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Abstract
We calculate the metric and affine connection due to a piecewise linear cosmic string loop,

and the effect of gravitational back reaction for the Garfinkle-Vachaspati loop with four straight

segments. As expected, back reaction reduces the size of the loop, in accord with the energy going

into gravitational waves. The “square” (maximally symmetric) loop evaporates without changing

shape, but for all other loops in this class, the kinks become less sharp and segments between

kinks become curved. If the loop is close to the square case, it will evaporate before its kinks are

significantly changed; if it is far from square, the opening out of the kinks is much faster than

evaporation of the loop.
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I. INTRODUCTION

Cosmic strings are a generic prediction of grand unified theories [1] and may also form in
string-theory models of inflation [2, 3]. They are predicted to exist in “networks” of super-
horizon strings and oscillating loops. In this work, we analytically solve for the evolution of
one class of these loops. While the length scales of loops are astrophysical, string cores are
infinitesimally thin, proportional to the inverse of the energy scale of their formation. For
this reason, strings are often approximated as one-dimensional objects, and their motion
treated via the Nambu action. For a review of cosmic strings, see Ref. [4].

Cosmic strings are expected to produce observable signatures via gravitational [5] and
electromagnetic [6] waves, as well as particle production [7]. Non-observation of gravitational
waves [8, 9] provides a bound on the dimensionless parameter Gµ, where G is Newton’s
constant and µ is the mass per unit length of the string. Significant to all forms of emission
from cosmic strings are cusps, where the string doubles back on itself and moves with
extremely high Lorentz factor, providing a mechanism for observable emissions. Simulations
show [10] that cusps are not present when a loop is formed, but gravitational back reaction
may introduce them by smoothing sharp kinks that are present at formation. This process
is therefore of great importance in the search for cosmic string signatures.

In this work, we first present a general expression for the metric perturbation, to first
order in Gµ, due to an arbitrary piecewise linear cosmic string loop (extending the work of
Allen and Ottewill [11] who calculated the metric in the wave zone). We then compute the
affine connection due to this metric, which can be used to compute the gravitational back
reaction on any piece of the loop. Calculating the back reaction for all but the simplest
loops is prohibitively complex, but we analytically calculate such effects on the specific class
of rectangular loops (consisting of four straight segments connected by right angle kinks),
discussed by Garfinkle and Vachaspati [12].

In Sec. II, we find the general contribution to the metric perturbation and affine connec-
tion due to a straight string segment. In Sec. III, we specialize to the case of rectangular
loops. In Sec. IV, we determine how the shape of the string changes as a consequence of
back reaction. In Sec. V, we provide illustrations and discussions of these changes and other
effects of back reaction. Sec. VI concludes and summarizes our work.

We use the metric signature (−+ ++) and work in units where ~ = c = 1.

II. THE METRIC PERTURBATION OF A PIECEWISE LINEAR LOOP

We will consider an oscillating string loop with Gµ � 1, so that the effect of back
reaction builds up only after many oscillations. Thus we can work in linearized gravity,
where gαβ = ηαβ + hαβ, gαβ = ηαβ − hαβ, and |hαβ| � 1. We consider this loop to have
always been in oscillation in flat space. We will turn on gravitational effects at some time
and analyze the resulting evolution.

We parameterize the string worldsheet by a temporal parameter τ and a spatial parameter
σ. We will always work in the conformal gauge, with the gauge conditions

ẋ · x′ = 0 , (1a)

ẋ2 + x′2 = 0 , (1b)

where a dot means the derivative with respect to τ and a prime the derivative with respect
to σ.
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When gravitational effects are turned off, the string is moving in flat space. In that case,
we may additionally choose t = x0 = τ . Then the equations of motion are just

ẍ = x′′ . (2)

These have the general solution

x(t, σ) =
1

2
[A(τ−) +B(τ+)] , (3)

with τ± = t ± σ. A and B are four-vector functions whose tangent vectors A′ and B′ are
null vectors with unit time component.

We now consider the case where the functions A and B are made of linear pieces, so A′

and B′ each take on a succession of constant values. The places where each linear piece joins
its successor is a kink. The angles of these kinks could be small, and we could use many
pieces to approximate a smooth curve. Or they could be large and represent actual kinks in
the shape of the loop, which could result from previous intersections.

By Eq. (3), the shape of the string at any fixed time will also be piecewise linear. The
region of the world sheet where a particular linear segment of A combines with a particular
segment of B in Eq. (3) is part of a plane in spacetime, traced out by a piece of straight
string moving at a constant velocity. The vectors A′ and B′, constant over this region, are
tangent to that plane. The line where this segment of A joins its successor is given by fixed
τ− and thus fixed A, while τ+ varies, so that the line points in the null direction B′. There is
a parallel line where this segment of A joins its predecessor. The two lines where B joins its
adjacent segments point in the direction of A′. These four lines bound a region of the world
sheet as shown in Fig. 1. In general the region has the shape of a parallelogram, but we
shall refer it as being a diamond, which is the case for the rectangular loop we will discuss
in Sec. III.

