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Abstract: The relation between Loop Quantum Gravity (LQG) and tensor network is explored from the
perspectives of bulk-boundary duality and holographic entanglement entropy. We find that the LQG spin-
network states in a space Σ with boundary ∂Σ is an exact holographic mapping similar to the proposal in
[1]. The tensor network, understood as the boundary quantum state, is the output of the exact holographic
mapping emerging from a coarse graining procedure of spin-networks. Furthermore, when a region A and
its complement Ā are specified on the boundary ∂Σ, we show that the boundary entanglement entropy S (A)
of the emergent tensor network satisfies the Ryu-Takayanagi formula in the semiclassical regime, i.e. S (A)
is proportional to the minimal area of the bulk surface attached to the boundary of A in ∂Σ.
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1 Holography, Tensor Network, and Loop Quantum Gravity

The AdS/CFT correspondence has brought about new surprises and insights in deciphering the nature of
gravity and particularly quantum gravity. The new perspective that brought about these advances was the
study of entanglement entropy in field theories, and the understanding of its manifestation in the gravity
dual. It was first conjectured by Ryu and Takayanagi (RT) [2] that the entanglement entropy of some chosen
region A in configuration space in the CFT is proportional to the area of some minimal surface in the AdS
dual homologous to the boundary of this region at the AdS boundary. Explicitly,

S EE(A) =
Armin

4GN
, (1.1)

where GN is the Newton’s constant. This formula has since been checked in many non-trivial examples, and
subsequently proved in 1+1 dimensions[3] and then higher dimensions [4] using other established techniques
in the AdS/CFT correspondence. Long before these works however, it is suspected [2] and later confirmed[5]
that the formula for holographic entanglement entropy is closely related to black hole entropy, coinciding
with the Bekenstein Hawking formula in some simple cases, when the region A is one bounded by a sphere
S d−1. As it is well known, there are many works in the past attempting to explain the black hole entropy
as a gravitational entanglement entropy [6, 7]. Recent works have also demonstrated that this entanglement
entropy of the boundary is itself closely related to the entanglement entropy of the bulk gravity theory[8–11].
One rather universal feature in all these discussions is the emergence of area law being a, if not the, crucial
signature of a local semi-classical gravitational background[12].

One very natural question that arises is : where does the RT formula come from? What is the underlying
structure that can give rise to an area law? Swingle made a profound observation in [13]. Working on
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Figure 1. Entanglement entropy of a region is bounded by a minimal curve (red curve) cutting through the MERA tensor
network. (Figure adapted and modified from [14])

tensor networks in condensed matter aimed at obtaining in a numerically efficient way the ground states of
interacting many body Hamiltonian, it is observed that the entanglement of ground state wavefunctions
describable by MERA type tensor networks carries an entanglement entropy that is proportional to the
number of links on a minimal cut through the tensor network. The picture is highly suggestive of the RT
formula, as shown in Figure 1.

The observation has inspired a lot of effort aiming to explore how the gravitational bulk/tensor network
correspondence should play out. More precisely, tensor networks are general ways of re-writing a many-
body wavefunction in terms of contraction of tensors. Explicitly,

|Ψ〉 =
∑
{ai}

fa1,a2,···aN |a1, a2, · · · , aN〉 =
∑
{ai,γl}

∏
I

T I
γ1 γ2 ... ai...

|a1, a2, · · · aN〉, (1.2)

where fa1,a2,···aN is the amplitude of a particular state, which has been rewritten in terms of the contraction
of tensors T I

γ1 γ2 ... ai...
, with the γi indices auxiliary “internal indices” that are contracted among these T I’s

forming a network. The indices ai, the physical indices, remain uncontracted among tensors, and are often
called the “dangling legs”. The superscript I is a label for these tensors, denoting different choices of
tensors that can be placed in the network so that the energy wrt a given Hamiltonian is minimized. Different
architecture of these tensors serve different purposes : the MPS tensor network for example, are very efficient
modeling ground states of gapped Hamiltonians, whereas MERA is specialized in capturing ground states
of gapless systems[15]. The key lies in the fact that the architecture of the tensor network can be viewed as
a process of real-space renormalization, so that global symmetries of the wavefunction – scaling symmetry
for example– is encapsulated in the geometry of the tensor network [16]. Various example of the tensor
network other than MERA are shown in Figure 2. As observed in Swingle[13], the entanglement is indeed
generically bounded by the number of legs on the analogue of an RT surface homologous to the boundary
“dangling legs” cutting through the network, which we have mentioned above.

An upper bound is a relatively vague statement. To make further progress, it is observed in [10] and
subsequently constructed explicitly in [18] that the RT formula, together with the causal structure in classical
AdS space implies that a tensor network that re-enacts the gravity theory is probably one that behaves like
an error correcting code1 built from perfect tensors, which has the property that it is a unitary map from any

1An error correcting code refers to protocals adopted to encode information such that at least some specific forms of error in the
process of the encoding can be detected and subsequently corrected. This is achieved by introducing more bits than the actual number
of bits of information that is encoded. In the case of a quantum error correcting code, we introduce extra qubits to encode each bit
of the actual information, which is called logical bit. The logical bit would thus occupy only a subspace of the full Physical Hilbert
space, which is called a logical subspace, and error detection is achieved by determining whether a state has been taken outside of the
logical subspace. The AdS/CFT correspondence resembles some features of the error correcting code in the sense that information of
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Figure 2. Various examples of tensor networks: MPS on the left and PEP on the right. (Figure adapted and modified
from [17])

choice of half of its full set of indices to the other half. Further works[19] uncover the natural place in which
perfect tensors can be found – generic tensors with large bond dimensions.

At this point, a very interesting picture emerges. Now that tensor networks prove itself a promising
candidate for describing crucial features of (quantum) gravity, the physical picture that it presents is highly
reminiscent of the picture that is intrinsic to the loop quantum gravity program. In this paper, we would
like to make the connection between tensor networks and the loop quantum gravity framework explicit. Or
in other words, it is possible to frame the loop quantum gravity program using perspectives of the tensor
network construction, so that beautiful features such as the RT formula resurfaces naturally in the loop
quantum gravity program.

Loop quantum gravity (LQG) is an attempt toward a nonperturbative and background independent quan-
tum theory of gravity in 3, 4, and higher spacetime dimensions [20–24]. In this paper we mainly focus on
4 spacetime dimensions. LQG is originated by the canonical formulation of classical gravity in 4d as a
dynamical theory of gauge connections [25]. In this formalism, the phase space P of gravity has a similar
structure as an SU(2) gauge theory. But the canonical variables represent the geometry on 3d spatial slices.
The quantization of the phase space P has been well-understood in LQG since 1990s, see e.g. [20, 26, 27].
It leads to the Hilbert spaceHLQG, shown to be the unique representation of the operator algebra quantizing
the phase space P [28, 29]. Promoting the canonical variables to operators onHLQG quantizes the 3d spatial
geometry. Many geometrical quantities are represented as (self-adjoint) operators on HLQG (e.g. [30–36]).
Two of the most important examples are the area operator ÂrS and the volume operator V̂R. Both of them
have the discrete spectra (eigenvalues), which implies that in quantum geometry, the area and volume are
fundamentally discrete at Planck scale. The area and volume operators share the same set of eigenstates
in HLQG, which are known as spin-network states. The area and volume eigenvalues are understood as the
quanta carried by the spin-networks at Planck scale.

The purpose of this paper is to explore the relation between LQG and tensor network, especially in the
perspectives of bulk-boundary duality and holographic entanglement entropy. We find that the LQG spin-
network states on a space Σ with boundary ∂Σ is an exact holographic mapping similar as the proposal in
[1, 19]. The tensor network, understood as the boundary quantum state, is the output of the exact holographic
mapping emerging from a coarse graining procedure of spin-networks. Furthermore, when a region A and its
complement Ā are specified on the boundary ∂Σ, we show that the entanglement entropy S (A) of the resulting
tensor network satisfies the Ryu-Takayanagi formula in the semiclassical regime, i.e. S (A) is proportional to
the minimal area of the bulk surface attached to the boundary of A in ∂Σ.

One of the aims in this work is to construct LQG states, which realizes the bulk-boundary duality and
relates to the tensor networks. The idea of construction is illustrated in FIG.3. Given the spatial region Σ

the semi-classical bulk can be recovered requiring only some parts of the boundary and not all. Therefore bulk information appears like
logical qubits, whereas the CFT states behave like physical bits.
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discretized into a large number of polyhedra p, we introduce 3 different length scales:

(A) Macroscopic scale: It is the scale at which the smooth classical geometry is seen on Σ. The scale is
characterized by L being the mean curvature radius of the geometry.

(B) Microscopic scale: It is the scale of each polyhedron p, it is also the scale at which we define the
quantum states as exact holographic mapping and tensor networks. The scale is characterized by the
(square-root) of the mean face area Ar f of polyhedra p.

(C) Planck scale `P: It is the scale at which the spin-network states are defined. By LQG, A spin-network
state associates with a network graph Γ consisting of a number of edges e and vertices v. Each edge
carries a Planck scale area, while each vertex carries a Planck scale volume. The areas and volumes
carried by the spin-network are the eigenvalues of the area and volume operators.

The analysis in this paper focuses on the regime that

`2
P � Ar f � L2. (1.3)

This regime has been studied as the semiclassical regime of LQG from several different perspectives [37–41].
Here Ar f � L2 means that the smooth classical geometry is a good approximation when we zoom out to the
macroscopic level. The discreteness from the small polyhedra p is negligible. The tensor network Ψ is build
according to the polyhedral discretization of Σ at the scale Ar f . Namely each polyhedron p associates to a
tensor T (p) whose indices associate to the polyhedron faces. Gluing a pair of polyhedra p, p′ corresponds to
contracting a pair of indices from T (p) and T (p′).

Each tensor T (p) is understood as a quantum state in a Hilbert space ⊗ fH∂( f ), where each H∂( f )
associates to a face f ⊂ ∂p. We may enlarge this Hilbert space and include some bulk degrees of freedom,
i.e. a bulk Hilbert space Hb(p) is defined and tensor product with ⊗ fH∂( f ). A state |Vp〉 is picked up in
the enlarged Hilbert space, and gives T (p) by taking (partial) inner product with certain bulk state |φb(p)〉 ∈
Hb(p), i.e. 〈φb(p)|Vp〉 = |T (p)〉. One may view |Vp〉 as an enlarged tensor (Vp)µb;{µ f } with both the boundary
index µ f ofH∂( f ) and the bulk index µb ofHb(p). Its inner product with |φb(p)〉, which has only bulk index
µb, gives the tensor T (p){µ f } with only boundary indices. The tensor network Ψ is made by contracting the
µ f indices of T (p)’s associated to internal f ’s. Ψ is understood as a boundary quantum state associated to
∂Σ, because the un-contracted µ f ’s of Ψ only associate to ∂Σ. But we can again define the state enlarged
from Ψ by adding bulk degrees of freedom. It can be obtained by define a tensor network from |Vp〉 by only
contracting the µ f indices associated to the internal f , leaving the bulk µb’s un-contracted. The resulting
tensor network is denoted by |Σ〉 which has the un-contracted indices associated to both ∂Σ and the bulk of
Σ. The original tensor network Ψ can be obtained by the partial inner product with certain bulk states Φb

which has only bulk µb indices

〈Φb|Σ〉 = |Ψ〉. (1.4)

The enlarged tensor network state |Σ〉 is referred to as the exact holographic mapping, proposed in [1, 19].
It is proposed as a concrete realization of the bulk-boundary duality. Given the exact holographic mapping
|Σ〉, the boundary quantum state is uniquely determined by the bulk quantum state.

Coming back to the regime Eq.(1.3), the Planck scale `P where LQG spin-networks live is much smaller
than the scale Ar f where the tensor-networks |Ψ〉 or exact holographic mappings |Σ〉 live. It suggests that the
spin-network states should play a more fundamental role. The tensor network and exact holographic map-
ping is emergent from the spin-networks. Indeed we propose that the tensor network and exact holographic
mapping are obtained by spin-network states via a coarse graining procedure.

In the exact holographic mapping |Σ〉, a polyhedron p associates to a state |Vp〉. But we understand
|Vp〉 as a coarse grained prescription of some complicated spin-network states in p. The spin-networks in p
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Figure 3. The spatial region Σ with boundary ∂Σ and its semi-classical geometry are built by a large number of polyhedra
p (tetrahedra shown in figure) with semi-classical geometry. The semi-classical geometry of p is fundamentally made by
the spin-networks |Γp, { je, jl}, {Iv}, {ml}

〉
with a large number of edges and vertices in the graph Γp, shown in Figure (C).

