S1 × S2 boundary, the bulk one loop free energies match
those of the dual free CFTs for arbitrary m and n. We also show that a supersymmetric
double-trace deformation of free CFT based on OSp(1|4) does not contribute to the O(N0)
free energy, as expected from the bulk.
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1 Introduction

It has been known for sometime that the conjectured holographic duals of higher spin (HS)
gravities [1] can be as simple as free CFTs living on the boundary of anti-de Sitter spacetime.
Moreover, it has also been noted that the duality is expected to arise in weakly coupled
regimes of both bulk and boundary field theories. Therefore, one expects that higher spin
AdS/CFT correspondence should be amenable to test order by order in perturbation theory.

Free CFTs arise in conjectured dualities in the context of parity invariant HS gravities in
4D subject to HS symmetry preserving boundary conditions. There are two types of parity
invariant Vasiliev HS gravities, known as type A and B [2]. In their simplest forms, they
both contain an infinite tower of massless even spin fields, each occurring once. They differ
from each other in the parity of the spin-0 field, which is parity even (odd) in type A (B)
theory. It has been conjectured that type A theory with ∆ = 1 boundary condition imposed
on the scalar is dual to the O(N) singlet sector of N free real scalars [3], while type B theory
with ∆ = 2 boundary condition imposed on the pseudoscalar is dual to the O(N) singlet
sector of N free Majorana fermions [2] (for earlier work in which HS holography involving
CFTs with matrix valued free fields, see [4]). These are HS symmetry preserving boundary
conditions, with standard boundary conditions imposed on all other fields understood. The
dual CFT can be altered by changing the boundary conditions imposed on the spin-0 field in
such a way that they break HS symmetry. For instance, type A model with ∆ = 2 boundary
condition on the scalar is conjectured to be dual to the critical O(N) vector model [3], while
type B model with ∆ = 1 boundary condition imposed on the pseudoscalar is conjectured
to be dual to O(N) Gross-Neveu model [2].

An important test of the holography is to match the free energy of the bulk theory
with that of the CFT defined on the conformal boundary of the bulk geometry. Assuming
the bulk HS theory possesses an action formulation, the partition function evaluated on
Euclidean AdS4 can be expanded in terms of GN as

Fbulk =
1

GN
F

(0)
bulk + F

(1)
bulk +GNF

(2)
bulk + · · · . (1.1)

When the bulk Euclidean AdS4 is the hyperbolic space H4 whose conformal boundary is a
round S3, the free energy of the bulk HS theory should match with that of a free CFT on
a round S3. The free energy of a free CFT on S3 takes the simple form [5]

FCFT = NF
(0)
CFT , (1.2)

where F
(0)
CFT is the free energy of a single component in U(N) or O(N) vector model. The

zeroth-order contribution F
(0)
bulk has not been computed so far due to the lack of an action

for Vasiliev theory with all the required properties. We will return to this point in the
conclusions. Matching Fbulk with FCFT necessarily requires that Fbulk is proportional to

F
(0)
CFT at each order in the small GN expansion and that GN is identified in terms of N as

G−1
N → γ(N +∆N) , (1.3)

with γ and ∆N being constants, and ∆N should be a fixed integer for a given bulk/boundary
dual pair. Therefore, the higher order quantum corrections affect simply the relation be-
tween GN and N . Assuming Fronsdal type quadratic action for the massless HS fields,
one loop computations have shown that these requirements are fulfilled in the conjectured
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duality between type A theory and the bosonic O(N) vector model [6]. However, for the
conjectured duality between type B theory and the fermionic O(N) vector model [2], these

requirements are not satisfied since F
(1)
bulk and F

(0)
CFT are not proportional to each other.

Matching of free energy was also found in the type A/critical O(N) vector duality, but not
in the type B/O(N) Gross-Neveu duality. In critical O(N) vector model, the conformal
dimensions of HS currents receive quantum corrections. The leading 1/N corrections are
summarized in [7]. These anomalous dimensions of HS currents at O(1/N) should be com-
pared with the one loop corrections to the AdS energies of HS fields computed directly from
the bulk HS theory. It would be interesting to check whether they match precisely.

The principal aim of this paper is to extend the one loop tests by computing the free
energies in a wider class of HS theories in 4D that are expected to be dual to free CFTs on
the boundary of AdS4. In particular, we wish to study the consequences of supersymme-
try which combine type A and type B spectra of fields with an infinite tower of massless
fermions. The underlying HS algebras, denoted by hu(m;n|4), ho(m;n|4) and husp(m;n|4),
and their representations were determined sometime ago by Konstein and Vasiliev [8]. These
representations are obtained from two-fold tensor products of bosonic and fermionic single-
ton representations of SO(3, 2) which also carry fundamental representations of classical Lie
groups. Vasiliev equations for these theories are described in detail in [9]. Their spectral
properties will be summarized in the next section. Suffices to mention here that generically
their underlying HS algebras serve as infinite dimensional supersymmetry algebras, and only
in special cases, namely whenm = n = 2k for some k corresponds to the fundamental spinor
representation of O(N ), they contain the AdS4 superalgebra OSp(N|4), in which case the
singletons in the boundary CFT are in the spinor representations of the R-symmetry group
SO(N ) 1. We shall also consider extension of these models by introduction of internal
symmetry [9].

When the boundary of AdS4 is S3, we compute the one loop free energy by using
a regularization scheme for individual spins that employs their character such that the
subsequent sum over all spins is finite. Thus we avoid the need for additional regularization
in summing over an infinite tower of HS fields. This approach has been utilized in [10] for
the sum over all bosons. Here, we adapt the method for summing over the tower of HS
fermions and the even and odd spin towers of HS fields separately.Furthermore we find that
the contribution of the infinite tower of fermionic fields to the free energy vanishes. Putting
all results together, we find that the bulk free energy may match that of the dual free
CFT only for type A models. Their spectra consist of bosonic fields arising from the tensor
product of two bosonic singletons in fundamental representation of classical Lie groups. The
matching requires identification of the inverse Newton’s constant G−1

N with N plus a proper
integer as was found previously for special cases. Note that mismatch in the free energy
at one loop occurs in particular for type B models whose spectra consist of bosonic fields
arising from the tensor product of two spinor singletons in fundamental representation of
classical Lie groups.

When AdS4 is written in the thermal AdS coordinates, with the boundary being S1×S2,
we find that the bulk one loop free energies match those of the dual free CFTs for generic
Konstein-Vasiliev models.

The N = 1 higher spin theory admits N = 1 mixed boundary condition which corre-

1In order to distinguish the notion of supersymmetry in generic Konstein-Vasiliev models, where super-
symmetry is in higher spin sense, from the special cases where OSp(N|4) arises as a subalgebra, we shall
sometimes refer to the latter ones as “ordinary supersymmetric HS theories”.
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sponds to adding a supersymmetric double-trace deformation in the free CFT. We show
that such a double-trace deformation does not contribute to the O(N0) free energy, com-
patible with the fact that imposing mixed boundary condition does not change the bulk
spectrum and therefore the bulk one loop free energy remains the same.

The rest of the paper is organized as follows. In Section 2 we review the spectra of HS
gravities based on HS algebras hu(m;n|4), ho(m;n|4) and husp(m;n|4). In Section 3, we
compute the one loop free energies of these theories in AdS4 with S3 boundary, where we
also consider the ordinary supersymmetric HS theories with internal symmetry. We adopt
an alternate regularization scheme introduced in [10] in the bosonic sector, then generalize
the method also to the fermionic sector. As mentioned above, this method gives rise to a
convergent sum over the contributions of infinite tower of HS fields, thereby avoiding the
need for additional regularization. In Section 4, we compare the results obtained in the
bulk with the corresponding ones in the boundary CFTs. In Section 5, we implement the
one loop test to HS theories in thermal AdS with the dual CFTs on boundary S1 × S2.
In Section 6 we study a possible mixed boundary condition for N = 1 higher spin theory
and the effect on the free energy on the CFT side where a supersymmetric double-trace
deformation is turned on. We summarize and comment on our results in Section 7, and
comment on possible ways to approach the problem of mismatch of free energies in type B
and ordinary supersymmetric HS theories and their conjectured duals. We also comment
on the action formulation proposed in [11] in the context of classical free energy in the bulk.
The validity and detailed calculation of the alternate regularization method adopted in this
paper are shown in Appendix A.

