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Cosmic acceleration may be due to modifications of cosmic gravity and to test this we need
robust connections between theory and observations. However, in a model independent approach
like effective field theory or a broad class like Horndeski gravity, several free functions of time enter
the theory. We show that simple parametrizations of these functions are unlikely to be unsuccessful;
in particular the approximation αi(t) ∝ Ωde(t) drastically misestimates the observables. This holds
even in simple modified gravity theories like f(R). Indeed, oversimplified approximations to the
property functions αi(t) can even miss the signature of modified gravity. We also consider the
question of consistency relations and the role of tensor (gravitational wave) perturbations.

I. INTRODUCTION

The origin of cosmic acceleration is an extraordinary
mystery in modern physics. The observation of cosmic
acceleration [1–4] must be connected to some fundamen-
tal theory beyond the current standard model of particle
physics, but we do not know whether its origin lies in
the structure of the quantum vacuum or an extension to
Einstein’s theory of gravitation. Considerable progress
has occurred in the last decade in exploring aspects of
modified gravity [5–7] but the ability to connect theory
and observations in a manner not highly dependent on a
specific model is lacking in essential aspects.

Here we examine the challenges for such a connection,
and caution against oversimplification. Modified gravity
is a much more complex arena than scalar field dark en-
ergy, with its one free function of time (e.g. the equation
of state w(a)). In large part this is because of the role
played by perturbations and the tensor sector.

To begin, consider the case for cosmic acceleration not
arising from modified gravity, e.g. quintessence dark en-
ergy. Here we also have challenges in connecting essential
theory to observations, with perhaps the most informa-
tion arising from the thawing vs. freezing classification
of scalar fields [12]. This at least describes the steep-
ness of the potential relative to the Hubble friction, and
has distinct implications for whether the theory is ap-
proaching or departing from a cosmological constant-like
(or sometimes de Sitter) state. Beyond that, the expan-
sion history from dark energy, whether from quintessence
or modified gravity, is extremely accurately character-
ized phenomenologically by two numbers [13], w0 and wa,
measures of the present and time variation of the dark
energy equation of state. Indeed, this characterization
has been shown valid to the 0.1% level in the observables
of distances and Hubble parameters for a wide range of
quintessence, k-essence, modified gravity, etc. models.

On the cosmic structure, i.e. perturbative, side of ob-
servations, dark energy not arising from modified gravity
(or nonstandard couplings) has little to add: quintessence
perturbations are small inside the Hubble scale and k-
essence (noncanonical kinetic energy model) perturba-
tions have little observational effect since they are sup-

pressed by equations of state near w = −1, as observa-
tions indicate. For modified gravity effects, a successful,
if limited, phenomenological parametrization is the grav-
itational growth index γ [14], again accurately describing
observables at the subpercent level for a variety of modi-
fied gravity models [15]. However, this has very restricted
interpretable connection to fundamental theory. Better
(pseudo)observables include effects not only on growth
of structure, but on the deflection of light. These come
from the nonrelativistic and relativistic modified Poisson
equations [16], and can be written as effective gravita-
tional coupling strengths Gmatter(k, a) and Glight(k, a),
where we explicitly show their scale dependence (e.g. on
the Fourier wavenumber k) and time dependence (e.g.
on the cosmic scale factor a). The gravitational growth
index γ is directly related to Gmatter in the scale inde-
pendent limit.

To connect with theory, however, we need to relate the
scale and time dependences of these “observables” (we
will henceforth refer to these quantities Gmatter, Glight,
and their ratio, related to the gravitational slip func-
tion, as observables because, while not directly observ-
able, they are so closely connected to observations, i.e.
structure growth and gravitational lensing) to the theory
– or at least to phenomenological property functions αi

[17].

The functional form of the scale dependence is a ratio
of k0+k2 polynomials in many cases (see [18–20] and the
especially clear [21], but see [22, 23] for exceptions), and
one simplification is that on scales below the Hubble scale
(or more generally the sound horizon or braiding scale
[17]) the scale dependence (k2 terms) is subdominant and
one essentially has purely functions of time.

