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Abstract

The classical approach to spacetime singularities leads to a simplified dynamics in which spa-

tial derivatives become unimportant compared to time derivatives, and thus each spatial point

essentially becomes uncoupled from its neighbors. This uncoupled dynamics leads to sharp fea-

tures (called “spikes”) as follows: particular spatial points follow an exceptional dynamical path

that differs from that of their neighbors, with the consequence that in the neighborhood of these

exceptional points the spatial profile becomes ever more sharp. Spikes are consequences of the

BKL-type oscillatory evolution towards generic singularities of spacetime. Do spikes persist when

the spacetime dynamics are treated using quantum mechanics? To address this question, we treat

a Hamiltonian system that describes the dynamics of the approach to the singularity and con-

sider how to quantize that system. We argue that this particular system is best treated using

an affine quantization approach (rather than the more familiar methods of canonical quantization)

and we set up the formalism needed for this treatment. Our investigation, based on this affine

approach, shows the nonexistence of quantum spikes.
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I. INTRODUCTION

It is known through the singularity theorems of Penrose, Hawking, and others[1] that

spacetime singularities are a general feature of gravitational collapse. However, these the-

orems give very little information on the nature of singularities. It has been conjectured

by Belinskii, Khalatnikov, and Lifshitz (BKL) [2, 3] that as a spacetime singularity is ap-

proached the dynamics can be well approximated by neglecting spatial derivatives in the field

equations in comparison to time derivatives. In the course of performing numerical simu-

lations to test the BKL conjecture, Berger and Moncrief [4] found a strange phenomenon:

points at which steep features develop and grow ever narrower as the singularity is ap-

proached. These features were later named spikes. Since the work of [4] much additional

analytical and numerical work has been done on spacetime singularities (see [5] for a review)

and we now have a good understanding of the nature of spikes: (see [6–12]) rather than

being some sort of exception to the BKL conjecture, spikes can be thought of as a conse-

quence of that conjecture as follows: the neglect of spatial derivatives in the field equations

mandated by the BKL conjecture means that the dynamics at each spatial point is that of

a homogeneous spacetime (albeit a different homogeneous spacetime for each spatial point).

The generic behavior of a homogeneous spacetime consists of a series of epochs, each well ap-

proximated by a different Bianchi I spacetime. The Bianchi I epochs are connected by short

bounces during which the spacetime is well described by a Bianchi II spacetime. Though

generic homogeneous spacetimes behave in this way, there are exceptional cases in which

the dynamics is different, remaining in a particular Bianchi I epoch rather than bouncing

into the next one. A spike occurs at a spatial point when the dynamics at that point is of

this exceptional sort while the dynamics of its neighbors are of the generic sort. The spike

point is then stuck in the old epoch while all around it, its neighbors are bouncing into the

new epoch.

Because spikes depend on exceptional classical dynamics, it is unclear whether they will

continue to exist when the dynamics is treated using quantum theory. As an analogy, in the

upside-down harmonic oscillator, x = 0 for all time is a classical solution; but this solution

does not persist in a quantum treatment [13, 14]. Because the BKL conjecture allows the

dynamics of each spatial point to be treated separately, the question of whether spikes

persist can (if the approximation suggested by BKL continues to hold in quantum theory)
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be treated just using quantum mechanics rather than quantum field theory or quantum

gravity. Furthermore, because the exceptional classical dynamics is so delicate as to be

easily destroyed, any quantum destruction of spikes is likely to take place at curvatures

much less than the Planck curvature. Thus a quantum treatment of spikes is likely to be

insensitive to any issues about the ultraviolet behavior of quantum gravity.

Much of the recent progress on the BKL conjecture comes from treating the Einstein

field equations using a set of scale invariant variables [15, 16]. However, these treatments

are done in terms of field equations rather than Hamiltonian systems, and thus it is not

straightforward to obtain the corresponding quantum dynamics. To address this difficulty,

Ashtekar, Henderson, and Sloan (AHS) [17] developed a Hamiltonian system using variables

similar to those in [15, 16]. This new system is designed to address the BKL conjecture but

in a way that one can also perform a quantum treatment. In this paper, we will use the

system of [17] to investigate whether spikes persist when treated using quantum mechanics.

Our paper is organized as follows: In Sec. II we solve equations of motion

for the natural classical affine variables and illustrate their temporal behavior

leading to classical spikes. In Sec. III we present an alternative quantization

process that avoids the need to choose “Cartesian” classical phase space variables

to promote to canonical operators and instead supports the quantization of

affine variables with the help of affine coherent states. Section IV is devoted

to the construction of the physical Hilbert space. Sections V and VI concern

the equations of the affine and canonical quantizations. In Sec. VII we briefly

discuss the method of solving the Hamiltonian constraint. Section VIII presents

analytic solutions of the affine constraint equation and concludes that these

solutions do not support the existence of quantum spikes. The last section

presents a summary of our results, and indicates how they could be extended

using alternative approaches and numerical methods.

II. SPIKES IN THE VARIABLES OF ASHTEKAR, HENDERSON, AND SLOAN

We begin with a brief description of the variables of Ashtekar, Henderson, and Sloan and

refer the reader to [17] for the full description. The approach of [17] begins with a density

weighted triad, its conjugate momentum (which is essentially the extrinsic curvature), and
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the spatial connection associated with the triad. As the singularity is approached, the

density weighted triad is expected to go to zero, while both the extrinsic curvature and the

spatial connection are expected to blow up. To obtain quantities that are expected to be well

behaved at the singularity, AHS define quantities Pi
j which are contractions of the density

weighted triad with the extrinsic curvature and Ci
j which are contractions of the density

weighted triad with the spatial connection. In terms of these variables, the BKL conjecture

is that as the singularity is approached, the spatial derivatives of Pi
j and Ci

j are negligible

compared to their time derivatives, thus one can consider the dynamics of the Pi
j and Ci

j

at a single point. As a consequence of this form of the BKL conjecture, one finds that the

Pi
j and Ci

j are symmetric and can be simultaneously diagonalized, thus the dynamics of

these matrices reduces to the dynamics of their eigenvalues, and [17] introduces quantities

PI and CI which are respectively essentially the eigenvalues of Pi
j and Ci

j . Thus for our

purposes, the approach to the singularity is described by a Hamiltonian system consisting

of the CI and PI , as well as any matter in the spacetime, for which we will use a scalar field

φ. A Hamiltonian system is determined by its Poisson brackets and its Hamiltonian. For

this system, the Poisson brackets are given by

{P I , P J} = 0 = {CI , CJ}, {P I , CJ} = 2δIJCJ , {φ, π} = 1 , (1)

while the Hamiltonian (which is also a Hamiltonian constraint) is given [17] by

H =
1

2
C2 − CIC

I +
1

2
P 2 − PIP

I − π2

2
= 0 , (2)

which leads to the dynamics

ṖI = CI(C − 2CI), (3)

ĊI = −CI(P − 2PI), (4)

π̇ = 0, (5)

φ̇ = π, (6)

where P = P1 + P2 + P3 and C = C1 + C2 + C3.

