
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Puncture initial data for black-hole binaries with high spins
and high boosts

Ian Ruchlin, James Healy, Carlos O. Lousto, and Yosef Zlochower
Phys. Rev. D 95, 024033 — Published 27 January 2017

DOI: 10.1103/PhysRevD.95.024033

http://dx.doi.org/10.1103/PhysRevD.95.024033


Puncture Initial Data for Black-Hole Binaries with High Spins and High Boosts

Ian Ruchlin, James Healy, Carlos O. Lousto, and Yosef Zlochower
Center for Computational Relativity and Gravitation,

School of Mathematical Sciences, Rochester Institute of Technology,
85 Lomb Memorial Drive, Rochester, New York 14623

We solve the Hamiltonian and momentum constraints of general relativity for two black-holes
with nearly extremal spins and relativistic boosts in the puncture formalism. We use a non-
conformally-flat ansatz with an attenuated superposition of two Lorentz-boosted, conformally-Kerr
or conformally-Schwarzschild 3-metrics and their corresponding extrinsic curvatures. We compare
evolutions of these data with the standard Bowen-York conformally-flat ansatz (technically limited
to intrinsic spins χ = S/M2

ADM = 0.928 and boosts P/MADM = 0.897), finding, typically, an order
of magnitude smaller burst of spurious radiation and agreement with inspiral and merger. As a first
case study, we evolve two equal-mass black-holes from rest with an initial separation of d = 12M
and spins χi = Si/m

2
i = 0.99, compute the waveforms produced by the collision, the energy and

angular momentum radiated, and the recoil of the final remnant black-hole. We find that the black-
hole trajectories curve at close separations, leading to the radiation of angular momentum. We also
study orbiting non-spinning and moderate-spin black-hole binaries and compare these with stan-
dard Bowen-York data. We find a substantial reduction in the non-physical initial burst of radiation
which leads to cleaner waveforms. Finally, we study the case of orbiting binary black hole systems
with spin magnitude χi = 0.95 in an aligned configuration and compare waveform and final remnant
results with those of the SXS collaboration [1], finding excellent agreement. This represent the first
moving punctures evolution of orbiting and spinning black holes exceeding the Bowen-York limit.
Finally, we study different choices of the initial lapse and lapse evolution equation in the moving
punctures approach to improve the accuracy and efficiency of the simulations.

PACS numbers: 04.25.dg, 04.25.Nx, 04.30.Db, 04.70.Bw

I. INTRODUCTION

The detection of gravitational waves from merging bi-
nary black holes [2, 3], as predicted by numerical rel-
ativity simulations [4–6], further highlights that general
relativity is central to the modern understanding of much
of astrophysics, from cosmological evolutions down to the
end-state of large stars. Crucial to this is the correctness
of the theory itself and the elucidation of its predictions
[7, 8]. While much can be done using analytic techniques,
one of the most interesting regimes—the merger-phase of
compact-object binaries—requires the use of large-scale
numerical relativity simulations [9, 10]. In order to evolve
these systems, one requires appropriate initial data that
allow for the simulation of binaries with astrophysically
realistic parameters. Perhaps most important and chal-
lenging of all, is the inclusion of large spins.

Highly spinning black-holes (BHs) are thought to be
common. For example, supermassive BHs with high in-
trinsic spins are fundamental to the contemporary un-
derstanding of active galaxies and galactic evolution, in
general. In units with c = 1 and G = 1, a BH’s spin mag-
nitude S (i.e., intrinsic angular momentum) is bounded
by its mass m, where the maximum dimensionless spin
is given by χ ≡ S/m2 = 1. While it is actually hard to
have an accurate measure of astrophysical BH spins, in
a few cases the spins have been measured [11] and some
were found to be near the maximal value. Since galactic
mergers are expected to lead to mergers of highly spin-
ning BHs, it is important to be able to simulate black-

hole binaries (BHBs) with high spins in order to model
the dynamics of these ubiquitous objects.

Spin can greatly affect the dynamics of merging BHBs.
Important spin-based effects include the hangup mecha-
nism [12], which delays or prompts the merger of the
binary according to the sign of the spin-orbit coupling;
the flip-flop of spins [13], which is due to a spin-spin
coupling effect capable of completely reversing the sign
of individual spins; and finally, highly spinning binaries
may recoil at thousands of km/s [14, 15] due to asym-
metrical emission of gravitational radiation induced by
the BH spins [16, 17]. These effects are maximized for
highly spinning BHs.

As a consequence of spin-orbit and spin-spin interac-
tions, high spins can have a dramatic effect on the grav-
itational waveform. For example, unlike low-spin bina-
ries, highly spinning binaries can radiate more than 11%
of their rest mass [18, 19], the majority of which em-
anates during the last moments of merger, down to the
formation of a final single spinning BH. Efforts to inter-
pret gravitational wave signals from such systems require
accurate model gravitational waveforms [20–24].

The moving punctures approach [5, 6] has proven to be
very effective in evolving BHBs with similar masses and
relatively small initial separations, as well as small mass
ratios [25] and large separations [26]. It is also effective
for more general multiple BH systems [27], hybrid BH-
neutron-star binaries [28], and gravitational collapse [29].
However, numerical simulations of highly spinning BHs
have proven to be very challenging. The most commonly
used initial data to evolve those binaries, which are based
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on the Bowen-York (BY) ansatz [30], use a conformally
flat 3-metric. This method has a fundamental spin upper
limit of χ = 0.928 [31, 32]. Even when relaxing the BY
ansatz (while retaining conformal flatness), the spin is
still bounded above by χ = 0.932 [33].

In order to exceed this limit and approach maximally
spinning BHs with χ = 1, one has to allow for a more
general 3-metric that captures the non-conformally flat
aspects of the Kerr geometry. Dain showed [34] that it
is possible to find solutions to the initial value problem
representing a pair of Kerr-like BHs. This proposal was
implemented for the case of thin-sandwich initial data
[35–37] with excision of the BH interiors, and produces
stable evolutions of orbiting BHBs with χ ∼ 0.97 [18, 38],
and more recently χ ∼ 0.998 [39, 40]. Dain’s method was
also tested for the case of head-on collisions (from rest)
of spinning BHs using the moving punctures approach,
which does not employ excision. These are compared to
the BY data with spins up to χ = 0.90 [41].

In this paper we revisit, and numerically implement,
the problem of finding solutions to the puncture ini-
tial value problem representing two nearly-extremal-spin
BHs, and the subsequent evolution using the moving
punctures approach—the most widespread method to
evolve BHBs, implemented in the open source Einstein-
Toolkit [42–45].

To solve for these new data, we construct a superpo-
sition of two conformally Kerr 3-metrics with the cor-
responding superposition of Kerr extrinsic curvatures.
Note that we do not use the Kerr-Schild slice [46], but
rather use Boyer-Lindquist slice, which is amenable for
puncture evolution. To regularize the problem, the su-
perposition is such that very close to each BH, the metric
and extrinsic curvature are exactly Kerr [47], or exactly
flat (through attenuation). We then simultaneously solve
the Hamiltonian and momentum constraints for an over-
all conformal factor for the metric and nonsingular cor-
rection to the extrinsic curvature using a modification of
the TwoPunctures [48] spectral initial data solver. We
refer to this extension as HIghly SPinning Initial Data
(HiSpID, pronounced “high speed”).

We evolve these data sets for black-hole binaries from
rest and find that the spurious initial radiation is signifi-
cantly reduced compared to BY initial data (for χ ≤ 0.9).
Ideally, one would want to use data that had incorpo-
rated the exact radiation content of a binary inspiral-
ing from infinity (for post-Newtonian inspired radiation
content into the initial data ansatz, see for example [49–
52]), but failing this, one at least wants to minimize the
non-physical radiation. Furthermore, it is this spurious
radiation (or more precisely, the part of this radiation
that is absorbed by the black holes) that prevents con-
formally flat data from modeling black holes with spins
larger than ∼ 0.93 (see, e.g., Fig. 3 below). Thus by using
the HiSpID data, we get both more accurate waveforms
for moderate spin binaries, and can go beyond the BY
limit to at least χ = 0.99, which has not been possible
before for moving punctures codes.

We also consider Lorentz boosted Schwarzschild BHs
in a quasicircular orbital configuration. Here too, it is
important to minimize the spurious radiation content of
the initial data in order to achieve a very accurate gravi-
tational waveform computation. We again compare with
the new data with equivalent BY binaries. BY binaries
are also limited in the maximum boost the BHs can have
(P/MADM = 0.897, see Ref. [53]), while the HiSpID data
can be used to boost BH in excess of P/MADM = 4 [54].

Finally we address the extremely important problem
of modeling highly-spinning black holes in quasicircular
orbits. For moderate spins (χ . 0.9), we find that the
HiSpID data reproduces the dynamics seen in BY bina-
ries, but again, with substantially lower spurious radi-
ation. BY data cannot model highly-spinning binaries.
We thus compare our simulation of a χ = 0.95 quasicir-
cular binary with those produced by the SXS collabora-
tion [1, 18, 55]. We find excellent agreement between the
two methods. The moving punctures approach is used
in the open source EinsteinToolkit and by many groups
worldwide. The HiSpID approach thus opens up the
possibility for numerical evolutions of highly spinning bi-
naries by numerical relativists worldwide.

This paper is organized as follows. In Sec. II we
present the formalism to solve for the initial data. We
choose the standard transverse-traceless version since it
provides the simplest set of equations and allows one to
achieve both a reduction of the spurious initial radiation
content and overcome the technical limits of the con-
formally flat initial data reaching highly spinning BHs
and highly relativistic velocities. We describe the ex-
plicit conformal decomposition and attenuation functions
used to regularize the superposition of boosted conformal
Kerr/Schwarzschild BHs in the puncture approach.

In Sec. III we describe the numerical techniques to
solve for the initial data as an extension of those used
to solve the Hamiltonian constraint with the TwoPunc-
tures code. We also provide a summary of the evolution
techniques used in the regime of parameters previously
unexplored with the moving punctures approach.