2 Konstein-Vasiliev and supersymmetric higher spin theories

The group theoretical building blocks for the construction of the physical spectra of HS the-
ories in AdS4 are the singleton representations of SO(3, 2). There are two of them referred
to as Di and Rac. Using the standard notation D(E0, s) for the discrete unitary represen-
tations of sp(4;R) ∼ SO(3, 2), where E0 is the lowest energy and s is the spin of the lowest
weight state, Di refers to the D(1, 1/2) and Rac refers to the D(1/2, 0) representations. An
important property these representations have is given by Flato-Fronsdal theorem which
states that

Rac⊗ Rac =

∞∑

s=0

D(1 + s, s) , Di⊗Di = D(2, 0) +

∞∑

s=1

D(1 + s, s) ,

Di⊗ Rac =

∞∑

s=0

D(3/2 + s, 1/2 + s) , (2.1)

where s = 0, 1, 2, .... The representations D(1 + s, s) are massless spin s fields, and D(2, 0)
is a massless pseudoscalar field. To introduce internal symmetry, consider the singleton
representations

S+ := (Rac,m)⊕ (Di, n) , S− := (Di,m)⊕ (Rac, n) . (2.2)

where m labels the fundamental representations of u(m) or usp(m) or a vector representa-
tion of so(m). It has been shown that the physical spectra of three types of HS theories,
based on HS algebras denoted by hu(m;n|4), ho(m;n|4), husp(m;n|4), are obtained from
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the following tensor products of the singletons

hu(m;n|4) : S+ ⊗ S̄+ , hu(n;m|4) : S− ⊗ S̄− , (2.3)

ho(m;n|4) : (S+ ⊗ S+)S , ho(n;m|4) : (S− ⊗ S−)S , (2.4)

husp(m;n|4) : (S+ ⊗ S+)A , husp(m;n|4) : (S− ⊗ S−)A , (2.5)

where (·)S and (·)A stand for symmetric and antisymmetric tensor products, respectively.
These algebras contain u(m)⊗ u(n), o(m)⊗ o(n) and usp(m)⊗usp(n) as maximal bosonic
subalgebras. The resulting spectra are as follows [8]

hu(m;n|4) : (m2 − 1, 1) ⊕ (1, n2 − 1)⊕ (1, 1) ⊕ (1, 1) s = 0, 1, 2, 3, . . .

(m, n̄)⊕ (m̄, n) s = 1
2 ,

3
2 ,

5
2 , . . .

ho(m;n|4) : (12m(m− 1), 1) ⊕ (1, 12n(n− 1)) s = 1, 3, . . .

(12m(m+ 1)− 1, 1)⊕ (1, 12n(n+ 1)− 1)⊕ (1, 1) ⊕ (1, 1) s = 0, 2, 4, . . .

(m,n) s = 1
2 ,

3
2 ,

5
2 , . . .

husp(m;n|4) : (12m(m+ 1), 1) ⊕ (1, 12n(n+ 1)) s = 1, 3, . . .

(12m(m− 1)− 1, 1)⊕ (1, 12n(n− 1)− 1)⊕ (1, 1) ⊕ (1, 1) s = 0, 2, 4, . . .

(m,n) s = 1
2 ,

3
2 ,

5
2 , . . . ,

(2.6)

where the dimensions of the representations are shown. While there are the isomorphisms
hu(m;n|4) ∼ hu(n;m|4), ho(m;n|4) ∼ ho(n;m|4) and husp(m;n|4) ∼ husp(n;m|4), the
corresponding spectra listed above form inequivalent representations since there are {m2,m(m+
1)/2,m(m−1)/2} scalars in D(1, 0) representations, and {n2, n(n+1)/2, n(n−1)/2} scalars
in D(2, 0) representations of SO(3, 2), in the cases of hu(m;n|4), ho(m;n|4), husp(m;n|4)
respectively. The models with mn > 0 contain fermions and are based on HS algebras
that are superalgebras in the sense that they involve bosonic and fermionic generators and
graded commutators. However, unlessm = n = 2N/2−1 orm = n = 2(N−1)/2, these algebras
do not contain a finite dimensional superalgebra and as such they are infinite dimensional
algebras. In the case of m = n = 2N/2−1, the Rac and Di belong to left and right handed
fundamental spinor representations of SO(N ) and we have the isomorphisms

shsE(N|4) ∼=





hu
(
2

N

2
−1; 2

N

2
−1
∣∣∣4
)

N = 2 mod 4 ,

husp
(
2

N

2
−1; 2

N

2
−1
∣∣∣4
)

N = 4 mod 8 ,

ho
(
2

N

2
−1; 2

N

2
−1
∣∣∣4
)

N = 8 mod 8 .

(2.7)

The HS superalgebra shsE(N|4) contains the N extended AdS4 superalgebra OSp(N|4)
as a subalgebra. In the case of m = n = 2(N−1)/2, the Di and Rac belong to the 2(N−1)/2

dimensional fundamental spinor representations of SO(N ) and we have the isomorphisms

shsE(N|4) ∼=




ho
(
2(N−1)/2; 2(N−1)/2

∣∣∣4
)

N = 1 mod 8 ,

husp
(
2(N−1)/2; 2(N−1)/2

∣∣∣4
)

N = 5 mod 8 .
(2.8)
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As for the case of N=3 mod 4, it has been shown in [9] that it is equivalent to the case of
N=4 mod 4. The OSp(N|4) supermultiplet content of the spectra described above can be
determined in a straightforward way but this information is not needed for the purposes of
this paper.

The supersymmetric HS models described above can be extended by introduction of
internal symmetry. In this case, the Di and Rac representations not only carry the spinor
representation of SO(N ) but also a fundamental representation of a classical Lie algebra.
Working out their tensor products yields the spectrum of the expected dual HS theory,
which can be found in Table 5 of [9].

3 Free energies of Konstein-Vasiliev higher spin theories in

AdS4 with S3 boundary

In this section we shall compute the free energy of Konstein-Vasiliev HS theories in AdS4
with S3 boundary, imposing the HS symmetry preserving boundary conditions. Free energy
of bosonic HS fields in AdS4 has been studied in [6,12–14]. The regularization scheme that
has been used in summing over infinite tower of HS fields, however, is very complicated.
Here, we employ a simpler alternate method which utilizes the character of irreducible
representation of SO(2, 3). As an important consequence, the regularized individual spin
contributions are such that the subsequent sum over infinite tower of higher spins is finite,
thereby avoiding the need for additional regularization of this sum. This method was
introduced in [10] to compute the one loop free energy of massive HS fields, but was not
applied to the computation of the above free energies to exhibit the contributions of the
infinite tower of odd and even spins separately. In what follows we shall use the alternate
method to compute these contributions separately. We then generalize the method and
apply it to the computation in bulk fermion sector in the subsequent subsection.

The one loop correction to the free energy is defined as F (1) = − logZ(1) where Z(1)

is the one loop partition function. For HS theory with nS real scalars, nP pseudoscalars,
n1 copies of fields with s = 1, 3, ...,∞, n2 copies of fields with s = 2, 4, ...,∞ fields and nF
copies of spin 1/2, 3/2, ...,∞ fields, we have

F (1)(nS , nP , n1, n2, nF ) =
1
2nS log det1 DB(1, 0) +

1
2nP log det2 DB(2, 0)

+1
2n1

∞∑

k=0

[
log det DB(2k + 2, 2k + 1)− log det DB(2k + 3, 2k)

]
(3.1)

+1
2n2

∞∑

k=1

[
log det DB(2k + 1, 2k) − log det DB(2k + 2, 2k − 1)

]

−1
2nF log det DF (

3
2 ,

1
2)− 1

2nF

∞∑

k=1

[
log det DF (k +

3
2 , k +

1
2)− log det DF (k +

5
2 , k − 1

2 )
]
,

where we have defined

DB(∆, s) =
[
−∇2 +∆(∆− 3)− s

]
,

DF (∆, s) =
[
− /∇2

+∆(∆− 3) + 9
4

]
. (3.2)
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The negative contributions in the bosonic sector and the positive contributions in the
fermionic sector are due to ghosts. In computing det1 and det2, the irregular (∆− = 1) and
regular (∆+ = 2) boundary conditions are to be used.

For a differential operator of the form D = −∇2 +X, or D = − /∇2
+ Y , writing

− log detD =

∫ ∞

0

dt

t
KD(t) , KD(t) := Tr

[
e−tD

]
, (3.3)

and defining the spectral zeta function

ζD(z) :=
1

Γ(z)

∫ ∞

0
dt tz−1KD(t) , (3.4)

one finds the standard result [15]

− log detD = ζD(0) log(ℓ
2Λ2) + ζ ′D(0) , (3.5)

where ℓ is the AdS radius and Λ is the renormalization scale. For fields of aribrary spins in
hyperbolic space H4, the spectral zeta function technique has been developed in [16,17] to
compute their one loop effective potentials.

3.1 Bosons

Upon Euclideanization of AdS4 to H4, the boundary is S3 and in this setting various free
energies of the bosonic HS theory are given by

F
(1)
even 1 = −1

2

[
ζB(1,0)(0) +

∞∑

s=2,4,···

(
ζB(s+1,s)(0) − ζB(s+2,s−1)(0)

)]
log(ℓ2Λ2)

−1

2

[
ζB′
(1,0)(0) +

∞∑

s=2,4,···

(
ζB′
(s+1,s)(0) − ζB′

(s+2,s−1)(0)
)]

,

F
(1)
even 2 = −1

2

[
ζB(2,0)(0) +

∞∑

s=2,4,···

(
ζB(s+1,s)(0) − ζB(s+2,s−1)(0)

)]
log(ℓ2Λ2)

−1

2

[
ζB′
(2,0)(0) +

∞∑

s=2,4,···

(
ζB′
(s+1,s)(0) − ζB′

(s+2,s−1)(0)
)]

,

F
(1)
odd = −1

2

∞∑

s=1,3,···

(
ζB(s+1,s)(0) − ζB(s+2,s−1)(0)

)
log(ℓ2Λ2)