We now show how spikes form in the vacuum case. That is, we consider solutions of Eqs.

(2)-(6) with π = 0. We consider the case with all the PI positive and order them so that

P1 > P2 > P3 . (7)

5



We assume that at the initial time all the CI are small enough to be negligible. Then it

follows from Eq. (4), (2) and (7) that C2 and C3 are decaying and therefore will remain

small enough to be negligible. It then follows from Eqs. (3) that P2 and P3 are (to this

approximation) constant. Thus we only need to find the time development of C1 and P1.

With C2 and C3 negligible, Eqs. (3) and (2) become

Ṗ1 = −(C1)
2 , (8)

−(C1)
2 = 2(P 2

1 + P 2
2 + P 2

3 ) − P 2 . (9)

However, Eq. (9) can be written as

−(C1)
2 = (P1 − P+)(P1 − P−) , (10)

where the constants P± are given by

P± = P2 + P3 ± 2
√

P2P3 . (11)

We therefore find that Eq. (8) becomes

Ṗ1 = (P1 − P+)(P1 − P−) . (12)

Let P10 be the value of P1 at the initial time t0. Then it follows from Eq. (12) that

P+ − P1

P1 − P−

=
P+ − P10

P10 − P−

exp[(P+ − P−)(t− t0)] . (13)

Let C10 be the value of C1 at time t0. Then it follows from Eq. (10) that

P10 = 1
2

(

P+ + P− +

√

(P+ − P−)2 − 4C2
10

)

. (14)

Now define the function f(t) by

f(t) =
2C10

P+ − P− +
√

(P+ − P−)2 − 4C2
10

exp[1
2
(P+ − P−)(t− t0)] . (15)

Then it follows from Eqs. (13-15) using straightforward algebra that

P1 =
P+ + P−f

2

1 + f 2
. (16)

It then follows from Eq. (10) that

C1 = (P+ − P−)
f

1 + f 2
. (17)
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FIG. 1. P1 vs. x at t = 3 (red), t = 3.5 (green), and t = 4 (blue)
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FIG. 2. C1 vs. x at t = 3 (red), t = 3.5 (green), and t = 4 (blue)

Now consider the case where C10 6= 0. By the assumption that C1 is small at the initial

time, it follows that at that time f ≪ 1. However, from the exponential factor in Eq. (15)

it follows that for sufficiently late times we have f ≫ 1. It then follows from Eq. (16) that

initially P1 ≈ P+ but at late times P1 ≈ P−. That is, there is a bounce where P1 goes from

P+ to P−. It also follows from Eq. (17) that C1 is small at both early and late times and is

only non-negligible during the bounce.

Now consider the case where C10 = 0. Then f = 0 for all times and thus it follows that

P1 = P+ and C1 = 0.

Finally, consider the dependence on spatial position. Suppose that at the initial time

there is a region where C1 is positive and another region where C1 is negative. Define a

spatial coordinate x such that x = 0 is the boundary between the two regions. Then by

7



continuity, we have that C10 = 0 at x = 0. Therefore we find that for all times P1 = P+ at

x = 0 while for all other points eventually we have P1 = P−. The closer to x = 0 a spatial

point is, the smaller the value of C10 and therefore the longer a time it takes until f at that

point becomes large. Thus though eventually all points near x = 0 bounce, it takes longer

for the nearer points to bounce. Thus, at a given time a graph of P1 vs. x will show a peak

at x = 0 and that curve will become more and more steep as time goes on. This is the spike.

As an illustration, consider the case C10 = ǫx with ǫ = 0.05 and take P2 = 2, P3 = 1 and

t0 = 0. Figure 1 shows P1 vs x at t = 3, t = 3.5 and t = 4, while Figure 2 shows C1 vs x at

those same times.

III. ENHANCED QUANTIZATION

Besides canonical quantization, which is discussed in Sec. IV, we begin with a very dif-

ferent quantization procedure that avoids the problematic procedure of choosing the right

set of canonical variables to promote to canonical operators. The nature of the classical

problem features variables that lead to an affine Lie algebra, which is then incorporated in

the quantum formulation as affine coherent states. This quantization method is also useful

for addressing the issue of the existence of spikes at a semi-classical level.

A. Affine algebra

Initially, we propose to quantize the classical system (1)-(2) by making use of the affine

coherent states quantization method (see [19] and references therein). We begin with some

remarks about use of the affine variables in the classical formulation of the problem. To

connect with notation that is more common for affine variables, we make the partial redefi-

nition (CI , P
J) =: (CI ,−2DJ), which turns the system (1)-(2) into the traditional Poisson

bracket affine formulation:

{DI , DJ} = 0 = {CI , CJ}, {CJ , D
I} = δIJCJ , (18)

which is called the affine Lie algebra. For the scalar field, we adopt conventional canonical

coordinates with the standard Poisson bracket

{φ, π} = 1 . (19)
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For this problem the classical Hamiltonian is constrained to be zero [17], and it is given by

H =
1

2
C2 −

∑

I

C2
I + 2D2 − 4

∑

I

D2
I −

1

2
π2 = 0 , (20)

where D = D1 +D2 +D3 and C = C1 + C2 + C3. Thus, the dynamics takes the form

ḊI = CI(CI −
1

2
C), (21)

ĊI = 2CI(D − 2DI), (22)

π̇ = 0, (23)

φ̇ = π. (24)

Unlike the traditional momentum, which serves to translate the canonical coordinate CI ,

the variable DI serves to dilate CI . Thus the affine algebra divides into three sectors: (1)

CI < 0, (2) CI > 0, and (3) CI = 0. The first two types are quite similar, while the third

type is relatively trivial. Consequently, we will concentrate on types (1) and (2). Thus, it is

convenient to define the principal sectors in the kinematical phase space as:

ΠI
− := {(CI , D

I) | CI ∈ R−, D
I ∈ R}, (25)

ΠI
+ := {(CI , D

I) | CI ∈ R+, D
I ∈ R}. (26)

B. Kinematical Hilbert space

There are two principal, inequivalent, irreducible self-adjoint representations of the Lie

algebra (18) corresponding to the sectors (25) and (26). They are defined by the affine

quantization principle: CI → ĈI and DI → D̂I , such that

[ĈI , ĈJ ] = 0 = [D̂I , D̂J ], [ĈJ , D̂
I ] = i~ δIJ ĈJ . (27)

The operators ĈI and D̂I are conveniently represented by

D̂If(xI) := −i~/2 (xI ∂/∂xI + ∂/∂xI xI) f(xI)

= −i~ (xI ∂/∂xI + 1/2) f(xI), (28)

ĈIf(xI) := xIf(xI) , (29)

where f ∈ HI := span{L2(R−, dx
I) ⊕ L2(R+, dx

I)}, and where I = 1, 2, 3.
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For quantization of the scalar field algebra (19) we use the canonical variables and the

following representation

π̂g(φ) := −i~ ∂

∂φ
g(φ), φ̂g(φ) := φg(φ) , (30)

where g ∈ Hφ := L2(R, dφ), so that [φ̂, π̂] = i~ I.

