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We conduct an analysis of the Planck 2015 data that is complete in reionization observables
from the large angle polarization E-mode spectrum in the redshift range 6 < z < 30. Based on 5
principal components, all of which are constrained by the data, this single analysis can be used to
infer constraints on any model for reionization in the same range; we develop an effective likelihood
approach for applying these constraints to models. By allowing for an arbitrary ionization history,
this technique tests the robustness of inferences on the total optical depth from the usual step-
like transition assumption, which is important for the interpretation of many other cosmological
parameters such as the dark energy and neutrino mass. The Planck 2015 data not only allow a
high redshift z > 15 component to the optical depth but prefer it at the 2σ level. This preference
is associated with excess power in the multipole range 10 . ` . 20 and may indicate high redshift
ionization sources or unaccounted for systematics and foregrounds in the 2015 data.

I. INTRODUCTION

The epoch of reionization of the universe remains one
of the least well understood aspects of the standard
model of cosmology (see e.g. [1]). Yet its impact on
the interpretation of its fundamental properties is com-
paratively large in this era of precision cosmology. In
addition to the intrinsic astrophysical interest in ioniza-
tion sources, reionization uncertainties impact CMB in-
ferences on the initial power spectrum and hence also
cosmic acceleration through the growth of structure [2].
In the future it will be one of the leading sources of er-
ror in the interpretation of neutrino mass measurements
from gravitational lensing [3, 4], the study of large scale
anomalies in the CMB [5, 6], and the inflationary consis-
tency relation [7].

The standard approach to parameterizing the impact
of reionization on the CMB is with the total Thomson
optical depth through the reionization epoch. Although
it is indeed the total optical depth that is important for
the interpretation of most other aspects of cosmology, it
is usually assumed that reionization occurs promptly in
a step-like transition. Interestingly, the central value of
the inferred optical depth from this approach has been
steadily drifting downwards from its first detection in
WMAP1 [8] to the current but still proprietary Planck
2016 HFI results [9, 10].

Relaxing this sharp transition assumption can in prin-
ciple raise the optical depth inference from the CMB as
well as change its implications for sources of high redshift
ionization (e.g. [11]). In particular, the angular scale of
the peak and the width of the reionization bump in the
E-mode CMB polarization power spectrum carries coarse
grained information on the redshift dependence of the
ionization history.

There is an alternate, model independent approach in-
troduced in Ref. [12] that fully addresses these concerns.
The impact of any ionization history on the large angle

CMB polarization spectrum can be completely character-
ized by a handful of reionization parameters constructed
from the principal components (PCs) of the ionization
history with respect to the E-mode power spectrum.
This approach has the advantage over redshift binning
alternatives of being observationally complete without
introducing numerous highly correlated parameters [13].
Conversely, it does not provide an accurate, local recon-
struction for visualizing the ionization history itself.

This approach was implemented and tested on
WMAP3 [14] and WMAP5 [15] power spectra which
showed that those data allowed for, but did not par-
ticularly favor, contributions to the optical depth from
high redshift. It was adopted in the Planck 2013 anal-
ysis but exclusively to test the impact of marginalizing
the ionization history on inflationary parameters rather
than drawing inferences on reionization itself [16]. The
impact on massive neutrinos and gravitational wave in-
ferences was also examined in Ref. [17].

In this work, we analyze the public Planck 2015 data,
including the LFI large angle polarization power spec-
trum, using the observationally complete PC basis. In
addition we further develop the technique as a method
to probe reionization itself. This development is timely
as the technique should come to its full fruition with the
upcoming final release of Planck data which will be the
definitive result on large angle polarization for years to
come.

We demonstrate that the Planck 2015 data already
have more information on the ionization history than
just the total optical depth and provide effective likeli-
hood tools for interpreting this information in any given
model for reionization within the redshift range analyzed.
Tested here, these techniques can be straightforwardly
applied to the final release when it becomes available.

We begin with a review of the approach itself in §II.
In §III, we analyze the Planck 2015 data and explore the
origin of the additional information on the high redshift
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ionization history. We develop and test an effective like-
lihood approach for utilizing our analysis to constrain
the parameters of any given model of reionization from
6 < z < 30 in §IV. We discuss these results in §V.