−1

2

∞∑

s=1,3,···

(
ζB′
(s+1,s)(0) − ζB′

(s+2,s−1)(0)
)
, (3.6)

where F
(1)
even 1 and F

(1)
even 2 denote the total free energy of all even spin fields s = 0, 2, 4 · · · ,

in which the scalar satisfies ∆ = 1 and ∆ = 2 boundary conditions, respectively, and F
(1)
odd

denotes the total free energy of all odd spin fields s = 1, 3, 5 · · · .
As stated earlier, we now employ a simpler method than those used previously, utiliz-

ing the character of irreducible representation of SO(2, 3). The method is based on the
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observation that the spectral zeta function of a bosonic spin-s field can be recast in the
form [10]

ζB(∆,s)(z) =
1

Γ(z)

∫ ∞

0
dβ
[
µ(z, β) + ν(z, β)

∂2

∂α2

]
χ∆,s(β, α)

∣∣∣
α=0

, (3.7)

in which

χ∆,s(β, α) =
e−β(∆−

3
2 ) sin[(s + 1

2 )α]

4 sinh β
2 sin

α
2 (cosh β − cosα)

,

µ(z, β) = 1
3 sinh

β
2

[
f1(z, β)

(
− 6 + sinh2 β

2

)
+ 4f3(z, β) sinh

2 β
2

]
,

ν(z, β) = −4f1(z, β) sinh
3 β

2 ,

fn(z, β) =
√
π

∫ ∞

0
duun tanh(πu)( β

2u )
z−

1
2Jz−1/2(uβ) , (3.8)

where χ∆,s(β, α) is the character of a representation of SO(3, 2) labeled by D(∆, s). Owing

to the e−β(∆−
3
2 ) factor in the character,

∑
s ζ(∆,s)(z) is convergent. Therefore, no regulariza-

tion is needed in performing the sum over infinitely many spins. This is the desired feature
for computing the one loop free energy of HS theory where the summation over infinitely
many spins is encountered. It was also noticed by [10] that since the one loop free energy
depends only on ζ(0) and ζ ′(0), an alternate zeta function ζ̃(z) is physically equivalent to
the original ζ(z), provided that ζ̃(0) = ζ(0), and ζ̃ ′(0) = ζ ′(0). Thus, for the convenience of
calculation, one can in fact utilize an alternate zeta function which is physically equivalent
to the original zeta function. For bosonic HS fields, one choice of the alternate zeta function
takes the form [10]

ζ̃B(∆,s)(z) =
1

Γ(2z)

∫ ∞

0
dβ β2z−1 coth β

2

[
1 +

(
sinh2 β

2

)
∂2α

]
χ∆,s(β, α)

∣∣∣
α=0

. (3.9)

The physical equivalence between the alternate spectral zeta function and the original one
(3.7) is shown in the appendix. The total character of all even spin fields and that of all
odd spin fields are computed as

χeven 1(β, α) = χ1,0(β, α) +
∑

s=2,4,···

(χs+1,s(β, α) − χs+2,s−1(β, α))

=
1 + cosα+ cosh β + cosh 2β

4(cosα− cosh β)2(cosα+ cosh β)
, (3.10)

χeven 2(β, α) = χ2,0(β, α) +
∑

s=2,4,···

(χs+1,s(β, α) − χs+2,s−1(β, α))

=
1 + cosα+ cos 2α+ cosh β

4(cosα− cosh β)2(cosα+ cosh β)
, (3.11)

χodd(β, α) =
∑

s=1,3,···

(χs+1,s(β, α) − χs+2,s−1(β, α))

=
cosα+ cosh β + 2cosα cosh β

4(cosα− cosh β)2(cosα+ cosh β)
. (3.12)
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Substituting the results above into (3.9), we find

ζ̃Beven,1(z) =
1

Γ(2z)

∫ ∞

0
dββ2z−1 cosh2 β

4 sinh3 β
,

ζ̃Beven,2(z) = − 1

Γ(2z)

∫ ∞

0
dββ2z−1 1 + 2 cosh β

4 sinh3 β
,

ζ̃Bodd(z) = −ζ̃Beven 1(z) . (3.13)

With the help of the following identities

1

sinh3 β
2

=
2

β2
∂2

∂x2
1

sinh βx
2

|x=1 −
1

2 sinh β
2

,

4−zζ(2z,
a

2
) =

1

Γ(2z)

∫ ∞

0
dββ2z−1 e−aβ

1− e−2β
, (3.14)

where ζ(a, b) is the Hurwitz zeta function, we finally obtain

ζ̃Beven 1(z) = 4−(2+z)
[
3ζ(2z,−1

2 ) + 4ζ(2z − 2,−1
2 ) + 8ζ(2z − 1,−1

2)

+(4z − 1)ζ(2z) + 3(4z − 4)ζ(2z − 2)− 4(4z − 2)ζ(2z − 1)
]
,

ζ̃Beven 2(z) = 4−(1+z)
[
− 4ζ(2z − 2, 0)− 4ζ(2z − 1, 0) + (4z − 1)ζ(2z)

−4zζ(2z − 2) + 4ζ(2z − 1)
]
. (3.15)

By using the relation between F (1) and spectral zeta function, one arrives at the results

F
(1)
even 1 =

1

16

(
2 log 2− 3ζ(3)

π2

)
, F

(1)
even 2 =

1

16

(
2 log 2− 5ζ(3)

π2

)
,

F
(1)
odd = −F (1)

even 1 . (3.16)

Note that the potential logarithmic divergences in F
(1)
even 1 and F

(1)
even 2 have canceled out,

and the above finite results are from ζ̃B′(0) terms, in agreement with [6]. Furthermore,
these results can be used as building blocks for the computation of the free energies of the
Konstein-Vasiliev models we are interested in, thanks to the observation that for all those
models discussed in Section 2, it is always the case that

n2 = nS + nP , (3.17)

where we recall that n2 is number of copies of even fields with s = 2, 4, . . .∞, nS is the
number of scalars and nP is the number of pseudoscalars.

3.2 Fermions

We now compute the one loop free energy of all fermionic HS fields. The spectral zeta
function of a spin-s fermionic fields is given by

ζF(∆,s)(z) =
1

Γ(z)

∫ ∞

0
dβ
[
µ(z, β) + ν(z, β)

∂2

∂α2

]
χ∆,s(β, α)

∣∣∣
α=0

, (3.18)
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where

χ∆,s(β, α) =
e−β(∆−

3
2 ) sin[(s + 1

2 )α]

4 sinh β
2 sin

α
2 (cosh β − cosα)

,

µ(z, β) = 1
3 sinh

β
2

[
f1(z, β)

(
− 6 + sinh2 β

2

)
+ 4f3(z, β) sinh

2 β
2

]
,

ν(z, β) = −4f1(z, β) sinh
3 β

2 ,

fn(z, β) =
√
π

∫ ∞

0
duun coth(πu)( β

2u )
z−

1
2Jz−1/2(uβ) . (3.19)

To compute the one loop free energy of all fermionic HS fields, we propose the following
alternate spectral zeta function, which is much easier to use. The physical equivalence
between the alternate spectral zeta function (3.20) and the original one (3.18) is shown in
the appendix.

ζ̃F(∆,s)(z) =
1

Γ(2z)

∫ ∞

0
dββ2z−1

[
1
4 sinh

β
2 +

1

sinh β
2

+ sinh β
2∂

2
α

]
χ∆,s(β, α)

∣∣∣
α=0

. (3.20)

The sum of characters of all fermionic HS fields is computed as

χ 3
2
, 1
2
(β, α) +

∞∑

s=3/2

[
χs+1,s(β, α) − χs+2,s−1(β, α)

]
=

cos α
2 cosh β

2

(cosα− cosh β)2
. (3.21)

It is straightforward to check that
[
1
4 sinh

β
2 +

1

sinh β
2

+
(
sinh β

2

)
∂2α

]
×

(
χ 3

2
, 1
2
(β, α) +

∞∑

s=3/2

[
χs+1,s(β, α) − χs+2,s−1(β, α)

])∣∣∣
α=0

= 0 , (3.22)

which indicates that the total one loop free energy of fermionic HS fields in fact vanishes.

3.3 Summary

For a Konstein-Vasiliev higher theory consisting of nS real scalars, nP pseudoscalars, n1
copies of fields with s = 1, 3, ...,∞, n2 = nS + nP copies of fields with s = 2, 4, ...,∞ fields
and nF copies of spin 1/2, 3/2, ...,∞ fields, we have

F (1)(nS , nP , n1, n2, nF ) =
log 2

8
(nS + nP − n1)−

ζ(3)

16π2
(3nS + 5nP − 3n1) , (3.23)

where we have used the relation n2 = nS + nP . The values of nS, nP and n1 can be read
off from (2.6) for various Konstein-Vasiliev models. Substituting them into the equation
above, we obtain

hu(m;n|4) : F
(1)
hu = −ζ(3)

8π2
n2 , (3.24)

ho(m;n|4) : F
(1)
ho =

log 2

8
(m+ n)− ζ(3)

16π2
(3m+ 4n+ n2) , (3.25)

husp(m;n|4) : F
(1)
husp = − log 2

8
(m+ n) +

ζ(3)

16π2
(3m+ 4n − n2) . (3.26)
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The one loop free energy of husp(m;n|4) model is related to the one of ho(m;n|4) model
via m → −m, n → −n. The ordinary supersymmetric HS models correspond to the cases

m = n = 2
N

2
−1 for even N and m = n = 2(N−1)/2 for odd N .