The kinematical Hilbert space H of the entire system is defined to be

H := span{H1 ⊗H2 ⊗H3 ⊗Hφ} , (31)

which takes into account the usual quantum entanglement of all degrees of freedom.

C. Construction of affine coherent states

It is important to observe that the classical Hamiltonian treats the three C variables,

as well as the three D variables, in identical fashion in that the Hamiltonian is invariant if

the several variables are permuted among themselves. This feature of symmetry is worth

preserving in introducing the coherent states for these variables. Thus, the irreducible

components of the affine coherent states corresponding to each of the two sectors Π− =
⋃

I ΠI
− and Π+ =

⋃

I ΠI
+, are defined as follows

|p, q,−〉 :=
∏

I

|pI , qI , I,−〉

:= ei
∑

I
pI ĈI/~e−i

∑
I
ln(|qI |/µ) D̂I/~|η,−〉 for sector Π− , (32)

|p, q,+〉 :=
∏

I

|pI , qI , I,+〉

:= ei
∑

I
pI ĈI/~e−i

∑
I
ln(qI/µ) D̂I/~|η,+〉 for sector Π+ , (33)

where p := (p1, p2, p3) and q := (q1, q2, q3). The so-called fiducial vectors |η,−〉 = ⊗I |η, I−〉
and |η,+〉 = ⊗I |η, I+〉 are defined by the equations

[(ĈI/µ) + 1 − iD̂I/(~β)]|η, I−〉 = 0 , (34)

[(ĈI/µ) − 1 + iD̂I/(~β)]|η, I+〉 = 0 , (35)

where µ > 0 and β > 0 denote two free parameters chosen the same for each set of variables

ĈI and D̂I . (It is also useful to regard β̃ [≡ ~β] and ~ as two separate parameters for each
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I, especially for approaching the classical limit.) The role of µ and β can be seen in the

expressions

〈x|η, I+〉 = Mx−1/2(x/µ)βe−β(x/µ), 0 < x <∞ , (36)

〈x|η, I−〉 = M |x|−1/2(|x|/µ)βe−β(|x|/µ), −∞ < x < 0 , (37)

where M denotes a factor to secure normalization, e.g., 〈η, I ± |η, I±〉 = 1. It follows that

〈η,±|ĈI |η,±〉 = ±µ , 〈η,±|D̂I |η,±〉 = 0 . (38)

It may happen that the appropriate affine coherent states for our study involve a direct

sum of the + and − irreducible versions, such as

|p, q, I〉 := θ(q)|p, q, I,+〉 ⊕ θ(−q)|p, q, I,−〉 , (39)

where θ(y) := 1 if y > 0 and θ(y) := 0 if y < 0. In order to incorporate both the positive and

negative spectrum cases for {ĈI}, we shall use the direct sum of vectors, |η〉 := |η,+〉⊕|η,−〉,
in what follows.

In addition to the affine coherent states, we introduce canonical coherent states for the

scalar field, which are defined by

|π, φ〉 := e−iφπ̂/~eiπφ̂/~|α〉 , (40)

where the fiducial vector |α〉 is chosen (modulo a phase factor) to be the solution to the

equation

(ωφ̂+ iπ̂)|α〉 = 0 , (41)

in which ω is a free positive parameter. It follows that

〈π, φ|π̂|π, φ〉 = π , 〈π, φ|φ̂|π, φ〉 = φ . (42)

We choose states |y〉 (previously called |φ〉 and which are renamed here to avoid conflicting

notation), where 〈y|y′〉 = δ(y − y′) and −∞ < y, y′ < ∞, so that 〈y| φ̂ = y 〈y| as well as

〈y| π̂ = −i~∂/∂y〈y|. Thus,

(ωy + ~∂/∂y)〈y|α〉 = 0 (43)
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leads eventually to (with the usual meaning of π in the first factor)

〈y|π, φ〉 = (ω/π~)1/4 exp(iπy/~− ω(y − φ)2/2~) . (44)

This last equation asserts that 〈y|π, φ〉 is the y-representation of the coherent state; likewise,

it follows that 〈π, φ|y〉 [ = 〈y|π, φ〉∗ ] is the coherent-state representation of the y-state.

Introducing

W± :=

3
∏

I=1

| 〈η,±| Ĉ−1
I |η,±〉| , (45)

we can get a resolution of unity for each of the two sectors Π− and Π+:

∫

|π, φ〉〈π, φ| ⊗ |p, q,±〉〈p, q,±|dπ dφ d
3p d3q

h4W±
= I± (46)

provided that W± <∞ (where h denotes Planck’s constant).

D. Enhanced classical action functional

The use of coherent states as part of the classical/quantum connection is related to

the restricted variation of vectors in the quantum action functional only to appropriate

coherent states, which then leads to the enhanced classical action functional, for which

~ > 0 throughout. We next spell out this connection.

The quantum action functional is given by

AQ =

∫ T

0

〈ψ(t)|[i~(∂/∂t) − Ĥ]|ψ(t)〉 dt (47)

and leads to the Schrödinger equation when general variations are admitted. However, if

the variations are limited to coherent states—including just the variations that a macro-

scopic observer could make—it follows [19] that the so-restricted quantum action functional

becomes (with summation on I implied)

AQ(R) =

∫ T

0

〈p(t), q(t); π(t), φ(t)|[i~(∂/∂t) − Ĥ ]|p(t), q(t); π(t), φ(t)〉 dt

=

∫ T

0

{−qI(t) ṗI(t) + π(t) φ̇(t) −H(p(t), π(t); q(t), φ(t)) } dt , (48)

where |p, q; π, φ〉 := (|p, q,+〉⊗ |π, φ〉)⊕ (|p, q,−〉⊗ |π, φ〉), which according to the principles

of enhanced quantization [19] can be viewed as the enhanced classical action functional in
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which ~ retains its normal positive value. The relation of the quantum Hamiltonian to the

expression

H(p, π; q, φ) := 〈p, q; π, φ| Ĥ(ĈI , D̂I ; π̂, φ̂)|p, q; π, φ〉 (49)

is known as the Weak Correspondence Principle [24]. We can use this relationship to help

choose the quantum Hamiltonian Ĥ .

An affine quantization that includes the Weak Correspondence Principle does not involve

the assumption that the classical coordinates must be “Cartesian coordinates” as is the

case for canonical quantization. This is because in enhanced quantization the variables p

and q are not “promoted” to operators in the quantization process. This difference ensures

that enhanced quantization can provide different physics than that offered by canonical

quantization.