Each edge carries a spin j as the quanta of area at Planck scale, while each vertex carries a intertwiner Iv as the quanta
of volume. The spin-networks with the large number of degree of freedom can be coarse grained to the picture shown in
Figure (B). Each of the 4 legs in Figure (B) represents the Hilbert space H∂( f ), whose basis is labelled by |µ f 〉. H∂( f )
includes all microstates | jl,ml〉 (the boundary microstates of p) carried by the dangling edges in spin-network graph Γp.
The middle ball in Figure (B) represents the Hilbert spaceHb(p), whose basis is labelled by |ξ~µp〉. Hb(p) includes all the
spins on the internal edges of Γp and intertwiners on all vertices (the bulk microstate inside p). The coarse grained spin-
networks give the exact holographic mapping, and leads to the tensor network representing the ground state of boundary
CFT. Figure (A), (B), and (C) figures are the physical pictures at 3 different scales: (A) is at the macroscopic scale, where
the typical length scale L is the mean curvature radius of the semi-classical geometry. (B) is at the microscopic scale,
where the tensor network lives, and the typical (squared) length scale is the mean face area Ar f of polyhedron. (C) is
at Planck scale, where spin-network lives, and the typical length scale is the Planck length `P. The semiclassical regime
of LQG is given by `2

P � A f � L2. In this regime, we reproduce correctly the Ryu-Takayanagi formula of holographic
entanglement entropy.

generically have a large number of edges and vertices. There are a large number of internal edges e inside
p, and a large number of dangling edges l intersecting the faces of p. A large number of micro-degree of
freedom are carried by the spin-network edges and vertices.

A spin-network state |Γ, { je, jl}, {Iv}, {ml}〉 is labelled by (1) a graph Γ consisting a number of edges e
and vertices v, (2) an SU(2) irrep je ∈ N/2 carried by each internal edges e, (3) an SU(2) state | jl,ml〉 in
irrep V jl carried by each dangling edges l, and (4) an SU(2) invariant tensor (intertwiner) Iv ∈ Inv(⊗iV ji )
at each vertex v with ji’s carried by the adjacent edges. The quantum area carried by e relates to je by
Are = 8πγ`2

P

√
je( je + 1) (the same for l). Are is understood as the (Planck scale) area element of the surface

transverse to e. The quantum volume Vv carried by v relates to both Iv and the adjacent j’s. Vv is understood
as the volume element of the neighborhood at v. The expression of Vv can be found in e.g. [42, 43]

The spin-network states in p describe the quantum fluctuation of polyhedral geometry at the deep Planck
scale. The spin-networks and their linear combinations have both boundary and bulk micro-degrees of free-
dom. The boundary microstates are the states | jl,ml〉 at all dangling edges. Each dangling edge l intersects
a face of p. The bulk microstates are the internal je and Iv. At the coarse grained level, the boundary and
bulk microstates are grouped into the Hilbert spaces H∂( f ) and Hb(p). The tensor index µ f of |Vp〉 counts
the microstates at all l’s which intersects f , while µb counts all the bulk microstates.

The exact holographic mapping |Σ〉 is then constructed by contracting the µ f indices of |Vp〉’s when glu-
ing tetrahedra p’s. It effectively connects the spin-network states from each p, and consistently produces the
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spin-network states in the entire space Σ. The resulting exact holographic mapping |Σ〉 belongs to the LQG
Hilbert space HLQG on Σ, as a linear combination of spin-network states. Here importantly, |Σ〉 generically
sums all possible quantum geometries on Σ.

Since Σ has the boundary ∂Σ, the state |Σ〉 has both the bulk and boundary degrees of freedom. Naively
HLQG where |Σ〉 lives may be viewed as a tensor product Hilbert space Hb ⊗ H∂ of bulk and boundary
microstates. However as an important feature implied by LQG, |Σ〉 exhibits certain entanglement between
bulk and boundary microstates. The reason is simple: the SU(2) intertwiner Iv as bulk microstate depends on
the adjacent spins j, which involves the boundary microstates when some adjacent edges of v connect to ∂Σ.
Therefore the Hilbert space HLQG doesn’t factorize as a tensor product of bulk and boundary. By the same
reason, for each p, the state |Vp〉 is also an entangled state, whose Hilbert space doesn’t factorize into bulk
inside p and boundary ∂p. It is one of the differences between the original proposal of exact holographic
mapping in [1, 19] and the one emerged from LQG.

Indeed the state |Σ〉 maps holographically a bulk state Φb to a boundary state Ψ, in the same way as
Eq.(1.4). Here the bulk state Φb is generally a sum of the tenor products of bulk intertwiners Iv at all
vertices. For a suitable choice of Φb

2, its image under holographic mapping |Σ〉 gives a tensor network
state Ψ = 〈Φb|Σ〉, representing the ground state of boundary CFT. The Φb relating to the tensor network is
discussed in Sections 5 and 7. It exhibits the locality in the discrete space Σ, i.e. its degrees of freedom are
localized within each polyhedron p and at each face f .

The fact that |Σ〉 has the entanglement between bulk and boundary leads to some interesting conse-
quences. The bulk state describes the quantum geometry inside Σ, and the boundary state describes certain
field theory on ∂Σ. Then |Σ〉 may be written schematically as an expansion in certain entangled basis

|Σ〉 =
∑

I

∣∣∣geometryI
〉

b ⊗
∣∣∣fieldI

〉
∂ (1.5)

where I counts the bulk and boundary basis inHb andH∂. The entanglement in |Σ〉 suggests the correspon-
dence between boundary field and bulk geometry: If a measurement at the boundary gives |fieldI〉∂, It makes
the state collapses and determines the bulk state to be |geometryI〉b. Moreover, AdS/CFT correspondence
suggests that if the boundary state is a CFT ground state |CFT〉∂, the corresponding bulk geometry state is a
semiclassical state of AdS geometry. Thus |Σ〉 is expected to have the form

|Σ〉 = |AdS〉b ⊗ |CFT〉∂ + · · · (1.6)

where · · · stands for other states in the expansion. From the viewpoint of holographic mapping, the CFT
ground state is obtained by |CFT〉∂ = b〈AdS|Σ〉. If we represent the |CFT〉∂ by the tensor network state Ψ,
then the bulk state Φb proposed above should represent a semiclassical state of AdS. The semiclassicality is
consistent with the locality exhibited by Φb.

The requirement that Φb represents the semiclassical geometry imposes constraints to Φb. In particular,
the geometry of Σ endows face areas Ar f to each polyhedron faces f . Thus Φb, as a sum of spin-networks,
satisfies the constraints

8πγ`2
P

NΓ( f )∑
l,l∩ f,∅

√
jl( jl + 1) = Ar f , (1.7)

recall that 8πγ`2
P

√
jl( jl + 1) is the quantum area carried by a spin-network edge l. NΓ( f ) is the number of

intersections between the spin-network graph and f . Eq.(1.7) constraints the spin-network sum in Φb, then
effectively constrains the bond dimension3 D f of the tensor network Ψ. D f is constrained to be the number
of microstates ⊗l| jl,ml〉 at f subject to Eq.(1.7). As Ar f � `2

P, D f can be estimated by using the same

2Φb used here is a sum of (coarse grained) tensor product states with equal weights. See Section 5 for details.
3The bond dimension D f is the range of the index sum, when a pair of indices are contracted between T (p) and T (p′) with f = p∩p′.
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technique as the LQG entropy counting on a black hole horizon, see e.g. [44–46]. As a result, ln D f is
proportional to the face area Ar f .

D f ' exp
[
T Ar f

]
� 1, (1.8)

where T =
β0

8πγ`2
P
. γ is the Barbero-Immirzi paramter in LQG, and 2πβ0 = 0.274.... This area law of D f is an

important ingredient in the derivation of holographic entanglement entropy.
To show the exact holographic mapping |Σ〉 from LQG indeed consistent with AdS/CFT, we specify a

region A and its complement Ā in ∂Σ, and compute the entanglement entropy S (A) of the resulting tensor
network Ψ (as a candidate of |CFT〉∂). Thanks to the area law of bond dimension, in the semiclassical regime
Eq.(1.3), S (A) reduces to a path integral of Nambu-Goto action T ArS of the bulk 2-surfaces S attached to
∂A on the boundary, i.e. ∂S = ∂A.

e−S (A) '

∫
[DS] e−TArS (1.9)

where DS is certain measure of the surfaces S. In the limit `P → 0, the path integral localizes at the critical
point, which is the surface S with minimal area Armin. As a result, we reproduces the Ryu-Takayanagi
formula

S (A) ' T Armin. (1.10)

where the “surface tension” T is identified as the IR value of 1/4GN
4.

In the derivation of holographic entanglement entropy, we use the similar technique as in [19], i.e. we
apply a random sampling of the state |Vp〉 at each p. The random state technique has a long and rich history
in quantum information theory (see e.g [48] for a review), and has been often used in the studies of entangle-
ment entropy (e.g. [49, 50]). It is also motivated by the fact that each polyhedron p contains a large number
of spin-network microstates, whose linear combination gives |Vp〉. We are not interested in the detailed
microstates at the Planck scale, but rather interested in a macroscopic result, e.g. the entanglement entropy,
determined by the typical coarse grained state |Vp〉. The holographic entanglement entropy Eq.(1.10) is
derived from the typical states |Vp〉 via random average. Any deviation from the above typical result can be
shown to be suppressed as the bond dimension being large D f � 1.

Although the idea of random sampling used here is similar to [19], there are some important differences
and improvements: Firstly we have pointed out that the state |Vp〉 from LQG is always an entangled state.
The Hilbert space of |Vp〉 cannot be factorized into bulk of p and boundary ∂p. So we have to impose this
entanglement into the random sampling, and always sample the entangled states. It leads to a few technical
differences between the derivation in Section 9 and in [19]. Because of this entanglement in |Vp〉, the bulk
state Φb, which leads to tensor network in holographic mapping, is not necessarily a pure tenor product,
different from [19], although it still represents the locality at both p’s and f ’s.

Secondly, as a key input from LQG to the derivation, the bond dimension D f obtains the geometrical
interpretation via the area law Eq.(1.8), which is a key ingredient of writing S (A) as a Nambu-Goto path
integral and leads to the minimal surface by the variational principle.

Although we often regard the tensor network as the CFT ground state, whose holographic dual is bulk
AdS geometry, our formalism and the resulting Ryu-Takayanagi formula should be valid for the broader
context of bulk-boundary duality. The only essential assumptions in the derivation are that the boundary
quantum state should be a tensor network (may or may not be a CFT ground state), while the bulk quantum
state should represent a bulk geometry (may or may not be AdS) with semiclassical areas, and represent bulk
locality.

In this paper we mainly focus on 4 spacetime dimension thus the space dimension dim Σ = 3. All results
generalize straight-forwardly to 3d spacetime when the surface areas Ar here are replaced by the lengths in

4This is consistent with what has been suggested in the LQG black hole literature [47].
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2d space. The generalization to spacetime dimensions higher than 4 can also be done by applying the state
counting in [51] to estimate D f .

Back to the exact holographic mapping in the expansion Eq.(1.6), it seems to give a holographic dictio-
nary between bulk and boundary quantum states, through their entanglement. We may also re-expand |Σ〉 by
another choice of bulk and boundary basis, which is slightly deviate from the ones containing |AdS〉b and
|CFT〉∂. If the new bulk basis contains |AdS + perturb.〉b, then the boundary state entangled with it should be
|CFT + perturb.〉∂, i.e. the re-expansion of |Σ〉 should lead to

|Σ〉 =
∣∣∣AdS + perturb.

〉
b ⊗

∣∣∣CFT + perturb.
〉
∂

+ · · · (1.11)

Thus certain excitations on the AdS geometry is entangled with certain excitations on the CFT ground state.
So it might give a holographic dictionary between bulk and boundary operators. The concrete understanding
of it is a research currently undergoing [52].

Let us mention that the present work mainly focuses on the kinematics of LQG and tensor network. The
tensor construction thus far attacks mostly the kinematical aspect of the problem – identifying wavefunctions
that exhibit properties of semi-classical gravitational backgrounds. The result of holographic entanglement
entropy (Ryu-Takayanagi formula) indeed supports that the tensor network state emerges from LQG is the
ground state of certain CFT. The dynamics of this CFT is unclear at the moment, but interestingly, it should
be possible to translate between dynamics of the CFT and dynamics of the quantum gravity. One impor-
tant piece of the puzzle is how unitary transformations of the boundary legs can be translated into unitary
transformations of the bulk tensors and under what circumstances such evolution would preserve the tensor
network structure in the bulk. These might relate to the Hamiltonian constraint and Spinfoams in LQG.

Finally we mention that there has been earlier works in the literature on the relation between LQG and
holography, e.g. [12, 37, 53–61], including a recent work on holographic entanglement entropy by Lee
Smolin [62]. There also has been works on the entanglement entropy in LQG context e.g. [63–71], and on
applying tensor network technique to LQG e.g. [72]. Some earlier works on coarse graining spin-network
states can be found in e.g. [73–79].

The architecture of this paper is as follows: Section 2 reviews the Hilbert space of LQG and spin-
network states. Section 3 focuses on the spin-network with boundary dangling edges, and presents a useful
reformulation. Section 4 discusses the coarse graining of spin-network state, and define the state |Vp〉.
Section 5 define the LQG state |Σ〉 and demonstrates the exact holographic mapping. Section 6 discusses the
bulk-boundary entanglement in |Σ〉 and its relation with bulk-boundary duality. Section 7 discusses the bulk
state Φb representing a semiclassical geometry with locality, and the geometrical constraints imposed to the
bulk state. Section 8 estimates the bond dimension D f and shows the area law. Finally, Section 9 derives the
Ryu-Takayanagi formula of holographic entanglement entropy.