While this seems to be considerable progress, the prob-
lem is that in order to know whether Gmatter and Glight

have any simple parametrization of their time depen-
dence one has to evaluate them from the underlying the-
ory, ideally in as model independent a fashion as pos-
sible. An excellent framework for this is the effective
field theory (EFT) of dark energy [8–11]. Within EFT
at quadratic (lowest) order there are seven free functions
of time, and within the Horndeski class of gravity there
are four free functions. The challenge of connecting such
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theory functions to realistically parametrized observables
was highlighted in [11], who examined various limits.
Here we go into greater depth and quantify the problems
with oversimplification of the parametrization.
In Sec. II we start with the workhorse of modified grav-

ity, f(R) theory. This corresponds to only one indepen-
dent free function of time in the EFT formalism and so
is a basic place to start in assessing parametrizations.
We expand in Sec. III to the four functions of Horndeski
gravity and examine the motivation for a potential sim-
plification in the early time (matter dominated) limit,
deriving the asymptotic behavior of the property func-
tions and observables. In Sec. IV we identify how extend-
ing these limiting behaviors to the epoch of cosmological
structure observations raises foundational issues, and we
quantify the dramatic deviations that actually arise in
generic circumstances. Section V discusses the reasons
why simplified parametrizations appear generally unvi-
able, and solving a problem like modified gravity is so
difficult. We conclude in Sec. VI with some thoughts on
further progress, while Appendix A explores the possibil-
ity of proving broad consistency relations that an entire
class of modified gravity theories must obey.

II. A ONE FUNCTION CASE: f(R) GRAVITY

There are four free functions of time within the Horn-
deski class of gravity theories (apart from the Hubble ex-
pansion itself, H(a) or a(t), which can also be phrased in
terms of an effective dark energy equation of state w(a)).
It is convenient to take these functions to be treated in
terms of property functions [17]. The property functions
describe the structure of the scalar kinetic sector of the
theory via the kineticity αK , the tensor sector via speed
of tensor perturbation propagation αT = c2T −1, the mix-
ing of the scalar and tensor sectors via the braiding αB,
and the running of the Planck mass αM . Translations
between these and the EFT functions and the observable
functions are given in, e.g., [11]. Explicit expressions for
αi in terms of Horndeski functions are given in [17], and
in terms of covariant Galileon κ’s in, e.g., [26].
In specific theories some of these functions can be zero

and some can be redundant. In general relativity all are
zero. We can start by considering the simplest nontriv-
ial situation where the theory has one independent free
function of time – f(R) is one such theory, with the only
nonzero property function being αM = −αB [17]. Note
that αM is closely related to the f(R) function B(a),
the square of the effective Compton wavelength of the
scalaron in units of the Hubble scale.
The property function αM = d lnM2

⋆/d ln a describes
the running of the Planck mass M⋆. Note that the
strength of gravity is proportional to M−2

⋆ just as New-
ton’s constant GN = M−2

Pl . We can write

M2
⋆ (a) = M2

Pl e
∫

a

0
d ln a′ αM (a′) (1)

= M2
Pl e

∫
a

0
d ln a′ Ωde(a

′) [αM (a′)/Ωde(a
′)] , (2)

where the second line is in a form suggestive of an ap-
proximation where αM (a) ∝ Ωde(a).
We can immediately see the unfortunate consequences

of such a proportionality approximation if it holds into
the late universe. As dark energy dominates, Ωde → 1,
the quantity in brackets remains constant, but a is un-
bounded. Thus the running Planck mass either goes to
infinity or to zero, depending on the sign of the propor-
tionality constant. Indeed we will see in the next section
that if we match the early time behavior to evaluate the
constant, then it is negative, forcing M2

⋆ → 0 at late
times. Thus the strength of gravity blows up to infinity
in this approximation.
More quantitatively, if we take a ΛCDM background

expansion history, or a constant w dark energy equation
of state, we can do the integral analytically to find

M2
⋆ (a) = m2

p

(

1 +
Ωde,0

Ωm,0
a−3w

)ᾱM/(−3w)

, (3)

where ᾱM denotes the proportionality constant and sub-
scripts 0 indicate the present densities of dark energy
and matter (and w = −1 for the cosmological constant
case). As a gets large, M2

⋆ is driven to zero or infinity,
depending on the sign of ᾱM .
The way out of this unphysical catastrophe is to break

the proportionality

αprop
i = ᾱi Ωde(a) , (4)

at some epoch. Indeed, physically we know this must
happen: as the universe approaches a de Sitter state the
running of the Planck mass must freeze, i.e. αM → 0.
Let us explore through the exact numerical solution

of the f(R) gravity model when the approximation that
the property function (deviation from general relativity)
is proportional to the effective dark energy, which we
now abbreviate as prop, breaks down. Figure 1 shows the
numerical solutions for αM (a) and αM (a)/Ωde(a), for the
exponential f(R) gravity model with c = 3, compatible
with current observations, given in [38].
We see that even for the simple f(R) model that αM ∝