It follows that (no summation intended)

H(p, π; q, φ) = 〈p, q; π, φ| Ĥ(ĈI , D̂I ; π̂, φ̂) |p, q; π, φ〉 (50)

= 〈η;α| Ĥ((qI/µ) ĈI , D̂I + pI(qI/µ)ĈI ; π̂ + π, φ̂+ φ) |η;α〉 ,

where |η;α〉 := |η〉⊗|α〉. If we adopt the naive form of the quantum operator Ĥ suggested by

conventional canonical quantization—applied to the classical Hamiltonian (20) —the result

leads to [with 〈(· · · )〉 := 〈η;α|(· · · )|η;α〉 in what follows]

H(p, π; q, φ) =
1

2
〈[
∑

I

qI(ĈI/µ)]2〉 −
∑

I

q2I 〈(ĈI/µ)2〉

+ 2〈(
∑

I

[D̂I + pI(qI/µ)ĈI ])
2〉

− 4
∑

I

〈(D̂I + pI(qIĈI/µ)2〉 − 1

2
〈[π̂ + π2]〉 , (51)

which may be written in the form

13



H(p, π; q, φ) =
1

2
(
∑

I

qI)
2 −

∑

I

q2I + 2
∑

I,J

pIqIpJqJ − 4
∑

I

p2Iq
2
I −

1

2
π2

+
1

2

∑

I.J

qIqJ [〈(ĈI/µ)(ĈJ/µ)〉 − 1] −
∑

I

q2I [〈(ĈI/µ)2〉 − 1]

+ 2
∑

I,J

pIqIpJqJ [〈[(ĈI/µ)(ĈJ/µ)]〉 − 1] − 4
∑

I

p2Iq
2
I [〈(ĈL/µ)2〉 − 1]

+ 2〈(
∑

I

D̂I)
2〉 − 4

∑

I

〈D̂I

2〉 − 1

2
〈π̂2〉 . (52)

We note that the variables qI and pI are related to the former classical variables according to

the relations: qI := CI and pIqI := DI . Thus the first line in (52) is the classical Hamiltonian

(20), while all the terms in the three remaining lines in (52) are O(~) (based on using the

parameters β̃ [:= ~β] and ~). These terms constitute quantum corrections to the classical

Hamiltonian generated by the enhanced quantization point of view.

The last line in (52) are constants and can be canceled by subtracting them from Ĥ . The

terms on lines two and three involve quantum corrections to line one and are dealt with by

adopting the enhanced Hamiltonian given by

H(p, π; q, φ) =
1

2
〈[
∑

I

qI(ĈI/µ)]2〉 −
∑

I

q2I 〈(ĈI/µ)2〉 (53)

+2〈[
∑

I

pIqI(ĈI/µ)]2〉 − 4
∑

I

p2Iq
2
I 〈(ĈI/µ)2〉 − 1

2
π2 ,

The terms 〈(ĈI/µ)〉 = ±1 while 〈(ĈI/µ)2〉 = 1 + z, where

z := −1 +
∫ ∞

−∞

|(x/µ)|2β̃/~+1 e−(2β̃/~)|(x/µ)| dx
/

∫ ∞

−∞

|(x/µ)|2β̃/~−1 e−(2β̃/~)|(x/µ)| dx ,

(54)

which shows that z = O(~). Equation (53) ensures that the enhanced classical Hamiltonian

is very much like the traditional classical Hamiltonian, and its enhanced classical equations

of motion involve small corrections to the traditional classical equations of motion.
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IV. PASSING TO THE PHYSICAL HILBERT SPACE

The constraint of the Hamiltonian vanishing is an essential requirement in the quantum

theory as it was in the classical theory. This has the effect of reducing the kinematical

Hilbert space to the physical Hilbert space. In other words, we propose to follow the Dirac

quantization scheme [20, 21]: first, quantize (in the kinematical Hilbert space) then second,

introduce the constraints (to identify the physical Hilbert space). We realize this scheme

with the help of reproducing kernel Hilbert spaces (see, e.g. [22, 23] ).

A. Reproducing kernel Hilbert space

The essence of reproducing kernel Hilbert spaces is readily explained. For example, as we

have seen, the kinematical Hilbert space is spanned by the set of coherent states |p, q; π, φ〉.
Thus, every vector in that space is given by

|Ψ〉 =
∑

k

ak |pk, qk; πk, φk〉 , (55)

provided that

0 ≤ 〈Ψ|Ψ〉 =
∑

j,k

a∗jak〈pj, qj ; πj, φj|pk, qk; πk, φk〉 <∞ . (56)

Observe that the set of coherent states, {|p, q; π, φ〉}, forms a continuously labeled set of

vectors, which spans the kinematical Hilbert space, but whose elements are therefore not

linearly independent as in a conventional basis set. Instead, the set of coherent states

represents a kind of “continuous basis” for a separable Hilbert space.

Next, we give a functional representation for every abstract vector by introducing

Ψ(p, q; π, φ) := 〈p, q; π, φ|Ψ〉 =
∑

k

ak 〈p, q; π, φ|pk, qk; πk, φk〉 . (57)

Another vector is given by its functional representation as follows

Φ(p, q; π, φ) = 〈p, q; π, φ|Φ〉 =
∑

j′

bj′ 〈p, q; π, φ|pj′, qj′; πj′, φj′〉 , (58)

where the set {pj′, qj′; πj′, φj′} for |Φ〉 is generally different from the set {pk, qk; πk, φk} for

|Ψ〉. In the reproducing kernel Hilbert space, the inner product of two such functional

representation elements is given by
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(Φ, Ψ) :=
∑

j′,k

b∗j′ak〈pj′, qj′; πj′, φj′|pk, qk; πk, φk〉 , (59)

which is just a functional representative of (Φ,Ψ) = 〈Φ|Ψ〉.
Observe that the inner product of two coherent states, 〈pj′, qj′; πj′, φj′|pk, qk; πk, φk〉, serves

as a reproducing kernel; if the vector 〈Φ| is chosen as the vector 〈p, q; π, φ| (i.e., bj′ =

δj′,1), then the result of the inner product “reproduces” the expression for 〈p, q; π, φ|Ψ〉.
Traditionally, the reproducing kernel is chosen as jointly continuous in both arguments. In

our case, the reproducing kernel using coherent states is automatically jointly continuous

because the group properties of the affine and canonical groups ensure continuity. Hence,

like all reproducing kernel Hilbert spaces, our reproducing kernel Hilbert space is composed

entirely of continuous functions.