2 Hilbert space of Loop Quantum Gravity and Spin-Network

The Hilbert space of LQG is derived from quantizing the phase space P of 4d gravity in the formulation
using connection variables [20, 22, 23, 25]. The phase space P can be obtained via a 3+1 decomposition of
the Holst action [80]

S Holst

[
eI , ωIJ

]
=

1
8πGN

∫
M4

eI ∧ eJ ∧

(
∗F +

1
γ

F
)

IJ
(2.1)

where eI
µ is the 4d tetrad and F IJ

µν is the curvature of so(1,3) connection ωIJ
µ (µ, I = 0, · · · , 3). γ ∈ R is the

Barbero-Immirzi parameter. In this paper γ is an arbitrary number of order 1. The variational principle of
S Holst gives vacuum Einstein equation, and shows S Holst is on-shell equivalent to the Einstein-Hilbert action
of gravity.
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The 3+1 decomposition and Hamiltonian analysis of S Holst leads to the phase space P of 4d gravity.
The canonical conjugate variables in P are the Ashtekar-Barbero connection Ai

a and densitized triad Ea
i on

the spatial slices M3:

Ai
a = Γi

a + γKi
a, Ea

i =
√

det q ea
i (2.2)

Here ea
i (a, i = 1, 2, 3) is the triad on M3, which determines the metric qab = ei

aei
b and the spin connection Γi

a.
Ki

a relates to the extrinsic curvature Kab of M3 ↪→ M4 by Kab = Ki
(aei

b). In contrast to the so(1,3) connection
ωIJ
µ in 4d, Ai

a is a spatial connection in 3d with gauge group SU(2). The breaking of the gauge group from
the Lagrangian S Holst to the Hamiltonian formulation is due to the 3+1 decomposition of spacetime, together
with an internal partial gauge fixing (usually called “time gauge” in the literature). The detailed derivation
of the canonical conjugate variables can be found in e.g. [80, 81]. The symplectic structure of the phase
space P gives the Poisson bracket

{Ai
a(x), Eb

j (x′)} = 8πGNγ δ
b
aδ

i
jδ

(3)(x, x′). (2.3)

The quantization of phase space P has been well-understood in LQG literature. See e.g. [20, 26, 27].
The wave function of the theory can be understood as a function ψ(Ai

a) of connection field on M3. More
precisely, the wave functions are functions ψ of SU(2) holonomies he(A) = P exp

∫
e A along a number of

oriented edges (analytic curves) e1, · · · , eN ⊂ M3:

ψ = ψ
(
he1 (A), · · · heN (A)

)
. (2.4)

The edges e1, · · · , eN form a graph (a network) Γ. A general graph Γ consists a finite set of oriented edges
denoted by E(Γ) and a set of vertices V(Γ). The vertices in Γ are the sources and targets of the edges
e ∈ E(Γ). A wave function Eq.(2.4) is defined upon a choice of graph Γ, and depends on only a finite number
of degree of freedom. Thus ψ in Eq.(2.4) is referred to as a cylindrical function of LQG. Obviously, the full
infinite number of degree of freedom of gravity is achieved by putting together all possible choices of Γ5.
All possible cylindrical function of the type Eq.(2.4) by considering all possible Γ form a Hilbert space of
L2-type,

HLQG = L2(Ā/Ḡ, dµAL) (2.5)

HLQG is the Hilbert space of LQG, and carrying the representation of quantum geometry on spatial manifold
M3. The configuration space Ā/Ḡ is the space of all SU(2) connection fields (including certain non-smooth
and distributional connection fields) over the spatial slices M3, modulo the gauge transformations [82]. dµAL

denotes the Ashtekar-Lewandowski measure on Ā/Ḡ [83]. Importantly, the LQG quantization of the gravity
phase space P is systematic and mathematically rigorous. The formalism is even unique. It is proved
in [28, 29] that HLQG is the unique representation of the quantization of P, provided that the theory is
diffeomorphism invariant.

There is a useful orthonormal basis inHLQG which is called spin-network basis. The spin-network basis
can be constructed by the following observation: Consider the simplest graph consisting only a single edge
e, the associated cylindrical functions ψ = ψ(he) is a function on SU(2) group. More precisely ψ belongs to
the space L2(SU(2), dµH) where dµH is the Haar measure. An orthogonal basis in L2(SU(2), dµH) is given
by the matrix elements R j

mn(he) of all SU(2) irreps labelled by the spins j

R j
mn(he) = 〈 j,m|he| j, n〉. (2.6)

5The LQG Hilbert space is the completion of the union of all possible cylindrical functions, modulo some equivalence relations.
In simple language, the equivalence relations include the cylindrical functions of a small graph into the cylindrical functions of a
larger graph. The integration of cylindrical functions and all operators have to respect to the equivalence relation, which is known as
cylindrical consistency.
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Thus ψ(he) can be written as a linear combination of R j
mn(he): ψ =

∑∞
j=0

∑ j
m,n=− j c j

mnR j
mn. A general cylindri-

cal function ψ(he1 , · · · , heN ) on a close graph Γ can be decomposed in the same way at each entry hei . The
basis to make the decomposition is a product of R je

mene (he) over all e ∈ Γ. However in order to preserve the
gauge invariance at each vertex v ∈ V(Γ), an invariant tensor Iv has to be inserted and contract the me, ne

from the adjacent e’s. Therefore we have the (gauge invariant) spin-network basis TΓ,{ je},{Iv} for decomposing
arbitrary ψ(he1 , · · · , heN )

TΓ,{ je},{Iv}

(
he1 , · · · , heN

)
=

∑
me,ne

∏
e∈E(Γ)

R je
mene (he)

∏
v∈V(Γ)

(Iv){ je}
{me,ne}

. (2.7)

where Iv ∈ InvSU(2)(⊗eV je ) is an invariant tensor in SU(2) tensor representation ⊗eV je with je on adjacent
edges. Iv is often called an intertwiner of SU(2).

For closed graphs, the spin-network state is defined as a triple |Γ, { je}, {Iv}〉 containing the graph Γ, spins
je associated to all edges, and intertwiners Iv associated to all vertices. The vertex in a closed graph is not
uni-valent. The spin-network state relates to the spin-network function TΓ,{ je},{Iv}

(
he1 , · · · , heN

)
by〈

he1 , · · · , heN

∣∣∣Γ, { je}, {Iv}
〉

= TΓ,{ je},{Iv}

(
he1 , · · · , heN

)
. (2.8)

A non-closed graph Γ with dangling edges l (and uni-valent vertices) is used to define spin-network
states for the spatial region R with boundary ∂R. The corresponding spin-network state is denoted by
|Γ, { je, jl}, {Iv}, {nl}〉, where both a spin jl and a magnetic quantum number nl is assigned to each dangling
edge l. 〈

{he}, {hl}

∣∣∣∣Γ, { je, jl}, {Iv}, {nl}

〉
=

∑
me,ne,ml

∏
e

R je
mene (he)

∏
v

(Iv){ je, jl}
{me,ne,ml}

∏
l

R jl
mlnl (hl) (2.9)

We often use e to label internal edges and l to label boundary dangling edges. It is clear from the above
formula that the SU(2) gauge invariance is imposed on each internal vertex v, but is not imposed on the
boundary uni-valent vertices. The gauge degree of freedom becomes the physical degree of freedom at the
boundary.

The spin-network basis is a complete orthogonal basis in the LQG Hilbert space H . It also has nice
interpretations in terms of 3d quantum geometry on spatial manifold M3. A large class of geometrical quan-
tities on M3 have been represented as the self-adjoint operators acting onH , constructed using the derivative
Êa

i (x) = −8πiγ`2
P

δ
δAi

a(x) . See e.g. [30–36]. Among the class of geometrical operators, two important ones are

the area operator ÂrS of a 2-surface S , and the volume operator V̂R of a 3d region R. It turns out that the
spin-network basis is simultaneously the eigen-basis of both ÂrS and V̂R. For S cuts transversely a number
edges in Γ and R encloses a number of vertices

ÂrS

∣∣∣∣Γ, { je, jl}, {Iv}, {nl}
〉

= 8πγ`2
P

 ∑
S∩e,∅

√
je( je + 1) +

∑
S∩l,∅

√
jl( jl + 1)

 ∣∣∣∣Γ, { je, jl}, {Iv}, {nl}
〉

V̂R
∣∣∣∣Γ, { je, jl}, {Iv}, {nl}

〉
=

∑
v∈R

Vv(Iv)
∣∣∣∣Γ, { je, jl}, {Iv}, {nl}

〉
(2.10)

The eigenvalue of area operator is given by a sum over all cut edges weighted by
√

j( j + 1) according to the
spin labels carried by the edges. The spin labels je, jl is thus interpreted as the quanta of the area element
transverse to the edge. The eigenvalue of volume operator is a sum of local contribution Vv(Iv) at v ∈ R,
which is determined by the intertwiner Iv at v [42, 43]. One may imagine that there is a tiny flat polyhedron6

(infinitesimal from macroscopic point of view) enclosing a single vertex v. The polyhedron faces are all
transverse to the edges adjacent to v. The intertwiner Iv is a quantization of the shapes of the tiny polyhedron
[84, 85], while the j’s on the edges adjacent to v gives the quantum areas of the tiny polyhedron faces.

6This tiny polyhedron is used for the geometrical picture of spin-network vertex v. It shouldn’t be confused with the semiclassical
polyhedron p in Section 4 and the following. The semiclassical polyhedron p contains a large number of spin-network vertices, thus
can be obtained by certain gluing of a large number of tiny polyhedra.
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3 Spin-Network with Boundary

In this section, we focus on the spin-networks with dangling edges, describing the quantum geometry of the
spatial region R with boundary ∂R. We present a different formulation of the spin-network states, instead of
using spin-network functions Eq.(2.9). This formulation is useful in the following discussion.

Given an oriented graph Γ, we cut each edge e ∈ E(Γ) into a pair of half-edges. The cuts break Γ

into a set of vertices v ∈ V(Γ), together with the adjacent half-edges e1,··· ,n(v). Some of the half-edges are
incoming to v, while others are outgoing. Now we focus on a single vertex v, and associates each half-edge
ei(v) a Hilbert space L2(SU(2), dµH) ' ⊕∞j=0V j ⊗ V∗j where V j is the spin- j irrep of SU(2). The factorization
naturally associates V j to the source s(ei(v)) of ei(v), and associates V∗j to the target t(ei(v)). Thus the vertex x
associates a product of irreps ⊗iV ji⊗l V∗jl , where V ji ,V

∗
jl

corresponds to the outgoing and incoming half-edges
respectively. SU(2) gauge invariance at each vertex restricts the product of irreps into the invariant subspace
Inv[⊗iV ji ⊗l V∗jl ] (intertwiner space), where each state is invariant under the tensor product representation of
SU(2). Combining the other factor V j or V∗j half-edge Hilbert space L2(SU(2)), this construction associates
a Hilbert space to each vertex x and its adjacent half-edges

Hv =
⊕
~j

Inv

 ⊗
ei outgoing

V ji

⊗
el incoming

V∗jl

⊗
 ⊗

ei outgoing

V∗ji
⊗

el incoming

V jl

 . (3.1)

Given a basis |I
~j
v〉 =

∑
~m ⊗ei | ji,mi〉 I

~j
~m ∈ Inv[

⊗
ei

V ji ] (all ei are assumed outgoing), a basis inHv can be
written as ∑

~m

⊗ei | ji,mi〉 I
~j
~m

 ⊗ei 〈 ji, ni| = |I
~j
v〉 ⊗ei 〈 ji, ni| (3.2)

We have assumed all half-edges ei are outgoing from the vertex x to simplify the formula. The most general
case with both incoming and outgoing ei’s can be written analogously.

A LQG spin-network state |Γ, { je, jl}, {Iv}, {nl}〉 on a graph Γ with boundary dangling edges is obtained
by taking the inner product between pairs of 〈 ji, ni| for each internal edge.∣∣∣∣Γ, { je, jl}, {Iv}, {nl}

〉
=

⊗
v∈V(Γ)

∣∣∣∣I{ je, jl}v

〉 ⊗
boundary l

〈 jl, nl|. (3.3)

The last tensor product is among the dangling half-edges l connecting to ∂R, which do not participate the
inner product. The corresponding spin-network function for each |Γ, { je, jl}, {Iv}, {nl}〉 is〈

he, hl

∣∣∣∣Γ, { je, jl}, {Iv}, {nl}

〉
=

∑
me,ne,ml

∏
e

R je
mene (he)

∏
x

I{ je, jl}
{me,ne,ml}

(x)
∏

l

R jl
mlnl (hl) (3.4)

To derive the above expression, one may notice that |Γ, { je, jl}, {Iv}, {nl}〉 contains for each edge e or l a state
|φ

j
nm〉 = | j,m〉〈 j, n|, where one of the factor comes from I{ je}v and the other comes from either a neighboring

I{ je}v′ or a dangling half-edge l. We have 〈h|φ j
nm〉 = 〈 j, n|h| j,m〉 = R j

nm(h).