Ωde(a) is a poor approximation. Indeed, αM ≈ 10−10 at
a = 0.3 while αM ≈ 10−2 at a = 1, while Ωde only
changes by one order of magnitude over this range. This
should be no surprise: f(R) gravity involves a function
of the Ricci scalar R, which has a steep time depen-
dence. Indeed, we want f(R) to restore to general rela-
tivity rapidly in the high curvature regime. Due to this
very steep dependence, it is difficult to see that any rea-
sonable, model independent function of Ωde(a) will ap-
proximate αM during the observable epoch z ≈ 0 − 3
(a ≈ 0.25− 1).
Recall that prop, i.e. that αi(a)/Ωde(a) = constant,

had the problematic feature that it forces M2
⋆ → 0 at late

times, with the consequence that the strength of gravity,
Geff , blows up to infinity. Let us attempt to heal this
pathology at least.
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FIG. 1. The property function αM (solid black) and its ratio
relative to the effective dark energy density, αM/Ωde (dashed
blue), is plotted vs scale factor a. It is well behaved and phys-
ical, with the expected early and late time limits. Note that
the quantity αM/Ωde is definitely not well approximated by
a constant in the recent universe (or the late time universe).
We also show the result (dotted red) when calculating αM us-
ing Eq. (5). It gives an excellent approximation at late times
but not at early times; the text explains why any function of
Ωde is likely to fail during the observational epoch.

We take as our ansatz instead

M2
⋆ = m2

p [1 + µΩde(a)] , (5)

where µ is a constant. That is, instead of αi deviating
from general relativity at early times proportional to the
effective dark energy density, instead it is the running
Planck mass that has such a linear deviation. So at early
times the Planck mass restores to general relativity, and
at late times it freezes to a constant. The latter is what
we expect physically in the de Sitter phase. Moreover,
now M2

⋆ (a) is a function of the background expansion
only at that scale factor, rather than an integral over all
past history as in the prop case.
From this we find that

αM (a) ≡
d lnM2

⋆

d ln a
=

−3µw(a)Ωde(a) [1− Ωde(a)]

1 + µΩde(a)
, (6)

where w(a) is the effective dark energy equation of state
function. At early times, for many modified gravity mod-
els w(a) is constant so to first order in Ωde(a) we do have
αM,early ∝ Ωde(a). At late times, in the de Sitter phase
Ωde → 1 and hence αM → 0, exactly as physically ex-
pected. Equation (6) for αM , coming from Eq. (5), is
plotted as the dotted red curve in Fig. 1.

While Eq. (5) leads to a remarkably good approxima-
tion to αM for times after the present, it too fails at early
times. Indeed this rapid evolution for the gravitational
coupling strength was discussed in terms of the “paths of
gravity” – the phase space diagram of the gravitational
strength – in [39].
Thus, while we managed to remove a pathology and

found a parametrization suitable for the latter half of
evolution, we still do not see the way to a reliable
parametrization for αi(a) for observational data, even in
this simplest case of a single free function of time in the
modified gravity theory.

III. EARLY TIME LIMIT

Let us back up and understand why the simplified
parametrization αi(a) ∝ Ωde(a) seemed to be an attrac-
tive first attempt. We will focus on what physics can lead
to such a relation, and what physics breaks it.
In the early time limit we expect general relativity

to be an excellent description of gravity, as seen from
observational constraints from primordial nucleosynthe-
sis and the cosmic microwave background recombination
epoch. Not only should deviations from general relativity
be small, but also any contributions of the effective dark
energy density – i.e. observations indicate that the uni-
verse was matter dominated (including radiation domi-
nated). The impact of this on the behavior of modified
gravity functions was discussed qualitatively by [11] in
terms of all the EFT functions being of the same order,
as well showing how this arises within the specific case
of covariant Galileons. Some quantitative behaviors for
the time dependence of the observables and the property
functions αi(t) were also derived in [25, 26].
Within the framework of EFT, or the property func-

tions (we now consider all four within the full Horndeski
class as independent functions of time), each function is
made up of an array of terms from the theory Lagrangian
(see, e.g., [40]). That is, each contains terms depending
on different numbers of times the field enters and differ-
ent numbers of derivatives. Since each term has different
dependences on the Hubble parameter H/H0, which is
large at early times, generically one term dominates at
early times. However, as just stated, this term generally
contributes to all the property functions, the observables,
and the effective dark energy density. Since these are thus
proportional to each other and the dark energy density,
one has

αi,early ∝ Ωde(a) . (7)

We make this relation explicit in the following, and
derive the constants of proportionality for various Horn-
deski cases. However, we emphasize strongly that Eq. (7)
is only the early time limit – some specific conditions for
when this proportionality breaks down are given in [11]
and we elaborate on them here (in particular see Sec. IV),
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as well as show when this whole ansatz is invalid even at
early times.
To calculate the early time relations, recall that for