II. COMPLETE REIONIZATION BASIS

We briefly summarize the principal component tech-
nique for the complete characterization of reionization
constraints from the large angle CEE` polarization spec-
trum as introduced in Ref. [12] and implemented in
[14, 15].

We parametrize the ionization fraction relative to fully
ionized hydrogen xe(z) into its principal components
with respect to the E-mode polarization of the CMB [12]:

xe(z) = xfid
e (z) +

∑
a

maSa(z). (1)

Here ma are the PC amplitudes and Sa(z) are the eigen-
functions of the Fisher information matrix for xe(z) in
a given range zmin < z < zmax from cosmic variance
limited CEE` measurements, and xfid

e (z) is the fiducial
model around which the Fisher matrix is computed. In
practice, we discretize the redshift space to δz = 0.25,
well beyond the resolution limit of CMB observables, and
assume linear interpolation between points to form the
continuous functions Sa(z). The components are rank
ordered by their Fisher-estimated variances and in prac-
tice the first 5 components carry all the information in
CEE` to the cosmic variance limit [12]. In this work, we
therefore truncate the PC expansion and retain 5 ma pa-
rameters to describe reionization. We take zmin = 6 to
be consistent with Lyα forest constraints (e.g. [18]) and
zmax = 30.

In this truncated representation, the 5 PC decomposi-
tion is not complete in the ionization history itself. In-
stead it is a complete representation of the observable
impact on CEE` of any given xtrue

e (z) through its projec-
tion onto the 5 PC basis

ma =

∫ zmax

zmin

dz
Sa(z)[xtrue

e (z)− xfid
e (z)]

zmax − zmin
. (2)

When reconstructed through Eq. (1) with 5 PCs, xe(z) 6=
xtrue
e (z), even though it models the observables to high

precision. The PC analysis therefore is a forward tool to
infer constraints on all possible ionization histories be-
tween zmin < z < zmax with a single analysis, not an
inverse tool that reconstructs the ionization history.

We use a modified version of CAMB1 [19] to com-
pute the CMB power spectra given the ionization his-
tory. Because CAMB integrates the Boltzmann equation

1 CAMB: http://camb.info
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FIG. 1. Tanh reionization (black thin) vs. fiducial model (blue
thick) around which the PC decomposition (in the unshaded re-
gion) is centered. Top: ionization fraction xe(z) as a function of
redshift. For the tanh model, despite modeling the polarization
observables to high accuracy, the xe reconstruction from 5 PCs is
poor (black dashed). Bottom: cumulative optical depth from z to
zmax. The tanh model corresponds to the maximum likelihood in
the MCMC chain of §III and with its sudden reionization accumu-
lates its optical depth exclusively at low redshift in contrast with
the fiducial model. The 5 PC reconstruction is a better approxi-
mation for τ(z, zmax), especially for the difference between low and
high z.

by parts, it requires a smooth ionization history for nu-
merical stability, whereas the Sa(z) are continuous but
not smooth. Consequently we smooth the ionization his-
tory in Eq. (1) with a Gaussian in ln(1 + z) of width
σln(1+z) = 0.015. This does not affect our results in a sta-
tistically significant way. However for consistency, when
integrating the ionization history to form the cumulative
Thomson optical depth

τ(z, zmax) = nH(0)σT

∫ zmax

z

dz
xe(z)(1 + z)2

H(z)
, (3)

we employ the smoothed xe which formally has support
beyond the bounds. We include this small correction by
integrating slightly past zmax in practice. Here nH(0) is
the hydrogen number density at z = 0.