As for the ordinary supersymmetric HS models with internal symmetries, we recall
that their spectra can be obtained by assigning fundamental representations of the internal
symmetry group to the OSp(N|4) singletons, and working out the their two-fold tensor
products. The resulting spectra are provided in Table 5 of [9]. In particular, the number
of fermions with s = 1

2 mod2 and s = 3
2 mod2 are the same. As a consequence, the

contributions of the fermions to the one loop free energy will continue to vanish since in
(3.20) we found that fermions with each half integer spin occurring once give vanishing
contribution. Consequently, the bulk free energy becomes the sum of free energies of type
A and type B models with the desired internal symmetries, and both log 2 and ζ(3) terms
will show up in the one loop free energy. This information is sufficient to perform the one
loop test by means of comparing the bulk and boundary free energies, as we shall see at the
end of next section.

4 Free energies of free CFT’s on S3 and comparison

The free energies of free scalars and free fermions which are conformally coupled to S3 have
been studied in [5]. A conformally coupled free scalar and a free fermion on S3 are described
by the following two actions respectively

SS =
1

2

∫
d3x

√
g
[
(∇φ)2 + 3

4L2
φ2
]
, SD =

1

2

∫
d3x

√
gψ†(i /Dψ) , (4.1)

where L is the radius of the round S3. Free energies of the above two theories are defined
as usual

FS = − logZS =
1

2
log det[Λ−2OS ] , O = −∇2 +

3

4L2
,

FD = − logZD = − log det[Λ−1OD] , O = i /D . (4.2)

Using zeta function, FS and FD can be computed straightforwardly and the results are [5]

FS =
1

16

(
2 log 2− 3ζ(3)

π2

)
, FD =

1

8

(
2 log 2 +

3ζ(3)

π2

)
. (4.3)

Notice that the free energy of a Majorana fermion on S3 is 1
2FD.

A bulk HS theory is conjectured to be dual to a free vector model when the boundary
conditions of the bulk fields preserve the HS symmetry [3, 4], which is the case here. As-
suming the bulk HS theory possesses an action, its free energy associated with AdS4 should
have the form displayed in (1.1) where GN is the Newton’s constant. In cases where the
boundary of AdS4 is S3, the bulk free energy should be compared with that of a free vector
model on S3 order by order in 1/N expansion. Hence the comparison requires an identifi-
cation between GN and N . It was suggested by [6] that in general the relation between GN

and N is of the form given in (1.3) where γ and ∆N are constants and especially ∆N should
be an integer. The basic fields in the vector model constitute a vector in the fundamental
representation of a classical Lie group, which can be U(N), O(N) or USp(N) in our cases.
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The free energy of a free vector model can be computed exactly and be put in the form2

FCFT = NF
(0)
CFT , (4.4)

where we use F
(0)
CFT to denote the contribution of a single component in the vector. For Fbulk

to match with FCFT, it is clear that the bulk free energy at each order in GN expansion

should all be proportional to F
(0)
CFT.

Various one loop tests of HS holography have been carried out in the literature [6, 12].
For instance, the non-minimal type A model is conjectured to be dual to the U(N) singlet
sector of N complex scalars. When HS symmetry is preserved by the boundary condition,

F
(1)
bulk was found to be 0, indicating that G−1

N is identified with N at one loop order. For
minimal A model, the conjectured dual CFT is the O(N) singlet sector of N real scalars.

In this case, F
(1)
bulk is equal to FS , the free energy of a real free scalar (4.3). Thus, matching

the bulk and boundary free energies at one loop order requires G−1
N being identified with

N − 1. The husp(2; 0|4) Vasiliev theory is conjectured to be dual to the USp(N) singlet

sector of N complex scalars and F
(1)
bulk is equal to −FS . Therefore, for husp(2; 0|4) higher

spin theory, G−1
N is identified with N + 1 at one loop order.

In this section, we consider the cases in which the bulk HS symmetry is preserved by the
boundary condition, thus the CFT duals are certain singlet sectors of free CFTs composed
by free scalars and free fermions. For the hu(m;n|4) theory, the dual CFT consists of Nm
complex free scalars φia, i = 1, 2, ...N , a = 1, 2, ...m andNnDirac fermions ψir, r = 1, 2, ...n.
The m2 ∆ = 1 scalars and n2 ∆ = 2 pseudoscalars correspond to the operators

φ̄iaφ
ib , ψ̄iaψ

ib . (4.5)

Free energy of this theory is given by

FCFT = NF
(0)
CFT , F

(0)
CFT = 2mFS + nFD , (4.6)

where FS and FD are given in (4.3).
For the ho(m;n|4) theory, the dual CFT consists of Nm real free scalars φia, i =

1, 2, ...N , a = 1, 2, ...m and Nn majorana fermions ψir, r = 1, 2, ...n. The m2 ∆ = 1 scalar
fields and n2 ∆ = 2 pseudoscalars correspond to the operators

φiaφjbδij , ψ̄iaψjbδij . (4.7)

The free energy is given by

FCFT = NF
(0)
CFT , F

(0)
CFT = mFS + 1

2nFD . (4.8)

For the husp(m;n|4) theory, the dual CFT consists of Nm complex free scalars φia, i =
1, 2, ...N , a = 1, 2, ...m and Nn Dirac fermions ψir, r = 1, 2, ...n, subject to the symplectic
reality condition. The m2 ∆ = 1 scalar fields and n2 ∆ = 2 pseudoscalars correspond to
the operators

φiaφjbΩij , ψ̄iaψjbΩij , (4.9)

2Strictly speaking, the bulk HS theory is dual to the U(N), O(N) or USp(N) singlet sector of a free
CFT. The partition function of a free CFT on S3 is evaluated in the vacuum which is already a singlet state
under the corresponding symmetry group in each case. Thus, imposing the singlet constraint should not
affect the free energy.
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where Ωij is the USp(N) invariant tensor. Free energy of this theory is given by

FCFT = NF
(0)
CFT , F

(0)
CFT = mFS + 1

2nFD . (4.10)

Since supersymmetric HS theories can be mapped to special cases of Konstein-Vasiliev
models, we will not give separate discussions on them.

As discussed before, duality between the bulk HS theory and boundary free CFT may

be achieved only if F
(1)
bulk is proportional to F

(0)
CFT. Using (3.23), (4.3), (4.6), (4.8) and (4.10),

we find that this requirement amounts to

(m+ n)(3nS + 5nP − 3n1) = 3(m− n)(nS + nP − n1) , (4.11)

obtained by setting the ratios of log 2 and ξ(3) dependent terms equal to each other. Taking
the values of nS, nP and n1 from (2.6), these ratios for the bulk sides can be read off from
(3.24), (3.25) and (3.26) in terms of m and n. One can show that for all three Konstein-
Vasiliev models, the only solution to the equation above is given by n = 0, which implies
bosonic type A models. In this case the log 2 and ζ(3) dependent terms arise in the same
ratio as of a single real scalar field, and we have the result

F
(1)
hu(m;0|4) = 0 , F

(1)
ho(m;0|4) = mFS , F

(1)
ho(m;0|4) = −mFS . (4.12)

Therefore, assuming that F
(0)
bulk = F

(0)
CFT, the bulk and boundary free energies match with

each other provided that

hu(m; 0|4) : G−1
N → N ,

ho(m; 0|4) : G−1
N → N − 1 ,

husp(m; 0|4) : G−1
N → N + 1 . (4.13)

The holographic dictionaries relating GN to N in various HS models have been put forward
in [6] via testing the holography of hu(1; 0|4), ho(1; 0|4) and husp(2; 0|4) models at one loop
level. Here, we have extended the validity of these holographic mappings to hu(m; 0|4),
ho(m; 0|4) and husp(m; 0|4) Konstein-Vasiliev models. We see that the inclusion of infinite
tower of bulk fermions does not cure the problem with the mismatch of the free energies
in the type B model, which corresponds to the case in which m = 0 and n 6= 0, and its
conjectured dual.

Finally, we consider the ordinary supersymmetric models with internal symmetry dis-
cussed earlier, whose spectra are given in Table 5 of [9]. In Section 3 we found that the
contributions of the bulk fermions give vanishing contributions to one loop free energy and
consequently the bulk one loop free energy becomes the sum of the ones of type A and type
B models with the desired internal symmetries. In particular, there is still a nonvanishing
ζ(3) term. On the other hand it is easy to show that the ζ(3) dependent terms on the CFT
side vanish. Therefore, we conclude the problem of free energy mismatch will persist in
ordinary supersymmetric HS theories with internal symmetry.

5 One loop free energies of supersymmetric higher spin the-

ories in AdS4 with S1
β × S2 boundary

In thermal AdS4, the one loop free energy of the bulk theory takes the form [13]

F
(1)
bulk = F (β)bulk + βEc bulk + abulk log Λ , (5.1)
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where β is the period of the imaginary time, F (β)bulk is the thermal free energy which can
be computed by taking the log of the thermal partition function as F (β)bulk ≡ β−1 logZbulk

with Zbulk ≡ tr e−βHbulk, and abulk is the anomaly coefficient related to the Seeley coefficient.
The trace denotes the sum over all HS particle states. abulk is proportional to the integral
of local curvature invariants, and should be the same for AdS4 with S3 boundary and for
the thermal AdS4. Thus, after summing over spins the total abulk should vanish as shown
in previous sections. Ecbulk is the one loop contribution to the Casimir energy which can
be extracted from the thermal free energy in a standard way (cf. (5.5), (5.6)).