Horndeski gravity the Lagrangian consists of a sum of
terms with the scalar field φ (and its derivatives) entering
two through five times. The prefactors of these operators
are functions Gi, with i = 2, . . . 5, and their derivatives,
and these Horndeski functions depend on φ and its ki-
netic energy X = φ̇2/2, i.e. Gi(φ,X). The early time
behavior of Gi will be determined by the leading order
“pole” behavior, e.g. the lowest power of X (or φ) that
enters. Thus we will treat the early time limit in terms
of Gi ∝ Xn or φm. (In the uncoupled covariant Galileon
case of Horndeski gravity,G2, G3 ∝ X andG4, G5 ∝ X2,
with G4 also having a constant part.)
We can use the generalized Klein-Gordon equation for

the scalar field evolution to define

β ≡
2φ̈

Hφ̇
=

Ẋ

HX
. (8)

In the early time limit, β will go to a constant. We can
evaluate this constant using that in general the G5 term
dominates at early times due to the number of products
of the (large) Hubble parameter from its associated oper-
ators. Thus initially we consider G5 ∝ Xn (we consider
powers of φ later). In this case

β =
−3(1 + Ḣ/H2)(2n+ 1)

2n+ 1 + (n− 1)[5 + 2(n− 1)(n− 2)]
. (9)

Note that since terms like n − 2 come from G5XX , i.e.
two derivatives with respect to X , then if n = 0 these
terms will not actually exist. For a background equation
of state wb, then Ḣ/H2 = −(3/2)(1 + wb), i.e. −3/2 for
nonrelativistic matter domination.
Using the known expressions for the property functions

αj in terms of Gi, and for Ωde in terms of Gi, we can solve
for the early time limits of the property functions:

αB

Ωde
→

3(2n+ 1)

2n+ 3
−→

15

7
(10)

αK

Ωde
→

6[7n− 4 + 2(n− 1)(n− 2)]

2n+ 3
−→

60

7
(11)

αM

Ωde
→

−3

2n+ 3

[

Ḣ

H2
+ β(n+

1

2
)

]

−→
−9

56
(12)

αT

Ωde
→

−3

2

β − 2

2n+ 3
−→

15

56
. (13)

Here the short arrow denotes the early time limit, and
the long arrow denotes the further specialization to the
covariant Galileon case (where β = 3/4 in nonrelativis-
tic matter domination). These constants agree with our
numerical computation of the full evolution. Note that
the first two lines do not depend on β while the last two
lines do; one can use Eq. (9) to write those expressions
wholly in terms of n.
For the metric

ds2 = − (1 + 2Ψ)dt2 + a2(t) (1− 2Φ)d~x2 , (14)

we can consider the effective gravitational coupling
strengths appearing in the modified Poisson equations
for non-relativistic and relativistic particles, e.g. galaxies
and light,

∇2Ψ = 4πa2GΨ
effρm δm (15)

∇
2(Ψ + Φ) = 8πa2GΨ+Φ

eff ρm δm . (16)

The quantity GΨ
eff is also called Gmatter and the quantity

GΨ+Φ
eff is also called Glight.
The property functions can then be propagated to

these and other “observables” such as the gravitational
slip η and tensor wave speed cT [26]; using the above early
time limits, and specializing to the covariant Galileon
limit for simplicity,

GΨ
eff, early = 1 +

759

224
Ωde (17)

ηearly = 1 +
111

32
Ωde (18)

c2T,early = 1 +
15

56
Ωde . (19)

Now let us consider the case where the φ dependence
of G5 is the dominant contribution. In this case one can
readily find that

αB

Ωde
→

4

3
(20)

αK

Ωde
→ 2 (21)

αM

Ωde
→ −

1

3

[

β + (m− 1)
φ̇

Hφ

]

−→ −
β

3
(22)

αT

Ωde
→

2

3
. (23)

Here the long arrow denotes specialization to the deriva-
tively coupled covariant Galileon, whereG5 ∼ cGφ. How-
ever in this case β is no longer given by Eq. (9). Instead,
β = 6wb. Indeed, from Eq. 50 of [25] we find that in the
nonrelativistic matter early time limit with the cG term
dominating, X =constant and hence β = 0, so αM = 0.
One can carry out the same analysis if another term

than the expected G5 dominates the Horndeski La-
grangian at early times.
The basic rule is that as long as the same term domi-

nates for both αi and Ωde, one will obtain their propor-
tionality in the early time limit. The next section will
go beyond the early time limit, but first we should look
for any exceptions to the early time proportionality aris-
ing from a mismatch between the terms entering Ωde and
each αi. We find that indeed αB , αK , and αT all lack
certain terms that Ωde has, while αM has a term that
Ωde lacks.
For example, αB is lacking the term G3φ that Ωde has,

so if the theory is arranged (possibly fine tuned) to make
this dominant at early times, then αB/Ωde → 0. A simi-
lar situation occurs for αK and αT when G4φ is dominant
(and for αT when any G3 term dominates). These results
will have important implications in the next section.
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For αM , there is an extra term involving φ̇3G5φφ. For
a leading order behavior of G5 ∼ φm, this term involves
m(m− 1)(φ̇3/φ2)G5 and so one can have

αM

Ωde
∼

φ̇

Hφ
or

(

φ̇

Hφ

)2

, (24)

whichever is dominant, unless m = 0, 1. The ratio there-
fore will in general either go to zero, if φ̇/(Hφ) is small,
giving a similar problem as with the other αi, or diverge,
if φ̇/(Hφ) is large, giving a new problem.