For the fiducial ionization history, we take xfid
e = 0.15

for 6 < z < 30 on the δz = 0.25 spaced discrete points in
the interval with linear interpolation in between, in order
to let the PC amplitudes fluctuate the ionization history
both up and down without entering the unphysical region
xe < 0, where the number is chosen to give a reasonable
τ(0, zmax). It is important to note that the PCs allow
arbitrarily large deviations from the fiducial model, and
so this choice does not bias results. For z ≥ 30 we assume
xe follows the ionization history from recombination. For

http://camb.info
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FIG. 2. First five PCs forming a complete set of polarization
observables for the redshift range displayed. Top: ionization PCs
in redshift. PCs are continuous functions with linear interpolation
between discrete values at δz = 0.25 with boundaries at zmin and
zmax held fixed to zero. Bottom: cumulative optical depth for unit
amplitude modes as in Fig. 1. The first mode (a = 1) mainly
changes the total optical depth τ(0, zmax) from the fiducial model.
The second mode (a = 2) adjusts the low and high redshift optical
depth contributions whereas the higher modes make finer and less
observable modifications to its redshift distribution.

z ≤ 6 we assume fully ionized hydrogen and singly ionized
helium

xe = 1 + fHe, (4)

for z & zHe and doubly ionized helium

xe = 1 + 2fHe, (5)

for z . zHe, where

fHe =
nHe

nH
=

mH

mHe

Yp
1− Yp

(6)

is the ratio of the helium to hydrogen number density. We
take the helium mass fraction Yp to be consistent with big
bang nucleosynthesis given the baryon density. Following
CAMB, we take this helium reionization transition to
be mediated by a tanh function in redshift centered at
zHe = 3.5 [20] with width ∆z = 0.5.

In Fig. 1, we show the fiducial ionization history (thick
blue) and contrast it with the standard approach of
CAMB (thin black) that takes hydrogen and singly ion-
ized helium reionization to be given by the tanh form

xtrue
e (z) =

1 + fHe

2

{
1 + tanh

[
y(z∗)− y(z)

∆y

]}
, (7)

with y(z) = (1 + z)3/2, ∆y = (3/2)(1 + z)1/2∆z, and
∆z = 0.5. We take here z∗ = 9.85, corresponding the

chain maximum likelihood model (τ = 0.0765) from §III,
for illustrative purposes. Projected onto 5 PCs and re-
summed into xe(z), Eq. (1) yields a poor reconstruction
of the ionization history itself. Nonetheless as we shall
see in Fig. 9, the PC decomposition provides an excellent
representation of the polarization power spectrum.

We also show in Fig. 1 the cumulative optical depth
from z to zmax. Although the two models have com-
parable total optical depth τ(0, zmax) the fiducial model
receives much of its contribution from high redshift. Note
also that although we do not allow for uncertainties in
helium reionization, its entire impact is a small correc-
tion on an already small contribution to τ . Furthermore,
although the reconstruction of τ(z, zmax) using 5 PCs
is still imperfect (black dashed line), it is much better
than xe(z) as it is more closely related to the polarization
observables. The PC reconstruction smooths out sharp
transitions in the cumulative optical depth but gives an
accurate representation of the high and low redshift con-
tributions of the model. In the analysis below, in order
to compare exactly the same statistic τ(z, zmax) between
models, we always employ the PC reconstructed version.

In Fig. 2 we show the 5 PC ionization functions Sa(z)
which allow observationally complete variations around
the fiducial model. We also show the cumulative op-
tical depth τ(z, zmax) for a unit amplitude ma in each
mode. The lowest-variance eigenmode S1 adjusts the to-
tal optical depth, mainly from the high redshift end. The
S2 mode allows a redistribution of the optical depth be-
tween high redshift and low redshift. The higher modes
allow finer adjustments in the redshift distribution of the
optical depth and carry very little total optical depth
τ(0, zmax).

For the Planck data set, most of the information in
the ionization history is carried by the first two modes
and therefore relates to the amount of high vs. low red-
shift optical depth. We keep all 5 PCs for completeness
in representing the observable impact of a given ioniza-
tion history and to marginalize uncertainties that they
introduce.

In fact, PCs with no prior constraints on the mode am-
plitudes ma allow deviations that are unphysical xe < 0
and xe > xmax

e . With a truncation at 5 PCs, physicality
cannot be strictly enforced since the missing eigenmodes,
while irrelevant for the observables, can restore physical-
ity of a model. We follow Ref. [15] in placing necessary
but not sufficient conditions for physicality

5∑
a=1

m2
a ≤ (xmax

e − xfid
e )2, (8)

where xfid
e = 0.15 and m−

a ≤ ma ≤ m+
a with

m±
a =

∫ zmax

zmin

dz
Sa(z)[xmax

e − 2xfid
e (z)]± xmax

e |Sa(z)|
2(zmax − zmin)

.