The free energy of the U(N), O(N) or USp(N) singlet sector of a free vectorial CFT
on S1

β × S2 takes similar form

FCFT = F singlet(β)CFT + βEcCFT + aCFT log Λ , (5.2)

in which F (β)CFT is the free energy of the subsector in Hilbert space consisting of only the
states that are invariant under the required symmetry group. The Casimir energy EcCFT is
given by NE0, where E0 is the Casimir energy of a single conformally invariant free field on
S1
β × S2. The anomaly coefficient aCFT vanishes on S1

β × S2, which is conformally flat and
has vanishing Euler number. Therefore, there are no logarithmic divergent terms on both
the bulk and the boundary sides. There remains comparison of the thermal part of the free
energies and the Casimir energies on both sides. The thermal part of the free energies are
expected to match since, by definition, the bulk and boundary thermal partition functions
which give rise to the corresponding thermal free energies are both equal to the character
of the HS algebra associated with the spectrum of the HS theory. The comparison between
the bulk and boundary Casimir energies, however, is not straightforward, since different
from Ecbulk, the Casimir energy on the CFT side is not directly related to the thermal free
energy of the singlet sector through (5.5). Holographic matching of the free energies at
O(N0) demands that Ecbulk is an integer times the Casimir energy of a single conformally
invariant free field on S1

β × S2.
In this section, we first study the one loop free energy of Konstein-Vasiliev theory in

thermal AdS4 with S1
β × S2 boundary. We then compare the bulk result with the free

energy of the corresponding dual CFT at O(N0). Recall that there exist generalizations of
d > 4 Vasiliev theory which are dual to the U(N) or O(N) singlet sector of free scalars or
fermions [18]. Free energy of this type of HS theory in thermal AdSd has been calculated
in [13] and compared with O(N0) term in the free energy of the large N U(N) or O(N)
vectorial free CFT. It was found that the matching of free energy implies shifts in the
relation between G−1

N and N at leading order by an integer.
Different from [13] where the bulk theories are purely bosonic, in our case the bulk

theory includes also fermionic HS fields. Accordingly, the dual CFT consists of both scalars
and fermions. In particular, the fermionic HS fields are dual to the bilinear conserved
currents built out of both scalars and fermions. State operator correspondence then implies
the existence of scalar-fermion mixed states in the Hilbert space that are singlet under the
required symmetry group. These scalar-fermion mixed states contribute to the thermal
free energy of the singlet sector nontrivially, which means that the F singlet(β) for a CFT
involving both scalars and fermions cannot be obtained by a simple sum of the F singlet(β)’s
of a pure-scalar CFT and of a pure-fermion CFT.

Below we start with the computation of the free energies in Konstein-Vasiliev models,
which include supersymmetric HS theories as special cases. The story is far more elaborate
in higher dimensions. In particular, we refer the reader to [19, 20] and [21] for the case of
5D, and [22] for the case of 7D.
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5.1 The bulk side

As stated earlier, the one loop free energy of a massless field in thermal AdS4 has the
structure displayed in (5.1) with the vanishing log divergence. F (β) can be obtained from
the grand canonical partition function as

For bosons: F (β)bulk = −
∞∑

m=1

1

m
Z(mβ) , (5.3)

For fermions: F (β)bulk =
∞∑

m=1

(−1)m

m
Z(mβ) . (5.4)

Here Z(β) is the one-particle canonical partition function. The Casimir energy Ecbulk can
be obtained from the energy ζ-function as

Ecbulk = ±1

2
ζE(−1) , (5.5)

where ± correspond to bosonic and fermionic cases respectively. The energy ζ-function is
related to the one-particle partition function by a Mellin transform

ζE(z) =
1

Γ(z)

∫ ∞

0
dββz−1Z(β) . (5.6)

In d = 4, the thermal one-particle partition function for a scalar field is given by

Z(∆)
0 =

q∆

(1− q)3
∆ >

1

2
, (5.7)

where ∆ is the AdS energy and q = e−β [23]. Thermal one-particle partition function for
s ≥ 1

2 massless field takes the form

Zs(β) =
qs+1

(1− q)3
[
2s + 1− (2s − 1)q

]
. (5.8)

From the results derived in [13], we deduce the useful formulae3

F
(1)
even 1 = F (β)even 1 = −

∞∑

m=1

1

m
Zeven 1(mβ) ,

Zeven 1(β) = 1
2

q(1 + q)2

(1− q)4
+ 1

2

q(1 + q2)

(1− q2)2
= 1

2 [Z̃0(β)]
2 + 1

2Z̃0(2β) ,

F
(1)
even 2 = F (β)even 2 = −

∞∑

m=1

1

m
Zeven 2(mβ) ,

Zeven 2(β) =
2q2

(1− q)4
− q2

(1− q2)2
= 1

2 [Z̃ 1
2
(β)]2 − 1

2Z̃ 1
2
(2β) ,

F
(1)
odd 1 = F (β)odd = −

∞∑

m=1

1

m
Zodd(mβ) ,

Zodd(β) = 1
2

q(1 + q)2

(1− q)4
− 1

2

q(1 + q2)

(1− q2)2
= 1

2 [Z̃0(β)]
2 − 1

2Z̃0(2β) , (5.9)

3In the rest of this subsection the thermal free energies and partition functions refer to those of the bulk
theory.
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where for later convenience we express the results in terms of the characters Z̃0(β) and
Z̃1

2
(β) of the conformally coupled free scalar and the free real fermion which realize the

spin-0 and spin-12 singleton representations of the SO(3, 2), respectively

Z̃0(β) =
q
1
2 (1 + q)

(1− q)2
, Z̃1

2
(β) =

2q

(1− q)2
. (5.10)

By using (5.5) and (5.6), one can show that Zeven 1(β), Zeven 2(β) and Zodd(β) all lead to
vanishing Casimir energy [13]4. Therefore we simply dropped Ec term in (5.9). Also one
should note that

1
2 [Z̃ 1

2
(β)]2 + 1

2 Z̃ 1
2
(2β) = 1

2 [Z̃0(β)]
2 − 1

2Z̃0(2β) . (5.11)

For all the fermionic fields, we find that the total one-particle canonical partition function
is given by

ZF (β) =

∞∑

s= 1
2

qs+1

(1− q)3

[
2s+ 1− (2s − 1)q

]
=

2q
3
2 (1 + q)

(1− q)4
= Z̃0(β)Z̃ 1

2
(β) . (5.12)

Using the total one-particle canonical partition function, we can construct the energy ζ-
function for fermions

ζFE (z) =
1

Γ(z)

∫ ∞

0
dββz−1 2e

− 3
2
β(1 + e−β)

(1− e−β)4

= 2
∞∑

n=1

(
n+ 2

3

)
[(n + 1

2)
−z + (n+ 3

2)
−z]

= 1
8ζ(z,

5
2 )− 1

12ζ(z − 1, 52)− 1
2ζ(z − 2, 52) +

1
3ζ(z − 3, 52 )

−1
8ζ(z,

3
2)− 1

12ζ(z − 1, 32 ) +
1
2ζ(z − 2, 32) +

1
3ζ(z − 3, 32) . (5.13)

This vanishes at z = −1. Therefore, the total Casimir energy for fermionic HS fields vanishes
in thermal AdS4 as well, and the correspoding one loop free energy is simply

F (1)F = F (β)Fbulk =

∞∑

m=1

(−1)m

m
ZF (mβ) . (5.14)

4Similar technique using SO(3, 2) character has been applied to compute one-loop free energy of HS
theories constructed using higher-order singletons [24] in thermal AdS4, where vanishing of Casimir energy
was also observed.
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Summarizing the results above and using the spectra given in (2.6), we find that the one
loop free energies for generic Konstein-Vasiliev HS theories are given by

hu(m;n|4) : F
(1)
hu = −

∞∑

k=1

1

k

[
m Z̃0(kβ) + n (−)k+1 Z̃ 1

2
(kβ)

]2
, (5.15)

ho(m;n|4) : F
(1)
ho = −

∞∑

k=1

1

2k

([
m Z̃0(kβ) + n (−)k+1 Z̃ 1

2
(kβ)

]2

+m Z̃0(2kβ) − n Z̃ 1
2
(2kβ)

)
, (5.16)

husp(m;n|4) : F
(1)
husp = −

∞∑

k=1

1

2k

([
m Z̃0(kβ) + n (−)k+1 Z̃ 1

2
(kβ)

]2

−m Z̃0(2kβ) + n Z̃ 1
2
(2kβ)

)
. (5.17)

The free energy of husp(m;n|4) theory can be obtained from that of the ho(m;n|4) theory
by m→ −m,n→ −n.