Thus, prop proportionality is not even guaranteed at
early times, while we found in Sec. II that it fails during
the observational epoch in the recent universe for the
well known, simple case of f(R) gravity. We investigate
further in the next section.

IV. PARAMETRIZING PROPERTY

FUNCTIONS

A. Limits to linear proportionality

The early time limit is the only case where the be-
havior of the property functions, and observables, can be
calculated analytically. As seen in the previous section,
this showed that at early times αi was almost always
proportional to Ωde. However, there are three important
caveats:

• We saw in Sec. III that for some theories the con-
stant of proportionality was either zero or infinity.
These give behavior at later times that is clearly
invalid (or trivial) within the proportionality ap-
proximation.

• In the de Sitter limit one must have αM = 0 so
proportionality must break down for this function.

• The behavior actually deviates from the early time
asymptote at quite early times.

The discussion in [11] makes clear that linear propor-
tionality breaks down not when Ωde becomes appreciable
compared to unity (i.e. at redshift z . 1) but whenH/H0

is no longer much greater than one, i.e. at redshift z ≈ 10
(for a ΛCDM background, H/H0 = 20 at z = 10). Re-
member, the physics comes from the interrelation of the
multiple terms in the Lagrangian with different powers
of H . Furthermore, we will see that even at z = 10, the
observable functions Gmatter and Glight calculated from
the combinations of the property functions are poorly
approximated by using a linear αi ∝ Ωde relation. Note
though the very useful modified gravity Boltzmann code
hi class [27] provides Eq. (4) as a default parametriza-
tion.

B. Tracker trajectories

Can we force the linear proportionality to hold longer,
despite the strong physical basis for the breakdown? If
we can freeze the relation between the Lagrangian terms,
preventing their natural evolution relative to each other,
then this may be possible (although such a construc-
tion certainly breaks model independence and raises the
specter of fine tuning). While the terms differ in pow-
ers of H , they also differ in powers of other dynamical
variables, and so one could impose conditions on their
combination to force the terms in lockstep.
This is what “tracker” models do: they fix H2X =

constant for all times. When this holds, then all the
Horndeski Gi are the same order, despite their differing
powers of H/H0. This certainly gives up model inde-
pendence by narrowing to a specific subclass1. Moreover
this then implies that H2ρde =constant [30]. That is a
dramatic imposition.
Recall that

Ωde(a) ∝
ρde
H2

, (25)

so the tracker condition forces

Ωde(a) ∝

(

H(a)

H0

)

−4

. (26)

By contrast,

ΩΛ(a) ∝
ρΛ
H2

∝

(

H(a)

H0

)

−2

. (27)

Figure 2 illustrates the implications of this. The tracker
model is more fine tuned than even a cosmological con-
stant, by (H0/H)2. We see that if one extended this be-
havior back to the Planck scale, then the tracker model
has a fine tuning of 10−240 in contrast to the cosmologi-
cal constant’s 10−120. Some articles in the literature, e.g.
[28, 29], use this condition back to z = 1014, where Fig. 2
shows the fine tuning is at the level of 10−104, or 1052

times more severe than the cosmological constant at that
redshift. These results agree completely with Figure 11
of [29], which only plots the density back to a = 10−3.
The physics behind the approach to the H2X =

constant behavior is the same as that causing cosmic
acceleration. One can immediately recognize that when
this is written in the formH2ρde =constant this is merely
the de Sitter attractor, whenH and ρde become constant.
The natural epoch for the approach to the tracker be-
havior of H2X =constant is simply z ≈ 0; the general

1 Note that [29] claims that all other regions of covariant Galileons
are observationally unviable but their analysis only concerns cu-
bic Galileons, which have only a single term other than the ki-
netic one and so lack the freedom of the full covariant Galileon,
let alone the Horndeski class.
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FIG. 2. The fractional energy density in dark energy is plot-
ted vs the log of the scale factor from a = 1014 to the present,
for the tracker assumption (thick, black curve) and the cos-
mological constant (thin, blue curve). Assuming that the be-
havior follows the tracker at early times (rather than only at
late times as in the generic physics scenario) imposes severe
fine tuning, well beyond the fine tuning of the cosmological
constant problem.

physics says that, barring fine tuning, one would expect
the behavior not to hold before the present. This is borne
out by numerical solution of the evolution equations.