4 Coarse Grained Spin-Network

Any 3d spatial manifold can be discretized into a (large) number of polyhedra. Given a polyhedral region
denoted by p, we assume that the scale of polyhedron, given by the geometry endowed on p, is much larger
than the Planck scale, or the scale of spin-network quantum geometry. Therefore the geometry of p should
be described by the spin-networks with a large number of edges and vertices. We consider a generic LQG
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state |Vp〉 ∈ Hp with boundary in p

|Vp〉 =
∑

Γp,{ je, jl},{Iv},{nl}

VΓp,{ je, jl},{Iv},{nl}

∣∣∣Γp, { je, jl}, {Iv}, {nl}
〉

=
∑

Γp,{ je, jl},{Iv},{nl}

VΓp,{ je, jl},{Iv},{nl}

⊗
v∈V(Γp)

∣∣∣∣I{ je, jl}v

〉 ⊗
boundary l

〈 jl, nl|. (4.1)

where we have summed over all graphs Γp in the region p. Notice that for a given graph Γp, there are a
number of boundary edges l intersecting the 2d boundary of polyhedron. For simplicity, we only consider
in the above sum the graphs Γp having intersection with the polyhedron faces, while discarding the case of
intersection on polyhedron edges or vertices. The Hilbert spaceHp can be expressed using SU(2) irreps V j:

Hp =
⊕

Γp

⊕
{ je, jl}

⊗
v∈V(Γp)

Inv

 ⊗
e outgoing

V je

⊗
e incoming

V∗je

 ⊗
l,l∩ f,∅

V jl . (4.2)

We will consider the 3d spatial manifold carrying a semi-classical geometry, which endows a polyhedral
geometry to each p. The geometrical data of each p include in particular the areas of all its faces Ar f , as
well as other geometrical quantities e.g. curvature, shape, etc. It is important that, here we assume the
scale of this geometrical polyhedron p is much large than the Planck scale, where the geometry is quantized
by spin-networks. Recall that the spin-network states present the 3d quantum geometry at Planck scale.
Fundamentally, the complete quantum geometry of a relatively large polyhedron needs the spin-network
states associated to arbitrary graph Γp (with a large number of edges and vertices) in the polyhedron. The
polyhedron p being semi-classical implies that Ar f � `2

P. So there may be a large number of dangling spin-
network edges intersecting each polyhedron face f ⊂ ∂p, while each spin-network edge carries a quantum
area of the same order as `2

P. The bulk degrees of freedom in p is given by the spins je on the internal edges
and the intertwiners Iv at the (internal) vertices. They are the quantum face areas and quantum shapes of
the Planck scale polyhedra located at the vertices v. The semiclassical geometries of the polyhedron p are
obtained by gluing a large number of these tiny geometrical polyhedra.

It is thus clear that within a semiclassical polyhedron p, there is a large number of quantum geometry
micro-degrees of freedom, which in principle should be described by the spin-network states on a large graph
Γp. However, here we would like to find an effective prescription for the states of type |Vp〉, by smearing
the detailed structure of |Vp〉 inside p. The effective prescription is a coarse graining of the micro-degrees
of freedom in p, as an analog of the block spin procedure in Ising model.

For any spin-network state
∣∣∣Γp, { je, jl}, {Iv}, {nl}

〉
, given a face f of p with NΓ( f ) intersections, the total

area of polyhedron face f is given by

8πγ`2
P

NΓ( f )∑
l,l∩ f,∅

√
jl( jl + 1) = Ar f . (4.3)

We would like to make the state |Vp〉 as a superposition of all possible quantum geometry of the polyhedron,
including all generic quantum fluctuations. Thus |Vp〉 defined in Eq.(4.1) is a sum over spin-networks. We
do not fix the value of total area Ar f for |Vp〉, and let the sum over jl in Eq.(4.1) unconstrained. So |Vp〉
also contains a superposition of the semiclassical polyhedron geometries with different face areas.

A Hilbert spaceH∂( f ) associated to the face f can be defined to be

H∂( f ) =
⊕
NΓ( f )

⊕
{ jl}

NΓ( f )⊗
l,l∩ f,∅

V jl . (4.4)

We may make this Hilbert space finite-dimensional by imposing a cut-off Ar f ≤ Λ−1 where Λ is the cosmo-
logical constant, i.e. the scale of the polyhedron p shouldn’t exceed the cosmological scale. Then the range
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of each jl becomes finite jl ≤ (8πγ`2
PΛ)−1 7. The first direct sum over all possible intersection numbers

⊕NΓ( f ) also becomes a finite sum by NΓ( f ) ≤ (4πγ`2
P

√
3Λ)−1. The maximal NΓ( f ) is obtained by assuming

all lowest jl = 1/2 and saturating Λ−1.
We define another Hilbert spaceHb(p) of the states in the bulk of p.

Hb(p) =
⊕

Γp

⊕
{ je}

⊗
v∈V(Γp)

Inv

 ⊗
e outgoing

V je

⊗
e incoming

V∗je

 (4.5)

The labels e in the above formula also include the boundary edges l. It is easy to see that a LQG state |Vp〉
is a linear map betweenHb(p) and ⊗ fH∂( f )

|Vp〉 : Hb(p)→
⊗

f

H∂( f ), (4.6)

although the Hilbert space Hp of |Vp〉 is only a subspace of the tensor product Hb(p) ⊗ f H∂( f ) because of
the matching of jl in Eq.(4.1), between the close-to-boundary |I je, jl

v 〉 and the boundary | jl, nl〉. The state |Vp〉
may be viewed as a simple example of exact holographic mapping from bulk states to boundary states. This
point is further explored in the next section.

To simplify the notation, we denote the coarse grained basis inH∂( f ) andHb(p) by

|µ f 〉 ≡
⊗
l∩ f,∅

〈 jl, nl|, |ξ
~µ
p〉 ≡

⊗
v∈V(Γp)

∣∣∣∣I{ je, jl}v

〉
(4.7)

|µ f 〉 and |ξ~µp〉 label the boundary and bulk microstates of the polyhedron p. |µ f 〉 characterizes the degrees of
freedom of surface geometry on f [91], while |ξ~µp〉 characterize the degrees of freedom of bulk geometry in p.
However it turns out that the geometrical information encoded by the bulk states |ξ~µp〉 doesn’t play much role
in the present analysis in Sections 9.1 and 9.2, in which we focus on the area law (Ryu-Takayanagi formula)
of the holographic entanglement entropy.

By using the new notation, the state |Vp〉 is now written as

|Vp〉 =
∑
µ f ,ξp

Vµ f ,ξp |ξ
~µ
p , µ f 〉 =

∑
µ f ,ξp

Vµ f ,ξp |ξ
~µ
p〉 ⊗ |µ f 〉 (4.8)

which exhibits certain entanglement between bulk and boundary states. As a linear combination of geomet-
rical microstates |ξ~µp〉 ⊗ |µ f 〉, the state |Vp〉 encodes certain quantum fluctuation of 3d geometry.

Given a state φb(p) ∈ Hb(p), its partial inner product with |Vp〉 produce a tensor state in ⊗ fH∂( f )

|T (p)〉 = 〈φb(p)|Vp〉 ∈
⊗

f

H∂( f ) (4.9)

For any given orthonormal basis {|µ f 〉} in H∂( f ) (there are M polyhedron faces f = 1, · · · ,M), the tensor
|T (p)〉 can be expressed as

|T (p)〉 =
∑

µ1,··· ,µM

T (p)µ1,··· ,µM |µ1〉 ⊗ · · · ⊗ |µM〉. (4.10)

where µ f = 1, · · · , dimH∂( f ). The above inner product with bulk state φb(p) effectively describes a proce-
dure of integrating out the bulk degrees of freedom, which gives the tensor |T (p)〉 as the effective boundary
state.

7In LQG the cosmological constant is implemented by using quantum group or Chern-Simons theory [86–90]
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5 Exact Holographic Mapping and Tensor Network

We consider a (large) spatial region Σ with nontrivial boundary ∂Σ. Σ can be decomposed by a large number
of semiclassical polyhedra p. All detailed quantum geometries of polyhedra are stored in the states |Vp〉
for all p. The averaged length scale of each semiclassical polyhedra p is assumed to be small comparing
to the macroscopic scale, although it is large comparing to the Planck scale. The (squared) length scale of
p is represented by the mean face area Ar f , while the macroscopic scale is represented by e.g. the mean
curvature radius L of the macroscopic geometry built by gluing p’s. The analysis in this paper mainly focus
on the regime that

`2
P � Ar f � L2. (5.1)

This regime has been studied as the semiclassical regime of LQG from several different perspectives [37–41].
Therefore it is clear that we should consider the gluing of a large number polyhedra p to obtain Σ. Each

of the polyhedra p carries the quantum state |Vp〉, packaging a large number of spin-network microstates.
The resulting quantum state of Σ, denoted by |Σ〉 will be also a linear combination of the spin-network
microstates, and reduce to |Vp〉 in each p.

We firstly describe the construction of the state for Σ at the level of coarse grained spin-networks. To
glue a pair of polyhedra p, p′ through a common face f = p ∩ p′, we first identify their total areas Ar f

and their Hilbert spaces H∂( f ), then define a state | f 〉 in H∂( f ) ⊗ H∂( f ), where the two copies of H∂( f )
associates to p and p′ respectively.

| f 〉 =
∑
µ f

|µ f 〉 ⊗ |µ f 〉 (5.2)

It is not hard to see that the following partial inner product gives a state in the glued polyhedra p ∪ p′:

〈 f |
(
|Vp〉 ⊗ |Vp′〉

)
. (5.3)

It is straight-forward to generalize to the gluing of an arbitrary large number of polyhedra p = 1, · · · ,N
(N � 1) to form a large spatial region Σ = ∪pp with boundary ∂Σ. We introduce |E〉 ≡

∏
f | f 〉 for all gluing

interfaces f . The resulting state is

|Σ〉 = 〈E| ⊗p |Vp〉. (5.4)

The state |Σ〉 is a linear combination of spin-network states whose graph Γ is in Σ with dangling edges
intersecting ∂Σ. The inner product with |E〉 = ⊗ f | f 〉 identifies the surface states |µ f 〉 at the interface between
|Vp〉 and |Vp′〉. Recall |µ f 〉 is a short-hand notion of ⊗l| jl,ml〉 for a number N of intersections l ∩ f , ∅,
where N, { jl}, and {ml} is determined by |µ f 〉. The inner product with |E〉 thus connects the N pairs of edges
intersecting f from |Vp〉 and |Vp′〉, and identifies the { jl}, and {ml} labels. The inner product projects out the
case that |Vp〉 and |Vp′〉 give two different numbers N , N′ of intersections at each f . Because of the inner
product, the

⊗
l〈 jl, nl| piece of Eq.(4.1) are contracted between |Vp〉 and |Vp′〉. The resulting states is thus

a linear combination of spin-networks as Eq.(3.3) defined on the entire graph Γ, where Γ = ∪pΓp is obtained
by connecting each piece of Γp through the intersections at f ⊂ ∂p. Therefore we always have that |Σ〉 is a
LQG state:

|Σ〉 = 〈E| ⊗p |Vp〉 ∈ HLQG. (5.5)

The resulting state |Σ〉 can be understood as a concrete realization of exact holographic mapping pro-
posed in [1, 19], and it now comes fromHLQG derived from a systematic quantization procedure of gravity.
Indeed, |Σ〉 is a linear map from the bulk Hilbert spaceHb to the boundary Hilbert spaceH∂. Hb andH∂ are
defined as follows:

Hb =
⊗
p

Hb(p), H∂ =
⊗
f⊂∂Σ

H∂( f ). (5.6)
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Given a bulk state Φb ∈ Hb, |Σ〉 maps Φb to a boundary state Ψ ∈ H∂ by using the partial inner product:

〈Φb|Σ〉 = 〈Φb| ⊗ 〈E| ⊗p |Vp〉 ≡ |Ψ〉. (5.7)

In this way, an exact holographic correspondence between bulk states and boundary states is made by |Σ〉,
and it is the reason why |Σ〉 is referred to as an exact holographic mapping. In this context, a single |Vp〉 is
the simplest exact holographic mapping with a single polyhedron p in the bulk.

As a remark, Hb is defined as a direct product in Eq.(5.6). It contains the states ⊗p|ξ
~µ
p〉, in which

µ f , µ
′
f from two neighboring p, p′ doesn’t match at f = p ∩ p′. But these states belong to the kernel of the

holographic mapping, i.e. |Σ〉 projects out these states and only keeps the states ⊗p|ξ
~µ
p〉 in which µ f matches

from p, p′ at f . From the definition ofHb(p) in Eq.(4.5), the states inHb with nontrivial images |Ψ〉 precisely
spans the space of bulk spin-networks

⊕
Γ

⊕
{ je}

⊗
v

Inv

 ⊗
e outgoing

V je

⊗
e incoming

V∗je

 . (5.8)

in which a pair of intertwiners share the same spin label if they are connected by an edge. Here Γ is a large
spin-network graph obtained by connecting Γp’s according to the gluing of polyhedra. The space of bulk
spin-networks is spanned by the states

⊗
v∈V(Γ) |I

{ je, jl}
v 〉 being a product of intertwiners (with matching of

spins along edges). The bulk spin-network is different from Eq.(3.3) up to the boundary pieces ⊗l〈 jl, nl|. It
is clear that the inner product between Eq.(3.3) and the bulk spin-network produces a boundary state inH∂.

Similar to |Vp〉 of polyhedron, |Σ〉 only belongs to a subspace of the tensor product Hb ⊗ H∂. In the
subspace, the matching of µ f is imposed between the close-to-boundary |ξ~µp〉 and the boundary |µ f 〉, due
to Eq.(4.8). Therefore |Σ〉 exhibits certain entanglement between bulk and boundary states in Hb and H∂,
similar as |Vp〉 shown in Eq.(4.8). In this sense, |Σ〉 from LQG is more restricted than the exact holographic
mapping proposed in [1, 19].