As we are working in linearized gravity, we may find the metric perturbation in the
harmonic gauge due to a given source with stress-energy tensor Tαβ by solving

�hαβ = −16GπSαβ , (4)

where Sαβ = Tαβ− (1/2)gαβT
γ
γ is the trace-reversed stress energy tensor of the source, given

by [4, 13]

Sαβ(x) = µ

∫
dτdσ σαβδ(4) (x− x(τ, σ)) =

µ

2

∫
dτ−dτ+ σ

αβδ(4) (x− x(τ−, τ+)) , (5)

with

σαβ = ẋαẋβ − x′αx′β − 1

2
ηαβ

[
x′2 − ẋ2

]
=

1

2

[
A′αB′β + A′βB′α − ηαβ(A′ ·B′)

]
. (6)

Considering that the diamond edges are traced out by null lines, it may be more conve-
nient to reparameterize the diamond in terms of local null parameters. We choose parameters
u and v, which are defined separately for each diamond by

u = τ+ − τ (0)+ , (7a)

v = τ− − τ (0)− , (7b)
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FIG. 1. An element of the piecewise linear loop, which we call a diamond. The red line on the

diamond is a segment of the loop at a fixed time. This segment moves in the direction indicated

by v, and in so doing sweeps out the diamond. The blue arrows indicate A′ and B′, which are

null, unit length, tangent to the worldsheet, and each parallel to two of the diamond’s edges. The

diamond shown is a special case where all four edges have the same spatial length. This is true of

all diamonds in the Garfinkle-Vachaspati loop we will discuss in Sec. III.

where τ
(0)
± are the values of τ± at the center of the diamond. By this definition, the range

of u is [−LB, LB], with LB the length of the edge of the diamond spanned by B. The range
of v is defined similarly for LA, and the point u = v = 0 is the diamond’s center.

The diamond worldsheet is now given by

x(u, v) =
1

2
[vA′ + uB′] , (8)

where A′ and B′ are the unit null tangent vectors to the diamond. The edges of the world-
sheet may be traced out by holding either u = ±LB or v = ±LA fixed and allowing the
other null parameter to vary over its full range.

We solve Eq. (4) using Green’s functions,

hαβ(x) = −16Gπ
∑∫

d4x′Sαβ(x′)Dr(x, x
′) , (9)

for an observation point x and source points x′, where the sum is over all contributing source
diamonds and Dr is the retarded Green’s function,

Dr(x, x
′) = − 1

2π
θ(t− t′)δ

(
`2
)
, (10)

with
` = x− x′ = Ω− [vA′ + uB′]/2 , (11)
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where Ω is the vector from the diamond center to the point of observation x. Using Eq. (5),
the metric perturbation for a single diamond is thus

hαβ(x) = 4Gµ

∫
d4x′ δ

(
`2(x, x′)

) ∫
dudv σαβδ

(4) (x′ − x(u, v)) . (12)

Because the segments move at a constant rate, σαβ is constant for each diamond and can
be taken outside the integral. We integrate over x′, consuming the four-dimensional Dirac
delta term, and find

hαβ(x) = 4Gµσαβ

∫
dudv δ

(
`2(x, u, v)

)
. (13)

The squared distance from the source to the observation point is

`2 =
A′ ·B′

2
uv + Ω2 − (A′ · Ω)v − (B′ · Ω)u . (14)

Setting `2 = 0 gives a hyperbola in u and v. This hyperbola has two branches, and we are
interested in the one corresponding to the past lightcone. As this corresponds to the inter-
section of the past lightcone with the string worldsheet, we will refer to it as the intersection
hyperbola. Solving `2 = 0 for u as a function of v gives

u(v) =
(A′ · Ω)v − Ω2

(A′ ·B′)v/2− (B′ · Ω)
, (15)

and for v as a function of u,

v(u) =
(B′ · Ω)u− Ω2

(A′ ·B′)u/2− (A′ · Ω)
. (16)

These expressions will be used later in finding the limits of integration. For now, we will
rewrite the δ function via

δ(`2) =
δ(v − v(u))

|d`2/dv|
, (17)

with
d`2

dv
=
A′ ·B′

2
u− (A′ · Ω) (18)

from Eq. (14). Integrating Eq. (13) over v then yields

hαβ = −8Gµσαβ
A′ ·B′

∫ u+

u−

du

2A′ · Ω/(A′ ·B′)− u
= −8Gµσαβ

A′ ·B′
ln

[
2A′ · Ω
A′ ·B′

− u
]∣∣∣∣u−
u+

. (19)

Equation (19) holds also under the exchanges A′ ↔ B′, v ↔ u.
The limits of integration, u±, are chosen depending on how the intersection hyperbola

crosses the diamond. Because the hyperbola must lie on the null past lightcone, it may never
be a timelike path, and is only null in the special case where the tip of the lightcone is on
the diamond. As such, it may never connect worldsheet edges which are timelike separated,
meaning that there are only four kinds of hyperbola which we will need to consider: those
connecting two edges where u = ±LB, those connecting two edges where v = ±LA, those
connecting the two future edges (u = LB and v = LA) and those connecting two past edges
(u = −LB and v = −LA).
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For the case of the intersection hyperbola connecting opposite edges of constant u, we
choose u− = −LB and u+ = LB to get

hαβ = −8Gµσαβ
A′ ·B′

ln

[
−LBA′ ·B′/2− A′ · Ω
LBA′ ·B′/2− A′ · Ω

]
. (20)

The hyperbola which connects opposite edges of constant v has the same solution, but
with A′ ↔ B′ and LB → LA. For the case of the intersection hyperbola connecting the past
edges, we choose u− = −LB and find u+ from Eq. (15) with v = −LA. We find

hαβ = −8Gµσαβ
A′ ·B′

ln

[
(LBA

′ ·B′/2 + A′ · Ω)(LAA
′ ·B′/2 +B′ · Ω)

(A′ · Ω)(B′ · Ω)− Ω2(A′ ·B′)/2

]
. (21)

For the case of the intersection hyperbola connecting the future edges, we choose u+ = LB
and find u− from Eq. (15) with v = LA to get

hαβ = −8Gµσαβ
A′ ·B′

ln

[
(A′ · Ω)(B′ · Ω)− Ω2(A′ ·B′)/2

(LBA′ ·B′/2− A′ · Ω) (LAA′ ·B′/ 2−B′ · Ω)

]
. (22)

Thus, by knowing the location of the source diamonds and the manner in which the intersec-
tion hyperbola crosses each diamond, we may find the metric perturbation at an arbitrary
point.