In Sec. IV A we show the convergence with spectral
collocation points of the spinning initial data to levels
of accuracy acceptable for evolution. We compare wave-
forms from the new HiSpID initial data to those of the
standard spinning BY solution for χ = 0.90. We then
evolve highly spinning BHs with χ = 0.99 from rest and
discuss the results for the radiated energy and momenta
as well as the horizon measures of mass and spin for the
individual and final BHs.

In Sec. IV B we show the convergence with spectral col-
location points of the initial data for nonspinning Lorentz
boosted BHs. We compare waveforms for our new initial
data with the standard boosted BY solution in quasicir-
cular orbit to highlight the benefits of the lower initial
spurious radiation of our data.

In Sec. IV C We pursue the study of more generic spin-
ning and orbiting black-hole-binary systems, including
binaries with intrinsic spin-magnitude χi = 0.95. We
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perform two numerical evolutions at different initial sep-
arations and compare with those performed by the SXS
collaboration finding excellent agreement for both the
waveforms and the final remnant.

In the Discussion Sec. V we summarize the results and
consider the next series of developments for initial data
and evolution of BHBs.

In the Appendices we study how the initial choice of
the lapse and its subsequent gauge evolution [56] affects
the accuracy of the simulation at the typical marginal
resolutions used to evolve highly spinning BHs, orbiting
BHs, and in high energy head-on BH collisions. We also
give the explicit definitions used to compute the ADM
mass and momenta of our initial data.

Throughout this paper we use geometric units where
G = c = 1. The vacuum Einstein equations are scale
invariant in the sense that if we rescale all masses, times,
distances, momenta, etc., by the appropriate factor, we
obtain an equivalent solution. In the case of a black hole
binary, this amounts to rescaling the total mass while
keeping the mass ratio fixed, keeping the dimensionless
spins fixed, and rescaling the momenta by the same fac-
tor as the masses. When reporting quantities with di-
mension, we rescale each by an appropriate power of an
arbitrary positive constant M (which has dimensions of
mass).

II. INITIAL DATA

In this section, we summarize the initial data formal-
ism used to describe BHBs with spin magnitudes up to
near maximal. First, we review the conformal decom-
position of general relativity’s field equations into a set
of constraint and evolution equations. Then, we discuss
methods for generating the necessary background met-
ric and extrinsic curvature and provide detailed expres-
sions for these in simple cases. Finally, we demonstrate
methods for ameliorating effects of singularities at the
punctures that allow us to find solutions to the ellipti-
cal constraint equations using numerical pseudo-spectral
methods.

A. Constraints

In the Cauchy problem of general relativity, the four-
dimensional pseudo-Riemannian spacetime manifold is
foliated into three-dimensional spatial hypersurfaces Σt,
parametrized as surfaces of constant time function t.
Vacuum solutions to general relativity’s field equations
on the initial slice Σ0 = Σt=0 must satisfy [57]

H ≡ R+K2 −KijK
ij = 0 , (1)

Mi ≡ Dj(K
ij − γijK) = 0 , (2)

known, respectively, as the Hamiltonian and momentum
constraints. Latin indices represent spatial degrees of

freedom. Here, γij is the induced spatial metric tensor
on Σ0 with the associated covariant derivative Di, and
R = γijRij is the trace of the spatial Ricci tensor Rij .
The extrinsic curvature tensor of Σ0 and its trace (the
mean curvature) are denoted by Kij and K = γijKij ,
respectively.

In the conformal transverse-traceless (CTT) formal-
ism [35–37, 58], the constraints (1) and (2) become a set
of elliptic differential equations for a conformal factor, ψ,
and an auxiliary vector, bi.

The conformal factor relates the physical metric γij of
the initial slice to a conformally related metric γ̃ij by

γij = ψ4γ̃ij .

All quantities with a tilde are associated with γ̃ij . The
conformal factor ψ is a scalar function that is everywhere
positive. The extrinsic curvature tensor is split into trace
and trace-free parts

Kij = Aij +
1

3
γijK . (3)

It is convenient to adopt the conformal rescaling

Aij = ψ−2Ãij , (4)

while leaving the mean curvature conformally invariant,
K = K̃. CTT splits Ãij into a symmetric, trace-free part
and a longitudinal part:

Ãij = M̃ij +
1

σ̃
(L̃b)ij (5)

where σ̃ is a positive definite scalar and the longitudinal
vector derivative acting on bi is defined by

(L̃b)ij ≡ D̃ibj + D̃jbi −
2

3
γ̃ijD̃kb

k .

In the CTT formalism, the freely specifiable degrees of
freedom are contained in γ̃ij , M̃ij , K, and σ̃. In the case
with no boost, the Kerr metric admits spatial hypersur-
faces satisfying the maximal slicing condition K = 0 [34].
We will adopt non-trivial K for the boosted case (see
Sec. II B 2). For simplicity, we set σ̃ = 1 everywhere.
With these choices, the constraint equations (1) and (2)
become

D̃2ψ − ψR̃

8
− ψ5K2

12
+
ÃijÃ

ij

8ψ7
= 0 , (6)

D̃jÃ
ij − 2

3
ψ6γ̃ijD̃jK = 0 , (7)

where D̃2 ≡ γ̃ijD̃iD̃j .

B. Background Metric

To calculate the spatial metric and extrinsic curvature
associated with a boosted black hole of mass m, linear
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3-momentum P i, and spin Si, we Lorentz boost the 4-
dimensional Kerr (Schwarzschild in the case were S = 0)
line element in Cartesian coordinates (we discuss spe-
cific coordinate systems below). We then extract from
the transformed metric the spatial metric γ∗ij , the lapse

function α∗, and the shift vector βi∗ (a super/subscript ∗
indicates that this is a single black hole quantity). We
then obtain the extrinsic curvature K∗ij on Σ0 using the
evolution equation for the spatial metric

K∗ij =
1

2α∗
(
D∗i β

∗
j +D∗jβ

∗
i − ∂tγ∗ij

)
. (8)

CTT separates this into trace and trace-free parts

K∗ij = ψ−2∗ Ã∗ij +
1

3
ψ4
∗γ̃
∗
ijK

∗ ,

where K∗ = γij∗ K
∗
ij . When factoring γij into γij = ψ4γ̃ij ,

any choice of positive function ψ will lead to a valid el-
liptical constraint system outside the black holes. In the
puncture approach [59], one chooses the conformal fac-
tor ψ so that the resulting conformally related metric is
non-singular. This can be accomplished in several ways.
For example, one can choose to include only the leading
order contributions to the background conformal factor,

i.e., ψ∗ = 1 +
√
m2−a2
2r , where r is the quasi-isotropic

radius, or more complete expressions, as detailed in the
next section.

Our black hole binary initial data is constructed using
a superposition of metric and extrinsic curvature terms
derived from the above expressions. To distinguish con-
tributions for the two black holes, we replace the ∗ su-
per/subscript above with a + or −.

The trace-free part of the extrinsic curvature is split
into background terms M̃ij and a longitudinal correction
term obtained from a vector bi. Here

M̃ij = Ã
(+)
ij + Ã

(−)
ij , (9)

where Ã
(+)
ij and Ã

(−)
ij are the trace-free part of the

conformal extrinsic curvature of a single boosted Kerr
(Schwarzschild) black holes located at ~r = ~r+ and ~r = ~r−.
Note that the trace-free part of the single boosted black
hole extrinsic curvature will have a small trace with re-
spect to a metric constructed by superimposing two dif-
ferent background metrics. We remove this extra trace
term prior to solving the initial data equations, i.e.,
M̃ij → M̃ij − 1

3 γ̃ij γ̃
lmM̃lm (where γ̃ij is the superim-

posed background metric). The complete trace-free part
of the extrinsic curvature for the superimposed spacetime
is given by Eq. (5).

In practice, we do not derive analytical expressions for
γij and Kij for all possible boosts and spin orientations.
Rather, we evaluate the unboosted Kerr metric and its
first and second derivatives pointwise, and then apply a
boost and rotations to the metric (and the corresponding
transformation of the derivatives of the metric) and then
algebraically solve for γij and Kij at that point. In the

subsections below, we provide explicit formulas for these
quantities for the case of non-boosted Kerr and boosted
Schwarzschild.

1. Conformal Kerr

In spherical quasi-isotropic coordinates, the Kerr con-
formal spatial line element is [34, 60]

d˜̀2 = γ̃ij dxi dxj = dr2 + r2 dΩ2 + a2hr4 sin4(θ) dϕ2 ,

where m is the puncture mass, a is the angular momen-
tum per unit mass, r is the quasi-isotropic radial coordi-
nate, dΩ is the unit sphere line element, and [41]

r̄ = r +m+
m2 − a2

4r
,

Σ = r̄2 + a2 cos2(θ) ,

σ =
2mr̄

Σ
,

h =
1 + σ

Σr2
.

The non-vanishing component of the shift vector is

βϕ = − 2amr

(r2 + a2)
2 − a2 (r2 − 2mr + a2) sin2(θ)

.

The non-vanishing components of the conformal ex-
trinsic curvature associated with this metric are given
by [34, 60, 61]

Ãrϕ =
HE sin2(θ)

r2
,

Ãθϕ =
HF sin(θ)

r
,

with the definitions

e−2q =
Σ

r̄2 + a2
[
1 + σ sin2(θ)

] ,
HE = e−q

am

Σ2

[(
r̄2 − a2

)
Σ + 2r̄2

(
r̄2 + a2

)]
,

HF = e−q
a3mr̄

2rΣ2

(
m2 − a2 − 4r2

)
cos(θ) sin2(θ) .

The Kerr metric in quasi-isotropic coordinates admits
spatial hypersurfaces satisfying the maximal slicing con-
dition K = 0 [34].