(9)
In principle xmax

e = 1 + 2fHe but in practice for compat-
ibility with the ionization state at zmin we take xmax

e =
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FIG. 3. Reionization constraints from Planck 2015 data on PC amplitudes compared with those of the tanh model projected onto PCs.
1D posterior probability distributions are shown on the upper diagonal and 2D 68% and 95% CL regions in the ma−mb planes in the lower
triangle. Tanh constraints are shown as trajectories in these planes (68% CL dotted lines; 95% CL solid lines) with the arrow pointed to
higher τ . The maximum likelihood (×) and allowed region for the tanh model is disfavored in the observationally complete PC parameter
space. Box boundaries represent physicality priors on the ionization history.

1 + fHe. Since this prior is applied very conservatively
as a necessary condition, we in fact still allow ionization
fractions out beyond the true maximum with this prior.

For analyzing any physical model of hydrogen reion-
ization, xtrue

e (z), using our 5 PC decomposition from
Eq. (2), the priors are noninformative as they are au-
tomatically satisfied. We apply them mainly for visual-
izing whether the data constrain the mode amplitudes
significantly better than the physicality bounds.

III. REIONIZATION CONSTRAINTS

We use the Markov Chain Monte Carlo (MCMC) tech-
nique to sample from the posterior probability density
in the reionization and cosmological parameter space.
Our main analysis is on the Planck 2015 data [21] using
the public likelihoods plik lite TTTEEE for high-`’s and

lowTEB for low-`’s, which includes LFI but not HFI po-
larization.2 For our cosmological parameters, we vary the
base set of ΛCDM parameters (baryon density Ωbh

2, cold
dark matter density Ωch

2, effective acoustic scale θMCMC,
scalar power spectrum amplitude ln(1010As) and tilt ns).
We fix the neutrinos to their minimal contribution of one
massive species with mν = 0.06eV. To those parameters
we add the 5 PC mode amplitudes m1, . . . ,m5. For com-
parison we also run a separate chain with the standard
tanh ionization history, parametrized by the total reion-
ization optical depth τ . We assume flat priors in each of

2 We have tested that our results are robust to explicitly marginal-
izing foreground parameters, as opposed to using the pre-
marginalized likelihood, by separately running a PC MCMC us-
ing the lowTEB low-` likelihood and the plikHM high-` likeli-
hood.



5

−0.1 0.0 0.1 0.2

m1

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

m
2

Gaussian

u
n
p
h
ys

ic
al

FIG. 4. Best constrained PC plane, m1 − m2 (magnified from
Fig. 3). Tanh trajectories pass near the boundary of the unphysical
region (gray shaded) at low τ since reionization must be complete
by z = 6. Also shown is the multivariate Gaussian approximation
to the PC posterior using the means and covariance from Tab. I
(red dashed lines, 68% and 95% CL, see Eq. 16).

the given parameters.
In Fig. 3, we show the 1D and 2D marginalized pos-

teriors in the PC amplitudes ma and for comparison
the standard tanh ionization history with 68% and 95%
ranges in its parameter τ projected onto the PCs. Box
bounds represent the physicality prior from Eq. (9). In
Tab. I we give the corresponding means m̄a, errors σ(ma)
and correlation matrix Rab which define the covariance
matrix Cab as

Cab = σ(ma)σ(mb)Rab. (10)

Note that although the PCs are constructed to be un-
correlated for infinitesimal deviations from the fiducial
model, they do not remain so for finite deviations (see
[15]).