Suppose one did allow the severe fine tuning required
by Fig. 2. This not only gives up model independence
by narrowing to a highly specific subregion of theory
space, but also has theoretical issues: the condition
H2X =constant (which motivates Eq. 4) forces the ten-
sor perturbation propagation speed (for the uncoupled or
derivatively coupled Galileon) to be less than the speed of
light, c2T < 1, leading to a gravi-Cherenkov catastrophe
[31–34].

Thus the means of preventing the early breakdown of
linear proportionality by forcing H2X =constant does
not appear to be a generally viable solution.

C. Numerical solutions of evolution

Let us examine the exact numerical solutions of the
property functions and observable functions to investi-
gate the question of reasonable parametrizations. The
relations between the property and observable functions

are [17]

GΦ
eff

GN
=

2m2
p

M2
⋆

[αB(1 + αT ) + 2(αM − αT )] + α′

B

(2− αB)[αB(1 + αT ) + 2(αM − αT )] + 2α′

B

,

(28)
where prime denotes d/d lna. The gravitational slip η̄ =

Gmatter/Glight = GΨ
eff/G

Ψ+Φ
eff (note that η = GΨ

eff/G
Φ
eff =

η̄/(2− η̄)) is given by

η̄ =
(2 + 2αM )[αB(1 + αT ) + 2(αM − αT )] + (2 + 2αT )α

′

B

(2 + αM )[αB(1 + αT ) + 2(αM − αT )] + (2 + αT )α′

B

,

(29)
and the tensor wave speed is

c2T = 1 + αT . (30)

For definiteness in the numerical exploration, we here
work with uncoupled covariant Galileon gravity; recall we
showed the results for f(R) gravity in Sec. II. We calcu-
late for the models of Fig. 6 and Fig. 4 of [25] (slightly
adjusting c2 to obtain Ωde,0 = 0.713), which exhibit very
different de Sitter limits for the observable functions. We
call these case 1 and case 2. Figure 3 plots the property
functions αi(a), divided by Ωde(a) to examine whether
such a ratio is really constant for all times. The vertical
shaded region highlights the region z = 0− 3 where cos-
mic structure data exists, and we are particularly inter-
ested in an accurate parametrization (taking the constant
of proportionality to be a fit parameter, rather than fixed
to its analytic, early time value). The quantities αi/Ωde

are certainly seen to be not well approximated as con-
stant (regardless of the value of the constant), especially
over this range.
Trying to define a constant of proportionality by taking

the early time (high redshift) value – where proportion-
ality does hold – can even give the wrong sign during the
observational epoch: see the αM and αT curves. Note
that the physics of Horndeski gravity requires αM = 0
in the de Sitter limit, while the linear proportionality
approximation of Eq. (4) violates this for any nonzero
constant. Finally, defining the constant of proportional-
ity by an average over cosmic history (hence not obeying
either the early time or late time limits) could greatly re-
duce the sensitivity to observing deviations from general
relativity, as we see next.
In Fig. 4 we calculate the gravitational slip observ-

able function η. In addition to the numerical solution
we show the predictions for the same models using the
linear proportionality approximation. Note that because
the background expansion histories for cases 1 and 2 are
very similar, the prop approximation, which is a function
only of the background, delivers nearly the same observ-
able function for each. However the true solutions show
highly differing behaviors for the two cases. Moreover,
at z & 1, prop shows almost no deviation from general
relativity (below 1% for z > 2, below 3% for z = 1 − 2),
while the true solutions have considerably larger devia-
tions. Thus, using the linear proportionality assumption
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FIG. 3. The time dependence of the property functions di-
vided by the effective dark energy, αi(a)/Ωde(a), are exhib-
ited for exact solutions corresponding to case 1 (the thicker
curves, with larger variation) and case 2 (the thinner curves,
with smaller variation). They are not constant, as the prop

approximation of Eq. (4) assumes. Such an approximation
is particularly inaccurate during the key observational epoch
z = 0− 3 (log a ≈ −0.6− 0, shaded).

can miss even quite dramatic signatures of modified grav-
ity. Finally, as we saw for αM , the prop approximation
does not give the physically required de Sitter property
that η = 1 for Horndeski gravity.
Next we consider the gravitational coupling Geff . The

left panel of Fig. 5 shows the true, numerical solutions
and prop predictions for the two cases. The right panel
zooms in on the detail within the observational epoch.
Again we see that prop almost entirely misses the modi-
fied gravity signal, cannot distinguish between the two
different cases, and has a pathological late time limit
where Geff → −∞.