We consider a special class of bulk state Φb, being a sum of pure tensor product states

|Φb〉 =

{D f }∑
{µ f }

⊗p

∣∣∣φ(p)~µ
〉
,

∣∣∣φ(p)~µ
〉

=
∑
ξp

φ(p)ξp,~µ|ξ
~µ
p〉. (5.9)

Each |φ(p)~µ〉 has been assumed to be normalized for any ~µ. The coefficients in the sum
∑
{µ f }

has been
assumed to be factorized into local contributions φ(p)ξp,~µ

8. Φb is a sum of tensor product states with equal
weights. The matching of µ f at each interface f between p, p′ has been imposed, so that |Φb〉 doesn’t belong
to the kernel of the exact holographic mapping |Σ〉. We have assumed the range of each µ f in the sum is
constrained by a cut-off D f , whose physical meaning is clear in Section 7.

Applying the exact holographic mapping |Σ〉 to the bulk state Φb of this type, the corresponding bound-
ary state Ψ is a tensor network state

|Ψ〉 =

{D f }∑
{µ f }

∏
p

T (p){µ f } f⊂∂p ⊗ f⊂∂Σ |µ f 〉. (5.10)

Here each tensor T (p) is associated to a polyhedron p, as defined in Eq.(4.9). The bond dimensions of the
tensor network are the ranges of the contracted indices µ f between tensors, which is D f . Being the bulk state
relating to the tensor network, Φb in Eq.(5.9) generalizes from the pure tensor product bulk state in [19] to a
equal-weight sum of tensor products.

The tensor network state is understood as a possible prescription of the ground state of CFT living on the
boundary ∂Σ, see e.g.[10, 18]. Thus Φb of the type in Eq.(5.9) stands out as far as we focus on the boundary

8A more general Φb might be |Φb〉 =
∑
ξp ,~µ Φ~ξ,~µ

⊗p |ξ
~µ
p 〉, whose coefficients doesn’t factorizes.
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CFT ground state. Moreover Φb satisfying Eq.(5.9) represents the bulk locality. All the degrees of freedom
of Φb are indeed local, because each factor |φ(p)~µ〉 is localized within a polyhedron p, while each summed
label µ f is localized at the face of p. In Sections 9.1 and 9.2, the main result of the holographic entanglement
entropy is derived for the boundary CFT ground state represented by tensor network. The main derivation is
based on the bulk state satisfying Eq.(5.9).

6 Bulk-Boundary Entanglement

It has been discussed that the exact holographic mapping |Σ〉 from LQG exhibits the entanglement between
bulk and boundary states inHb andH∂. If the bulk states inHb describes the quantum geometry living in d
dimensions, while the boundary states inH∂ describe the field theory living in (d−1)-dimensional boundary,
|Σ〉 may be written schematically as

|Σ〉 =
∑

I

∣∣∣geometryI
〉

b ⊗
∣∣∣fieldI

〉
∂ (6.1)

where I labels the orthonormal basis in both Hilbert spaces. AdS/CFT correspondence suggests that if the
boundary field theory state is a CFT ground state |CFT〉, the entangled bulk geometry should be a semiclas-
sical geometry state |AdS〉, i.e.

|Σ〉 = |AdS〉b ⊗ |CFT〉∂ + · · · (6.2)

where · · · stands for the contribution from other bulk quantum geometries entangled with other boundary
field theory states. If the quantum measurement is performed at the boundary whose output exhibits a CFT
ground state, then |Σ〉 collapses to the first term in the above expansion, which determines the bulk state to
be a semiclassical AdS geometry.

Interestingly, a holographic dictionary might be extracted from the above expansion. Since the above
expansion depends on a choice of basis in both Hb and H∂, we can re-expand |Σ〉 by another choice of
orthonormal basis in both Hb and H∂, which is slightly deviate from the original basis containing |AdS〉b
and |CFT〉∂. If the new basis in Hb contains |AdS + perturb.〉b, then the boundary state entangled with it
should be |CFT + perturb.〉∂, i.e.

|Σ〉 =
∣∣∣AdS + perturb.

〉
b ⊗

∣∣∣CFT + perturb.
〉
∂

+ · · · (6.3)

Thus certain excitations on the AdS geometry is entangled with certain excitations on the CFT ground
state. This entanglement might be a representation of the holographic dictionary of AdS/CFT. The concrete
understanding of the entangled excitations is a research undergoing [52].

7 Bulk State and Geometrical Constraint

From the scheme in Eq.(6.2), the CFT ground state |CFT〉∂ is extracted by the inner product b〈AdS|Σ〉, which
manifests |Σ〉 to be an exact holographic mapping. So if |CFT〉∂ is represented by the tensor network state Ψ

in Eq.(5.10), then Φb satisfying Eq.(5.9) should represent the semiclassical AdS geometry in the bulk.
The state Φb represents the semiclassical geometry and locality. Recall |Φb〉 =

∑{D f }

{µ f }
⊗p

∣∣∣φ(p)~µ
〉

where∣∣∣φ(p)~µ
〉

=
∑
ξp φ(p)ξp,~µ|ξ

~µ
p〉 is a linear combination of the bulk microstates inside the polyhedron p.

The spatial region Σ has been discretized by a large number of polyhedra p, the semiclassical geometry
of Σ endows the polyhedron geometry to each P. In particular, the semiclassical geometry endows the area
Ar f to each polyhedron face f . Thus in order that Φb represents the semiclassical geometry, the following
constraint has to be imposed to the microstates in the linear combination: recall that |µ f 〉 = ⊗` | jl,ml〉, thus
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the sum of all quantum areas on edges ` intersecting f is constrained to be the total area Ar f , being the area
of polyhedron face f endowed by the semiclassical geometry

8πγ`2
P

NΓ( f )∑
l,l∩ f,∅

√
jl( jl + 1) = Ar f . (7.1)

The above constraint fixes the total number of states |µ f 〉 at f , which is the range of the sum over µ f in
Φb Eq.(5.9). D f is the number of microstates |µ f 〉 satisfying the constraint Eq.(7.1)

D f =
∑
NΓ( f )

Ar f∑
{ jl}

NΓ( f )∏
l

(2 jl + 1). (7.2)

For each polyhedron p , one imposes the constraint Eq.(7.1) to the microstate |µ f 〉 ∈ H∂( f ) at the
polyhedron faces. In principle the polyhedron geometry of p endowed by bulk semiclassical geometry
also constrains the bulk microstates |ξp〉 inside p, since these states relate to the shape and curvatures of
p. However, it turns out in Section 9 that in Φb, the detailed knowledge of the geometrical constraint on
|ξp〉 doesn’t affect the computation that recovers the Ryu-Takayanagi formula of holographic entanglement
entropy. So we only explicitly impose Eq.(7.1) to Φb in Eq.(5.9), while keeping the other geometrical
constraints implicit. The following derivation works for all possible

∣∣∣φ(p)~µ
〉

in the Φb, subject to Eq.(7.1).

8 Bond Dimension

In this section, we estimate D f the dimension of H∂( f ) at each face f . The following estimation is an
important step in deriving the Ryu-Takayanagi formula of holographic entanglement entropy.

The counting of states Eq.(7.2) has been studied in the literature of LQG black hole entropy counting.
See e.g. [44–46]. It is interesting to see that the boundary degree of freedom of the coarse grained spin-
networks relates to the horizon degree of freedom of a quantum black hole. As we will see in the following,
it provides nontrivial implication to the entanglement entropy of the boundary state at ∂Σ. Following [44, 45]
we define n j to be the number of intersecting edges l carrying spin j. The dimension D f can then be written
as

D f =
∑
NΓ( f )

∑
{n j}

d[{n j}], d[{n j}] =

∑
j

n j!

∏
j

(2 j + 1)n j

n j!
(8.1)

where
∑
{n j}

is subjected to the constraint that

C1 =
∑

j

√
j( j + 1) n j −

Ar f

8πγ`2
P

= 0, C2 =
∑

j

n j − NΓ( f ) = 0. (8.2)

The main contribution of D f clearly comes from the regime that NΓ( f ) � 1. We assume NΓ( f )max =
Ar f

4πγ`2
P

√
3
� 1. For fixed NΓ( f ), the constrained sum

∑
{n j}

d[{n j}] is equivalent to the statistical ensemble of

N = NΓ( f ) identical systems with total energy E =
Ar f

8πγ`2
P
. Here we have assumed that all intersections of

l ∩ f are distinguishable.
It is standard that as NΓ( f ) � 1, the number of micro-states

∑
{n j}

d[{n j}] in the ensemble is dominated
by the contribution from the configuration {n̄ j} which maximizes d[{n j}] [92]. {n̄ j} is the solution of the
variational equation δ ln d[{n j}] − βδC1 − µδC2 = 0 where β, µ are two Lagrangian multipliers. Under
Stirling’s approximation, we obtain

n̄ j

NΓ( f )
= (2 j + 1)e−β

√
j( j+1)−µ. (8.3)
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The Lagrangian multipliers β, µ are then determined by plugging the solution into the constraints∑
j

(2 j + 1)e−β
√

j( j+1)−µ
√

j( j + 1) =
Ar f

8πγ`2
PNΓ( f )

,
∑

j

(2 j + 1)e−β
√

j( j+1) = eµ. (8.4)

As a result, in the regime NΓ( f ) � 1,

D f '
∑
NΓ( f )

exp
 β

8πγ`2
P

Ar f + NΓ( f ) µ(β)
 (8.5)

Here µ(β) = ln
[∑

j(2 j + 1)e−β
√

j( j+1)
]

is a statistical averaging of the dimension of SU(2) spin- j irrep. The
above result is an analog of the entropy formula in the ensemble with N identical systems and total energy
E: S (E,N) = βE + µN . We see that by viewing the above counting of states as a statistical canonical
ensemble of NΓ( f ) punctures on the surfaces, we may understand β as an effective temperature and µ as an
effective chemical potential. By the variation δS (E,N) = βδE + µδN (δS/δβ = 0), we see that S (E,N) is
monotonically increasing as N increases, when µ > 0. The maximum happens at δS/δN = µ(β) = 0, where
δ2S/δN2 ∼ −1/N 9. Therefore we obtain that the bond dimension D f behaves as the exponential of the face
area.

D f ' exp
 β0

8πγ`2
P

Ar f + · · ·

 (8.7)

where · · · stands for the logarithmic corrections in ln
(

Ar f

8πγ`2
P

)
. β0 is a universal constant (independent of f ),

being the solution to

µ(β0) = ln

∑
j

(2 j + 1)e−β0

√
j( j+1)

 = 0. 2πβ0 ' 0.274... (8.8)

The prefactor β0

8πγ`2
P

has been suggested to be identified as the IR value of 1/4GN [46, 47].

9 Holographic Entanglement Entropy and Random Tensor

As it is shown in Section 5, the LQG states with boundary is a concrete realization of exact holographic
mapping in [1, 19]. Therefore the similar techniques in [19] can be imported here to study the holographic
entanglement entropy of boundary state.

One of the key technique in [19], which is employed here, is to take |Vp〉 at each polyhedron p as a
random state in Hp. We may define an arbitrary reference state |0p〉 ∈ Hp, so that |Vp〉 = U |0p〉 with U a
unitary operator. For any function f (|Vp〉), e.g. the entanglement entropy computed from |Vp〉, the state |Vp〉
being random implies that f (|Vp〉) should be random averaged according to the Haar probability measure
dU. The Haar probability measure is normalized

∫
dU = 1 and invariant under unitary transformation.

Therefore we always consider the random averaged quantity

f (|Vp〉) :=
∫

dU f (|Vp〉) =

∫
dU f

(
U |0p〉

)
. (9.1)

9 δ2S
δN2 =

δµ
δN =

δµ
δβ

δβ
δN . At β = β0 where µ(β0) = 0, δµ

δβ = −

∑
j(2 j+1)e−β

√
j( j+1)
√

j( j+1)∑
j(2 j+1)e−β

√
j( j+1)

= − E
N

, and −δβ
∑

j(2 j + 1)e−β
√

j( j+1) j( j + 1) =

− E
N2 δN , i.e. δβ

δN = E

〈E2〉
. Thus δ2S

δN2 = − 1
N
E2

〈E2〉
. Expanding S up to the quadratic order, the sum can be approximated by a Gauss

integral

D f ' eβ0E
∑
N

exp

−N E2〈
E2〉 (

δN

N

)2 ' eβ0E+···. (8.6)

where · · · stands for corrections of order lnN ≤ ln
(

Ar f

4πγ`2
P

√
3

)
.
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This random averaging may be viewed as a part of coarse graining procedure, which smears the microscopic
details (of Planck scale) within each semiclassical polyhedron p. The above random state technique has a
long and rich history in quantum information theory (see e.g [48] for a review), and has been often used in
the studies of entanglement entropy (see e.g. [49, 50]).

Although our derivation of holographic entanglement entropy follows the similar routine as in [19],
there are some key difference and improvement, coming from the feature of LQG.

• Thanks to LQG and its interpretation as quantum geometry, the bond dimension D f relates to the
face area Ar f of polyhedron by Eq.(8.7). It is one of the key ingredients to relate the boundary
entanglement entropy to a path integral of Nambu-Goto action S NG ∝ ArS/`2

P of bulk 2-surface S.
The Ryu-Takayanagi surface with minimal area stands out as the minimum of the Nambu-Goto action.
The leading contribution of the path integral in the semiclassical limit `P → 0 reproduces precisely
the Ryu-Takayanagi formula of holographic entanglement entropy.