5.2 The CFT side and comparison

In this section, we calculate the partition function of the singlet sector of free CFTs on
S1
β × S2. We closely follow the technique developed in [25,26]. The partition function of a

CFT on S1
β × S2 is equal to the thermal partition function due to the vanishing of Casimir

energy [24] and logarithmic divergence. Therefore, we have

Z(β) =
∑

i∈physical states

qEi , q = e−β , (5.18)

where the physical states are restricted to be the singlet states of U(N), O(N) or USp(N)
for our purpose. We have also used the fact that there is no non-trivial chemical potential
in the system. The thermal partition functions of the U(N) and O(N) singlet sectors of free
scalar and free fermion theories have been studied in [13, 27]. We generalize their results
to the cases with both scalars and fermions. We first consider the U(N) singlet sector of a
free CFT with Nm complex free scalars and Nn Dirac fermions. As shown in [13,27], the
thermal partition function can be expressed as a path integral localized on the eigenvalues
of U(N) matrix

ZU(N)(β) = e−F (β)U(N) =

∫ N∏

i=1

dαie
−S(α1,...αN ) ,

S(α1, ...αN ) = −1
2

N∑

i 6=j=1

log sin2
αi − αj

2
+ 2

N∑

i=1

fβ(αi) ,

fβ(α) =

N∑

k=1

ck(β) cos(kα) , ck(β) = −1

k

[
m Z̃0(kβ) + n (−)k+1Z̃ 1

2
(kβ)

]
, (5.19)

where the matter contents affect the effective action through ck(β). In the large N limit,
the integral over αi can be replaced by the path integral over the eigenvalue density ρ(α),
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α ∈ (−π, π). ρ(α) satisfies the standard normalization
∫ π

−π
dαρ(α) = 1 . (5.20)

The effective action in terms of ρ(α) takes the form

S(ρ) = N2

∫
dαdα′K(α− α′)ρ(α)ρ(α′) + 2N

∫
dαρ(α)fβ(α) ,

K(α− α′) = −1
2 log(2− 2 cosα) , fβ(α) =

N∑

k=1

ck(β) cos(kα) . (5.21)

Integrating out ρ, one obtains

F (β)U(N) = −
∞∑

k=1

k[ck(β)]
2 = −

∞∑

k=1

1

k

[
m Z̃0(kβ) + n (−)k+1Z̃ 1

2
(kβ)

]2
, (5.22)

which coincides with one loop free energy for hu(m;n|4) higher spin theory (5.15). Next,
we study the O(N) singlet sector of a free CFT with Nm real free scalars and NnMajorana
fermions. This is a generalization of the results in [13], where the free CFT consists of only
scalars or fermions. It is suggested in [13] that, one can choose N to be even, namely N=2N
for simplicity in the large N . The difference between even N and odd N cases is at the
next order in 1/N expansion. Free energy of the O(2N) singlet sector of a free CFT with
Nm real free scalars and Nn Majorana fermions can again be written as a path integral
over the eigenvalues of O(N) matrix. The effective potential of the O(N) singlet sector is
given by [13]

S(α1, ...αN) = −1
2

N∑

i 6=j=1

log sin2
αi − αj

2
− 1

2

N∑

i 6=j=1

log sin2
αi + αj

2
+ 2

N∑

i=1

fβ(αi) , (5.23)

where fβ is the same as the one in (5.19). The effective potential for the O(N) singlet
sector differs from that of the U(N) by the log sin2 α terms which come from the Van der
Monde determinant or the Haar measure. In the large N limit, the path integral over αi

can again be recast into an integral over the eigenvalue density ρ(α). After integrating out
ρ, one obtains

F (β)O(N) = −
∞∑

k=1

k

2

(
[ck(β)]

2 − 2
k c2k(β)

)
(5.24)

= −
∞∑

k=1

1

2k

([
m Z̃0(kβ) + n (−)k+1 Z̃ 1

2
(kβ)

]2
+m Z̃0(2kβ) − n Z̃ 1

2
(2kβ)

)
,

which matches the one loop free energy of ho(m;n|4) HS theory in (5.16). In the last case,
we consider the USp(N) singlet sector of a free CFT with Nm complex free scalars φia,
i = 1, 2, ...N , a = 1, 2, ...m and Nn Dirac fermions subject to the symplectic real condition.
Since N is even in this case, we denote N by 2N. The effective potential of the USp(N)
singlet sector takes the form

S(α1, ...αN) = −1
2

N∑

i 6=j=1

log sin2
αi − αj

2
− 1

2

N∑

i,j=1

log sin2
αi + αj

2

−1
2

N∑

i=1

log sin2 αi + 2

N∑

i=1

fβ(αi) . (5.25)
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In the large N limit, the path integral over αi can be evaluated by using the same technique
as before. The free energy of the USp(N) singlet sector of a free CFT is obtained as

F (β)USp(N) = −
∞∑

k=1

k

2

(
[ck(β)]

2 + 2
k c2k(β)

)
(5.26)

= −
∞∑

k=1

1

2k

([
m Z̃0(kβ) + n (−)k+1 Z̃ 1

2
(kβ)

]2
−m Z̃0(2kβ) + n Z̃ 1

2
(2kβ)

)
,

which matches one loop free energy of husp(m;n|4) HS theory in (5.17).

6 Mixed boundary conditions in bulk and interacting N = 1
SCFT

In N = 1 HS theory, the OSp(1|4) invariant boundary conditions are given in [2]5. To
describe this, we write the boundary behavior (ρ→ 0) of the complex scalar φ = A+ iB as

A = ρα+ + ρ2β+ , B = ρα− + ρ2β− , (6.1)

and define the 3d, N = 1 superfields

Φ− = α− + iθ̄η− − θ̄θ

2i
β+ , Φ+ = α+ + iθ̄η+ +

θ̄θ

2i
β− . (6.2)

The boundary conditions preserving OSp(1|4) take the form

Φ− = λΦ+ , (6.3)

where λ is an arbitrary real number. In terms of the new scalar fields we have

A′ = sinϑA− cos ϑB , B′ = cos ϑA+ sinϑB , (6.4)

where tanϑ = λ, and the boundary condition (6.3) is equivalent to

α′
+ = 0 , β′− = 0 . (6.5)

The linearized bulk scalar field equations would remain the same form under the SO(2)
rotation, thus the newly defined scalar fields A′ and B′ possess the same Feffer-Graham
expansion as the original scalar fields A and B. The boundary condition (6.5) implies that
near the boundary

A′ = ρ2β′+ , B′ = ρα′
− . (6.6)

Therefore, in computing the one loop free energy, A′ should have ∆ = 2, while B′ should
have ∆ = 1, which does not affect the N = 1 HS spectrum and the corresponding one loop
calculation. On the CFT side, the boundary condition (6.3) implies the N = 1 free CFT
being deformed by a supersymmetric double-trace term

∆S =
λ

2

∫
d3xd2θO2 , (6.7)

5Here we correct a sign error in the result given by [2].
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where O is given by

O =
1√
N
W 2 , W = ϕ+ iθ̄ψ +

θ̄θ

2i
f . (6.8)

We compute the difference between the free energy of the deformed CFT and that of the
free CFT, following the procedure adopted in [5,28]. Denoting the partition function of the
free CFT by Z0, we calculate

∆F = − log
Z

Z0
. (6.9)

Using the Hubbard-Stratonovich transformation, we have

Z

Z0
=

1∫
DΣexp( 1

2λ

∫
dz′Σ2)

∫
DΣ

〈
exp
[ ∫

dz
( 1

2λ
Σ2 +ΣO

)]〉
0
, (6.10)

where Σ is an auxiliary superfield and z denotes the supercoordinate. In the large N limit,
the higher point functions of O are suppressed. This allows us to write

〈
exp
[ ∫

dzΣO
]〉

0
= exp

[1
2

〈(∫
dzΣO

)2〉
0
+ o(1/N)

]
. (6.11)

Note that Σ and O are single-trace operators of N = 1 superfields, say M and W respec-
tively, each with component fields Ai, λi, Bi and φi, ψi, f i, where B and f are auxiliary
fields, and the index i stands for the representation of O(N). The component fields obey
the following superconformal transformations

δA =
1

4
ξλ δφ =

1

4
ξψ (6.12)

δλ = /∂Aξ − 1

4
Bξ +Aη δψ = /∂φξ − 1

4
fξ + φη (6.13)

δB = −ξ /∇λ δf = −ξ /∇ψ (6.14)

where ξ and η are spinors satisfying the conformal Killing spinor equation ∇µξ = γµη.
Integrating out the spinor coordinates θ and θ̄, we obtain

∫
dz

1

2λ
Σ2 =

1

λ

∫
dx3

√
g(BiAiAjAj +

1

2
λiλiAjAj + λiλjAiAj)

=
1

λ

∫
dx3

√
g(Σ2Σ1 +Σ3/2Σ3/2) ,

(6.15)

∫
dzΣO =

∫
dx3

√
g(f iφiAjAj +

1

2
ψiψiAjAj +BiAiφjφj +

1

2
λiλiφjφj + 2ψiλjφiAj)

=

∫
dx3

√
g(O2Σ1 +Σ2O1 + 2O3/2Σ3/2) ,

(6.16)

where we defined

Σ1 = AiAi , O1 = φiφi, Σ3/2 = Aiλi , O3/2 = φiψi ,

Σ2 = BiAi +
1

2
λiλi , O2 = f iφi +

1

2
ψiψi ,

(6.17)

with the lower indices labeling the dimension of the single-trace operators.
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With the above preparation the second factor of (6.10) at large N is

∫
DΣexp

[ 1

2λ

∫
dzΣ2 +

1

2

〈(∫
dzΣO

)2〉
0

]

=

∫
DΣexp

[1
λ

∫
dx3

√
g(Σ2Σ1 +Σ3/2Σ3/2)

+
1

2

〈(∫
dx3

√
g(O2Σ1 +Σ2O1 + 2O3/2Σ3/2)

)2〉
0

]

=

∫
DΣexp

[1
λ

∫
dV (Σ2Σ1 +Σ3/2Σ3/2)

+
1

2

∫ ∫
dV dV ′

(
Σ1(x)Σ1(x

′)
〈
O2(x)O2(x

′)
〉
0
+Σ2(x)Σ2(x

′)
〈
O1(x)O1(x

′)
〉
0

+ 4Σ3/2(x)Σ3/2(x
′)
〈
O3/2(x)O3/2(x

′)
〉
0

)]
,

(6.18)

where dV ≡ dx3
√
g, and we dropped vanishing terms in the two-point function to reach the

last line.
The integral in (6.10) then becomes gaussian, which integrates to give

Z

Z0
=

det
(
1+ 2λ〈O3/2O3/2〉0

)

{
det
(
λ
2 〈O2O2〉0

)
det
(
λ
2 〈O1O1〉0

)
det
(
1− (λ4 〈O2O2〉0)−1(λ4 〈O1O1〉0)−1

)} 1
2

.