Although all 5 PCs are measured to better than their
physicality priors, unlike in the WMAP5 analysis of
Ref. [15], only m1 and m2 are bounded substantially bet-
ter. In Fig. 4 we highlight this plane. Note that in the
tanh model, low m1 and high m2 corresponds to small

TABLE I. PC chain means m̄a, standard deviations σ(ma),
and correlation matrix Rab.

m̄a σ(ma) m1 m2 m3 m4 m5

m1 0.002 0.053 1.000 0.450 −0.432 0.273 −0.073

m2 −0.030 0.101 0.450 1.000 −0.262 0.055 0.072

m3 0.019 0.128 −0.432 −0.262 1.000 −0.417 0.155

m4 −0.012 0.143 0.273 0.055 −0.417 1.000 −0.428

m5 0.026 0.143 −0.073 0.072 0.155 −0.428 1.000
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FIG. 5. Cumulative optical depth τ(z, zmax) in the Planck 2015
analysis. 68% and 95% CL constraints from the complete PC anal-
ysis compared with the chain ML tanh model also constructed from
PCs (dashed line). PC analysis show that the data prefer finite high
redshift optical depth out to z & 16 at 95% CL. The tanh model
has essentially no optical depth for z & 10 due to its step-like form.
Both model classes have the same ionization history for z < 6.

values of the total optical depth and so these models
skirt the edge of physicality there given that the universe
must be reionized by z = 6. In this MCMC, physicality
priors are actually imposed after the fact by eliminating
samples in the shaded region. Likewise the covariance
matrix in Eq. (10), is calculated before these samples are
removed. This ensures that the Gaussian approximation
to the posterior is not distorted by the prior (see Eq. 16).
As shown in Fig. 4, the Gaussian approximation is fairly
good in the 68% and 95% CL regions of the m1 − m2

plane, and we have checked that it is equally good in the
other planes.

Interestingly, the standard tanh model is moderately
disfavored in the wider, observationally complete, PC
space leading to changes in the inference for the optical
depth summarized in Tab. II. In Fig. 6, we compare the
posterior probability distributions for the total τ(0, zmax)
between the two chains. In the PC analysis the total opti-
cal depth constraints shift up by almost 1σ from the tanh
analysis while having comparable widths. In ΛCDM the
main consequence is that the amplitude of structure at
z = 0 goes from σ8 = 0.831± 0.013 in the tanh model to
σ8 = 0.840± 0.012 in the PC analysis.

These changes are related to the fact that the stan-
dard tanh models only skirt just inside the 2D 95% CL
even near the maximum likelihood found in the chain (see
Fig. 4). The tanh ML model have the following parame-
ters: Ωbh

2 = 0.02224, Ωch
2 = 0.1197, θMCMC = 1.04075,

ln(1010As) = 3.0866, ns = 0.9653 and τ = 0.0765. Pro-
jected onto the PC space through Eq. (2), this value of
τ corresponds to the ma parameter vector

mT = {−0.119,−0.078, 0.200,−0.233, 0.129}. (11)

Note that for the single best constrained component m1,
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the tanh ML model is more than 2σ off the mean.
In Fig. 5, we explore the physical origin of this differ-

ence. Here we show the 68% and 95% CL constraints on
the cumulative optical depth τ(z, zmax) as a parameter
derived from the ma posterior probability. The shape for
z < 6 is fixed by assumption. Note that at z � 1, the
cumulative optical depth from Eq. (3) becomes approxi-
mately

τ(z, zmax) ∝ Ωbh
2(1− Yp)

(Ωmh2)1/2

∫ zmax

z

dz xe(z)(1 + z)1/2,

(12)
where Ωmh

2 parametrizes the sum over all of the non-
relativistic density components. Integrals over redshift
in Eq. (3) can be precomputed for individual PCs once
and for all in a fiducial cosmology as in Fig. 2 and then
just summed with ma weights and a rescaled prefactor
following Eq. (12).

At the 95% CL, the data favor optical depth contribu-
tions at z & 16. For comparison, we also plot the ML
tanh model, projected onto the PC basis and calculated
in the same way. This model has essentially no optical
depth contributions for z > 10, not because the data for-
bid it but because of the functional form of the model.
More generally, because of its step-like form, the tanh
family of models cannot generate high redshift optical
depth without also overproducing the total optical depth
τ(0, zmax) (see Tab. II).