The quasi-isotropic Kerr conformal factor is

ψQI =

(
Σ

r2

)1/4

. (10)

Ultimately, only the asymptotic behavior is important,
so sometimes just the lowest order terms of ψQI are
used [41]:

ψQI ≈ 1 +

√
m2 − a2

2r
.
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Near the puncture

R̃ = − 96a2

(m2 − a2)2
+O(r2)

and

D̃2ψQI = − 6a2

(m2 − a2)3/2r
− 12ma2

(m2 − a2)5/2
+O(r) .

It follows that

D̃2ψQI −
1

8
ψQIR̃ = −288m2a2r sin2(θ)

(m2 − a2)7/2
+O(r2) . (11)

All fields are transformed to a Cartesian basis, with
coordinates related by

x = r sin(θ) cos(ϕ) ,

y = r sin(θ) sin(ϕ) , (12)

z = r cos(θ) .

The conformal spatial metric takes the form

γ̃ij = δij + a2hvij ,

where δij is the Kronecker delta and

vij =

 y2 −xy 0
−xy x2 0

0 0 0

 .

The non-vanishing Cartesian components of the trace-
free conformal extrinsic curvature tensor are

Ãxx = −Ãyy = −2H1 sin(ϕ) cos(ϕ)

r3
,

Ãxy =
H1 cos(2θ)

r3
,

Ãxz =
H2 sin(θ) sin(ϕ)

r3
,

Ãyz = −H2 sin(θ) cos(ϕ)

r3
,

where

H1 = HF cos(θ) +HE sin2(θ) ,

H2 = HF −HE cos(θ) .

At the puncture, these functions have series expansion

H1 ∼ 3am sin2(θ) +O(r2) ,

H2 ∼ −3am cos(θ) +O(r2) .

Thus, in Cartesian coordinates Ãij ∼ O
(
1/r3

)
at the

puncture. At this point, the spin is parallel to the z-axis.
In our approach, we specify the direction and magnitude

of the angular momentum ~S of each black hole. For a
given black hole, this means that we choose the Kerr

parameter a such that a = |~S|/m, and rotate all fields so

that the spin points along ~S.

2. Conformal Lorentz Boosted Schwarzschild

To describe a nonspinning BH with arbitrary linear
momentum P i, we begin with the Schwarzschild line el-
ement in isotropic Cartesian coordinates (t0, x0, y0, z0):

ds2 = −α2
0 dt20 + ψ4

0

(
dx20 + dy20 + dz20

)
,

where

α0 =
1− m

2r0

1 + m
2r0

is the lapse,

ψ0 = 1 +
m

2r0

is the puncture conformal factor, and r0 =√
x20 + y20 + z20 . Next, we perform a Lorentz trans-

formation in the y0-direction, with the associated change
of variables

t0 = γ(t− vy) ,

x0 = x ,

y0 = γ(y − vt) ,
z0 = z ,

where (t, x, y, z) are the coordinates of the boosted ref-
erence frame, v is the magnitude of the local velocity
vector

vi =
P i√

m2 + P jPj
,

and γ = (1− v2)−1/2. Afterward, all of the fields are ro-
tated such that they are oriented in the desired direction,
momentum aligned with P i.

From the boosted spacetime metric, we extract the
lapse function, shift vector, and spatial metric. The only
non-vanishing component of the shift is

βy = −mv(m2 + 6mr + 16r2)(m3 + 6m2r + 8mr2 + 16r3)

B2
,

with

B =
√

(m+ 2r)6 − 16(m− 2r)2r4v2 .

On the t0 = 0 hypersurface, r0 → r =
√
x2 + y2γ2 + z2

and the conformal factor is

ψB = 1 +
m

2r

The conformal spatial line element on Σ0 is

d˜̀2 = dx2 + γ2
[
1− 16(m− 2r)2r4v2

(m+ 2r)6

]
dy2 + dz2 .
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Near to the puncture

R̃ =
32v2

[
7 + cos(2θ) + 2 sin2(θ) cos(2ϕ)

]
r2

m4
+O(r3)

(13)
and

D̃2ψB =
8v2

[
cos2(θ) + sin2(θ) cos2(ϕ)

]
r

m3
+O(r2) , (14)

with coordinates θ and ϕ defined by (12).
The evolution equation for the spatial metric gives us

an expression for the extrinsic curvature

Kij =
1

2α
(Diβj +Djβi − ∂tγij) .

The mean curvature is

K =
32γmv

[
(m+ 2r)7 − 32(m− 2r)2(m− r)r4v2

]
r2y

(m+ 2r)3B3
.

The non-vanishing components of the trace-free, confor-
mal extrinsic curvature tensor are

Ãxx = Ãzz =
γmv(m− 4r)(m+ 2r)3BCy

3Dr4
,

Ãxy = −γmv(m− 4r)(m+ 2r)3x

2Br4
,

Ãyy = −2γ3mv(m− 4r)Cy

3(m+ 2r)3Br4
,

Ãyz = −γmv(m− 4r)(m+ 2r)3z

2Br4
,

with

C = (m+ 2r)6 − 8(m− 2r)2r4v2 ,

D = (m+ 2r)12 − 32(m− 2r)2r4(m+ 2r)6v2

+ 256(m− 2r)4r8v4 .

We see in Cartesian coordinates that Ãij ∼ O
(
1/r2

)
and

K ∼ O(r3) at the puncture.

3. Kerr with arbitrary spin orientations and boosts

In this section we describe how we construct the back-
ground metric (γ̃ij) and extrinsic curvature (K and M̃ij)
for binaries with generic spin orientations and arbitrary
momenta. Due to the complexity of the expressions, we
do not calculate the extrinsic curvature in closed form.
Rather, we start by calculating the Kerr 4-metric in
various gauges and then perform rotations and boosts.
Specifically, we start with the Kerr metric in quasi-
isotropic coordinates. In the text below we will refer to
quasi-isotropic coordinates as QI coordinates. QI coor-
dinates have the unfortunate property that the horizon
coordinate size goes to zero as the spin becomes maxi-
mal. We ameliorate this problem by introducing a radial

fisheye [62] transformation that increases the horizon’s
radius. A fisheye transformation has the general form

R = rf(r), (15)

where R is the new radial coordinate, r is the original ra-
dial coordinate, and if f(r) can be expanded as an even
power series in r, then the transformation is guaranteed
to be C∞ (this is sufficient, but not necessary). These
types of coordinates have a long history of use for imple-
menting fixed-mesh-refinement within unigrid codes (see,
e.g., [5, 62–64]). When studying evolutions of single black
holes, Liu, Etienne, and Shapiro [65], found a fisheye-like
coordinate system, which we will refer to as LES coor-
dinates here, that has a finite horizon coordinate radius
for all values of the spin (the metric is, however, singular
for maximal spin). The LES radius can be obtained from
the implicit relationship

RLES

(
1 +

r+
4RLES

)2

= rQI

(
1 +

m+ a

2rQI

)(
1 +

m− a
2rQI

)
,

(16)
where RLES is the LES radius, rQI is the quasi-isotropic

radius, and r+ = m+
√
m2 − a2.

In addition to the quasi-isotropic and LES coordinates,
we also consider another radial transformation of the
quasi-isotropic radius that allows us to fine-tune the hori-
zon radius. These coordinates, which we will refer to as
FE (for fisheye) coordinates are obtained from RFE =
rQI[1−A exp(−r2QI/s

2)], where A and s are parameters.
These coordinates have the property that at large rQI,
RFE ≈ rQI, and at small rQI, dRFE = (1 − A)drQI. Fi-
nally, for brevity, we will refer to the standard quasi-
isotropic coordinates as QI coordinates here.

Our procedure is as follows. We start with the Kerr
metric in QI, LES, or FE coordinates and then transform
to Cartesian coordinates defined by x = r sin θ cosφ, etc.,
where (r, θ, φ) are the QI, LES, or FE coordinates. If
the desired spin direction is not aligned with the z, we
perform a rotation about the center of the BH to align the
spin with the desired direction. We then perform a boost
on the resulting metric. In addition to the metric, we also
calculate its first and second derivatives by applying the
above rotation and boost to the known derivatives of the
Kerr metric in the QI, LES, or FE coordinates.

Given the 4-metric and its derivatives in the desired
rotated and boosted coordinates at a given point, we cal-
culate the 3-metric and extrinsic curvature via Eq. (8).
There is a complication here because in all cases, the
lapse goes to zero on the horizon. This leads to severe
roundoff issues in double precision calculation. To ame-
liorate this, we calculate the metric and its derivatives to
high precision using the MPFR C++[66] wrapper for the
MPFR[67] high precision library. Do to the expense of
using these libraries, we only use them in a small volume
around the horizon where high precision is needed.

Next we extract a conformal factor ψ∗ so that γ̃∗ij has
unit determinant. We then calculate the first and second
derivatives of ψ∗ and the metric γ̃∗ij , as well as the first
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derivative of the trace-free part of the conformal extrinsic
curvature Ã∗ij and the trace K.

We then perform a series of optional modifications to
the metric. First, we can attenuate the metric to a flat
metric far from the BH. For this, we use a simple atten-
uation function

γ̃ij − δij → F (r)(γ̃ij − δij), (17)

ψ∗ − 1→ F (r)(ψ∗ − 1), (18)

K∗ → F (r)K∗, (19)

F (r) = e−(r/s)
4

, (20)

where r is the coordinate distance to the BH and the
parameter s is of order 20-100 (note that we do not at-

tenuate Ãij). When applying this attenuation, we ensure
that all derivatives are modified such that they are con-
sistent with the attenuated functions.

This attenuation ensures that the metric is flat at in-
finity. If it is not applied, the coordinate components
of the resulting metric will have an angular dependent
monopole term, i.e., the fall-off of the diagonal com-
ponents will be of the form 1 + f(θ, φ)/r + · · · , where
f(θ, φ) is a non-trivial function rather than MADM/2. As
we would expect that the leading-order effects of an ex-
tended body on distant geodesics to be spherically sym-
metric, this choice of initial data leads a coordinate sys-
tem that obscures this symmetry. More importantly, the
angular dependence of the background metric at infinity
will induce logarithmic terms in the corrections functions,
which will reduce the order of convergence of the solver.