B. Coherent state overlap as a reproducing kernel

The foregoing discussion is based on the general theory of reproducing kernel Hilbert

spaces. However, when suitable coherent states generate the reproducing kernel, as in the

present case, some additional properties hold true. In particular, there is an equivalent,

second procedure for the inner product of two functional representatives. Equation (46)

shows that a suitable integral over projection operators onto coherent states leads to the

unit operator in the kinematical Hilbert space. Choosing the positive section as an example,

general coherent state matrix elements of that equation lead to the equation

〈p′′, q′′; π′′, φ′′|p′, q′; π′, φ′〉 =

∫

〈p′′, q′′; π′′, φ′′|p, q; π, φ〉〈p, q; π, φ|p′, q′; π′, φ′〉 dµ(p, q; π, φ) ,

(60)

where dµ represents the integration measure in (46). It follows from this equation that

the inner product of the two functional representatives Φ(p, q; π, φ) = 〈p, q; π, φ|Φ〉 and

Ψ(p, q; π, φ) = 〈p, q; π, φ|Ψ〉 is given by

〈Φ|Ψ〉 =

∫

Φ∗(p, q; π, φ) Ψ(p, q; π, φ) dµ(p, q; π, φ) . (61)

In particular, if 〈Φ| = 〈p′′, q′′; π′′, φ′′|, this relation leads to an example of the reproducing

kernel property. Indeed, if one lets f(p, q, π, φ) be a general element of the space L2(R8),

the reproducing kernel acts as a projection operator onto a valid vector in the kinematical
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Hilbert space, e,g.,

Ψf(p′, q′; π′, φ′) =

∫

〈p′, q′; π′, φ′|p, q; π, φ〉 f(p, q, π, φ) dµ(p, q; π, φ) . (62)

It may well be that dealing with this integral version of the inner product is more appropriate

in special cases.

C. Projection operators for reducing the kinematical Hilbert space

Let IE represent a projection operator (hence, IE2 = IE† = IE). If IE is smaller then the

unit operator, it follows that 〈p, q; π, φ| IE |p′, q′; π′, φ′〉 serves as a reproducing kernel for a

subspace of the original Hilbert space. In particular, we suppose that IE is a projection

operator onto the subspace where the Hamiltonian vanishes, i.e., IE = IE(Ĥ = 0). The

Hamiltonian operator consists of two parts one with ĈI and D̂I and the other with π̂2/2.

Let us assume that the first part of Ĥ has a discrete spectrum {En ≥ 0} and that the second

part has a continuous spectrum 0 ≤ y2/2 <∞. Thus, the eigenfunctions |En; y〉 = |En〉⊗|y〉,
satisfy Ĥ |En; y〉 = (En − y2/2) |En; y〉 and 〈En; x|Em; y〉 = δnmδ(x − y). Suppose the full

spectrum of Ĥ implies that Σn

∫∞

0
|En; y〉〈En; y| dy is the unit operator. In such a case we

have

〈p, q; π, φ|IE|p′, q′; π′, φ′〉 =
∑

n

〈p, q|En〉〈En|p′, q′〉 〈π, φ|
√

2En〉〈
√

2En|π′, φ′〉 . (63)

It follows that Eq. (63) defines a valid representation of a reproducing kernel that includes

only the subspace where Ĥ = 0. Therefore, a functional representation for every vector ΨIE

of our physical Hilbert is given by

ΨIE(p, q; π, φ) = 〈p, q; π, φ|ΨIE〉 =
∑

k

ak 〈p, q; π, φ|IE|pk, qk; πk, φk〉 . (64)

Operators for the kinematical Hilbert space lead to generally different operators for the

physical Hilbert space. Since the affine coherent state vectors {|p, q; π, φ〉} span the kinemat-

ical Hilbert space, it follows that the projected coherent state vectors {IE|p, q; π, φ〉} span

the physical Hilbert space, as described above. In like fashion, an operator Â that applies to

the kinematical Hilbert space leads to an operator ÂIE := IEÂIE that applies to the physical

Hilbert space. Sometimes a general property of Â is not preserved by ÂIE, such as being self
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adjoint. If Â ≥ 0, then ÂIE ≥ 0 as well, and if Â is self adjoint then ÂIE can also be chosen

to be self adjoint. On the other hand, if Q̂ and P̂ (with [Q̂, P̂ ] = i~ I) are both self adjoint

and a projection operator IF is such that IFQ̂IF is self adjoint and strictly positive, then it

follows that IFP̂ IF can never be self adjoint. This is just the situation that is overcome by

choosing the affine variables Q̂ and D̂ := (1/2)[Q̂P̂ + P̂ Q̂] (with [Q̂, D̂] = i~Q̂) for which

Q̂ > 0 and D̂ are both self adjoint.

Note that elements of the physical Hilbert space enjoy the same integral representation

of inner products as noted earlier since

〈Φ|IE|Ψ〉 =

∫

Φ∗
IE(p, q; π, φ) ΨIE(p, q; π, φ) dµ(p, q; π, φ) , (65)

where, as before, ΨIE(p, q; π, φ) := 〈p, q; π, φ|IE|Ψ〉.
The development with time (t) in the kinematical Hilbert space follows traditional ex-

pressions, such as if Ĥ(t) denotes the (possibly time dependent) Hamiltonian operator that

acts on an operator Â(t) for which the time dependence is only that caused by the Hamil-

tonian, i.e., for which ∂A(t)/∂t = 0, then the Heisenberg equation of motion i~ dÂ(t)/dt =

[Â(t), Ĥ(t)] holds as usual. On the other hand, for the physical Hilbert space, one must

impose the projection operator after forming the commutator such as i~ IEdÂ(t)/dtIE =

IE[Â(t), Ĥ(t)]IE and not by imposing the projection operator before forming the commutator

in the form i~ dIEÂ(t)IE/dt = [IEÂ(t)IE, IEĤ(t)IE]. Not only does the latter equation involve

a different number of projection operators (IE) on each side of the equation, but, as we expect

in the current problem, the physical Hilbert space is such that IEĤ(t)IE = 0. Consequently,

for the former equation of motion, the operators IEÂ(t)IE evolve properly within the physical

Hilbert space for suitable choices of the operator Â(t).

It is noteworthy that the energy eigenstates for the first part of the Hamiltonian (i.e.,

only with Ĉ and D̂) are degenerate leading to the possibility that there may be various

energy eigenstates for a single energy value. This is likely to be true as well for the energy

value E = 0. Thus, there could be a family of zero-energy eigenstates for which π̂2/2 is not

required to ensure that Ĥ |m : (E = 0)〉 = 0, m ∈ {1, 2, 3, ...}. In such a case only affine

coherent states, |p, q〉, are necessary and no canonical coherent states, |π, φ〉, are needed.

To find the states |m : (E = 0)〉 requires solving the zero-energy Schrödinger equation

Ĥ|m : (E = 0)〉 = 0. It is important to understand that the form of the differential equation

leading to zero-energy solutions in the canonical quantization scheme in the following section

18



is entirely different from the differential equation leading to zero-energy solutions in the affine

quantization scheme as the latter equation is shown in the following section. Besides that

difference in formulation, there is one advantage that an affine quantization offers in that

the proper subtraction terms can be decided so that the enhanced classical Hamiltonian has

the form given in (53) such that, even when ~ > 0, the enhanced classical solutions follow

when the enhanced classical Hamiltonian is constrained to vanish.