We are interested in the first-order effect of gravitational back reaction on the motion of
some string segment, If the unperturbed trajectory of the segment is given by Eq. (3), the
perturbation can be found from the equations of motion [13],

xλ,uv = −Γλαβx
α
,ux

β
,v = −1

4
ΓλαβB

′αA′β , (23)

where the Christoffel symbol, to first order in the metric perturbation, is given by

Γλαβ =
1

2
ηλρ [hβρ,α + hρα,β − hαβ,ρ] . (24)

Once we have allowed the string to perturb spacetime, we can no longer set t = τ (although
the definitions made in Eq. (7) will hold always). We note that this perturbation is small
and periodic, whereas changes to the string shape due to back reaction will accumulate over
many oscillations. Our procedure for finding and distinguishing these secular changes from
gauge effects will be to look only at how the worldsheet is modified after N oscillations,
where N � 1 � NGµ, so that secular changes are much larger than oscillatory ones, but
still small enough that we don’t need to consider second-order effects.

Note that the metric perturbation gets its tensor structure from the σαβ of the source
diamond. But from Eq. (6) we can see that any contraction of σαβ with A′ or B′ will vanish.
Thus if we consider the effect of the source diamond on itself (or any later version of itself),
all terms in Eq. (24) vanish in Eq. (23) and there is no effect.

The derivatives of the metric perturbation are given by

hαβ,γ =
8GµLB(A · Ω)σαβA

′
γ

(A′ · Ω)2 − L2
B(A′ ·B′)2/4

(25)
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for Eq. (20) connecting constant-u edges,

hαβ,γ = −8Gµσαβ
A′ ·B′

[
A′γ

LBA′ ·B′/2 + A′ · Ω
+

B′γ
LAA′ ·B′/2 +B′ · Ω

(26)

−
(A′ · Ω)B′γ + (B′ · Ω)A′γ − (A′ ·B′)Ωγ

(A′ · Ω)(B′ · Ω)− Ω2(A′ ·B′)/2

]
.

for Eq. (21) connecting past edges, and

hαβ,γ = −8Gµσαβ
A′ ·B′

[
A′γ

LBA′ ·B′/2− A′ · Ω
+

B′γ
LAA′ ·B′/2−B′ · Ω

(27)

+
(A′ · Ω)B′γ + (B′ · Ω)A′γ − (A′ ·B′)Ωγ

(A′ · Ω)(B′ · Ω)− Ω2(A′ ·B′)/2

]
.

for Eq. (22) connecting future edges.
Once we have found the acceleration for all diamonds, we find the changes to the null

vectors. To do so, we pick a point and follow a null path in τ+ or τ− around the loop
worldsheet until we return to the initial point one oscillation in the future. Integrating
along this τ+ path gives the change to A′ at some fixed τ−, while integrating along this τ−
path gives the change to B′ at some fixed τ+.

III. RECTANGULAR LOOPS

A. Geometry

We now wish to specialize to the rectangular loop of Garfinkle and Vachaspati [12],
which is simple enough that the entire problem can be solved analytically. In this loop,
A′(τ−) has some constant value A′(0) for τ− = 0 . . . L/2 and the constant value −A′(0) for
τ− = L/2 . . . L, and B′(τ+) behaves similarly, with some angle 2φ between A′(0) and B′(0).
By the symmetries of the loop, τ± should be taken to be modulo L.

We will choose coordinates so that the spatial part of A′(0) + B′(0) points in the x
direction and B′(0) − A′(0) points in the y direction. The loop then oscillates through all
configurations of a rectangle which may be inscribed within a rhombus of angle 2φ, as shown
in Fig. 2. Without loss of generality we can choose 0 < φ ≤ π/4. The x axis will always be
the longer of the rhombus’s two diagonals, while the y axis will always be the shorter.

We let w = cosφ and h = sinφ. We then have

A′γ = (1,±w,∓h, 0) , (28a)

B′γ = (1,±w,±h, 0) . (28b)

One oscillation of the loop is the time it takes for the loop to go through all configurations
shown in Fig. 2, for example from the double line on the x axis to the double line on the y
axis and back again. As this loop lies entirely in a plane, it is guaranteed to self-intersect,
and therefore annihilate, in this case when it reaches the double-line configurations. But
we will take the loop to be infinitesimally thin and not to interact with itself, except in one
case below where to avoid a divergence we will need to say that the two parts of the loop
pass by each other by some infinitesimal distance.

We will choose L = 4. Some particulars of the loop’s geometry are that
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FIG. 2. The rectangular loop oscillates through all spatial rectangles which may be inscribed within

a rhombus whose diagonals (dashed blue) measure 2w and 2h on the long and short directions

respectively. The acute angle of this rhombus is 2φ, and so tanφ = h/w. The solid red rectangles

are examples of configurations the loop takes on during its oscillation. The dashed blue lines are

additionally degenerate rectangles, also called the double lines, which form when two kinks lie on

top of one another.

• LA = LB = 1, so each diamond is a rhombus.

• The double line on the x axis extends ±w.

• The double line on the y axis extends ±h.

• The speed of a segment moving the x direction is w, and moving in the y direction is
h.

• The period of oscillation is T = 2.