One drawback of this construction is that by avoiding
the derivation of explicit analytical forms for the met-
ric and extrinsic curvature, a process for removing the
singularities in a manner consistent with the constraint
equations is not apparent. In this paper, we address this
issue by modifying the elliptical constraint equations in-
side the puncture, as described in the next section.

C. Punctures

We use an extended version TwoPunctures [48]
thorn to generate puncture initial data for black hole bi-
nary simulations.

If the constraint equations with zero right-hand-side
[Eqs. (1) and (2)] are solved everywhere, then the result-
ing spacetime would have zero ADM mass, linear, and
angular momentum. In the puncture approach, this is
circumvented by finding singular solutions to the con-
straint equations where the source terms are δ functions
centered on the two black holes.

In puncture approach to the conformal transverse-
traceless (CTT) formalism [35–37, 58], we decompose the
conformal factor into singular parts plus a finite correc-
tion, u,

ψ = ψ(+) + ψ(−) − 1 + u , (21)

where ψ(±) are the conformal factors associated with the
individual, isolated black holes located at positions la-

beled as (+) and (−), with spatial metric tensors γ̃
(±)
ij .

Similarly, we decompose Ãij into a sum of singular

terms (here denoted by M̃ij) and a non-singular correc-

tion (L̃b)ij .
In addition to the required singular longitudinal com-

ponent of M̃ij , there are nonsingular longitudinal compo-
nents as well. These extra nonsingular components are
removed by the inclusion of (L̃b)ij (see, e.g., [58, 68]).

In order to deal with the puncture singularities, we
introduce modifications (in the form of attenuation func-
tions) to both the background metric and mean curva-
ture, as well as modifications to the singular source terms
inside the horizons themselves. The first type of modi-
fication is consistent with the Einstein constraints equa-
tions everywhere and has the form,

γ̃ij = δij + f(+)

(
γ̃
(+)
ij − δij

)
+ f(−)

(
γ̃
(−)
ij − δij

)
,

(22)

M̃ij = Ã
(+)
ij + Ã

(−)
ij , (23)

K = f(+)K(+) + f(−)K(−) , (24)

Ψ = ψ(+) + ψ(−) − 1 , (25)

where

f(±) = 1− e−(r(∓)/ω(±))
p

,

and r(±) is the coordinate distance from a field point
to the location of puncture (±). The parameters ω(±)
control the steepness of the attenuation and p controls
how many derivatives of the attenuated function are zero
at the origin. We explain how this can be effective at
removing certain singularities, and its limitations, below.

This type of attenuation, by itself is sufficient for su-
perimposed boosted Schwarzschild BHs or superimposed
unboosted Kerr BHs. However, for the more general case
we found that modifying the equations themselves in-
side the BHs was needed for satisfactory convergence of
the constraints outside the horizons. This modification,
which also comes in the form of a smooth attenuation
function, has the effect of introducing constraint viola-
tions inside the horizons. The constraint violations in-
duced by these modifications are not necessarily small,
nor does the resulting fictitious matter have to obey any
of the standard energy conditions. Fortunately, as shown
in [69, 70], constraint violating modes for standard BSSN
and Z4 systems are causal, i.e., they must stay inside the
horizons. Hence the resulting numerical spacetime will be
a valid solution of the vacuum Einstein equations outside
the horizons.

The modified Hamiltonian and momentum constraint
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equations for the correction functions u and bi are

D̃2u− gψR̃
8
− gψ

5K2

12
+ g

ÃijÃ
ij

8ψ7
+ gD̃2

(
ψ(+) + ψ(−)

)
= 0 ,

(26a)

∆̃Lb
i + gD̃jM̃

ij − g 2

3
ψ6γ̃ijD̃jK = 0 ,

(26b)

where ∆̃Lb
i ≡ D̃j(L̃b)ij is the vector Laplacian and R̃ is

the scalar curvature associated with γ̃ij , and where the
attenuation function g takes the form

g = g+ × g− ,

g± =


1 if r± > rmax

0 if r± < rmin

G(r±) otherwise,

,

G(r±) =
1

2

[
1 + tanh

(
tan

[
π

2

(
−1 + 2

r± − rmin

rmax − rmin

)])]
,

and the parameters rmin < rmax are chosen to be within
the horizon. In addition, we can optionally attenuate the
background metric itself when calculating the D̃2u and
∆̃Lb

i. To do this we take

γ̃ij → δij + g(r)(γ̃ij − δij), (27)

Γ̃kij → g(r)Γ̃kij . (28)

Note that the modified Γ̃kij is not consistent with the
modified γ̃ij . There is no advantage to making them
consistent because the constraints will be violated in the
attenuation zone regardless. By modifying the metric in
this way, we can ensure that the elliptical system has
exactly the form of the flat space Poisson system in the
vicinity of the punctures.

To understand the limitations of using the f atten-
uation alone, consider the Eqs. (26a) and (26b) at the
location of puncture + assuming the background contri-
butions of puncture − are attenuated to zero in the vicin-
ity of puncture +. Since the background fields γ̃ij = γ̃+ij ,

ψ = ψ+, K = K+, M̃ij = M̃+
ij obeys the constraints ex-

actly, these equations reduce to (note ψ− = 0, M−ij = 0)

D̃2u− uR̃

8
−
ψ5
+K

2

12

((
1 +

u

ψ+

)5

− 1

)

+
M̃ijM̃

ij

8ψ7
+

((
1

1 + u/ψ+

)7

− 1

)

+
ÃijÃ

ij − M̃ijM̃
ij

8ψ7
+

((
1

1 + u/ψ+

)7
)

= 0 ,

∆̃Lb
i − 2

3
ψ6
+((1 + u/ψ+)6 − 1)γ̃ijD̃jK = 0 .

Since ψ+ is singular at puncture +, these equations are

non-singular on the puncture only if R̃ is finite and K
goes to zero sufficiently rapidly. The latter condition,

in particular cannot always be guaranteed. In addition,
the operators D̃2 and ∆̃L themselves need to be nonsin-
gular on the puncture. Hence the use of the g attenu-
ation which explicitly modifies these terms to guarantee
smooth behavior.

In addition, the form of the superimposed boosted Kerr
background itself induces logarithmic terms in the 1/r
expansion of u [71]. While u may still be formally fi-
nite, these logarithmic terms reduce the order of con-
vergence of spectral expansions. This can be overcome
by attenuating the metric at large distances so that it
is conformally flat. Note that modifying the background
spacetime far away only guarantees that the lowest order
(in 1/r) singular terms are removed. Higher-order terms
can still be present, in general.

III. NUMERICAL TECHNIQUES

A. Initial data solver with Spectral Methods

The standard version of the TwoPunctures
thorn [48] generates conformally flat (γ̃ij = δij) initial
data via a spectral expansion of the Hamiltonian con-
straint on a compactified collocation point grid. Here we
extend this to include both a non-flat background metric
and a vector Poisson equation for the bi in Eq. (26).

This is achieved by extending TwoPunctures to
solve for u and bi simultaneously at each collocation
point. The solver handles the nonlinearities in the con-
straint equations by using a linearized Newton-Raphson
method.

The solutions are required to obey the fall-off condi-
tions

lim
r→∞

u = 0 and lim
r→∞

bi = 0 ,

which are the only physical boundary conditions for the
problem. These are enforced numerically by noting that
the TwoPunctures compactified coordinate A obeys
A→ 1 as r →∞, thus allowing the asymptotic behavior
to be factored out (e.g. write u = (A− 1)U and solve for
the auxiliary function U) [48].

In our implementation, we enforce a fall-off of at least
1/r for all fields by requiring that they be zero at infin-
ity. However, we find that the bi fields fall off faster, as
expected given the form of the equations, as shown in
Fig. 1.

As mentioned above, there are several sources of sin-
gular behaviors. Briefly, the differential equations them-
selves can become singular at the punctures, and the be-
havior of the equations at infinity can induce logarith-
mic terms in the solution. Regardless, finite-precision ef-
fects makes evaluating the Laplacian operator and source
terms inaccurate close to the puncture. We overcome
both these issues in the general case by enforcing that
the background metric is identically flat (with K = 0) at
large r and sufficiently close to the puncture. Further-
more, close to the puncture, we smoothly attenuate all
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FIG. 1. The fall-off with radius of the correction fields u and
bi for a χ = 0.95 binary along the line x = y = z. As can
be seen, u falls off as 1/r and all components of bi fall off as
1/r2. Note that the boundary conditions for bi only require
that the components go to zero at infinity. The quadratic
fall-off is consequence of the initial data not having net linear
momentum. In addition to multiplying each function by the
appropriate power of r, we rescale the resulting curves so that
all approach ∼ 1 at large r.

source terms to zero. Thus in a finite ball surrounding
each puncture, the elliptic equations reduce to a source
free Laplacian and vector Laplacian, respectively. The
end result is well behaved solution to the Einstein con-
straint system outside the two horizons.

Note that solutions to Eqs. (26a) and (26b) can contain
logarithmic terms of the form r−k ln r, where the integer
k is determined by the fall-off rate of the source terms
in the two equations [72]. If such terms are present in
the solution, the convergence rate of the solver will be
algebraic rather than exponential. In practice, we find
that the accuracy of the solver is limited by small-scale
features induced by the attenuation functions inside the
horizons.

In Eqs. (26), derivatives of the background fields γ̃ij ,

M̃ij , and ψ± can be calculated analytically or numeri-
cally. We have implemented both approaches. In prac-
tice, we use an eighth-order finite difference operator
with a step size of ≤ 10−4 (always smaller than the
finest gridspacing) for the QI boosted Kerr (fixed spin
direction) and boosted Schwarzschild data, and analyt-
ical expressions for the LES and FE boosted Kerr data
derivatives (these latter two are evaluated using the high-
precision libraries mentioned above). Note that the accu-
racy of these derivatives near the punctures is irrelevant
inside the attenuation region as these terms get multi-
plied by zero.