• In the technical aspect, the Hilbert space Hp from LQG is of different structure to the vertex Hilbert
space Hx (where |Vx〉 leaves) proposed in [19]. Hx in [19] has been assumed to be a tensor product
of the bulk and boundary Hilbert spaces. However in our context, Hp defined in Eq.(4.2) doesn’t
have a pure tensor product structure, i.e. Hp cannot be written as a tensor product betweenHb(p) and
H∂( f ). The reason is that for LQG states, the bulk intertwiners Iv close to the boundary depends on
the boundary spins jl. Thus the states |Vp〉 ∈ Hp always exhibit certain entanglement betweenHb(p)
and H∂( f ) (see Eq.(4.8)). Hp where the random state |Vp〉 lives, is the domain where the random
averaging is carried out. Therefore the difference withHx in [19] results in some technical differences
to [19] in the random averaging procedure. We will come back to this point in a moment.

9.1 Second Renyi Entropy

Recall the boundary state Ψ obtained from exact holographic mapping Eq.(5.7). We define the density matrix
of Ψ by

ρ = |Ψ〉〈Ψ| = trHb⊗HE

(
ρP ⊗p |Vp〉〈Vp|

)
= 〈Φb|〈E|

(
⊗p |Vp〉〈Vp|

)
|Φb〉|E〉 (9.2)

where ρP = |Φb〉〈Φb| ⊗ |E〉〈E|.
We divide ∂Σ into two regions A and Ā, and define the reduced density matrix ρA by tracing out the

states in Ā. Here the region A is always set to be composed of a (large) multiple of polyhedron faces. We set
the regions A and Ā in such a way that there is no polyhedron adjacent to ∂Σ, containing faces both in A and
Ā. In other words, A and Ā connect to two different sets of polyhedra with no common element.

In this subsection we study the second Renyi entropy S 2(A) = − ln
[
trρ2

A/(trρA)2
]
, and its random average

S 2(A). It is shown in [19] that the averaged second Renyi entropy can be approximated with high prevision
to leading order in the large bond dimension limit, by the separate averages trρ2

A and (trρA)2

S 2(A) ' − ln
trρ2

A

(trρA)2
. (9.3)

The error is suppressed when the bond dimension D f is large, which is indeed true by Eq.(8.7) in the
semiclassical regime Ar f � `2

P. The above relation can be generalized to the Renyi entropy of arbitrary
order, namely

S n(A) ' −
1

n − 1
ln

trρn
A

(trρA)n
(9.4)
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Firstly we compute trρ2
A. Recall that a basis inH∂ may be chosen as |µ f 〉A|µ f 〉Ā ≡ ⊗ f⊂A|µ f 〉A ⊗ f⊂Ā |µ f 〉Ā,

where µ f = 1 · · · dimH∂( f ), we may write10

trρ2
A = 〈µ f |ρA|µ

′
f 〉A 〈µ

′
f |ρA|µ f 〉A = trH∂⊗H∂

[
(ρ ⊗ ρ)FA

]
, (9.6)

where repeating labels means summing over the labels. FA is a swapping operator acting on H∂ ⊗ H∂,
swapping the states in A:

FA

(
|µ f 〉A|µ f 〉Ā

)
⊗

(
|µ′f 〉A|µ

′
f 〉Ā

)
=

(
|µ′f 〉A|µ f 〉Ā

)
⊗

(
|µ f 〉A|µ

′
f 〉Ā

)
(9.7)

Using the definition of ρ,

trρ2
A = trH∂⊗H∂

trHb⊗HE ⊗ trHb⊗HE

[( (
ρP ⊗p |Vp〉〈Vp|

)
⊗

(
ρP ⊗p |Vp〉〈Vp|

) )
FA

]
. (9.8)

We consider |Vp〉 as a random state in Hp at each P. The random average of |Vp〉 gives the following
simple result by Schur’s Lemma [19, 93]

|Vp〉〈Vp| ⊗ |Vp〉〈Vp| =

∫
dU (U ⊗ U) |0p〉〈0p| ⊗ |0p〉〈0p| (U† ⊗ U†)

=
Ip + Fp

dim(Hp)2 + dim(Hp)
∈ Hp ⊗Hp ⊗H

∗
p ⊗H

∗
p . (9.9)

The action of Ip and Fp are the identity and swapping operators

Ip |ξ
~µ
p , µ f 〉 ⊗ |ξ

′~µ′

p , µ
′
f 〉 = |ξ

~µ
p , µ f 〉 ⊗ |ξ

′~µ′

p , µ
′
f 〉

Fp |ξ
~µ
p , µ f 〉 ⊗ |ξ

′~µ′

p , µ
′
f 〉 = |ξ

′~µ′

p , µ
′
f 〉 ⊗ |ξ

~µ
p , µ f 〉. (9.10)

Note that here the Hilbert space Hp is in principle infinite-dimensional. But we made a regularization by
cutting-off the dimension to be finite. It turns out that the resulting Renyi entropy is independent of the
dimension ofHp, so we can freely remove the cut-off.

From the above action of Ip and Fp, one may see the difference with [19]. Here the Hilbert space Hp
cannot be factorized as the tensor product of Hb(p) and H∂( f ). In general the states acted by Ip and Fp are
not pure tensor product between |ξ~µp〉 and |µ′f 〉, but rather the entangled states |ξ~µp , µ f 〉 with the correlation of
~µ. Therefore the operators Ip and Fp cannot be factorized into the identities and swappings in the individual
Hb(p) andH∂( f ), which is different from the situation assumed in [19].

By the random average Eq.(9.9), the average trρ2
A becomes a sum of 2(# of p) terms. Each term corre-

sponds to a choice of Ip or Fp at each p. As in [19], we introduce an Ising variable sp = 1 (or sp = −1) to
label the choice of Ip (or Fp) at p. Given a choice {sp} at each term of trρ2

A, the corresponding term reads

〈µ f |A〈µ f |Ā〈Φb|〈E| ⊗ 〈µ′f |A〈µ
′
f |Ā〈Φb|〈E|

∏
p,sp=1

Ip
∏
p,sp=−1

Fp |Φb〉|E〉|µ′f 〉A|µ f 〉Ā ⊗ |Φb〉|E〉|µ f 〉A|µ
′
f 〉Ā. (9.11)

Here a generic bulk state |Φb〉 ∈ Hb can be written as

|Φb〉 =
∑
~µ

|Φ~µ〉 =
∑
ξp,~µ

Φ~ξ,~µ ⊗p |ξ
~µ
p〉. (9.12)

10This relation can be checked straight-forwardly using the definition of FA:

trH∂⊗H∂
[
(ρ ⊗ ρ)FA

]
=

(
〈µ f |A〈µ f |Ā

)
⊗

(
〈µ′f |A〈µ

′
f |Ā

) [
(ρ ⊗ ρ)FA

] (
|µ f 〉A |µ f 〉Ā

)
⊗

(
|µ′f 〉A |µ

′
f 〉Ā

)
=

(
〈µ f |A〈µ f |Ā

)
⊗

(
〈µ′f |A〈µ

′
f |Ā

) [
ρ ⊗ ρ

] (
|µ′f 〉A |µ f 〉Ā

)
⊗

(
|µ f 〉A |µ

′
f 〉Ā

)
=

(
〈µ f |A〈µ f |Ā

)
ρ
(
|µ′f 〉A |µ f 〉Ā

) (
〈µ′f |A〈µ

′
f |Ā

)
ρ

(
|µ f 〉A |µ

′
f 〉Ā

)
= 〈µ f |ρA |µ

′
f 〉A 〈µ

′
f |ρA |µ f 〉A = trAρ

2
A (9.5)

– 20 –



We assume |Φb〉 satisfy Eq.(5.9) with factorized coefficients Φ~ξ,~µ

|Φb〉 =

{D f }∑
{µ f }

|Φ~µ〉 =

{D f }∑
{µ f }

∑
ξp

Φ~ξ,~µ ⊗p |ξ
~µ
p〉, Φ~ξ,~µ =

∏
p

φ(p)ξp,~µ. (9.13)

As it is discussed above, Φb of the above type represents the locality. Its image under holographic mapping
is a tensor network state as a representation of boundary CFT ground state. |φ(p)~µ〉 =

∑
ξp φ(p)ξp,~µ|ξ

~µ
p〉 is

assumed to be normalized for any ~µ: ∑
ξp

φ(p)∗ξp,~µφ(p)ξp,~µ = 1. (9.14)

D f gives the bond dimension of the resulting tensor network Ψ as the image of the exact holographic map-
ping.

We compute the operator
∏
p,sp=1 Ip

∏
p, sp=−1 Fp acting on the right in Eq.(9.11):∏

p,sp=1

Ip
∏
p, sp=−1

Fp |Φb〉|E〉|µ′f 〉A|µ f 〉Ā ⊗ |Φb〉|E〉|µ f 〉A|µ
′
f 〉Ā

=
∏
p,sp=1

Ip
∏
p, sp=−1

Fp

∑
ξp,µ f

Φ~ξ,µ f ,{µ
′
f }A,{µ f }Ā

⊗p

∣∣∣∣ξ~µp , µ f , {µ
′
f }A, {µ f }Ā

〉
⊗

∑
ξ′p,µ

′
f

Φ~ξ′,µ′f ,{µ f }A,{µ
′
f }Ā
⊗p

∣∣∣∣ξ′~µ′p , µ′f , {µ f }A, {µ
′
f }Ā

〉
=

∑
ξp,µ f

∑
ξ′p,µ

′
f

Φ~ξ,µ f ,{µ
′
f }A,{µ f }Ā

Φ~ξ′,µ′f ,{µ f }A,{µ
′
f }Ā

∏
p,sp=1

∣∣∣∣ξ~µp , µ f , {µ
′
f }A, {µ f }Ā

〉
⊗

∣∣∣∣ξ′~µ′p , µ′f , {µ f }A, {µ
′
f }Ā

〉
∏
p,sp=−1

∣∣∣∣ξ′~µ′p , µ′f , {µ f }A, {µ
′
f }Ā

〉
⊗

∣∣∣∣ξ~µp , µ f , {µ
′
f }A, {µ f }Ā

〉
(9.15)

In the first step, we use the fact that Ip,Fp only act on the states |ξ~µp〉 ⊗ |µ f 〉 where the ~µ labels of ξ~µp coincide
with the µ f labels in |µ f 〉, while projecting out the states which doesn’t satisfy this coincidence.

We take the inner product and compute the term (9.11) in trρ2
A∑

ζp,ν f

∑
ζ′p,ν

′
f

∑
ξp,µ f

∑
ξ′p,µ

′
f

∑
{µ f }A

∑
{µ′f }A

∑
{µ f }Ā

∑
{µ′f }Ā

Φ∗~ζ,ν f ,{µ f }A,{µ f }Ā
Φ∗~ζ′,ν′f ,{µ

′
f }A,{µ

′
f }Ā

Φ~ξ,µ f ,{µ
′
f }A,{µ f }Ā

Φ~ξ′,µ′f ,{µ f }A,{µ
′
f }Ā∏

p,sp=1

〈
ζp, ν f , {µ f }A, {µ f }Ā

∣∣∣∣ξp, µ f , {µ
′
f }A, {µ f }Ā

〉 〈
ζ′p, ν

′
f , {µ

′
f }A, {µ

′
f }Ā

∣∣∣∣ξ′p, µ′f , {µ f }A, {µ
′
f }Ā

〉
∏
p,sp=−1

〈
ζp, ν f , {µ f }A, {µ f }Ā

∣∣∣∣ξ′p, µ′f , {µ f }A, {µ
′
f }Ā

〉 〈
ζ′p, ν

′
f , {µ

′
f }A, {µ

′
f }Ā

∣∣∣∣ξp, µ f , {µ
′
f }A, {µ f }Ā

〉
=

∑
ζp,ν f

∑
ζ′p,ν

′
f

∑
ξp,µ f

∑
ξ′p,µ

′
f

∑
{µ f }A

∑
{µ′f }A

∑
{µ f }Ā

∑
{µ′f }Ā

Φ∗~ζ,ν f ,{µ f }A,{µ f }Ā
Φ∗~ζ′,ν′f ,{µ

′
f }A,{µ

′
f }Ā

Φ~ξ,µ f ,{µ
′
f }A,{µ f }Ā

Φ~ξ′,µ′f ,{µ f }A,{µ
′
f }Ā∏

p,sp=1

δζp,ξpδζ′p,ξ′pδν f µ f δν′f µ
′
f
δ{µ f }A,{µ

′
f }A
δ{µ′f }A,{µ f }A

∏
p,sp=−1

δζp,ξ′pδζ′p,ξpδν f µ
′
f
δν′f µ f δ{µ f }Ā,{µ

′
f }Ā
δ{µ′f }Ā,{µ f }Ā

. (9.16)

We firstly fix the µ f , ν f , µ
′
f , ν
′
f labels, and carry out the sum over ξp, ξ′p, ζp, ζ