V. FITTING MODIFIED GRAVITY

If linear proportionality as a method for parametriz-
ing the time dependence of the property functions is not
generically valid, is there some other low dimensional
(few parameter) approximation?
Figures 3, 4, 5 exhibit the challenge of parametrizing

modified gravity with a simple time dependence for either
the property functions or observational functions. Even
at early times when αi/Ωde does not appear to be far
from constant, the small deviations have a large impact
on the observables. For example, at a = 0.1 (z = 9) the

FIG. 4. The time dependence of the gravitational slip η
is compared for the exact solution (solid curves) and the
αi ∝ Ωde(t) approximation (dashed curves). The prop ap-
proximation gives completely different and inaccurate results
for the physics. While the true behavior depends on the dif-
fering parameters of the theory (shown for the same two cases
as Fig. 3), the prop approximation has nearly identical behav-
ior since the models have nearly the same expansion history.
The prop approximation also underestimates the deviation
from general relativity, possibly missing detection of modified
gravity, and has an incorrect de Sitter asymptote.

property functions αi/Ωde deviate from prop by 5%, 4%,
9%, and 24% for subscripts B, K, M, T. Deviations from
general relativity in the observable functions η and GΦ

eff
of 7% and 32% respectively – just for case 2, the smaller
variation case – are missed by the constant proportion-
ality approximation. Recall that η = 1 to within 1% for
z > 2 according to the prop approximation.
Note that any attempt to make the property functions

αi(a) follow the effective dark energy density – whether
through linear proportionality or a more complicated
function – has a disadvantage from a physics perspec-
tive. One hallmark of modified gravity is that growth
does not follow expansion, so attempting to make the
growth purely a function of expansion does not seem to
follow this. The four (or more) free functions of time
within EFT are in addition to H(a), or Ωde(a), and it
restricts highly the physics if they are all forced to be
strictly dependent on it.
Within the observational epoch the behavior tends to

be quite complicated. Also, note that in general we need
to know values of the property functions or observable
functions at all times before the present. The quan-
tity M2

⋆ that enters the gravitational strength Geff , and
hence the growth, requires an integral over all past his-
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FIG. 5. The time dependence of the gravitational coupling Geff is compared for the exact solution (solid curves) and the
αi ∝ Ωde(t) approximation (dashed curves). The left panel shows the global behavior of GΦ

eff while the right panel zooms
in on the detail around the observational epoch and also shows Gmatter (dotted curves) and Glight (dot-dashed curves). The
linear proportionality approximation gives completely different and inaccurate results for the physics. While the true behavior
depends on the parameters of the theory (shown for the same two cases as Fig. 3), the prop approximation has nearly identical
behavior since the models have nearly the same expansion history. The prop approximation also underestimates the deviation
from general relativity during the observable epoch, possibly missing detection of modified gravity, and has an incorrect, and
divergent, de Sitter asymptote.

tory (hence the deviations discussed above at z ≥ 2 are
important for lower redshift observations as well). Thus
even a three parameter parametrization for each αi such
as using binned values for z ∈ [0, 1] and [1, 3] and con-
stant proportionality at earlier times does not work well
we find. Approximate functional forms, bins, or princi-
pal components all fall short because of the complexity
of the relation between the theory and observables; as
stated in [11], these relations are at best the ratios of
sums of products of ratios of sums of functions.

The failure of parametrizations should not be a huge
surprise. The degrees of freedom in a general model are
too manifold. For example, although all Horndeski mod-
els with a de Sitter late time behavior have the same
background expansion and η = 1 there, the values of Geff

can widely vary, as seen in Fig. 5. Similarly, while any
Horndeski models with the same dominant function, e.g.
G5(φ,X), and functional form at early times will have
the same values of αi/Ωde then, at observable times the
interplay between all the terms is important and cannot
be made model independent. Modified gravity cannot
be forced into a few simple numbers without restricting
to a specific model or perhaps the benefit of some new
theoretical insight.

Even for the simplest case of one function of time, as
seen in Fig. 1 for f(R) gravity, the form of the numeri-

cal solutions give no expectation that a simple low order
polynomial can capture the richness of the theory, let
alone be model independent. We emphasize that this
case was wholly observationally viable, so the compli-
cated time dependence is not a matter of a bizarre area
of model space, but rather is generic.

VI. CONCLUSIONS

Modified gravity leading to cosmic acceleration is a
much richer field than envisioned even a few years ago.
The early models like DGP gravity with a single number
(the crossover scale) or f(R) gravity with a time depen-
dent scalaron mass as described by a single power law
index of scale factor have much less freedom compared
to even the quite restricted covariant Galileon theories
with constant coefficients, let alone the Horndeski class
or EFT with their several free functions of time.