(6.19)
At λ→ ∞, the change of the free energy compared to the free theory is

∆F = − log
Z

Z0
=− tr log

(
2〈O3/2O3/2〉0

)
+

1

2
tr log

(1
2
〈O2O2〉0

)

+
1

2
tr log

(1
2
〈O1O1〉0

)
.

(6.20)

The two-point functions 〈O1O1〉0 and 〈O2O2〉0 can be expanded in terms of scalar harmonics
on S3 [28]

〈O∆(x)O∆(x
′)〉0 =

∑

ℓm

g∆ℓ Y
∗
ℓm(x)Yℓm(x′) , (6.21)

where g∆ℓ is given by

g∆ℓ = R3−2∆π
3
2 23−∆Γ(32 −∆)

Γ(∆)

Γ(ℓ+∆)

(3 + ℓ−∆)
. (6.22)

Since the harmonics satisfy orthonormal relations, we have

∫ √
gd3y〈O2(x)O2(y)〉0〈O1(y)O1(x

′)〉0 =
∑

ℓm

g∆=2
ℓ g∆=1

ℓ Y ∗
ℓm(x)Yℓm(x′) . (6.23)

It is straightforward to see that g∆=2
ℓ g∆=1 is independent of ℓ, and therefore according

to [28], tr log〈O2O2〉0 + tr log〈O1O1〉0 does not contribute to ∆F .
Similarly, for fermionic two-point function, it is shown in [5] that tr log〈O3/2O3/2〉0 is

also zero. Therefore, in the IR there is no modification to the free energy given by the
double-trace deformation.
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When λ is small, one can apply perturbation theory to compute ∆F induced by the
deformation. As shown in [5] the change of free energy caused by the deformation is pro-
portional to the beta function of the deformation coupling. The deformation appearing
here is exactly marginal in the N → ∞ limit, which implies that the beta function of the
coupling constant is suppressed by 1/N . Thus, at small coupling it can also be seen that
the deformation does not affect the O(N0) free energy. In summary, although we have not
computed the free energy of the deformed theory for arbitrary λ, the vanishing of ∆F at
O(N0) in both the strong and weak coupling limits provides strong evidence that ∆F does
not receive O(N0) contribution from the supersymmetric double-trace deformation, which
is exactly marginal in the N → ∞ limit.

7 Conclusions

We have carried out a one loop test of the conjectured dualities between Konstein-Vasiliev
HS theories in AdS4 with S3 and S1

β × S2 boundaries. These theories are based on the
HS algebras hu(m;n|4), ho(m;n|4) and husp(m;n|4) which contain u(m) ⊕ u(n), o(m) ⊕
o(n) and usp(m) ⊕ usp(n) as bosonic subalgebras. Generically these HS algebras can be
interpreted as infinite dimensional supersymmetry algebras and they do not contain the
extended AdS4 superalgebra OSp(N|4) as a subalgebra. They do so only in the special

case of m = n = 2
N

2
−1 for even N or 2(N−1)/2 for odd N . Our results for the free

energies extend previous ones [6, 12, 13] by inclusion of fermionic bulk degrees of freedom.
In computing the one loop free energies of bosonic and fermionic HS fields in AdS4 with S3

boundary, we have adopted the modified spectral zeta function method suggested by [10],
thereby reproducing the one loop free energy for bosonic HS fields in a much simpler way
without the ambiguities encountered in [6, 12]. We also find that the total one loop free
energy of an infinite tower of bulk fermionic fields vanishes.

Matching the bulk fields with boundary operators suggests that the possible CFT duals
of Konstein-Vasiliev theories based on hu(m;n|4), ho(m;n|4) and husp(m;n|4), and subject
to HS symmetry preserving boundary conditions, are respectively the U(N), O(N) and
USp(N) singlet sectors of free scalars and free fermions vector representations of the bosonic
subalgebras conformally coupled to S3. We find that the free energy of the HS theory may
match with that of the free CFT only when the bulk theories are hu(m; 0|4), ho(m; 0|4),
husp(m; 0|4) Konstein-Vasiliev theories, and with identifications G−1

N = γ(N + ∆N) with
suitable integers ∆N . These are generalized type A theories with bosonic scalars on the
boundary and bosonic bulk HS fields containing even parity scalars. Thus, in particular, the
free energies for generalized type B models with fermions on the S3 boundary and bosonic
HS fields including odd parity scalar fields do not match. The mismatch in the case of
m = 0, n = 1 corresponding to the simplest type B model has already been noted in [6]
where the one loop free energy F (1) = −ζ(3)/(8π2) obtained in the bulk does not agree
with the free energy of Dirac fermions on S3 boundary. We have also calculated the free
energies of Konstein-Vasiliev theories in AdS4 with S1

β ×S2 boundary. In this case, we find
that the free energies of all three families of Konstein-Vasiliev theories match those of the
conjectured dual free CFTs.

Turning to the problem of mismatch in free energies of type B model and its conjectured
dual, one may have to take into account the issue of how to impose the O(N) invariance
condition on the CFT side. A natural way of implementing it is to gauge theO(N) symmetry
by means of vector gauge field with level k Chern-Simons kinetic term. This term breaks
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parity but the result for the free energy of the parity invariant model can be obtained in
a limit in which the CS gauge field decouples. It has been suggested in [6] that as the
fermions coupled to CS on the boundary give rise to a shift in the level k, it may not
be justified to obtain the result for parity-preserving case by a naive subtraction of CS
contribution from the free energy on the CFT side. However, one expects that this effect
becomes irrelevant in the decoupling limit in which k → ∞. In fact, we have examined the
procedure of decoupling CS in the large k limit by evaluating the S3 free energies for ABJ
model based on U(N)k × U(1)−k [29, 30] and a few N = 3 CS matter theories in which
the matter sector consists of fundamental hypermultiplets [31–33]. After subtracting the
contribution from pure CS term, we indeed obtain the free energies of free vector models.
Therefore, the puzzle of free energy mismatch in type B remains unresolved and its solution
requires deeper understanding of HS/vector model holography. In this context, it has been
suggested by [34] and explored further in [36] that the vector-like limit of ABJ model based
on U(N)k × U(M)−k is given by

N, k → ∞ with λ ≡ N

k
and M finite . (7.1)

In this limit, the ABJ theory effectively behaves like a N = 6 CS gauged vector model with
U(M) flavor symmetry [34]. Its bulk dual is conjectured to be the parity violating N = 6
U(M) gauged Vasiliev theory [34]. The parity violating angle θ0 is conjectured to be related
to the CFT ’t Hooft coupling by θ0 = πλ/2 [34]6.

Turning to the question of free energy in the parity invariant HS theory, we may first
keep λ finite, and consider the limit λ→ 0 that is required for the parity invariant limit at
the end7. Different from the parity preserving HS theories, in the N = 6 parity violating
HS theory a mixed boundary condition needs to be imposed on the bulk U(1) gauge field in
order to preserve the N = 6 supersymmetry [34]. The one loop determinant of bulk U(1)
gauge field with mixed boundary condition should contain a logN term [35]. It was argued
in [36] that the logN term can be fully captured by the 1/N correction to the anomalous
dimension of the spin-0 ghost with ∆− boundary condition. This correction has not been
computed on the bulk side. However, with the assumption that it is non-vanishing and
parametrized by an undetermined constant, the resulting bulk one loop free energy has
been computed in [36]. Comparing this result with the free energy of ABJ theory in the
vector-like limit (7.1), with the free energy of pure U(M) CS subtracted, the matching of
the logN terms present in the free energies on both sides leads to the identification [36]

GN =
γ

N

πλ

sin(πλ)
, (7.2)

where γ is an undetermined constant. On the other hand, an exact expression for GN

has been obtained from correlation function for two stress tensors on the CFT side in [37].
Comparing the relevant terms in these expressions for GN one deduces that γ = 2/π.

6Besides the Newton constant which is small in the limit described above, there is also a bulk ’t Hooft
coupling g2bulkM ∼ M/N ≪ 1. String theory emerges when M/N ∼ 1. Due to strong interactions, the
HS particles form U(M) singlet states which are described by the color neutral string states. Since the M
theory circle R11 ∼ (M/k5)1/6 shrinks and

√
α′/RAdS ∼ (k/M)1/4 → ∞, this is type IIA string in the high

energy limit. The N = 6 parity violating U(M) gauged Vasiliev theory can be perceived as a deconfinement
phase of type IIA string when M/N ≪ 1, in which the string states fragment into HS particles colored under
U(M) [34].