Consider a diamond swept out by a string segment moving in the positive x direction
in a rectangular loop. We refer to such a diamond as a +x diamond. Let the loop be
centered on the origin and let the segment pass through the origin at some time t0, so that
the diamond center is is (t0, 0, 0), its futuremost point is at (t0 + 1, w, 0) and its pastmost
point at (t0 − 1,−w, 0). We will solve for the effect of back reaction on the +x diamond,
and we can then recover the effect on other diamonds as follows.

• For the −x diamond, exchange x↔ −x.

• For the +y diamond, exchange x↔ y and h↔ w.

• For the −y diamond, exchange x↔ −y and h↔ w.

Any of the above may be combined with a redefinition of t0 to change the diamond’s position
in time.

For the +x diamond, the null vectors are

A′γ = (1, w,−h, 0) , (29a)

B′γ = (1, w, h, 0) , (29b)
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FIG. 3. On the left is the worldsheet of a loop with φ = π/6 over two oscillations, starting from

the double-line configuration. Up is forward in time, with the transverse plane being the plane

in which the loop is oscillating. By slicing the worldsheet in this transverse plane, we recover all

possible configurations of the loop, such as the ones shown (in red and blue) in Fig. 2. On the right

is an example of a butterfly whose t0 is at the midpoint of the temporal range of the worldsheet.

and we have

σαβ =


w2 −w 0 0
−w 1 0 0
0 0 0 0
0 0 0 h2

 . (30)

Another object which we will frequently discuss in the context of the rectangular loop
is the combination of a diamond and its spatial mirror image, which we call a butterfly. A
+x and −x diamond with the same t0 taken together are an x butterfly, while ±y diamonds
with common t0 together make a y butterfly. The futuremost edges of an x butterfly meet
the pastmost edges of the y butterfly whose t0 is greater by 1. Similarly, the pastmost edges
of an x butterfly meet the futuremost edges of the y butterfly whose t0 is less by 1. Figure 3
illustrates the general appearance of a rectangular loop’s worldsheet, and shows how we
extract a butterfly from that worldsheet.
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FIG. 4. The thick red line shows the intersection of the lightcone with the loop worldsheet for

a figure-eight intersection. The intersection line passes through two parallel diamonds plus the

butterfly in between them for a total of four unique diamonds. We have indicated the diamonds

crossed as described in the text.

B. Metric perturbations

How does the backward lightcone of some observation point intersect the worldsheet of a
rectangular loop? Because the loop and the lightcone are both continuous objects, the total
intersection of the lightcone with the worldsheet must be a closed path. Which diamonds
does it cross and how does it cross them?

First suppose that the intersection path connects a past and a future edge of some dia-
mond. Suppose, for example, that the path crosses a +y diamond from the edge it shares
with the past +x diamond to the edge it shares with the future +x diamond, as shown in
Fig. 4. This +y diamond intersects a −y diamond along their common centerline. To get
from a past edge to a future edge, the intersection path must cross this centerline. (It may
only cross once, it has to get from one side to the other, and no hyperbola can cross a line
three times or more.) At the place it crosses, it must also cross part of the intersection path
lying on the −y diamond, which thus must also run from the past +x diamond to the future
+x diamond. (It cannot enter the past −x diamond, because all interior points on that
diamond are in the chronological past of all points on the future +x diamond, and no two
points on the intersection path can be timelike separated. The same applies to the future
−x diamond.)

Now the two crossings into the future +x diamond must be connected to each other via a
hyperbola, and so must the two crossings into the past +x diamond. Thus we have a closed

10



FIG. 5. The thick red line shows the intersection of the lightcone with the loop worldsheet for a

ring intersection. The intersection line passes through two subsequent butterflies for a total of four

unique diamonds. We have indicated the diamonds crossed as described in the text.

loop made up of four diamonds, two y diamonds of the same butterfly and the +x diamonds
in its past and future. We call this a figure-eight intersection.

The only other possibility is that the intersection path never connects a past and a future
edge of the same diamond, but only crosses from past to past and from future to future.
Suppose the path connects two past edges of a +x diamond. At these two places it comes
in across the future edges of the −y and +y diamonds. It must leave these diamonds across
their other future edges, which connect to the same −x diamond. We thus have a closed
loop crossing both diamonds of an x butterfly and both diamonds of the prior y butterfly,
as shown in Fig. 5. We call this a ring intersection, although it’s possible that the parts of
the ring lying on the x butterfly may cross each other at the double line and then cross back
again.

We will now calculate the metric perturbation at an observation point (t, x, y, z) whose
backward light cone yields either the specific kind of figure-eight intersection or the specific
kind of ring intersection described above. Once we find those effects, we may recover the
perturbation for any intersection through the appropriate transpositions and substitutions.

We will eventually take the observation point to the worldsheet of a +x diamond to
study how back reaction affects that diamond. When constrained to that worldsheet, the
observation point will only ever see figure-eight and ring intersections of the specific sort
we have described above, where the same y butterfly is involved in both. There are only
five diamonds total that we need to consider when finding the effect of back reaction on
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FIG. 6. The worldsheet of a rectangular loop obtained by combining Figs. 4 and 5.

such a point: an x butterfly containing the observation point, the y butterfly below the x
butterfly, and the +x diamond below the y butterfly. We will call the components of the
x butterfly simply the +x diamond (though it is the same one we called the “future +x
diamond” earlier) and the −x diamond, while the the +x diamond below the y butterfly we
will call the past +x diamond. Putting Figs. 4 and 5 together and color-coding them for
later convenience produces Fig. 6.