Given these differences, we explore further their origin
in the data. Constraints on the optical depth are also
affected by the temperature power spectrum indirectly
and directly. Gravitational lens effects place constraints
on the amplitude of the matter power spectrum through
As and so in combination with measurements of the tem-
perature power spectrum which determine Ase

−2τ(0,zmax)

constrain τ(0, zmax) indirectly [22]. In particular, the
Planck temperature power spectrum favors more grav-
itational lensing than is predicted by the best fit ΛCDM
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FIG. 7. Cumulative optical depth τ(z, zmax) after marginalizing
the lensing amplitude AL in the Planck 2015 analysis (as in Fig. 5
otherwise). The total optical depth decreases for both the PC and
tanh analyses but mainly by lowering the low redshift contribu-
tions. Preference for a finite high redshift contribution τ(15, zmax)
remains at near the 95% CL.

parameters and hence tends to drive τ to larger values
[23].

To test whether the preference for high redshift optical
depth originates from gravitational lensing and not large
angle polarization, we follow the Planck 2015 analysis
and marginalize a multiplicative renormalization of the
lens power spectrum AL by adding it to the parameter
set of a new MCMC analysis of both the PC and the
tanh model. In the PC case we obtain AL = 1.11± 0.07
and in the tanh case AL = 1.15±0.08. In Fig. 7, we show
the impact on τ(z, zmax). As expected the total optical
depth τ(0, zmax) is approximately 1σ lower but notably
the high redshift preference weakens only moderately. A
finite τ(15, zmax) is still favored at nearly the 95% CL (see
also Tab. II). We conclude that much of the preference
for high vs. low redshift optical depth comes from the
large angle polarization data itself.

To further test this conclusion, we replace the Planck
polarization data with WMAP9. In order to consistently
analyze WMAP9 and Planck data sets with publicly
available likelihood codes, we also employ Planck 2013
instead of 2015 data. Fig. 8 shows that this replace-
ment has a larger impact on the high redshift end with
the preference for τ(15, zmax) dropping to almost 1σ (see
also Tab. II). Conversely, the constraints on m3,m4,m5

remain largely the same as the baseline Planck 2015 anal-
ysis indicating that they are constrained mainly by the
temperature data. As noted in Ref. [15] the Doppler
effect from reionization imprints features on the temper-
ature spectrum which constrain the higher order PCs.
With the extended reach of the Planck temperature
power spectrum as compared with WMAP5, these fea-
tures can be better separated from cosmological param-
eters.
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hood models from the Planck 2015 PC and tanh chains. Preference
for high redshift optical depth in the PC analysis corresponds to
a power spectrum with a broader reionization bump extending to
higher multipoles than the tanh model. To fit ` . 10 data, tanh
models predict much less power at 10 . ` . 20. Also shown is the
tanh ML model calculated from the projection onto the 5 PC basis,
showing its high accuracy and observational completeness. Note
that the chain maximum is not necessarily the true maximum.

Since the preference for high redshift ionization mainly
originates from the low multipole polarization data, it is
interesting to compare CEE` for the maximum likelihood
tanh model from Eq. (11) to the maximum likelihood
PC parameters. The PC chain maximum has Ωbh

2 =
0.02230, Ωch

2 = 0.1195, θMCMC = 1.04078, ln(1010As) =
3.1163, ns = 0.9659 and

mT = {0.029, 0.009,−0.026, 0.085, 0.062}. (13)

Note that in both cases the ML is simply the maxi-

TABLE II. Total and high redshift optical depth constraints
for different model and data sets combinations. Tanh mod-
els allow negligible high redshift optical depth whereas finite
values are favored in the PC space.

Model Data τ(0, zmax) τ(15, zmax)

PC P15 0.092 ± 0.015 0.033 ± 0.016

tanh P15 0.079 ± 0.017 –

PC +AL P15 0.078 ± 0.018 0.028 ± 0.016

tanh +AL P15 0.056 ± 0.020 –

PC P13+WMAP(P) 0.098 ± 0.014 0.022 ± 0.018

tanh P13+WMAP(P) 0.090 ± 0.013 –

mum found in the chain samples, not the true maxi-
mum in the parameter space. Nonetheless, the differ-
ence in likelihood of these two chain maximum models is
2∆ lnL = 5.3 showing that the preference is not just an
artifact of parameter volume and priors.