B. Evolution and gauges

We use the extended TwoPunctures thorn to gener-
ate puncture initial data [59] for the BHB simulations.
These data are characterized by mass parameters mp

(which are not the horizon masses), as well as the mo-
mentum and spin of each BH, and their initial coordi-
nate separation. We evolve these BHB data sets using
the LazEv [63] implementation of the moving punctures
approach with the conformal function W = exp(−2φ)
suggested by Ref. [73]. For the runs presented here, we
use centered, eighth-order finite differencing in space [27]
and a fourth-order Runge Kutta time integrator. (Note
that we do not upwind the advection terms.) Our code
uses the Cactus/EinsteinToolkit [43, 44] infrastruc-
ture. We use the Carpet mesh refinement driver to
provide a “moving boxes” style of mesh refinement.

We locate the apparent horizons using the AHFind-
erDirect code [74] and measure the horizon spin using
the isolated horizon (IH) algorithm detailed in [75].

For the computation of the radiated angular mo-
mentum components, we use formulas based on “flux-
linkages” [76] and explicitly written in terms of Ψ4 in
[77, 78].

We obtain accurate, convergent waveforms and horizon
parameters by evolving this system in conjunction with a
modified 1+log lapse and a modified Gamma-driver shift
condition [5, 79, 80]. The lapse and shift are evolved with

(∂t − βi∂i)α = −α2f(α)K , (29a)

∂tβ
a =

3

4
Γ̃a − ηβa . (29b)

In the original moving punctures approach we used
f(α) = 2/α and an initial lapse α(t = 0) = ψ−2BL
[5] or α(t = 0) = 2/(1 + ψ4

BL) [12], where ψBL =
1 + m(+)/(2r(+)) + m(−)/(2r(−)). In Sec. IV B and Ap-
pendix A we also use α(t = 0) = 1/(2ψBL − 1) which
seems better suited for the highly spinning or highly
boosted BH evolutions. There, we explore other gauge
conditions for the lapse in the form of f(α) = 1/α (gauge
speed = 1) and f(α) = 8/(3α(3 − α)) (shock avoiding)
[56] which prove to be more convenient when dealing with
highly boosted moving punctures.

IV. EVOLUTIONS OF THE HISPID DATA

In this section we describe results from evolutions of
the new HiSpID data for black-hole binaries with spins,
boosts, or both. We start by examining the case of two
superimposed Kerr black holes initially at rest. We then
examine superimposed boosted Schwarzschild black holes
in quasicircular binaries. Next, we compare evolutions
of spinning quasicircular binaries with moderate spins
using both HiSpID and BY data. Finally, we compare
evolutions of a spinning, quasicircular black-hole binary
with specific spin χ = 0.95 to results found by the SXS [1,
18, 55] collaboration for similar systems.
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TABLE I. Initial data parameters for the equal-mass, head-
on configurations. The punctures are initially at rest and are
located at (±b, 0, 0) with spins S aligned or anti-aligned with
the z direction, mass parameters mp, horizon (Christodoulou)
masses m1 = m2 = mH, total ADM mass MADM, and di-
mensionless spins a/mH = S/m2

H, where a1 = a2 = a.
The Bowen-York configurations are denoted by BY, and the
HiSpID by HS. Finally, UU or UD denote the direction of the
two spins, either both aligned (UU), or anti-aligned (UD).

Configuration b/M mp S/M2 a/mH mH MADM/M
BY90UU 6 0.191475 0.225 0.8977 0.500702 0.982362
HS90UU 6 0.5 0.225 0.8958 0.501287 0.982353
BY90UD 6 0.191475 0.225 0.8977 0.500702 0.982396
HS90UD 6 0.5 0.225 0.8955 0.501208 0.982388
HS99UU 6 0.5 0.2475 0.9896 0.500162 0.980124
HS99UD 6 0.5 0.2475 0.9887 0.499981 0.980163

A. Headon collisions of Spinning Black Holes

We begin our analysis with the case of two spinning
black holes initially at rest. This type of system was first
analyzed in [41] using a very similar construction (i.e.,
superimposed Kerr black holes in a puncture gauge).

We begin by demonstrating the convergence of the ini-
tial data. As shown in Fig. 2, even at very high spins
(here χ = 0.99) the constraints converge to roundoff lev-
els. In order to reach acceptable levels of constraint sat-
isfaction, we had to use relatively large numbers of collo-
cation points. Here we used up to 224 collocation points
in the two directions orthogonal to the symmetry axis.
Because a simple L2 norm of the constraints may hide
issues near the black holes, we construct L2 norms in
both a small box near each black hole, and in the bulk
of the simulation domain (out to a distance of 30M from
the origin). Close to the black holes, the constraints con-
tinue to reduce with the number of collocation points,
falling down to O(10−9). In the bulk, the much smaller
L2 norms fall to roundoff levels O(10−10)−O(10−12) and
then remain constant.

As done in [41], we compare the new data to Bowen-
York (conformally flat) initial data with the same spin
parameters. For given binary separations and spin pa-
rameters, the horizon masses and spins for the HiSpID
and BY data are not identical, as shown in Fig. 3, since
the initial radiation content and distortions are not the
same. However, they are close enough for comparisons of
physical quantities such as the gravitational waveforms.

We study a few test cases of equal-mass BHB config-
urations starting from rest with spins aligned (UU) or
counter aligned (UD) with each other, and perpendicu-
lar to the line joining the BHs. We evolve both BHBs
with the HiSpID data and the standard BY choice (for
spins within the BY limit). We also evolve BHBs with
near-maximal spin, χ = 0.99, a regime unreachable for
BY initial data. Table I gives the initial data parameters
of these BHB configurations.

Fig. 4 shows a comparison of waveforms rψ4 extracted
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FIG. 2. Convergence of the residuals of the Hamiltonian and
momentum constraints versus number of collocation points
N for BHBs with χ = 0.99 in the UU configuration with
exponential attenuation parameters ω(±) = 1.0 and p = 4.
Top panel in small grid along x-axis (4.25 ≤ x ≤ 4.75,
−0.25 ≤ y ≤ 0.25, and −0.25 ≤ z ≤ 0.25). Bottom panel
over the full numerical evolution grid.
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at an observer location r = 75M . We clearly see that the
initial radiation content (located around t ∼ 80M) of the
BY data for equal mass spinning BHBs with χ = 0.9 has
an amplitude comparable to that of the physical merger.
On the other hand, the HiSpID initial data has greatly
reduced initial radiation content (one order of magnitude
smaller). Although not apparent in these plots, the much
lower initial radiation content is not only more physical,
but also leads to more accurate computations of wave-
forms. This initial pulse reflects from the refinement
boundaries (since they are not perfectly transmissive)
leading to high frequency errors and convergence issues
when looking at much finer details of the waveform phase
[81, 82].

The evolution of BHs with χ = 0.99 requires high res-
olution, particularly during the first 10M of evolution,
but otherwise proceeds with the standard moving punc-
tures set up [5]. A summary of the properties of the final
merger remnant BH are listed in Table II. Even though
the initial data has no initial orbital angular momentum,
UU configurations radiate angular momentum due to mu-
tual frame dragging effects in the opposite direction, as
observed in [83]. The UD configurations, on the other
hand, do not radiate angular momentum, but do recoil.
Here we see that both the BY and HiSpID data for black

TABLE II. The final mass, final remnant spin, and recoil ve-
locity for each configuration.

Configuration Mrem/M χrem V
BY90UU 0.98053 0.46554 0
HS90UU 0.98162 0.46483 0
BY90UD 0.98073 0 35.90
HS90UD 0.98181 0 36.01
HS99UU 0.97971 0.52501 0
HS99UD 0.97900 0 38.40
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FIG. 5. Waveforms and waveform magnitudes of the UU (left)
and UD (right) configurations with highly spinning BHs χ =
0.99. Note the small amplitude of the initial data radiation
content at around t = 75M , compared to the merger signal
after t = 130M .

holes in a UD configuration with spins χ = 0.9 lead to
recoils of 35.95 ± 0.05 km s−1. The much more extreme
case of a UD configuration with spins χ = 0.99 yields a
recoil of 38.4 ± 0.09 km s−1. The recoil can be modeled
as [17]

Vrecoil =
∑

j=1,3,5...

kj∆
j

where ∆ = (χ(+) − χ(−))/2 and kj are fitting con-
stants (this form applies only to equal mass binaries
with vanishing total spin). With only two data points,
one can only reliably fit the first constant. We find
k1 = 39.62± 0.36 km s−1.

In Fig. 5, we show the waveforms for the UU and
UD cases for highly spinning BHs. The initial radiation
content has a much smaller amplitude than the merger
waveform—even in the head-on case—significantly re-
ducing contamination of the physical signals by unre-
solved high-frequency reflections.

B. Quasicircular Nonspinning Black-Hole Binaries

One of the most astrophysically important applications
of numerical relativity is the evolution of BHBs in quasi-
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circular orbits. As such, it is critical that HiSpID data
is able to reproduce the quasicircular binaries that can
be generated by BY techniques. In this section, we will
concentrate on non-spinning binaries, while in the next
section, we will consider binaries with both moderate and
extreme spins.

Fig. 6 shows the convergence rate for non-spinning ini-
tial data solution with the number of collocation points
for a typical set of orbital parameters. Hamiltonian
and momentum constraint residuals reach levels below
O(10−6) near the horizon and O(10−10) in the bulk.
Once again, these measures are for L2 norms of the con-
straints in a small volume just outside the horizon and
in the bulk of the simulation domain.
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FIG. 6. Convergence of the residuals of the Hamiltonian and
momentum constraints versus number of collocation points
N for Schwarzschild BHBs in a quasicircular orbit with ex-
ponential attenuation parameters ω(±) = 1.0 and p = 6. Or-
bital parameters P y = 0.0848M , d = 12M . Top panel on
small grid along x-axis (4.75 ≤ x ≤ 5.25, 0.1 ≤ y ≤ 0.6, and
0.5 ≤ z ≤ 1.0). Bottom panel on full numerical evolution
grid.