V. AFFINE QUANTIZATION

Let us try to define Ĥ by making use of the classical form of H defined by Eq. (20). Since

there are no products of CI and DI in (20), and due to (27), the mapping of the Hamiltonian

(20) into a Hamiltonian operator is straightforward. We get

Ĥ =
1

2
(
∑

I

xI)
2 −

∑

I

x2I − 2~2[
∑

I

(xI
∂

∂xI
+ 1/2) ]2

+4~2
∑

I

(xI
∂

∂xI
+ 1/2)2 +

1

2
~
2 ∂

2

∂φ2

= ~
2
(

− 3

2
+ 2

∑

I

x2I
∂2

∂x2I
− 4

∑

I<J

xIxJ
∂2

∂xI∂xJ

)

+
∑

I<J

xIxJ − 1

2

∑

I

x2I +
~
2

2

∂2

∂φ2
=: Ĥg + Ĥφ , (66)

where Ĥφ = ~2

2
∂2

∂φ2 , and where Ĥg is the gravitational contribution.

One can show (see, appendix ) that the operator Ĥ is Hermitian on a dense subspace of

L2(R3, d3x) of the functions satisfying suitable boundary conditions.

VI. CANONICAL QUANTIZATION

Though we think that the form of the Poisson brackets given in Eqs. (1) indicates that

our system is best treated with affine quantization methods, we nonetheless briefly consider

how this system might be treated using the more usual canonical quantization methods.

Recall that in canonical quantization one begins with classical configuration variables XI

and momentum variables PI having Poisson brackets

{P I , XJ} = δIJ (67)

19



One then realizes the kinematical Hilbert space as L2(R, dXI) and the operator P I as P I =

i~ (∂/∂XI).

Now consider the case where all CI are positive and define the XI by XI = (1/2) lnCI .

Then it follows from Eq. (1) that P I and XI satisfy the canonical Poisson bracket given in

Eq. (67).

The Hamiltonian constraint (Eq. (2)) written in terms of XI then becomes

(

e2X1 + e2X2 + e2X3

)2 − 2
(

e4X1 + e4X2 + e4X3

)

+(P1 + P2 + P3)
2 − 2

(

P 2
1 + P 2

2 + P 2
3

)

− π2 = 0 . (68)

The physical Hilbert space is obtained by replacing PI by i~ (∂/∂XI) and then imposing

the Hamiltonian constraint as an operator acting on the wave function ψ. We thus obtain

the following equation

~
2∂

2ψ

∂φ2
= ~

2

(

∑

I 6=J

∂2ψ

∂XI∂XJ
−
∑

I

∂2ψ

∂X2
I

)

+

(

∑

I

e4XI −
∑

I 6=J

e2(XI+XJ )

)

ψ . (69)

The r.h.s. of Eq. (69) defines an Hermitian operator on a dense subspace of L2(R3, d3X)

of the functions satisfying suitable boundary conditions.

VII. METHODS OF IMPOSING THE HAMILTONIAN CONSTRAINT

In order to find the quantum fate of spikes, we will need to impose the Hamiltonian con-

straint, possibly using numerical methods, and examine the properties of the resulting wave

function ψ. Note that in ordinary quantum mechanics the Hamiltonian operator generally

involves the Laplacian, and the energy eigenvalue equation (“time independent Schrödinger

equation”) is an elliptic equation. However, it is a general property of quantum cosmology

that the quantum Hamiltonian constraint equation is a hyperbolic equation. (This strange

property is essentially due to the conformal degree of freedom of the metric behaving dif-

ferently from the other metric degrees of freedom.) In contrast to elliptic equations, which

lead to boundary value problems, hyperbolic equations lead to initial value problems. To

pose the initial value problem, one must choose a timelike coordinate T and choose initial

data on a surface of constant T .

For the case of canonical quantization and the imposition of (69), a convenient choice of

coordinates is the following:
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T := X1 +X2 +X3 , (70)

Y := X1 −X2 , (71)

Z := 1
2
(X1 +X2) −X3 , (72)

which turns (69) into

~
2

(

−∂
2ψ

∂T 2
+ 4

3

∂2ψ

∂Y 2
+
∂2ψ

∂Z2
+ 1

3

∂2ψ

∂φ2

)

+
1

3
e(4/3)(T+Z)

[

2
(

1 + eY−2Z + e−(Y+2Z)
)

−
(

e2Y + e−2Y + e−4Z
)]

ψ = 0 , (73)

where ψ ∈ L2(R4, dTdY dZdφ). Equation (73) has explicitly a hyperbolic form, suitable for

numerical simulations, with T playing the role of an evolution parameter.

For the case of affine quantization, the Hamiltonian defined by Eq. (66) yields an equation

analogous to Eq. (69), which is defined in L2(R4, d3xdφ) and reads

~
2∂

2ψ

∂φ2
= 4~2

(

∑

I 6=J

xIxJ
∂2ψ

∂xI∂xJ
−
∑

I

x2I
∂2ψ

∂x2I
+

3

4
ψ

)

+

(

∑

I

x2I −
∑

I 6=J

xIxJ

)

ψ . (74)

The solution ψ of Eq. (74) has, potentially, a very different physical interpretation than that

of the solution of Eq. (69).

One can diagonalize equation (74) in a similar way as Eq. (69). Introducing the variables:

T :=x1x2x3, (75)

Y :=
x1
x2
, (76)

Z :=

√
x1x2
x3

, (77)

enables rewriting (74) in the following form:

4~2

(

−T 2 ∂
2ψ

∂T 2
+ 4

3
Y 2 ∂

2ψ

∂Y 2
+ Z2 ∂

2ψ

∂Z2
+

1

12

∂2ψ

∂φ2
− 4T

∂ψ

∂T
+ 4

3
Y
∂ψ

∂Y
+ Z

∂ψ

∂Z
− 3

4
ψ

)

+
1

3
(TZ)2/3

[

(

Y 2 + Y −2 + Z−4
)

− 2

(

1 +
Y

Z2
+

1

Y Z2

)]

ψ = 0 . (78)

In this hyperbolic-like equation, suitable for numerical simulations, the variable T plays the

role of an evolution parameter.
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VIII. EXPLORING THE AFFINE CONSTRAINT EQUATION

We recall the affine Hamiltonian constraint equation (74) and set the left-hand side to

zero seeking a solution with only {xI} variables. It follows that a “near solution” to the

resulting constraint equation is given by

Ψ(x1, x2, x3) := (2~)−3/2 exp{−(1/2~)[
∑

I

|xI | ]} , (79)

and, as presented, Ψ is normalized, i.e.,
∫

|Ψ(x1, x2, x3)|2 d3x = 1. If we now put the re-

maining zero-point energy (appearing as 3~2 in (74)) as part of the original Hamiltonian,

this solution satisfies the equation Ĥ Ψ = 0, and thus (79) represents a solution of the

quantum constraint. At first sight it seems strange that a function that has a discontinuous

derivative—thanks to |x1|, etc.—can satisfy the modified (74). In fact, all eight independent

solutions of the modified affine Hamiltonian constraint (74) have a similar form given by

Ψ(x1, x2, x3; J±) := (~)−3/2 ΠI { [J+,Iθ(xI) + J−,Iθ(−xI)] e−(1/2~) |xI | } , (80)

where θ(y) := 1 for y > 0 and θ(y) := 0 for y < 0, and |J+,I |2 + |J−,I |2 = 1 for each I.