We first consider the perturbations associated with the figure-eight intersection. We
assume the center of the x butterfly is at t = 0. Using Eqs. (21,29), we find

h
(+x)
αβ =

4Gµ

h2
σ
(+x)
αβ ln

[
(h2 + t− xw)2 − y2h2

(x− tw)2 + h2z2

]
. (31)

The y diamonds, whose centers are at t = −1, have perturbations given by Eq. (20) and its
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A′ ↔ B′ version.

h
(+y)
αβ =

4Gµ

w2
σ
(+y)
αβ ln

[
1 + t− xw − yh+ w2

1 + t− xw − yh− w2

]
, (32a)

h
(−y)
αβ =

4Gµ

w2
σ
(−y)
αβ ln

[
1 + t− xw + yh+ w2

1 + t− xw + yh− w2

]
. (32b)

For the past +x diamond, which has its center at t = −2, equations (22,29) give

h
(past +x)
αβ =

4Gµ

h2
σ
(+x)
αβ ln

[
(x− tw − 2w)2 + h2z2

(h2 − t− 2 + xw)2 − y2h2

]
, (33)

For the ring intersection, we say that the y butterfly is the same as the one involved in
the figure-eight intersection. However, the nature the crossings have changed; we must now
use Eq. (22), and find

h
(+y)
αβ =

4Gµ

w2
σ
(+y)
αβ ln

[
(y − th− h)2 + w2z2

(w2 − t− 1 + yh)2 − x2w2

]
, (34a)

h
(−y)
αβ =

4Gµ

w2
σ
(−y)
αβ ln

[
(y + th+ h)2 + w2z2

(w2 − t− 1− yh)2 − x2w2

]
. (34b)

The futuremost +x diamond from the figure-eight intersection is also involved in this ring
intersection, and has the same form. The pastmost +x diamond is not involved in the ring
intersection, and we must instead consider the perturbation due to a −x diamond whose
center is at t = 0. Using Eq. (21),

h
(−x)
αβ =

4Gµ

h2
σ
(−x)
αβ ln

[
(h2 + t+ xw)2 − y2h2

(x+ tw)2 + h2z2

]
. (35)

IV. THE MODIFIED WORLDSHEET

A. Acceleration

We are now equipped to find the four-acceleration felt at an arbitrary point due to the
loop worldsheet. All accelerations we find from Eq. (23). As we will eventually take the
observation point to lie on the worldsheet of a +x diamond, we take it now to be on a string
moving transversely at speed w in the +x direction. As such, its null vectors are identical
to that of the +x diamond.

The acceleration of the string is found by contracting the metric derivatives of Eq. (25-
27) with A′ and B′, according to Eq. (23). This means that at least one of A′ and B′ must
be contracted with σαβ. For the +x and past +x diamonds, this contraction vanishes, as
discussed earlier.

The −y diamond has the same A′ as the observation string. Thus its σαβ can only
be contracted with B′, which leaves A′ to contract with the direction of differentiation.
For a figure-eight intersection, the metric derivative is given by Eq. (25), which vanishes on
contraction with A′γ. The +y diamond is symmetrical and its contribution likewise vanishes,
leaving no back reaction effect at all for a figure-eight intersection.
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When we consider a ring intersection, the effect of the −y diamond is instead given by
Eq. (27). Contracting with A′γ leaves only the middle term,

hαβ,γA
′γ = − 8Gµσαβ

LAA′ ·B′/2−B′ · Ω
= − 8Gµσαβ

h2 + t+ wx+ hy
. (36)

For the +y diamond, the only nonvanishing contraction is

hαβ,γB
′γ = − 8Gµσαβ

LBA′ ·B′/2− A′ · Ω
= − 8Gµσαβ

h2 + t+ wx− hy
. (37)

For the −x diamond, there is no such simplification. Equation (26) becomes

hαβ,γ =
4Gµσαβ
h2

[
(1, w,−h, 0)

h2 + t+ wx− hy
+

(1, w, h, 0)

h2 + t+ wx+ hy
(38)

−2
(w2t+ wx,wt+ x, 0, h2z)

(wt+ x)2 + h2z2

]
.

Combining Eqs. (36-38) with Eqs. (23,24), using σ
(−x)
αβ A′(+x)β = σ

(−x)
αβ B′(+x)β = (2w2, 2w, 0, 0)

and σ
(−x)
αβ A′(+x)αB′(+x)β = 4w2, and taking z = 0, we find the components of the acceleration

for a point which sees the ring intersection,

x0,uv =
2Gµw2

h2

[
− 2w

x+ tw
+

1− h2/w2

h2 + t+ xw + yh
+

1− h2/w2

h2 + t+ xw − yh

]
, (39a)

x1,uv =
2Gµw

h2

[
2w

x+ tw
− 1

h2 + t+ xw + yh
− 1

h2 + t+ xw − yh

]
, (39b)

x2,uv =
2Gµ

h

[
1

h2 + t+ xw + yh
− 1

h2 + t+ xw − yh

]
, (39c)

x3,uv = 0 . (39d)

We now transport our observation point to the worldsheet of the +x diamond, and so
take ∆t = x/w. It would be good to know where on this worldsheet feels an acceleration
and where does not. The line which divides the +x diamond into such regions is given by

t = −1 +
√

(x− w)2 + y2 , (40)

which we call the critical line. It is a hyperbola formed by the intersection of the +x
diamond’s worldsheet with the future lightcone of the point on the futuremost tip of the past
+x diamond, which lies at (t, x, y) = (−1, w, 0). The critical line intersects the spacelike
separated tips of the +x diamond. A point in the future of the crtical line sees a ring
intersection, while a point in the past of the critical line sees the figure-eight intersection.