In order to evaluate the effectiveness of the HiSpID
approach for generating binary data, we perform a nu-
merical evolution of a binary in the merger regime and
compare our Lorentz boost data with the traditional BY

solution. We chose initial parameters with low eccen-
tricity for each set of data, as given by Table III. The
BHs orbit nearly five times before merging (see Fig. 7),
and at t ∼ 700M , merge to a spinning remnant BH with
the properties given in Table IV. Note the near perfect
agreement of the orbital decay between BY and HiSpID
data evident in the right panel of Fig. 7.

TABLE III. Initial data parameters for the equal-mass,
boosted configurations. The punctures are initially at rest and
are located at (±b, 0, 0) with momentum ~P = Pxx̂+Py ŷ, mass
parameters mp, horizon (Christodoulou) masses mH, and the
total ADM mass MADM. The configurations are Bowen-York
(BY) or Lorentz boosted (HS) initial data.

Configuration b/M mp Px Py mH MADM/M
BYQC 4.7666 0.48523 -0.001153 0.09932 0.5 0.98931
HSQC 4.7666 0.48745 -0.001138 0.09794 0.5 0.98914
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FIG. 7. The orbital trajectories of the binary and a compar-
ative radial decay of the Lorentz boost and BY initial data.
Note the near perfect agreement of the BY and HiSpID data
evident in the right panel. The panel on the left shows the
trajectories of the two black holes for HiSpID data only.

TABLE IV. The final mass and spin for each configuration.

Configuration Mrem/M χrem

BYQC 0.95162 0.68643
LBQC 0.95155 0.68646

Of course, the primary output from these simula-
tions is the gravitational waveform. Fig. 8 shows the
(` = 2,m = 2) and (` = 4,m = 4) modes of ψ4 for
the HiSpID and BY binaries. While the two waveforms
superpose for most of the simulation, they differ substan-
tially in the initial bursts (located at around t = 75M).
The BY data has a nearly factor of 2 larger amplitude
for the initial burst relative to the HiSpID data for the
leading (2, 2) mode, and this ratio grows for the (4, 4)
mode to a factor ∼ 5. This burst of initial radiation may
have consequences in the cases when high accuracy of the
waveforms is needed (in particular on the phase at late
times) as it generates errors reflecting on the refinement
boundaries of the grid [81]. Because the initial burst is
much smaller, the HiSpID data has the added benefit
that the initial burst does not affect the subsequent dy-
namics of the binary to the extent it does for BY. Hence
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TABLE V. Initial data parameters for spinning, orbital configurations. The punctures are initially located at (±b, 0, 0), having
mass ratio q = m(+)/m(−), with spins aligned or anti-aligned with the z direction, mass parameters m(±), total ADM mass
MADM, and dimensionless spins χ. The linear momenta of the holes, P y

(+) and P y
(−) are initially purely in the y−direction The

Bowen-York configurations are denoted by BY, and the HiSpID by HS. Finally, UU or UD denote the direction of the two
spins, either both aligned (UU), or anti-aligned (UD).

Configuration b/M q m(+) m(−) χ P y
(+) P y

(−) MADM/M

BY80UD 5.4489 2 0.4078 0.1998 0.80 0.081882 -0.081882 0.991789
HS80UD 5.4489 2 0.6667 0.3333 0.80 0.086168 -0.083831 0.996224
HS95UU-A 4 1 0.5000 0.5000 0.95 0.103289 -0.103289 0.986854
HS95UU-B 5 1 0.5056 0.5056 0.95 0.092251 -0.092251 0.988631

the input parameters (BH mass and momentum) match-
ing more closely with the actual parameters of the binary
after the initial burst dissipates. We also note that there
is a phase and amplitude mismatch among HiSpID and
BY waveforms at merger. This may be due to a combi-
nation of slightly different initial orbital parameters and
the above mentioned disparity in the initial radiation con-
tent.
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FIG. 8. Comparison of the waveforms generated from the
HiSpID and BY initial data for the modes (`,m) = (2, 2) and
(`,m) = (4, 4) for non-spinning, quasicircular binaries. Note
the difference in initial radiation content at around t = 75M .

C. Quasicircular Spinning Black-Hole Binaries

To assess how accurately the HiSpID approach pro-
duces spinning binaries, we again compare evolutions of
HiSpID and BY data. Here, we study a few test cases
of unequal-mass black hole binary configurations starting
in quasi-circular orbits with antiparallel (UD) spins, per-
pendicular to the line joining the black holes. We evolve
both black hole binaries with the HiSpID data and the
standard BY choice (for spins within the BY limit).

We also evolve black hole binaries with nearly extremal
parallel (UU) spins, χ = 0.95, a regime unreachable for
BY initial data. Table V gives the initial data parameters
of these black hole binary configurations. Antiparallel
spins result in antisymmetric emission of gravitational
radiation, leading to a recoil in the merger remnant.
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For given binary separations, the HiSpID and BY pa-
rameters (spin, momentum, horizon masses) are not iden-
tical, as shown in Fig. 9, since the initial radiation con-
tent and distortions are not the same. However, they
are close enough for comparisons of physical quantities
such as the puncture separations shown in Fig. 10 and
the gravitational waveforms shown in Fig. 11. Figure 12
shows that the conformally curved initial data yields bet-
ter evolved constraint satisfaction than the conformally
flat case. The final measured parameters are shown in
Table VI.
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initial data. The top panels show the larger black hole, and
the bottom panels show the smaller black hole.
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FIG. 10. The evolution of the coordinate separation between
the black holes in an orbiting binary with q = 2 and χ =
0.8, comparing Lorentz-boosted Kerr and Bowen-York initial
data.

One of our main motivations to study a new set of
initial data is to be able to simulate highly spinning
black holes, beyond the BY (or conformally flat) limit,
χ ≈ 0.93 [32, 33, 53]. In Fig. 13 we show the level of
satisfaction of the constraints for our new initial data
for spinning black hole binaries with equal masses and
spin parameters χ = 0.95. The L2 norm of the con-
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ence in initial radiation content at around t = 75M .
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FIG. 12. The evolution of the Hamiltonian (H) and momen-
tum (Mx, My, and Mz) constraints for a black hole binary
with q = 2 and χ = 0.8, comparing Lorentz-boosted Kerr and
Bowen-York initial data.

straints converge to a level of O(10−7) − O(10−6) near
the horizons, and down to O(10−10) in the bulk. We
do not consider points interior to the horizons in our L2

calculations. If one requires greater satisfaction of the
constraints, one can fine-tune the attenuation functions
to that end.

It is important to note that the actual metric func-
tions generated by solving Eqs. (26) converge even faster
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TABLE VI. The relaxed mass ratio and initial spins and final remnant mass, spin, and recoil velocity. The final two columns
given the analytic fits for the final mass and spin given the initial parameters.

Configuration qrelax χrelax
1 χrelax

2 Mrem/M χrem V [km s−1] Mfit
rem/M χfit

rem V fit

BY80UD 0.50010 0.80053 -0.80080 0.96831 0.41037 420 ± 2 0.96844 0.40941 421.86
HS80UD 0.50185 0.78776 -0.79389 0.96815 0.41008 414 ± 7 0.96833 0.41258 419.08
HS95UU-A 1.00000 0.9465 0.9465 0.8942 0.9402 0 0.8940 0.9403 0
SXS#157 1.00000 0.9496 0.9496 0.8937 0.9409 0 0.8936 0.9410 0
HS95UU-B 1.00000 0.9520 0.9520 0.8925 0.9413 0 0.8933 0.9415 0

than the constraints themselves. In Fig. 14, we show
how the function u converges with the number of collo-
cation points. To do this, we compare u generated with
N = 256 collocation points with the values obtained us-
ing fewer collocation points. We do this both along the
x-axis (where the black holes are located) and along the
y-axis (in between the holes). In both cases, we find ex-
ponential convergence.

In Figs. 15 and 16, we compare the (` = 2,m = 2)
mode of ψ4 for the two UU95 runs with the correspond-
ing SXS waveform from the SXS catalog [55]. For most of
the waveform, we see observe relative errors (compared
to SXS) of 2% for the amplitude of the waveform. The
phase differences between the two HiSpID runs and the
SXS run are between 0.1 and 0.2 radians for most of the
waveform. The HS95UU-A configuration agrees with the
SXS simulation to a higher degree, with a phase differ-
ence of under 0.2 radians through merger.

An evolution of the mass and spin parameters for an
equal mass binary with χ = 0.95 is shown in Fig. 17.
The initial and final parameters for this run are listed in
the final rows of Tables V and VI, respectively. To check
the validity of these results, we compare the final mass
and spin, calculated during the numerical simulation us-
ing the apparent horizon and isolated horizon formalism,
to an analytic fitting formula (last three columns in Ta-
ble VI [19]). These analytic fitting formulas were devel-
oped using a set of 37 aligned and anti-aligned spinning
unequal mass systems, as well as an additional 38 simu-
lations from the SXS catalog [55], which included aligned
systems with spins up to χ = 0.98. The fitting formu-
las give Mrem/M = 0.8940 and χrem = 0.9403 for case
A, and Mrem/M = 0.8933 and χrem = 0.9415 for case
B, differing from our measured results by about 0.01 to
0.09%. We also compare the remnant values with the
SXS#157 run which falls right in between our A and B
runs.

The HiSpID data using LES coordinates is not limited
to χ ≤ 0.95. To demonstrate this, we solved the initial
data for a quasi-circular binary with spins χ = 0.974 and
a separation of d = 10M . As shown in Fig. 18, the con-
straints converge to O(10−10) (the Hamiltonian is larger
by a factor of 100, but it is still converging essentially
exponentially).