This form of the wave function contains finite jumps at xI = 0 when |J+,I | 6= |J−,I |, for one

or more I. The solution (80) is valid even though there are terms of the form x2I δ
′(xI) as

well as xIxJ δ(xI) δ(xj) for I 6= J , all of which vanish. The factor 8 [= 23] arises from the

variety available from the eight inequivalent terms J±,1 J±,2 J±,3. Hereafter, to simplify the

notation in this section, we assume that the plain symbol Ψ (or Φ) denotes any vector in

the 8-dimensional physical Hilbert space with the form given in (80).

It is noteworthy that certain operators can be simplified when they are confined to act on

vectors in the physical Hilbert space. Clearly, the relation ĈI Ψ = xI Ψ holds, and it follows

that

D̂I Ψ = −i~[xI ∂/∂xI + 1/2] Ψ = (i/2)[ xI − ~] Ψ = (i/2)[ ĈI − ~] Ψ , (81)

which shows that the action of D̂I is effectively multiplicative in nature. Indeed, it follows

that

D̂I Ĉ
p
I Ψ = { [D̂I , Ĉ

p
I ] + Ĉp

I D̂I}Ψ = {−i~ p Ĉp
I + (i/2)Ĉp

I [ĈI − ~]}Ψ . (82)

Although these equations are correct, however, it follows that while Ψ is a vector in the

physical Hilbert space it is a fact that Ĉp
I Ψ, for p > 0, is not a vector in the physical Hilbert
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space. To address that situation, we can obtain the part of that vector in the physical

Hilbert space by taking the inner product with another vector Φ in the physical Hilbert

space, which leads to (Φ, Ĉp
I Ψ). In the eight-dimensional physical Hilbert space, this inner

product, for I = 1, becomes

(Φ, Ĉp
1 Ψ) = ~

−1

∫

[K∗
+,1θ(x1) +K∗

−,1θ(−x1)]

× [J+,1θ(x1) + J−,1θ(−x1)] xp1 e−|x1|/~ dx1

= p! ~p [K∗
+,1J+,1 + (−1)pK∗

−,1J−,1] , (83)

where J±,1 refers to Ψ and K±,1 refers to Φ.

This simplification of the form taken by the operator D̂I leads to a simplification of the

equation of motion. The classical equations ĊI = CI [DI−2D] transform, for the kinematical

Hilbert space, to the operator equation

˙̂
CI = (1/2)ĈI [D̂I − 2D̂] + (1/2)[D̂I − 2D̂] ĈI . (84)

To fit it into the physical Hilbert space, this equation becomes

(Φ,
˙̂
CI Ψ) = (1/2) (Φ, { ĈI [D̂I − 2D̂] + [D̂I − 2D̂] ĈI}Ψ) , (85)

which becomes an equation involving only the {ĈI} operators, namely

(Φ,
˙̂
CI Ψ) = (1/2) (Φ, {−i~ ĈI + iĈI(ĈI − ~) + 2

∑

L

[ i~ ĈL − iĈL (ĈL − ~)] }Ψ) . (86)

It follows that higher-order time derivatives of Ĉ can be developed leading to an expression

of the form

ĈI(t) = ĈI(0) + t
˙̂
CI(0) + (t2/2)

¨̂
CI(0) + ... , (87)

which leads to the general expression given by

(Φ, ĈI(t) Ψ) = (Φ, MI(t, ĈL(0)) Ψ) (88)

which introduces the time dependent, 8 × 8 matrix, MI(t, ĈL(0)).

Observe that the matrix MI itself does not depend on any specific vector in the physical

Hilbert space. The vectors in the physical Hilbert space are distinguished by the factors J±,I

that signify the coefficients that define a given vector Ψ. To discuss position dependence in

real space, as was the case in Sec. II in order to study the position dependence of potential
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spikes, we let x̄1 represent a position in real space. For us, dealing with the physical Hilbert

space, the position parameter appears in the choice of the parameters J±,I in the physical

Hilbert space vectors; the position parameter x̄1 does not appear in the matrix MI(t, ĈL(0)).

Let us first choose the initial position of a vector to be at position x̄1 = 0 in space. This

we can accommodate by choosing J+,1 = J−,1 = 1/
√

2. If instead, we want to be at a

small, nonzero position 0 < x̄1 < ~, we can choose J+,1 =
√

(1 + x̄1/~)/2 and J−,1 =
√

(1 − x̄1/~)/2 so that

(~)−1

∫

[|J+,1|2θ(x1) + |J−,1|2θ(−x1)] x1 exp[−|x1|/~ ] dx1 = x̄1 . (89)

Using the several tools discussed above, let us consider some general properties of the

expression for (Ψ(x̄1), Ĉ(t) Ψ(x̄1) ), focusing on the influence of the space position x̄1. With

Ψ(0) := Ψ(x̄1 = 0), we observe that

| (Ψ(x̄1), Ĉ1(t) Ψ(x̄1) ) − (Ψ(0), Ĉ1(t) Ψ(0) ) |

= | (Ψ(x̄1), Ĉ1(t) Ψ(x̄1) ) − (Ψ(0), Ĉ1(t) Ψ(0) )

+(Ψ(0), Ĉ1(t) Ψ(x̄1) ) − (Ψ(0), Ĉ1(t) Ψ(x̄1) ) |

≤ |(Ψ(x̄1), Ĉ1(t) Ψ(x̄1) ) − (Ψ(0), Ĉ1(t) Ψ(x̄1) ) |

+|(Ψ(0), Ĉ1(t) Ψ(x̄1) ) − (Ψ(0), Ĉ1(t) Ψ(0) ) | (90)

≤ ||Ψ(x̄1) − Ψ(0)|| ||Ĉ1(t) Ψ(x̄1|| + ||Ψ(x̄1) − Ψ(0)|| ||Ĉ1(t)
† Ψ(0)|| ,

where ||Ψ|| denotes the norm of the vector Ψ. Finally, with the vectors Ψ normalized to

unity, we find that

| (Ψ(x̄1), Ĉ1(t) Ψ(x̄1) ) − (Ψ(0), Ĉ1(t) Ψ(0) ) | ≤ 2 ||Ψ(x̄1) − Ψ(0)|| ||Ĉ1(t)|| ,