An example of the ring intersection for a point above the critical line is shown in Fig. 7,
while those of the figure-eight intersection for a point below the critical line are shown in
Fig. 8.

It is most convenient to analyze the effect of back reaction in null coordinates so we use
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+x diamond

××

-x diamond

××

××

+y diamond

××

-y diamond

FIG. 7. The intersections of the past lightcone with various diamonds for a point × on a +x

diamond above the critical line (shown dotted). Solid lines indicate the worldsheet boundaries,

while dashed lines indicate the intersection. Color choices are consistent with Fig. 6

+x diamond

××

past +x diamond

××

××

+y diamond

××

-y diamond

FIG. 8. As in Fig. 7 for an observation point × which is below the critical line. Note that the

intersection line now connects opposite edges of the y diamonds, instead of connecting adjacent

edges.

x = w(u+ v)/2 and y = h(u− v)/2, in agreement with Eq. (29), to write

x0,uv =
2Gµw2

h2

[
− 2

u+ v
+

1− (h/w)2

u+ vw2 + h2
+

1− (h/w)2

uw2 + v + h2

]
, (41a)

x1,uv =
2Gµw

h2

[
2

u+ v
− 1

u+ vw2 + h2
− 1

uw2 + v + h2

]
, (41b)

x2,uv =
2Gµ

h

[
1

u+ vw2 + h2
− 1

uw2 + v + h2

]
, (41c)

x3,uv = 0 . (41d)
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+x

+x +x−x

+y −yτ

σ

FIG. 9. The path through the worldsheet taken by the null (solid black) lines of a point which begins

in a +x diamond. The lines are drawn for one full oscillation. The color choices are consistent with

Fig. 6, as the worldsheet shown in this picture is the same worldsheet, but unfolded and scaled so

that all diamonds are square. Dashed black lines indicate the critical line on each diamond, below

which back reaction has no effect. Adjacent diamonds in the same row point in opposite directions.

The first and third diamonds in the top row should be identified.

In Eqs. (41a,41b), the first term diverges as we approach the midline in time of the diamond,
where u = −v. This divergence arises because source points on the −x diamond come
arbitrarily close to observation points on the +x diamond near the time when the string
intersects itself to form a double line. We can avoid the problem either by taking into account
the fact that the string has some finite thickness, which will then cut off the divergence, or
by perturbing the motion to allow the two parts of the string to pass some small distance
from each other in the z direction.

The remaining denominators in Eq. (41) do not vanish for the points to which they apply.

B. Modified null vectors

To analyze the change of shape of a loop, we will consider the null tangent vectors to
the worldsheet. The function B′(τ+), for example, which has a fixed form in flat space,
accumulates changes due to the presence of x,uv. These changes are the integral of all the
effects on B′(τ+) with τ+ fixed and τ− increasing through many oscillations [13]. For a fixed
τ+ in the range 0 < τ+ < 2, the point in question moves alternately through +x and +y
diamonds. In the case of A′, we fix τ− and let τ+ vary, and for 0 < τ− < 2 the point goes
through +x and −y diamonds. The situation is shown in Fig. 9.

In a single diamond, u and v range from −1 to 1. But since there is no acceleration felt
by points below the critical line, we only integrate u over the range (uc, 1) and v over the
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range (vc, 1), with the c subscript indicating the value of that null parameter on the critical
line. For an arbitrary initial point, the critical line value of a null parameter is found by
substituting for t, x, and y in Eq. (40) and solving for u or v,

uc = −1 + vR

R + v
, (42a)

vc = −1 + uR

R + u
, (42b)

where R = 1 + 2(w/h)2. This object has a minimum value of R = 3 when φ = π/4, and
increases monotonically as φ decreases.

Inspection of Eq. (41) tells us that there are only three kinds of integral whose solution
we need to know, which we perform now.1∫ 1

vc

dv
1

u+ v
= ln

[
R + u

1− u

]
, (43a)∫ 1

vc

dv
1

uw2 + v + h2
= ln

[
(R′ + u)(R + u)

(1− u)2

]
, (43b)∫ 1

vc

dv
1

u+ vw2 + h2
=

1

w2
ln

[
R + u

1 + u

]
, (43c)

where R′ = 1+2(h/w)2. We may recover the integrals for all other diamonds through proper
exchange of u↔ v and h↔ w. By applying the prefactors as given by Eq. (41), and adding
the effects from the +x and +y diamonds, we find the modification to B′(τ+) for 0 < τ+ < 2,

∆B′λ = 8Gµ

(
ln

[
(1− u)2

(R + u)(R′ + u)

]
,

1

w
ln

[
1− u
R + u

]
,

1

h
ln

[
1− u
R′ + u

]
, 0

)
, (44)

per oscillation. The modification to A′ is similarly

∆A′λ = 8Gµ

(
ln

[
(1− v)2

(R + v)(R′ + v)

]
,

1

w
ln

[
1− v
R + v

]
, −1

h
ln

[
1− v
R′ + v

]
, 0

)
. (45)

Equations (44,45) have a logarithmic divergence when then the null parameters are +1.
This would imply that as we approach the kink, the modification to the direction of B
becomes larger and larger, in contradiction to what we argued in Ref. [14]. This results
from the intersection between the string and itself, which defeats the argument of Ref. [14]
that source points close to the observation point have similar motion. If we modify the loop
to avoid the self intersection and instead have the strings pass by at some distance δ, this
distance will give a cutoff on the logarithmic divergence, so that we take 1 − v and 1 − u
always at least δ.