′
p:∑

ζp,ζ
′
p,ξp,ξ

′
p

Φ∗~ζ,ν f ,{µ f }A,{µ f }Ā
Φ∗~ζ′,ν′f ,{µ

′
f }A,{µ

′
f }Ā

Φ~ξ,µ f ,{µ
′
f }A,{µ f }Ā

Φ~ξ′,µ′f ,{µ f }A,{µ
′
f }Ā

∏
p,sp=1

δζp,ξpδζ′p,ξ′p

∏
p,sp=−1

δζp,ξ′pδζ′p,ξp

= exp
[
−S 2

(
{sp = −1}; Φ~µ

)]
. (9.17)

where S 2

(
{sp = −1}; Φ~µ

)
is the second Renyi entropy in the sp = −1 domain for the state |Φ~µ〉 in Eq.(9.12)

with fixed |µ f 〉 at each f . If Φb satisfies Eq.(9.13), {D f } give a cut-offs for the sums over µ f , µ
′
f , ν f , ν

′
f . We
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also have S 2

(
{sp = −1}; Φ~µ

)
= 0:∑

ζp,ζ
′
p,ξp,ξ

′
p

∏
p

φ(p)∗ζp,ν f ,{µ f }A,{µ f }Ā
φ(p)∗ζ′p,ν′f ,{µ′f }A,{µ′f }Āφ(p)ξp,µ f ,{µ

′
f }A,{µ f }Ā

φ(p)ξ′p,µ′f ,{µ f }A,{µ
′
f }Ā

∏
p,sp=1

δζp,ξpδζ′p,ξ′p

∏
p,sp=−1

δζp,ξ′pδζ′p,ξp

=
∑

ζp,ζ
′
p,ξp,ξ

′
p

∏
p,sp=1

φ(p)∗ζp,µ f ,{µ f }A,{µ f }Ā
φ(p)∗ζ′p,µ′f ,{µ f }A,{µ

′
f }Ā
φ(p)ξp,µ f ,{µ f }A,{µ f }Ā

φ(p)ξ′p,µ′f ,{µ f }A,{µ
′
f }Ā
δζp,ξpδζ′p,ξ′p∏

p,sp=−1

φ(p)∗ζp,µ′ f ,{µ f }A,{µ f }Ā
φ(p)∗ζ′p,µ f ,{µ

′
f }A,{µ f }Ā

φ(p)ξp,µ f ,{µ
′
f }A,{µ f }Ā

φ(p)ξ′p,µ′f ,{µ f }A,{µ f }Ā
δζp,ξ′pδζ′p,ξp

= 1 (9.18)

In the first step, we take advantage of the delta’s of µ f , ν f labels in Eq.(9.16), and replaces the labels. In the
second step, we use the normalization Eq.(9.14). In the following we focus on this type of bulk state Φb,
with vanishing bulk entanglement entropy.

We denote the sp = 1 (sp = −1) region by R+ (R−) as a close subdomain of Σ. The term in Eq.(9.16)
reduces to the following contribution∑

ν f

∑
ν′f

∑
µ f

∑
µ′f

∑
{µ f }A

∑
{µ′f }A

∑
{µ f }Ā

∑
{µ′f }Ā

∏
p,sp=1

δν f µ f δν′f µ
′
f
δ{µ f }A,{µ

′
f }A
δ{µ′f }A,{µ f }A

∏
p,sp=−1

δν f µ
′
f
δν′f µ f δ{µ f }Ā,{µ

′
f }Ā
δ{µ′f }Ā,{µ f }Ā

=
∏

f⊂R+\∂R+

D2
f

∏
f⊂R−\∂R−

D2
f

∏
f⊂R+∩R−

D f

∏
f⊂R+∩A

D f

∏
f⊂R+∩Ā

D2
f

∏
f⊂R−∩A

D2
f

∏
f⊂R−∩Ā

D f , (9.19)

because the cut-offs for the sums over µ f , µ
′
f , ν f , ν

′
f have been introduced by Φb. One may write the above

result in a form as e−A[sp] whose “effective action” A[sp] reads

A[sp] = −
∑
f bulk

1
2

ln D f (spsp′ − 1) −
∑

f boundary

1
2

ln D f (hpsp − 1) + const. (9.20)

The bulk f is the interface between p, p′ in the first term, while the boundary f is a face of p in the second
term. hp is a “boundary field” satisfying hp = 1 (hp = −1) as p close to Ā (p close to A). The non-explicit
constant terms doesn’t depends on the Ising variables sp, but depends on D f . By summing of the terms over
all possible Ising configurations {sp}, it reproduces the Ising model as in [19]. But now it comes with the
non-uniform Ising couplings ln D f interpreted as face areas Ar f /`

2
P by Eq.(8.7).

The semiclassical regime Ar f � `2
P implies D f � 1. For a given region A ⊂ ∂Σ, when we write

trρ2
A as a sum over Ising configurations {sp}, the sum is dominated by the Ising configurations {s̄p} such that

R+ ∩ A = ∅ and R− ∩ Ā = ∅11. In other words, R+ (R−) is bounded by Ā (A). The interface (domain-wall)
S = R+ ∩ R− is attached at the boundary of A, i.e. ∂S = ∂A.

trρ2
A '

∏
p

1
dim(Hp)2 + dim(Hp)

∑
{s̄p}

∏
f1R+∩R−

D2
f

∏
f⊂R+∩R−

D f . (9.21)

(trρA)2 can be computed in the similar way as above. (trρA)2 is again expressed as a sum over Ising
configurations {sp} at polyhedra. It is straight-forward to compute the contribution at each {sp}:∏

f⊂R+\∂R+

D2
f

∏
f⊂R−\∂R−

D2
f

∏
f⊂R+∩R−

D f

∏
f⊂R+∩A

D2
f

∏
f⊂R+∩Ā

D2
f

∏
f⊂R−∩A

D f

∏
f⊂R−∩Ā

D f (9.22)

Now the dominant contribution comes from all sp = 1.

(trρA)2 '
∏
p

1
dim(Hp)2 + dim(Hp)

∏
f

D2
f . (9.23)

11The domain-wall Ising configurations are selected by maximizing the number of D2
f factors. It may also be understood from the

Ising action A[sp], in which the dominant configuration should minimize A[sp].
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The second Renyi entropy is obtained by the ratio

e−S 2(A) '
trAρ

2
A

(trρA)2
=

∑
{s̄p}

∏
f⊂R+∩R−

D−1
f (9.24)

It has been shown in Section 8 that ln D f behaves as an area law in Eq.(8.7). Therefore

e−S 2(A) '
∑
{s̄p}

exp

− β0

8πγ`2
P

∑
f⊂R+∩R−

Ar f

 . (9.25)

Figure 4. An Ising configuration with a domain-wall separating two domains with opposite spins.

It is mentioned in Section 8 that D f of each face f piecewisely is equivalent to the counting of states
of a black hole in LQG [44], where the black hole horizon area corresponds to Ar f . It is interesting to see
that with spin-network at the quantum level, the problem of boundary entanglement entropy gets mapped
to the problem of black hole entropy in the bulk. The domain-wall R+ ∩ R− between sp = 1 and sp = −1
(candidates of Ryu-Takayanagi surface) maps piecewisely to black hole horizons. It might be viewed as an
quantum analog of the semiclassical derivation of Ryu-Takayanagi formula in e.g. [94, 95].

Consider zooming out to the macroscopic scale L where each Ar f is small, i.e. let `2
P � Ar f � L2

precisely the LQG semiclassical regime discussed at the beginning of Section 5. The continuum limit of the
above formula is a path integral of Nambu-Goto action with surface tension T:

e−S 2(A) '

∫
[DS] e−TArS , T =

β0

8πγ`2
P

(9.26)

where S denotes an embedding of 2-surfaces such that ∂S = ∂A. The set of embeddings S give the domain-
walls ≡ R+ ∩ R− of {s̄p}. The faces f ⊂ R+ ∩ R− make a discretization of the surface S.

∑
{s̄p} is a discrete

version of summing over all embeddings, since different {s̄p} given different discrete surfaces R+ ∩ R−.
In the semiclassical limit T =

β0

8πγ`2
P
→ ∞ 12, the path-integral is dominated by the surfaces with locally

minimal areas Armin

e−S 2(A) '
∑

minimal surfaces

e
−

β0
8πγ`2P

Armin
. (9.27)

If we assume in the semi-classical geometry on Σ, there is a unique global minimal surface area for 2-surfaces
attached to ∂A (e.g. AdS4 geometry), then we obtain the Ryu-Takayanagi formula for second Renyi entropy

S 2(A) '
β0

8πγ`2
P

Armin. (9.28)

12T is a dimensionful quantity. So the proper way to understand the limit is that we zoom out to a larger scale such that `P → 0
can be taken. In other words, the Planck scale `2

P � Ar f the polyhedral lattice spacing. The Barbero-Immirzi parameter γ is always
assumed to be of order 1.

– 23 –



Here the pre-factor β0

8πγ`2
P

is identified to be IR value of 1/4GN .

9.2 Higher Renyi Entropies

In this subsection, we generalize the above second Renyi entropy computation to the random averaged higher
Renyi entropies

S n(A) '
1

1 − n
ln

trρn
A

(trρA)n
. (9.29)

As an analog of Eq.(9.6). trρn
A can be written as 13

trρn
A = 〈µ(1)

f |ρA|µ
(2)
f 〉A 〈µ

(2)
f |ρA|µ

(3)
f 〉A · · · 〈µ

(n)
f |ρA|µ

(1)
f 〉A = trH∂⊗···⊗H∂

[
(ρ ⊗ · · · ⊗ ρ)C(n)

A

]
, (9.31)

where repeating labels again means the summation over the labels. C(n)
A cyclicly permutes the states of region

A, leaving the states of Ā invariant:

C
(n)
A

(
|µ(1)

f 〉A|µ
(1)
f 〉Ā ⊗ · · · ⊗ |µ

(n)
f 〉A|µ

(n)
f 〉Ā

)
= |µ(2)

f 〉A|µ
(1)
f 〉Ā ⊗ · · · ⊗ |µ

(n)
f 〉A|µ

(n−1)
f 〉Ā ⊗ |µ

(1)
f 〉A|µ

(n)
f 〉Ā. (9.32)

which reduces to FA at n = 2.
Using the definition of ρ

trρn
A = trH∂⊗H∂

tr⊗n
Hb⊗HE

[(
ρP ⊗p |Vp〉〈Vp|

)⊗n
C

(n)
A

]
. (9.33)

To take the random average trρn
A with random state |Vp〉, we use the following formula for the random

average of n-fold tensor product, which generalizes Eq.(9.9) [19, 93]:

(
|Vp〉〈Vp|

)⊗n
=

1
Cn,p

∑
gp∈Symn

gp ∈ H⊗n
p ⊗H

∗
p
⊗n (9.34)

where the sum is over all permutations gp acting on H⊗n
p . The overall constant Cn,p =

∑
gp∈Symn

trgp =

(dimHp + n − 1)!/(dimHp − 1)!.
Inserting this result in trρn

A, the average trρn
A becomes a sum over all permutations {gp} at all polyhedra

p, where each term associates to a choice of gp at each p:

〈µ(1)
f |A〈µ

(1)
f |Ā〈Φb|〈E| ⊗ · · · ⊗ 〈µ

(n)
f |A〈µ

(n)
f |Ā〈Φb|〈E|

∏
p

gp |Φb〉|E〉|µ
(2)
f 〉A|µ

(1)
f 〉Ā ⊗ · · · ⊗ |Φb〉|E〉|µ

(1)
f 〉A|µ

(n)
f 〉Ā.(9.35)

13It is straight-forward to check

〈µ(1)
f |A〈µ

(1)
f |Ā ⊗ · · · ⊗ 〈µ

(n)
f |A〈µ

(n)
f |Ā

[
(ρ ⊗ · · · ⊗ ρ)C(n)

A

]
|µ(1)

f 〉A |µ
(1)
f 〉Ā ⊗ · · · ⊗ |µ

(n)
f 〉A |µ

(n)
f 〉Ā

= 〈µ(1)
f |A〈µ

(1)
f |Ā ⊗ · · · ⊗ 〈µ

(n)
f |A〈µ

(n)
f |Ā

[
ρ ⊗ · · · ⊗ ρ

]
|µ(2)

f 〉A |µ
(1)
f 〉Ā ⊗ · · · ⊗ |µ

(n)
f 〉A |µ

(n−1)
f 〉Ā ⊗ |µ

(1)
f 〉A |µ

(n)
f 〉Ā

=
(
〈µ(1)

f |A〈µ
(1)
f |Ā

)
ρ
(
|µ(2)

f 〉A |µ
(1)
f 〉Ā

) (
〈µ(2)

f |A〈µ
(2)
f |Ā

)
ρ

(
|µ(3)

f 〉A |µ
(2)
f 〉Ā

)
· · ·

(
〈µ(n)

f |A〈µ
(n)
f |Ā

)
ρ

(
|µ(1)

f 〉A |µ
(n)
f 〉

)
= 〈µ(1)

f |ρA |µ
(2)
f 〉A 〈µ

(2)
f |ρA |µ

(3)
f 〉A · · · 〈µ

(n)
f |ρA |µ

(1)
f 〉A (9.30)
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Firstly we compute the operator
∏
p gp acting on the right∏

p

gp |Φb〉|E〉|µ
(2)
f 〉A|µ

(1)
f 〉Ā ⊗ · · · ⊗ |Φb〉|E〉|µ

(1)
f 〉A|µ

(n)
f 〉Ā

=
∏
p

gp
∑
ξ(1)
p ,µ

(1)
f

Φ~ξ(1),µ(1)
f ,{µ

(2)
f }A,{µ

(1)
f }Ā
⊗p

∣∣∣∣ξ~µp (1), µ(1)
f , {µ

(2)
f }A, {µ

(1)
f }Ā

〉
⊗

· · · ⊗
∑
ξ(n)
p ,µ

(n)
f

Φ~ξ(n),µ(n)
f ,{µ

(1)
f }A,{µ

(n)
f }Ā
⊗p

∣∣∣∣ξ~µ′p (n), µ(n)
f , {µ

(1)
f }A, {µ

(n)
f }Ā

〉
=

∑
ξ(1)
p ···ξ

(n)
p ,µ

(1)
f ···µ

(n)
f

Φ~ξ(1),µ(1)
f ,{µ

(2)
f }A,{µ

(1)
f }Ā
· · ·Φ~ξ(n),µ(n)

f ,{µ
(1)
f }A,{µ

(n)
f }Ā∏

p

gp
( ∣∣∣∣ξ~µp (1), µ(1)

f , {µ
(2)
f }A, {µ

(1)
f }Ā

〉
⊗ · · · ⊗

∣∣∣∣ξ~µ′p (n), µ(n)
f , {µ

(1)
f }A, {µ

(n)
f }Ā

〉 )
(9.36)

gp only act on the states |ξ~µp〉 ⊗ |µ f 〉 where the ~µ labels of ξ~µp coincide with the µ f labels in |µ f 〉. gp projects
out the states which doesn’t satisfy this coincidence.