To summarize, in this section we have shown that we
are able to implement puncture initial data for highly
spinning, orbiting black hole binaries by attenuated su-
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FIG. 13. Convergence of the Hamiltonian and momentum
constraint residuals on the full numerical grid with increasing
number of collocation points. This example shows an equal
mass Kerr black hole binary in a quasi-circular orbit with
spin χ = 0.95, momentum P y

(±) = ±0.09225, and separation

d = 10M using the LES coordinates. Top panel on small
grid near puncture (4.75 ≤ x ≤ 5.25, 0.1 ≤ y ≤ 0.6, and
0.5 ≤ z ≤ 1.0). Bottom panel on full numerical evolution
grid.

perposition of conformal Lorentz-boosted Kerr metrics.
We modified the TwoPunctures thorn, in the Cac-
tus/Einstein Toolkit framework, to solve the Hamil-
tonian and momentum constraint equations simultane-
ously for highly spinning black holes. We verified the va-
lidity of the data by showing convergence of the Hamilto-
nian and momentum constraint residuals with the num-
ber of collocation points in the spectral solver. We then
showed, by evolving this data, that the radiation content
of these initial data was much lower than the standard
conformally flat choice at spins χ = 0.8. This produced a
more accurate and realistic computation of gravitational
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solid lines show a best least-squares fit assuming exponential
convergence.

radiation waveforms. We go on to simulate a black hole
binary on quasi-circular orbit with χ = 0.95, beyond the
Bowen-York limit. The mass and spin of the resulting
remnant black hole agrees with the analytic fitting func-
tion estimates to between 0.01% and 0.09%.

V. CONCLUSIONS AND DISCUSSION

In this paper we have been able to implement punc-
ture initial data for highly spinning and highly boosted
BHBs by attenuated superposition of conformal Kerr
and Lorentz boosted Schwarzschild metrics and for the
boosted Kerr case. We verified the validity of the data
by showing convergence of the Hamiltonian and momen-
tum constraint residuals with the number of collocation
points in the spectral solver. We then showed, by evolv-
ing this data, that the spurious radiation content of these
initial data was much lower than the standard confor-
mally flat choice. This produced a more accurate and re-
alistic computation of gravitational radiation waveforms
that we compare with both, the Bowen-York initial data
evolution for lower spins (χ = 0.90) and the SXS’s wave-
forms for higher spins with χ = 0.95. This represents
the first moving punctures evolution of highly spinning
black holes beyond the conformally-flat ansatz limit [33]
of χ = 0.935. These cleaner initial data allowed us to
explore different choices of the moving punctures gauge
(initial lapse and shift) in the appendix A, as well as al-
ternative/additional evolution variables as introduced by
CCZ4 [84].

This initial data implementation will allow for simu-
lation of extremely boosted and highly spinning orbiting
BHBs to explore the corners of the BHB parameter space,
in a regime of theoretical and astrophysical interest. The
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FIG. 15. The 22 mode of the gravitational waveform gener-
ated by an equal-mass, equal spins of 0.95 BHB (HS95UU-
A) generated using isotropic coordinates compared to SXS
catalog #157. Middle and bottom panels show the percent
difference between the two for the amplitude and phase, re-
spectively.

high boost case was recently used in [54] to study the
headon high-energy collision of nonspinning black holes.
It also allows revisiting some of the most interesting spin
dynamic effects in BHBs, such as the hangup [12], flip-
flops [13, 85, 86], and large recoils [19, 87], as well as
extreme BHB collisions [54].
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Appendix A: Gauge Conditions

The original moving punctures breakthrough formula-
tion [5] remains widely used, and produces reliable BHB
evolutions, as well as multi-BH systems [27]. It also func-
tions in the presence of matter, as in neutron star merg-
ers [88–90]. The choice of the gauges, i.e., Eq. (29a)
plays a crucial role in stabilizing the numerical evolu-
tions. There is still a range of possibilities for choosing
the specific form of the gauges. While preserving the nu-
merical stability properties one would like to improve the
accuracy of the simulation for a given resolution and grid
structure.

Some questions about the accuracy and convergence of
the moving punctures method have been raised in [81].
Recently, Etienne et al. [82] studied how modifications to
the lapse evolution can ameliorate the numerical errors
that lead to poor waveform convergence.

Here we study other choices for the initial lapse and its
time evolution to control and improve the accuracy of the
numerical results for highly spinning BHs and relativistic
collision of BHs generating large amplitude gauge waves.

The Bona-Massò gauge condition for the lapse evolu-
tion is [91]

(∂t − βi∂i)α = −α2 f(α)K, (A1)

where in the original moving punctures approach f(α) =
2/α. We also consider f(α) = 1/α, with gauge speed
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equal to 1, and f(α) = 8/(3α(3− α)), with approximate
shock avoiding properties [56].

For the initial lapse we use either α(t = 0) = 1/ψ2
BL

[5] or α(t = 0) = 2/(1+ψ4
full) [12] which behave like ∼ r2

and ∼ r4 respectively near the puncture, and have the
form of the Schwarzschild lapse in isotropic coordinates
at large r. Here, ψfull = [det(γij)]

1/12. In addition, we
investigate the form α(t = 0) = 1/(2ψBL − 1). This goes
like ∼ r near the puncture, similar to the ‘trumpet’-like
behavior observed at later evolution times when gauges
settle down to a quasistationary behavior [92], while con-
serving the form of the Schwarzschild lapse in isotropic
coordinates at asymptotically large r.

a. Highly spinning Black-Holes

Notably, the simple choice of the initial lapse α0 =
1/(2ψBL−1) has advantages over the other choices stud-
ied for the entire evolution by providing increased accu-
racy and computational efficiency. Here, we display the
results of the evolution from rest of BHBs with intrinsic
spin χ = 0.99. Fig. 19 shows that we can achieve compa-
rably accurate results with many fewer grid points. The
curves follow closely to each other, but with the new
lapse we use 80 points per dimension compared to the
125 needed with the original initial lapse. This provides
a speed up factor of (125/80)4 ∼ 6.

The improvement of the new initial lapse also trans-
lates into a more accurate description of the final rem-
nant BH, as shown in Fig. 20. Note that even at lower
resolutions we observe a similar gain.

We interpret these results as indicating that a better
choice of the initial lapse leads to a better coordinate evo-
lution. The intensities of the initial gauge waves are re-
duced, thus allowing a better distribution of grid points,
resulting in a more efficient numerical computation. See
for instance the horizon coordinate radius evolution in
Figs. 19 and 20.

Fig. 21 displays the effects of the initial lapse on the
waveform. We see the notable reduction of the unphys-
ical oscillations pre-merger while reproducing accurately
the physical merger waveform for the dominant modes
(`,m) = (2, 0) and (`,m) = (2, 2). Note that this re-
duction of the errors due to improved gauge choices is in
addition to and independent from the reduction of the
initial burst of radiation (with respect to BY data) that
has a physical content, despite being an undesirable ef-
fect.

Figs. 19, 20, and 21 show three different resolutions
for the waveforms and horizon quantities for the highly
spinning χ = 0.99 case. The convergence order was cal-
culated for each of these quantities. For the individual
BH spin, irreducible mass, horizon mass, and dimension-
less spin, we find average convergence orders of 7.6, 6.2,
8.2, and 8.2, respectively. The 8th order convergence is
expected if the errors are dominated by the spatial fi-
nite difference stencil. The same quantities for the final
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FIG. 19. The effects of the choice of the initial lapse on the in-
dividual BH masses (top), spins (middle) and coordinate radii
(bottom). The benefits of the new initial lapse are evident
since they follow the higher resolution behavior with many
fewer grid points by (80/125)3. For all runs f(α) = 2/α.

remnant BH have convergence orders between 3.3 and
4.3. We expect a 4th order convergence if the errors are
dominated by the time integration. For the amplitude
and phase of the 2,2 mode, we find a convergence order
between 3 and 4 after the BHs merge. This is consistent
with the time integration errors.
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b. Quasicircular orbits

Here, we study the effects of lapse evolution choices
on the case study of equal mass, nonspinning, orbiting
BHBs. The Lorentz boost initial data has a lower radia-
tion content than the boost BY data and allows us to see
more clearly the effects of the initial choice and evolution
of the lapse. In this section, all runs studied are at the
medium resolution, labeled ‘100’ in Figs. 19–21.

Fig. 22 displays the effects of gauge versus resolution
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FIG. 21. The effects of the choice of the initial lapse on the
waveforms. The benefits of the new initial lapse are evident
since they show much less initial noise before the merger.

on physical quantities like the horizon mass (left column)
and horizon radius (right column). We expect the hori-
zon mass to be essentially conserved during the orbital
period up to merger. We can see that this physical ob-
servable varies very little with different gauge choices.
On the other hand, we observe that the coordinate ra-
dius varies with the evolution of the lapse choice, but not
as much with the initial lapse. After a sudden growth,
typical of a gauge settling, the horizon radius reaches a
constant value. The original moving punctures choice,
f(α) = 2/α, keeps the value of the horizon coordinate
closer to its original value which could be beneficial for
setting up the initial mesh refinement levels.

Fig. 23 displays the waveform as seen by an observer
at r = 90M from the sources for different evolution
functions f(α) for the lapse. The initial lapse here is
α0 = 2/(1 + ψ4

full). While physical quantities like the
waveform and its amplitude are essentially independent
of the gauge choices, numerical errors, which produce the
high frequency noise, are not. The bottom panel of the
figure shows a close-up view of the amplitude during the
post initial pulse period. We observe that overall the
choice f(α) = 2/α produces a lower amplitude of this
high frequency noise.