For the “square” loop where φ = π/4, we have h = w and R′ = R, so ∆B′1 = ∆B′2 and
similarly for A′. Thus there is no change to the directions of A′ and B′, and the loop retains
its shape. This is a consequence of the additional symmetry in this case, as discussed in
Ref. [14].

1 The integral in Eq. (43a) should be understood in the principal value sense. As discussed above, there is a

divergence in the acceleration when the self and −x diamonds intersect. We can avoid it by letting them

pass by some distance ε in the z direction. In that case the integrand will become (u+ v)/((u+ v)2 + ε2),

which will give the principal value on taking the limit as ε→ 0. No other effects of ε remain in this limit.
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We have kept the parameterization of the worldsheet in terms of τ±. But because of the
time components of Eqs. (44,45), the relationship between these parameters and the actual
time t is no longer straightforward. Nevertheless, the perturbed vectors Ã′ = A′ + ∆A′ and
B̃′ = B′ + ∆B′ are null to first order in Gµ because A′ · ∆A′ = B′ · ∆B′ = 0. We can
integrate Ã′ and B̃′ with respect to τ± to get spatially periodic functions Ã and B̃, which
have null but not unit tangent vectors. The worldsheet consists of all points which can be
formed as

1

2

[
Ã(τ−) + B̃(τ+)

]
. (46)

V. THE EFFECTS OF BACK REACTION

A. Energy loss

When τ+ and τ− have both increased by T = 2, the spatial position of the string loop
returns to its original form. The period of the loop is the increase in the real time t. To find
it we integrate the time component of Ã′ or equivalently B̃′,∫ 1

−1
dv

{
1 + 8Gµ ln

[
(1− v)2

(R + v)(R′ + v)

]}
= 2 + 16Gµ

[
lnw2

h2
+

lnh2

w2

]
. (47)

The energy in the loop is the oscillation period times 2µ, so the change in energy due to
back reaction is

∆E = 32Gµ2

[
lnw2

h2
+

lnh2

w2

]
(48)

per oscillation. This agrees with the radiated power in Eq. (3.9) of [12].

B. Changes to A and B

To understand the modified shape of the string, we can integrate the spatial components
of Eqs. (44,45). We find

∆B1 =
8Gµ

w
F (u,R) (49a)

∆B2 =
8Gµ

h
F (u,R′) (49b)

∆A1 =
8Gµ

w
F (v,R) (49c)

∆A2 =− 8Gµ

h
F (v,R′) (49d)

where

F (n,X) =

∫
dn ln

[
1− n
X + n

]
= −(1− n) ln(1− n)− (X + n) ln(X + n) + const. (50)

We will use the constant to keep the center of mass of the loop fixed. Equation (49) applies
for 0 < τ± < 2. For 2 < τ± < 4, the signs of all components should be reversed and the
constant chosen to keep A and B closed.
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φ = π/4 φ = π/6

φ = π/8

FIG. 10. The unmodified (dashed red) and modified (solid blue) B for three different values of φ.

Detail of the modified B as it transitions from outgoing to ingoing is given for the φ = π/8 case.

There are two general effects of back reaction: B becomes shorter, and so the loop becomes shorter

as well; and the turning angle of B at its sharp ends becomes less than π, resulting in a “lens”

appearance. This effect becomes weaker with increasing φ, to the limit that the turning angle of

the φ = π/4 case is not affected by back reaction at all. The overall direction of B (defined as the

direction between the two kinks) is unchanged. We have taken NGµ = 7 · 10−3 in all cases.

The total spatial change in B from τ+ = 0 to τ+ = 2 is

16Gµ

[
lnw2

h2
+

lnh2

w2

]
(w, h, 0) , (51)

which points in the direction opposite to the unmodified B. Thus B becomes shorter by just
the amount given in Eq. (47), but does not change its overall direction. The same argument
applies to A.

We illustrate the modifications to B in Fig. 10. The modifications to A are given by
exchange of x↔ −x.
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t = 0 t = 0.25T t = 0.5T t = 0.75T

FIG. 11. The unmodified (dashed red) and modified (solid blue) string loops at four different

constant time slices. Arrows indicate the direction of motion of a segment at a given time. The

effects of back reaction are to reduce the overall size of the loop, and to introduce curvature in the

kink-connecting string segments for non-square loops. It should be noted that the modified and

unmodified loops have different periods, and so these slices should not be taken to be at the same

coordinate times, but rather at the same fraction of the loop’s oscillation. What is important is

that these slightly different times are constant over the entire loop. We have taken φ = π/8 and

NGµ = 7 · 10−3.

C. Changes to the loop shape

Using the new forms of A and B, we can find constant time slices of the loop’s worldsheet,
as shown in Fig. 11. We see two effects of back reaction on non-square loops: the previously
straight segments connecting kinks acquire some bend, and the loop’s oscillation is no longer
symmetric. In the first half of each oscillation, the kinks have an interior angle greater than
π/2, and in the second half of the oscillation, less than π/2.

The modified loop at t = 0.25T in Fig. 11 appears to be takes up more spatial range
than the unmodified loop, even though back reaction reduces its energy. While the physical
length increases, the velocities of the string segments decrease by a greater amount, such
that the invariant length of the modified loop decreases.

The exact nature of the crossing of the loop segments is not as straightforward for the
modified loop. The string is shown in snapshots near the double line crossing in Fig. 12.
The instantaneous double-line configuration has been replaced by a range of times of self-
intersection. The time span between the start of subsequent self-intersections is T/2, and
the range of time of self-intersection is considerably less than that.