7There are subtleties regarding the λ → 0 limit having to do with the subtraction of the free energy
coming from the CS term, which may correspond to subtraction of an open string sector in the bulk [34].
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Assuming the stated value of γ, in the limit λ → 0, required for obtaining the parity
invariant HS theory, one finds the relation GN = 2/(Nπ) which differs from the one that
appears in the HS/free vector model holography by a factor of π. This is due to the fact that,

while we assume that F
(0)
bulk = F

(0)
CFT in the HS/free vector model holography, the example of

HS/ABJ holography seems to suggest that F
(0)
bulk = F

(0)
CFT/γ. The above approach may seem

to resolve the free energy problem in type B model, however a more rigorous computation of
the one loop free energy of bulk U(1) gauge field with mixed boundary condition is needed
to justify this value of γ. Furthermore, the beyond logN dependence, the terms of higher
order in 1/N have not been compared in the matching of the free energies. These issues
clearly deserves further study.

Another interesting future direction is to consider HS/free matrix model holography.
In this case, the corresponding bulk HS theory contains infinitely many massive HS fields
in addition to the usual massless ones. Recently, a preliminary one loop test of HS/free
matrix model holography was carried out in [10]. A dual pair considered in [10] consists
of a free scalar field, namely the bosonic singleton Rac, in the adjoint representation of
SU(N) and a HS theory in AdS4 whose spectrum can be constructed from the two, three
and four-fold tensor products of the Rac. The bulk fields are dual to the single-trace of
product of multiple Rac’s. The one loop free energies of the bulk fields belonging to the
first few Regge trajectories were computed in [10]. The one loop free energy of the first
trajectory comprised of massless HS fields is equal to that of a real conformally coupled
scalar, however, such feature ceases to exist for higher trajectories. It is possible that after
summing over all trajectories the total bulk free energy may possess a nice property. But
such a difficult task has not been completed. It is also possible that supersymmetry may
provide simplifications, as we recall that in AdS5, the long multiplet of SU(2, 2|4) gives rise
to vanishing one loop free energy [19]. It should be noted that the matrix phase of ABJ
model based on U(N)k ×U(M)−k with M ∼ N has conserved HS currents emerging in the
limit λ → 0, which implies the presence of massless HS particles in the spectrum of type
IIA string. Thus, in the regime

M ∼ N , λ = N/k → 0 , (7.3)

the duality between IIA string on AdS4 × CP
3 and ABJ theory may provide an example

of HS/free matrix model duality [34] if the contribution from CS term in the CFT can be
simply subtracted. For the string theory interpretation of this limit, we refer the reader
to [38]. The point we wish to stress here is that there are two regimes of type IIA string
theory on AdS4 × CP

3 which remarkably give two different supersymmetric HS theories
one of which is expected to be dual to a vector model, and the other to a matrix model
on the boundary of AdS4, and that the puzzle we have encountered in the one loop test
of holography by computing the free energies in the case of vector model remains to be
investigated thoroughly in the case of matrix model.

A complete matching of the free energies on both sides requires the knowledge of F
(0)
bulk

which can only be computed from the full action for HS theory. There exists an action that
takes the form of a Chern-Simons action in a generalized spacetime of form M9 = X5 ×Z4

where Z4 is a twistor space with no boundary, and the spacetime M4 resides on an open
region of the boundary of X5 [11]. The action contains Lagrange multiplier master fields
but they do not propagate to produce unwanted degrees of freedom. What remains to be
done is to add suitable HS invariant deformations that reside on the boundary of M9, which
are highly restricted and for which candidates have been proposed [11], and to construct

24



a boundary action that resides on the boundary of asymptotically AdS4 spacetime M4

which has not been constructed so far. These are needed for obtaining the field equations
through an appropriate variational principle, and once they are constructed, the full action
can be quantized in a path integral approach and the Feynman rules can be derived, even
though the action does not have the traditional form consisting an infinite sum of Einstein-
Hilbert term and powers of curvature tensors and their derivatives. It remains to be seen
whether the result for the one loop free energy computed in this fashion agrees with that
obtained under the assumption that the quadratic action for the HS fluctuations around
AdS4 has the standard Fronsdal form with two derivatives. In particular, it would be
interesting to determine if the mismatch in the free energies encountered in the type B and
ordinary supersymmetric HS theories and their conjectured duals may find a resolution in
a computation based on the action discussed above.

Note Added: After this paper appeared on the arXiv, two related papers [39, 40]
appeared the following day, where the vanishing of the contribution from the bulk fermions
to the one loop free energy has also been shown. It is worth noting that the regularization
scheme we use for the individual spins is such that the subsequent sum over infinite tower of
higher spins is finite, unlike the method used in [39,40] where an additional regularization
is needed to perform this sum.
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A Comparison of ζ(∆,s)(z) with ζ̃(∆,s)(z)

In this section, we will show that the alternate spectral zeta function is physically equivalent
to the original spectral zeta in computing the one loop free energy of HS fields.

A.1 Bosonic case

For bosonic HS fields, the physical equivalence of alternate spectral zeta function and the
original spectral zeta function has been studied in [10] in the case of summing over all
integer spins. The crucial point is that for a given HS field labeled by (∆, s), the difference
between the alternate spectral zeta function and the original zeta function can be expressed
as a contour integral encircling β = 0 [10]

ζ̃B(∆,s)(z)− ζB(∆,s)(z) =
1

3

(
s+

1

2

)
ν2

[
1

6
ν2 −

(
s+

1

2

)2
]

(A.1)

=
z

2πi

∮
dβ

2 sinh3 β
2

β3

(
8

3β2
+

2

sinh2 β
2

− 1

3
+ 4∂2α

)
χ∆,s(β, α)

∣∣∣
α=0

+O(z2) .

It has been shown in [10] that upon summing over all integer spins, the contour integral
vanishes. We have also checked that this is also true for summing over all even spins or odd
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spins separately.

A.2 Fermionic case

For fermionic HS fields, we will elaborate on the physical equivalence of alternate spectral
zeta function and the original spectral zeta function which has not been studied elsewhere.
For a fermionic HS field labeled by (∆, s), the original spectral zeta function is given by [17]

ζF(∆,s)(z) =
2s+ 1

6

∫ ∞

0
du
u coth(πu)[u2 + (s+ 1

2)
2]

(u2 + ν2)z
, (A.2)

where ν = ∆− 3
2 in D = 4. Using the following identities

(s+
1

2
)[u2 + (s+

1

2
)2] =

(
u2

d

dα
− d3

dα3

)
sin[(s +

1

2
)α] |α=0 ,

1

(u2 + ν2)z
=

√
π

Γ(z)

∫ ∞

0
dβe−βν

( β
2u

)z− 1
2Jz−1/2(uβ) , (A.3)

one can recast the spectral zeta function as in (3.18). The alternate spectral zeta function
proposed in (3.20) can be computed exactly

ζ̃F(∆,s)(z) =(2s + 1)

(
1

32
− s(s+ 1)

24

)
1

Γ(2z)

∫ ∞

0
dββ2z−1e−νβ 1

sinh2 β
2

+
2s+ 1

16

1

Γ(2z)

∫ ∞

0
dββ2z−1e−νβ 1

sinh4 β
2

=
2s+ 1

24

[
ν
(
(2s + 1)2 − 4ν2

)
ζ(2z, ν) + 4ζ(2z − 3, ν)− 12νζ(2z − 2, ν)

+
(
12ν2 − 4s(s+ 1)− 1

)
ζ(2z − 1, ν)

]
,

(A.4)

from which we see that ζ̃F(∆,s)(0) matches ζF(∆,s)(0). The latter takes the form

ζF(∆,s)(0) =
s+ 1

2

6

[
ν4

2
− (s+

1

2
)2ν2

]
+

1

3
(2s + 1)

[
1

240
+

(s+ 1
2)

2

24

]
. (A.5)

It is easier to obtain this result of ζF(∆,s)(0) using (A.2) than (3.18). Next, we compute the

first derivative of ζ̃F(∆,s)(z) at z = 0, which is given by

ζ̃F ′
(∆,s)(0) =

2s + 1

12

[
ν
(
(2s + 1)2 − 4ν2

)
ζ ′(0, ν) + 4ζ ′(−3, ν)− 12νζ ′(−2, ν)

+(12ν2 − 4s(s+ 1)− 1)ζ ′(−1, ν)
]
. (A.6)

After some algebra, we obtain the difference between ζ̃F ′
(∆,s)(0) and ζ

F ′
(∆,s)(0)

ζ̃F ′
(∆,s)(0) − ζF ′

(∆,s)(0) = − 1

24
(2s+ 1)3ν2 +

2s + 1

9
ν4 . (A.7)

The technique involved in the calculation is analogous to the bosonic case, and we refer
readers to the appendix B of [10] for more details. This result can again be converted to a
contour integral of β circling β = 0

ζ̃F ′
(∆,s)(0)− ζF ′

(∆,s)(0) = 2πi

∮
dβ

2 sinh3 β
2

β3

( 32

3β2
+

2

sinh2 β
2

− 1

3
+ 4∂2α

)
χ∆,s(β, α) . (A.8)
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From (3.21), one can see that the total character of fermionic sector including the contri-
butions of all physical fermionic higher fields and their ghosts gives rise to an even function
of β which has vanishing contour integral. Therefore, we have shown that in computing the
one loop free energy of the whole fermionic sector, the alternate spectral zeta function is
physically equivalent to the original one.
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