This complexity, in both the theory and its connections
to observables, means that accurate approximations to
the observables – being “ratios of sums of products of
ratios of sums of functions” – are rare. We derive ana-
lytic limits in the early time, matter dominated regime
for general classes of Horndeski gravity, and show under
what conditions they appear.
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These early time approximations, however, break down
dramatically even at redshifts z ≈ 10, let alone in the
heart of the observable epoch. Even percent level devi-
ations in the property functions αi(a) can lead to large
misestimations in observable properties. In particular,
we demonstrate that taking them proportional to the ef-
fective dark energy density, αi(a)/Ωde(a) ∝ constant can
lead to unphysical behavior and fine tuning and can miss
significant signatures of departure from general relativity.
This last property is perhaps most damaging: misestima-
tion could just give a false alert, but lack of an alert will
miss essential physics [35].

To meet the challenge of connecting theory and obser-
vations, we need some parametrization that can prove it-
self accurate on at least broad swathes of theories in the
literature. The numerical solutions we have shown for
f(R) and covariant Galileon gravity, demonstrating the
complexity of the evolution, indicate this may be a diffi-
cult task. In a real sense this is no surprise: the hallmark
of modified gravity is that the physics of growth does not
simply follow the expansion history, e.g. Ωde(a).

If a nearer term goal is merely an alert that gen-
eral relativity may not be matching observations, then
bins in scale and time of Gmatter and Glight, proposed in
[36, 37], work well. Moreover, they would give some in-
dication of how the breakdown occurs, i.e. the trend in
space and time variation. While the lack of an elegant
parametrization such as exists for the background expan-
sion (e.g. dark energy equation of state) or even simple
linear growth (e.g. the gravitational growth index) is dis-
appointing, it also points up the richness of the problem
of modified gravity. In Appendix A we comment on a
conjecture for a general consistency relation between ob-
servables that could apply to wide classes of modified
gravity theories.

At the same time, we should seek new gravitation the-
ories that are neither overly simplified and so lacking
model independence nor complicated but observationally
unviable.
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Appendix A: Consistency Relations

As an alternative method to that taken in the main
text, a broader though less detailed approach is to con-
sider the observables without any parametrization. Are
there any properties of them, or relations between them,
for which an observational constraint could rule out an
entire class of theories? One interesting conjecture, re-
cently put forth by [24], was that the deviation from gen-
eral relativity of one of the observables (i.e. Gmatter or
Glight, which they call µ and Σ), either positive or nega-
tive at some instant of time, could not have a deviation
of opposite sign in the other quantity. The intriguing
concept is that an observational violation of such a con-
sistency relation would effectively rule out all Horndeski
models. Unfortunately no proof is given but rather an
assertion of likeliness. Let us briefly examine the expres-
sions for the deviations and see if such unlikelihood is
obvious.
To make the expressions as simple as possible, consider

a subclass of Horndeski theory called covariant Galileons.
If the consistency relation is not obvious for the sim-
ple case, then any obviousness for the general Horndeski
class should be more difficult to see. The expressions
for Gmatter and Glight are given in [25] (there called GΨ

eff

and GΨ+Φ
eff ). If the deviations from general relativity

Gmatter − 1 and Glight − 1 have the same sign (note
that all gravitational couplings are here normalized by
the strength in general relativity, i.e. Newton’s constant),
then their ratio must be positive:

R ≡
Glight − 1

Gmatter − 1
> 0 . (A1)

Writing this out for covariant Galileons,

R =
κ6(2κ3 + κ4)− κ1(2κ1 + κ5)− κ5(κ4κ1 − κ5κ3) + κ4(κ4κ6 − κ5κ1)

4(κ3κ6 − κ2
1)− κ5(κ4κ1 − κ5κ3) + κ4(κ4κ6 − κ5κ1)

, (A2)

where κi in turn are given by sums of many terms (see
[25]). It does not appear obvious that R > 0 is required,
or even highly likely (and of course the relation in the

full Horndeski class is even more complicated).

While a specific model with R < 0 is not easily identi-
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fied, consider instead

RΦ ≡
Glight − 1

GΦ
eff − 1

> 0 , (A3)

i.e. where GΦ
eff rather than GΨ

eff is used in the denomina-
tor. A violation of this relation is shown in Sec. IV, and
the expression for RΦ is no more complex or substantially
different from that for R.
The consistency relation in terms of Gmatter–Glight

may indeed hold, but nothing in the equations obviously
seems to require this. A firm proof of a consistency con-
dition such as conjectured in [24] would be highly inter-
esting.
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