D. Cusps

The changes to the tangent vectors A′ andB′ are also important to consider when thinking
about cusp formation. For a generic loop, A′ and B′ trace out paths on the Kibble-Turok
[15] unit sphere. In the absence of kinks, these paths are smooth and generically intersect.
These intersections produce cusps. Kinks are discontinuities in the paths of A′ and B′, which
allow them to jump over each other instead of intersecting. Smoothing of kinks might lead
to cusps that were not originally present.

The loops we discuss here are not generic but rather lie in a plane. Thus they always
intersect themselves and so are not physically realistic. Nevertheless, they may shed some
light on the question of kinks versus cusps. Because the loop lies in a plane, A′ and B′

are confined to a single great circle on the Kibble-Turok sphere. In the unmodified loop,
A′ and B′ consist only of two points each, and angles 2φ and π − 2φ separate A′ and B′.
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t = 0.46T t = 0.48T t = 0.50T t = 0.52T t = 0.54T

FIG. 12. A comparison of the unmodified (dashed red) and modified (solid blue) loop configurations

just before, at, and just after the “double line” configuration, halfway through one oscillation. In

both loops, the inwards-moving “vertical” segments intersect along their entire lengths. While

this intersection happens all at the same time for the unmodified loop, the modified loop sees

the vertical segments crossing each other progressively over some period of time. We have taken

φ = π/8 and NGµ = 7 · 10−3

Gravitational back reaction reduces the kink angles and so increases the range of directions
of A′ and B′. Continued long enough, this process would cause A′ and B′ to overlap. The
situation is shown in Fig. 13.

E. Kink smoothing

We have identified two effects of back reaction, kink smoothing and loop dissipation, and
we would now like to compare the relative rates at which these effects take place.

The angle η between the unmodified and modified direction of B′ can be found by taking
the cross product of the spatial parts of B′ and ∆B′,

η ≈ sin η = w∆B′2 − h∆B′1 (52)

At u = −1, this is
8Gµ

hw
ln

[
w2

h2

]
. (53)

At u = 1, there is a logarithmic divergence, as discussed above. We will modify the string
so that the string passes by itself a distance δ instead of forming a double line. Then we
find that η at u = 1 is given by

8Gµ

hw

[
w2 lnw2 − h2 lnh2 + (w2 − h2) ln(δ/2)

]
. (54)

Subtracting Eq. (54) from Eq. (53), we find the total angle through which B′ turns between
kinks,

ψ =
8Gµ

hw

[
h2 lnw2 − w2 lnh2 − (w2 − h2) ln(δ/2)

]
. (55)

This is also the angle by which the original angle-π kink in B′ has been straightened out.
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FIG. 13. The unmodified and modified tangent vectors on the Kibble-Turok sphere. The unmodi-

fied A′ and B′ points are marked by blue squares and red circles, respectively, while the smearing

effect of back reaction is given in blue for A′ and red for B′. Back reaction has not yet acted

for long enough to cause the modified tangent vectors to overlap at any point. We have chosen

φ = π/8 and NGµ = 7 · 10−3.

Now, we consider a string with Gµ = 10−8 and take δ = 10−3 when comparing the rates
of smoothing and dissipation. We are interested in comparing the timescales on which the
kink angle and energy corrections become comparable to the initial angle and energy, and
so we shall divide π by ψ as given by Eq. (55) and compare it to 4µ divided by ∆E as given
by Eq. (48). These estimations provide us with an indication of the number of oscillations
required to completely smooth the kink or to dissipate the loop. We compare the timescales
of smoothing and dissipation in Fig. 14. When the loop is nearly square, it mostly retains
its shape over the whole evaporation process, and the number of oscillations to evaporate
is meaningful. Otherwise, smoothing of the kinks takes us out of the regime in which our
first-order approximations apply, so the number of oscillations should not be taken literally.

VI. CONCLUSIONS

A generic rectangular loop will be smoothed by back reaction in the sense that the kinks
in A and B will become less sharp, and the segments between them will be curved, as shown
in Fig. 10. The kinks in the spatial position of the loop may become sharper or less sharp
in this process, as shown in Figs. 11 and 12. However, the “square” loop with φ = π/4
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FIG. 14. The number of oscillations (using the first-order approximation only) for a kink to be

smoothed (solid blue line) and for a loop to be dissipated (dashed red line) by back reaction. For

loops close to square (φ = π/4), kink smoothing is much slower than evaporation of the loop.

For small φ, kink smoothing is faster, and for a broad range in the middle the processes are

roughly comparable. We have chosen Gµ = 10−8, and the black horizontal line marks our choice

of NGµ = 7 · 10−3 for all visualizations in Sec. V.

is protected by an additional symmetry. It does not change its geometry as it dissipates,
shrinking rigidly to nothing.

The effect of smoothing accumulates more rapidly for loops which are farther from square.
Loops which are nearly square will have kink angles very close to π for the entirety of their
lives, while loops which have very large aspect ratios will have their kinks significantly
smoothed relatively soon after their formation.

Assuming that these effects generalize to realistic loops that do not lie in a plane, the
differences in kink smoothing impact the likelihood of cusp formation. Loops at formation
have kinks but no cusps [10]. Some of these may retain their large-angle kinks throughout
their lives, and thus will never develop cusps, while on others the kinks will be rapidly opened
out and cusps are likely. From Fig. 14 it appears that both behaviors may be common.

Significant kink smoothing will change the loop worldsheet, and thus the backreactive
acceleration, so we must account for higher-order effects to describe the entire life of a
loop with precision. Combined with the difficulty of analyzing the back reaction of any
but the simplest loops, this suggests that the way forward in understanding the effects of
gravitational back reaction on loops lies in simulations.
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