Figs. 24 and 25 display a similar behavior for the wave-
forms, but their close-up view of the noise shows a smaller
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FIG. 22. Individual BH horizon masses (left) and coordinate
radii of the horizons (right) versus time for different evolution
functions f(α) for the lapse. Initial lapse α0 = 2/(1 + ψ4

full)
(top row), α0 = 1/ψ2

BL (middle row), α0 = 1/(2ψBL − 1)
(bottom row) .
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FIG. 23. Waveforms extracted at an observer location r =
90M . Real part of Ψ4 (upper left) and the amplitude of those
waveforms (upper right). On the lower panel a zoom-in of the
amplitude oscillations for different evolution functions f(α)
for the lapse. Initial lapse here is α0 = 2/(1 + ψ4

BL).

amplitude, which suggests that the choice of the initial
lapses α0 = 1/ψ2

BL or α0 = 1/(2ψBL − 1) lead to smaller
amplitude gauge waves.

Since the moving punctures approach is a free evo-
lution of the general relativistic field equations, a very
important method to monitor its accuracy is to verify
the satisfaction of the Hamiltonian and momentum con-
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FIG. 24. Waveforms extracted at an observer location r =
90M . Real part of Ψ4 (upper left) and the amplitude of those
waveforms (upper right). The bottom panel shows a zoom-in
of the amplitude oscillations for different evolution functions
f(α) for the lapse. The initial lapse implemented here is α0 =
1/ψ2

BL.
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FIG. 25. Waveforms extracted at an observer location r =
90M . Real part of Ψ4 (upper left) and the amplitude of those
waveforms (upper right). On the lower panel a zoom-in of the
amplitude oscillations for different evolution functions f(α)
for the lapse. Initial lapse here is α0 = 1/(2ψBL − 1).

straints. We also monitor the BSSN constraints, which
are on the order of 10−7 throughout the duration of the
evolution.

Figs. 26–28 display the L2 norm of the nonvanishing
values of the Hamiltonian and momentum components of
the constraints. We observe that the propagation of er-
rors travel at different speeds, associated with the gauge
velocities

√
2,
√

4/3, and 1 for f(α) = 2/α, 8/(3α(3−α)),
and 1/α, respectively. We also observe slightly larger vi-
olations for the choice f(α) = 1/α, and α0 = 2/(1+ψ4

BL).

We thus conclude that while all three evolution choices
for the lapse are viable to evolve typical BHB simulations,
the original moving punctures choice f(α) = 2/α and ini-
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FIG. 27. L2-norms of the violations of the Hamiltonian and
three components of the momentum constraints versus time
for different evolution functions f(α) for the lapse. Initial
lapse here is α0 = 1/ψ2

BL.

tial lapse α0 = 1/ψ2
BL or α0 = 1/(2ψBL−1) are somewhat

preferred. This study suggests there might be even more
optimal choices of α0 and f(α), as well as shift evolution
gauge conditions. We also note that in the independent
study of Ref. [82], a higher gauge velocity is preferred for
the early stage of evolution.

c. Relativistic head-on collisions

Since we observe a notable benefit on using the initial
lapse α0 = 1/(2ψBL − 1) in evolutions of highly spinning
BHs, we would like to explore their effect on another ex-
treme configuration: high energy relativistic collisions of
BHs. The collisions were studied in Refs. [93–96] with re-
gard to potential applications to collider-generated mini
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FIG. 28. L2-norms of the violations of the Hamiltonian and
three components of the momentum constraints versus time
for different evolution functions f(α) for the lapse. Initial
lapse here is α0 = 1/(2ψBL − 1).

BHs. Here we will consider them as test case for com-
paring different gauge conditions.

In Fig. 29 we use physical observables such as the
individual horizon masses and the gravitational radia-
tion waveforms as indicators of the numerical accuracy
of the evolutions. We observe that the initial lapse
α0 = 1/(2ψBL−1) gives the best behavior for the horizons
mass (i.e., most constant) and a waveform with reduced
noise.
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FIG. 29. Horizon mass of the boosted BH with Px/mH = ±2
and waveform after collision for different choices of the initial
lapse and evolution f(α) = 2/α.

The preferred behavior of the initial lapse α0 =
1/(2ψBL − 1) is also confirmed with regard to the con-
straint preservation as shown in Fig. 30, closely followed
by the choice α0 = 1/ψ2

full.
In these evolutions we have taken the standard choice

for the moving punctures evolution of the lapse, f(α) =
2/α in Eq. (A1). It is also worthwhile to explore alter-
native evolutions of f(α) = 1/α, with gauge speed equal
to 1, and f(α) = 8/(3α(3−α)), with approximate shock
avoiding properties [56]. The results of such evolutions
are displayed in Figs. 31 and 32 where we have taken an
initial separation of the binary d = 66M , Px/mH = ±2,
and used the initial lapse α0 = 1/(2ψBL − 1).

We first observe that the results of Figs. 31 and 32
indicate that with our numerical setup the evolution
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FIG. 30. Hamiltonian and momentum constraints during the
free evolution for different choices of the initial lapse and evo-
lution f(α) = 2/α.

f(α) = 1/α fails to complete (i.e., crashes) generating
large errors, while the form f(α) = 8/(3α(3− α)) is sta-
ble, but less accurate than the standard f(α) = 2/α.
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Px/mH = ±2 and waveform (right) after collision for initial
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FIG. 32. Hamiltonian (H) and momentum (Mx, My, and
Mz) constraints during the free evolution for initial lapse α0 =
1/(2ψBL−1) and different choices of the evolution of the lapse.

However, we find that for larger initial P/mH values,

the lapse evolution equation characterized by f(α) = 2/α
fails to complete the evolution while the (approximate)
shock avoiding form f(α) = 8/(3α(3 − α)) always suc-
ceeds. In these cases, a large amplitude gauge wave is
generated by the high energy collision initial data which
leads to an inability for the numerics to resolve the waves
and stabilize the system. While one can try to fine
tune parameters of the evolution or change the evolu-
tion equations (for instance to a Z4-type [84]) the form
f(α) = 8/(3α(3−α)) represents a valid alternative to the
standard f(α) = 2/α evolution (which can still be used
by starting collisions further apart or slightly grazing).

Appendix B: Calculating the ADM energy,
momentum, and spin

For the sake of completeness we give here the explicit
form of the Arnowitt-Deser-Misner (ADM) mass, linear
and angular momenta used in the identification of the
initial data parameters.

In an asymptotically flat spacetime, in asymptotically
Cartesian coordinates, the ADM mass is given by [97]

E[hab] =
1

16π
lim
r→∞

3∑
a,b=1

∮
(hab,a − haa,b)

xb

r
r2 dΩ

where hab = δab + cab(θ, φ)/r +O(1/r2) is the 3 metric,
xa = (x, y, z) are Cartesian coordinates (at spatial infin-
ity) and (r, θ, φ) are the usual spherical coordinates. The
integral is over an r = const sphere, and dΩ = sin θ dθ dφ.
Only the O(1/r) terms in the metric contribute to the
ADM mass.

For the case of superimposed boosted Schwarzschild
BHs, we have

hab =

(
1 +

m(+)

2r(+)
+
m(−)

2r(−)
+ u

)4 (
S̃
(+)
ab + S̃

(−)
ab − δab

)
,

where

(
1 +

m(+)

2r(+)

)4

S̃
(+)
ab = S

(+)
ab ,(

1 +
m(−)

2r(−)

)4

S̃
(−)
ab = S

(−)
ab ,

m(±) are the mass parameters of the two Schwarzschild

BHs, r(±) are O(r) with angular dependence, and S
(±)
ab

are Schwarzschild metrics in boosted coordinates. Since
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S̃ab = δab +O(1/r), the ADM mass takes the form

E [hab] = E
[
ψ4S̃

(+)
ab

]
+ E

[
ψ4S̃

(−)
ab

]
− E

[
ψ4δab

]
= E

[(
1 +

2m(+)

r(+)

)
S̃
(+)
ab

]
+ E

[(
1 +

2m(−)

r(−)

)
S̃
(−)
ab

]
+ E

[(
2m(−)

r(−)
+

4û

r

)
δab

]
+ E

[(
2m(+)

r(+)
+

4û

r

)
δab

]
− E

[(
2m(+)

r(+)
+

2m(−)

r(−)
+

4û

r

)
δab

]
(B1)

= γ(+)m(+) + γ(−)m(−) + E

[
4û

r
δab

]
,

where u = û(θ, φ)/r + O(1/r2). The first two terms of
Eq. B1 are the ADM masses of boosted Schwarzschild
BHs and are thus equal to γ(+)m(+) and γ(−)m(−), re-

spectively. Finally, E[4û/rδab] = 1
8π

∮
ûdΩ.

The ADM momentum is given by

Pa[Kab] =
1

8π
lim
r→∞

3∑
b=1

∮
(Kab − δabK)

xb

r
r2 dΩ ,

with K =
∑3
a=1K

a
a. Using Eqs. (3), (4), (23), (22),

and (24) in the asymptotic region, the integrand becomes

Kab−δabK = K
(+)
ab −δabK(+) +K

(−)
ab −δabK(−) +(L̃b)ab

where K
(±)
ab are the extrinsic curvature tensors for iso-

lated BHs. Given the momentum parameters P
(±)
a , the

corresponding ADM momentum for an isolated BH is

Pa

[
K

(±)
ab

]
= P

(±)
a . Therefore, using the linearity of the

integral, the ADM momentum for a BHB is

Pa[Kab] = Pa

[
K

(+)
ab

]
+ Pa

[
K

(−)
ab

]
+ Pa

[
(L̃b)ab

]
= P (+)

a + P (−)
a + Pa

[
(L̃b)ab

]
.

The ADM angular momentum is given by the first mo-
ment of the ADM momentum:

Ja[Kab] =
εabc

8π
lim
r→∞

3∑
b,c,d=1

∮
xb(Kcd − δcdK)

xd

r
r2 dΩ .

Using the same linearity and asymptotic properties, we
can write this as

Ja[Kab] = Ja(+) + Ja(−) + Ja
[
(L̃b)ab

]
.
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