(91)

in which ||Ĉ1(t)|| now denotes the operator norm of the 8 × 8 matrix representation of

the physical Hilbert space form, i.e., M1(t, ĈL(0)), of the given operator. Moreover, this

equation provides a bound on the hypothetical quantum spike, and with the temporal and

spacial portions bounded and completely separated, we believe that quantum spikes do not

exist. In other words, these solutions do not support the existence of quantum

spikes since they prohibit the temporal and spatial behavior characteristic of

the classical spike behavior.
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To achieve the eight solutions of the quantum Hamiltonian constraint we had

to subtract a numerical term that was proportional to ~
2. This is not unlike

using normal ordering to find solutions of a quantum problem, e.g., removing

the zero-point energy in a free field when it is composed of a set of harmonic

oscillators. Although our problem has been treated as a quantum mechanics

problem, it should be appreciated that such a problem applies to every spatial

point and thus the overall zero-point energy diverges. The solutions we have

obtained for the physical Hilbert space are its least energy states simply because

they do not cross the axis and change sign just as ground-state wave functions

traditionally behave.

IX. CONCLUSIONS

We have set up a formalism to treat the question of whether spikes persist in a quantum

treatment of spacetime singularities. We argue that a promising method for addressing this

question is to treat the quantum dynamics of individual spatial points using the Hamiltonian

system of Ashtekar, Henderson, and Sloan. We further note that the form of the Poisson

brackets of this system indicates that the affine approach to quantization would be more

natural for this system than the usual canonical quantization method. As shown in the

previous section, an exploration of the physical Hilbert space using the affine analysis leads

to the conclusion that quantum spikes do not exist.

We now consider particular ways to apply the formalism developed in this pa-

per to extend our results on the effect of quantum mechanics on spikes. Recall

from section II that classical spikes occur because the dynamics at a particu-

lar point (the center of the spike) is of an exceptional sort, different from the

dynamics of all neighboring points. Thus the question of whether quantum

effects destroy spikes is essentially the question of whether quantum effects de-

stroy these exceptional classical trajectories in the physical phase space. Though

quantum corrections are small (at least far from the Planck scale) nonetheless,

the unstable nature of the exceptional trajectories means that they might be

destroyed by even such small effects. The simplest form of this question is to

retain the classical phase space, but to replace the classical Hamiltonian with the
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enhanced Hamiltonian of section III D, and to see whether this change alone is

enough to destroy the exceptional trajectory. More generally, we would consider

wave packets that start out peaked around the exceptional classical trajectory

and see whether quantum uncertainty makes those wave packets spread so that

at later times they are no longer peaked around the classical trajectory. These

wave packets would need to satisfy the Hamiltonian constraint that the wave

function is annihilated by the quantum Hamiltonian operator (Eq. (78) in the

affine case or (73) for the canonical case). Since wave packets are known to have

tendency to spread during an evolution, we propose to examine this issue quite

independently by making use of the reproducing kernel Hilbert space technique

of Sec. IV. In section VIII we found all such affine quantum states that are

finite in the usual L2 norm. However, the so called problem of time in quantum

gravity leads one to consider alternative normalization choices, such as those

given in [26–28]. In particular, as we have shown, the quantum Hamiltonian

constraint equation leads to a hyperbolic equation that is more like the wave

equation than the usual Schrödinger equation of standard quantum mechanics.

Under such circumstances, it is argued in [27] that it is more natural to use

the Klein-Gordon norm rather than the standard L2 norm. It is possible that

for the processes relevant for the formation of spikes, the quantum Hamiltonian

constraint can be approximately solved in closed form. But if not, then standard

numerical methods used to treat hyperbolic equations could be used instead.

ACKNOWLEDGMENTS

We would like to thank Abhay Ashtekar, Vladimir Belinski, Woei-Chet Lim, David Sloan,

Claes Uggla, and Bob Wald for helpful discussions. DG was supported by NSF grants PHY-

1205202 and PHY-1505565 to Oakland University.

APPENDIX: HERMITICITYOF THEAFFINEHAMILTONIANCONSTRAINT

Here, we give an outline of the proof that the operator ĤC , defined in Eq. (66), is sym-

metric on the space of functions satisfying suitable boundary conditions or having compact

26



support in R
3.

It is clear that the most problematic terms in (66) are the ones with the second partial

derivatives, i.e. the second and the third terms of the first line of (66). One can easily

show that when taken separately, each of them is not symmetric. In what follows we show

that the sum of them has however this property. To demonstrate this, we make use of the

following identity

∑

I

x2I
∂2

∂x2I
−
∑

I 6=J

xIxJ
∂2

∂xI∂xJ
=
∑

I

HI −
∑

I 6=J

HIJ , (92)

where

HI := x2I
∂2

∂x2I
+ 2xI

∂

∂xI
(93)

and

HIJ := xIxJ
∂2

∂xI∂xJ
+ xI

∂

∂xI
. (94)

The proof consists in showing that

∑

I

[〈f |HIg〉 − 〈HIf |g〉] = 0 =
∑

I 6=J

[〈f |HIJg〉 − 〈HIJf |g〉] . (95)

Making use of the identities:

x2I
∂2f ∗

∂x2I
g =

∂

∂xI
(x2I

∂f ∗

∂xI
g) − 2xI

∂f ∗

∂xI
g − x2I

∂f ∗

∂xI

∂g

∂xI
, (96)

x2I f
∗ ∂

2g

∂x2I
=

∂

∂xI
(x2I f

∗ ∂g

∂xI
) − 2xI f

∗ ∂g

∂xI
− x2I

∂f ∗

∂xI

∂g

∂xI
, (97)

and

xIxJ
∂2f ∗

∂xJxI
g =

∂

∂xJ
(xIxJ

∂f ∗

∂xI
g) − xI

∂f ∗

∂xI
g − xIxJ

∂f ∗

∂xI

∂g

∂xJ
, (98)

xIxJf
∗ ∂2g

∂xIxJ
=

∂

∂xI
(xIxJf

∗ ∂g

∂xI
) − xJf

∗ ∂g

∂xJ
− xIxJ

∂f ∗

∂xI

∂g

∂xJ
, (99)

one can find that the integrants of (95) consist entirely of the factors:

∂

∂xI
[x2I(

∂f ∗

∂xI
g − f ∗ ∂g

∂xI
)] and

∂

∂xJ
(xIxJ

∂f ∗

∂xI
g) − ∂

∂xI
(xIxJf

∗ ∂g

∂xI
) . (100)

Due to Eq. (100) it is easy to show that Eq. (95) is satisfied in the subspace of functions with

compact support C0(R
3) ⊂ L2(R3, d3x), or in the subspace of functions satisfying suitable
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boundary conditions. In the r.h.s. of (92) we have the cancellation of the linear terms of

(93) and (94), which leads to the l.h.s. of (92).
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