We take the inner product and compute the corresponding term in trAρ
n
A with a choice of {gp}∑

ζ(1)
p ···ζ

(n)
p ,ν(1)

f ···ν
(n)
f

∑
ξ(1)
p ···ξ

(n)
p ,µ

(1)
f ···µ

(n)
f

∑
{µ(1)

f ···µ
(n)
f }A

∑
{µ(1)

f ···µ
(n)
f }Ā

Φ∗~ζ(1),ν(1)
f ,{µ

(1)
f }A,{µ

(1)
f }Ā
· · ·Φ∗~ζ(n),ν(n)

f ,{µ
(n)
f }A,{µ

(n)
f }Ā

Φ~ξ(1),µ(1)
f ,{µ

(2)
f }A,{µ

(1)
f }Ā
· · ·Φ~ξ(n),µ(n)

f ,{µ
(1)
f }A,{µ

(n)
f }Ā∏

p

δ(ζ(1)
p ···ζ

(n)
p

)
, gp

(
ξ(1)
p ···ξ

(n)
p

) δ(ν(1)
f ···ν

(n)
f

)
, gp

(
µ(1)

f ···µ
(n)
f

) δ(
{µ(1)

f }A···{µ
(n)
f }A

)
, gp

(
{µ(2)

f }A···{µ
(n)
f }A{µ

(1)
f }A

) δ(
{µ(1)

f }Ā···{µ
(n)
f }Ā

)
, gp

(
{µ(1)

f }Ā···{µ
(n)
f }Ā

).(9.37)

We again focus on Φb satisfying Eqs.(9.13) and (9.14). Performing the sum
∑
ζ(1)
p ···ζ

(n)
p

∑
ξ(1)
p ···ξ

(n)
p

gives again an
identity ∑

ζ(1)
p ···ζ

(n)
p

∑
ξ(1)
p ···ξ

(n)
p

∏
p

δ(ζ(1)
p ···ζ

(n)
p

)
, gp

(
ξ(1)
p ···ξ

(n)
p

)
Φ∗~ζ(1),ν(1)

f ,{µ
(1)
f }A,{µ

(1)
f }Ā
· · ·Φ∗~ζ(n),ν(n)

f ,{µ
(n)
f }A,{µ

(n)
f }Ā

Φ~ξ(1),µ(1)
f ,{µ

(2)
f }A,{µ

(1)
f }Ā
· · ·Φ~ξ(n),µ(n)

f ,{µ
(1)
f }A,{µ

(n)
f }Ā

= 1. (9.38)

Then Eq.(9.37) simplifies to∑
ν(1)

f ···ν
(n)
f

∑
µ(1)

f ···µ
(n)
f

∑
{µ(1)

f ···µ
(n)
f }A

∑
{µ(1)

f ···µ
(n)
f }Ā∏

p

δ(ν(1)
f ···ν

(n)
f

)
, gp

(
µ(1)

f ···µ
(n)
f

) δ(
{µ(1)

f }A···{µ
(n)
f }A

)
, gp

(
{µ(2)

f }A···{µ
(n)
f }A{µ

(1)
f }A

) δ(
{µ(1)

f }Ā···{µ
(n)
f }Ā

)
, gp

(
{µ(1)

f }Ā···{µ
(n)
f }Ā

), (9.39)

where the cut-offs D f have been imposed for the sums over µ(i)
f , ν

(i)
f by Φb.

The sum over {gp} is dominated by the contribution from {ḡp} satisfying the following boundary condi-
tion

ḡp
(
{µ(1)

f }Ā · · · {µ
(n)
f }Ā

)
=

(
{µ(1)

f }Ā · · · {µ
(n)
f }Ā

)
ḡp

(
{µ(2)

f }A · · · {µ
(n)
f }A{µ

(1)
f }A

)
=

(
{µ(1)

f }A · · · {µ
(n)
f }A

)
(9.40)

i.e. for polyhedra p connecting to ∂Σ, ḡp = I if p is adjacent to Ā, while ḡp = (C(n))−1 if p is adjacent to A.
At each {ḡp}, Eq.(9.39) simplifies to∏

f⊂∂Σ

Dn
f

∑
ν(1)

f ···ν
(n)
f

∑
µ(1)

f ···µ
(n)
f

∏
p

δ(ν(1)
f ···ν

(n)
f

)
, ḡp

(
µ(1)

f ···µ
(n)
f

) =
∏
f⊂∂Σ

Dn
f

∏
f⊂Rḡ

Dn
f

∏
Sg,g′

∏
f⊂Sg,g′

Dχ(ḡ−1ḡ′)
f . (9.41)
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where we have denoted by Rg the closed region of p’s with constant gp = g. Rg ∩ Rg′ ≡ Sg,g′ denotes the
interface (domain-wall) shared by Rg,Rg′ with two different permutations g, g′. χ(g) ≤ n denotes the number
of cycles in g, including the cycles of length one. χ(g) = n only when g = I.

As a result, we obtain

trρn
A '

∏
p

1
Cn,p

∏
f⊂∂Σ

Dn
f

∑
{ḡp}

∏
f⊂Rḡ

Dn
f

∏
Sg,g′

∏
f⊂Sg,g′

Dχ(ḡ−1ḡ′)
f . (9.42)

Similarly, the dominant contribution of (trAρA)n can be computed

(trAρA)n '
∏
p

1
Cn,p

∏
f

Dn
f (9.43)

which corresponds to a constant gp = I everywhere in Σ.
The n-th Renyi entropy is then given by

e(1−n)S n(A) '
∑
{ḡp}

∏
Sg,g′

∏
f⊂Sg,g′

Dχ(ḡ−1ḡ′)−n
f '

∑
{ḡp}

exp

∑
Sḡ,ḡ′

[
χ(ḡ−1ḡ′) − n

] β0

8πγ`2
P

ArSḡ,ḡ′

 . (9.44)

It corresponds to the partition function of a Symn-spin model similar to the one in [19]. The difference is
that the non-uniform nearest-neighbor couplings are now interpreted as face areas ln D f '

β0

8πγ`2
P

Ar f .
The sum over configurations

∑
{ḡp} can be understood as a sum over embedding of (discrete) surfaces

Sḡ,ḡ′ . By the same reasoning as the second Renyi entropy, the dominant contribution to e(1−n)S n(A) comes
from the configurations which minimize all ArSḡ,ḡ′ . When the minimal surface attached to ∂A is unique in
the semiclassical geometry of Σ, the sum is dominated by {ḡp} which contains a single domain-wall Sḡ,ḡ′ ,
separating ḡ = I and ḡ′ = (C(n))−1 consistent with the boundary condition Eq.(9.40) (a proof of this statement
is given in Appendix C of [19], and is also provided here in Appendix A for completeness).

In the LQG semiclassical regime `2
P � Ar f � L2, we again can understand Eq.(9.44) (with single

domain-wall) as a path integral of Nambu-Goto action as Eq.(9.26), with surface tension equals (n− 1) β0

8πγ`2
P
.

The single domain-wall of the minimial area corresponds to a configuration {ḡp}cri, being the critical point
of the path integral. At {ḡp}cri, the Nambu-Goto action ArS = Armin approaches its global minimum. This
single domain wall is precisely the Ryu-Takayanagi surface with minimal surface area. As a result, in the
limit `P → 0

e(1−n)S n(A) ' e
(1−n) β0

8πγ`2P
Armin

, S n(A) '
β0

8πγ`2
P

Armin (9.45)

The resulting S n(A) is independent of n.
The Von Neumann entropy S (A) of reduced density matrix ρA is given by limn→1 S n(A). Since the

leading contribution of S n(A) is independent of n, we have

S (A) '
β0

8πγ`2
P

Armin, (9.46)

which reproduces the Ryu-Takayanagi formula for entanglement entropy of boundary CFT. β0

8πγ`2
P

is identified
to be the IR value of 1/4GN in the bulk. It is consistent with what has been suggested in [46, 47] from LQG
perspective. From AdS/CFT perspective, β0

8πγ`2
P

relates to the degree of freedom of CFT on the boundary.

For instant, in AdS3/CFT2 it relates to the central charge c =
3LAdS
2GN

[96]. In AdS4/CFT3 it relates to the free
energy of CFT on S 3 [97, 98].

We have reproduced the Ryu-Takayanagi formula for the Renyi entropy S n(A) of arbitrary order n, and
show S n(A) is independent of n thus give the Von Neumann entropy S (A) as above. This situation is the
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same as the computation with tensor networks in e.g. [18, 19]. However it is known that the Renyi entropy
S n(A) of a CFT ground state has certain dependence on n [99]. This mismatch is known in the literature
for the tensor network state. Here we have the same issue because we relate LQG to tensor network in this
work.
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A Domain Walls in Symn Spin Model

We come back to Eq.(9.45), and prove that the configuration with a single domain-wall indeed gives the
leading contribution to

∑
{gp}. Let’s consider a more generic case shown in FIG.5(a), where more than one

domain-walls are created in the bulk of Σ. We are going to show that this configuration always contribute
less than Eq.(9.45) from a single domain-wall.

Figure 5. (a) shows the space Σ with boundary ∂Σ divided into regions A and Ā. Σ contains the domain-walls
(1), (2), · · · , (8), which divide the bulk of Σ into regions I, II, · · · , VI. The domain-wall (1) ∪ (2) is the unique sur-
face with minimal area. Each bulk region associates a permutation gI,II,··· ,VI , with gI = I and gII = (C(n))−1. Each
domain-wall associates a number of cycles χ(g−1g′) = χ(g′−1g), with g, g′ on two sides of the domain-wall. (b) presents
the domain-walls by using flow lines, because each domain-wall carries the Cayley weight n−χ(g−1g′) of a permutation
g−1g′. Since the flow lines only present the number of Cayley weight, there is no need to include any crossing of flow
lines. The flow line picture is always planar.

Given the multi-domain-wall configuration, each domain-wall carries the contribution proportional to

−
[
n − χ(ḡ−1ḡ′)

]
ArSḡ,ḡ′ (A.1)

in Eq.(9.44). For any permutation g, the number n − χ(g) ≡ C(g) is the Cayley weight of a permutation,
which is defined by the minimum number of transpositions to achieve the permutation. It satisfies the triangle
inequality [100]

n − χ(gg′) ≤
[
n − χ(g)

]
+

[
n − χ(g′)

]
. (A.2)
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This inequality can be present graphically by using (planar) flow lines Fig.6.

Figure 6. A graphical presentation of the triangle inequality Eq.(A.2).

There is a triangle inequality associated to each trivalent intersection of domain-walls14. For instance,
in Fig.5 at the intersection of (4), (5), and (6), we have

n − χ(g−1
VI gIV ) ≤

[
n − χ(g−1

VI gIII)
]

+
[
n − χ(g−1

IIIgIV )
]

(A.3)

This motivates us to present the domain-walls by using flow lines as in FIG.5(b) 15. Each segment of domain-
wall Sg,g′ has the number n− χ(g−1g′) of flow lines, where each flow line carries the contribution −ArSg,g′ in
Eqs.(9.44) and (A.1). Then from FIG.5(b) it is not hard to see that the contribution of the multi-domain-wall
configuration is less or equal to the single domain-wall configuration

−
∑
Sḡ,ḡ′

[
n − χ(ḡ−1ḡ′)

]
ArSḡ,ḡ′ ≤ −[n − 1]ArS ≤ −[n − 1]Armin (A.4)

where S is the domain-wall surface separating I and (C(n))−1 satisfying ∂S = ∂A. In the continuum limit,
viewing Eq.(9.44) as a path integral, the Ryu-Takayanagi surface is the critical point of the path integral
where the Nambu-Goto action ArS = Armin approaches its global minimum (We assume the minimal surface
is unique in Σ). Then Eq.(9.45) is obtained in the semiclassical limit `P → 0.
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