In Fig. 9 we show that the difference in CEE` is that
the PC ML has a much broader reionization bump that
extends to higher multipoles. This directly corresponds
to the preference for high redshift ionization since the
angular scale of the feature is determined by the horizon
at the redshift of scattering (see [12], Fig. 2). In the tanh
family of models, tight constraints at ` < 10 require low
power between 10 < ` < 30 regardless of whether the
data prefers it.

We also show in Fig. 9 that the projection of the tanh
ML onto the 5 PC basis accurately captures the reioniza-
tion feature in the polarization spectrum with deviation
of ∆CEE` /CEE` < 0.025 for ` < 40 which tests the com-
pleteness of the 5 PC basis. In fact most of the deviation
is at ` ∼ 10 − 20 where the tanh model has minimal
power so that the fractional accuracy still reflects a high
absolute accuracy.

IV. IONIZATION HISTORY LIKELIHOOD

One of the main benefits of our PC reionization anal-
ysis is that it completely encapsulates the information
from the large angle polarization measurements on the
ionization history within the given redshift range. With
this single analysis, it is possible to infer constraints on
any given reionization model in the same range. In this
section, we provide a concrete prescription for an effective
likelihood function for the data given an xe(z) model.

The MCMC PC analysis of the previous section re-
turns the posterior probability density in the space of
PC amplitudes ma given the data and flat priors on the
parameters, marginalized over cosmological parameters.
Invoking Bayes’ theorem, we can reinterpret it as an ef-
fective likelihood of the data given ma. To determine the
likelihood given xe(z) instead, we simply need to project
it onto the PC basis using Eq. (2).

In practice, the MCMC only provides a sample of the
PC posterior, represented by discrete elements in the
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FIG. 10. Effective likelihood analysis (LPC thick blue) on the
tanh model compared with direct constraints (thin black). Even
though the tanh model lives in the tails of the PC posterior, the
effective likelihood models the direct constraint to a fraction of its
width. Also shown is the Gaussian approximation to the effective
likelihood (shaded region). The distributions are truncated at low
optical depth since the fact that the universe must be reionized by
z = 6 is enforced by the PC decomposition.

chain with parameter values mi = {m1, . . . ,m5} and
multiplicities wi, whereas a given model produces a con-
tinuum of values for m. Given the samples, we approx-
imate the effective likelihood with a kernel density esti-
mator of the form

LPC (data|m) =

N∑
i=1

wiKf (m−mi), (14)

where N is the total number of elements in the chain
and the overall normalization is arbitrary. Here Kf is a
smoothing kernel that makes the function estimate con-
tinuous at the expense of artificially broadening the dis-
tribution. We choose the shape of Kf to be a multivari-
ate Gaussian of zero mean and covariance fC where C is
the ma covariance matrix estimated from the chain from
Tab. I and Eq. (10). For a Gaussian posterior, the effect
of smoothing is to increase the covariance by 1 + f or
the errors by approximately 1 + f/2. To minimize the
amount of smoothing required to capture the behavior of
models in the tail of the distribution like the standard
tanh model, we oversample the posterior by running the
chain past normal convergence requirements for a total
of N ≈ 1.4 × 106 chain elements. In practice we choose
f = 0.14. Note also that we employ the full chain without
physicality priors since the smoothing kernel transfers in-
formation across these boundaries.

To illustrate and test this approach, we use the effec-
tive likelihood to compare constraints on the standard
tanh model. In this case the model parameter is the to-
tal τ given the tanh ionization history xe(z; τ). We can
then construct the posterior probability of τ as usual via

Bayes’ theorem and the effective likelihood given m(τ)

P (τ |data) ∝ LPC [data|m(τ)]P (τ). (15)

To match the MCMC analysis of the standard tanh
model we take flat priors P (τ) = 1. For the conver-
sion between the ionization history and τ we take the
cosmological parameters of the ML tanh model.

In Fig. 10, we compare the posterior probabilities from
the direct MCMC analysis and the effective PC likeli-
hood. The distributions match to much better than 1σ
in their means and widths. This is a fairly stringent test
on the method given that tanh models live in the tails
of the PC posterior. The cutoff at low τ in the effective
likelihood method simply reflects the zmin restriction for
the PCs which assumes hydrogen ionization occurred at
z > 6 as is observationally the case.

It is also interesting to compare these results to an even
simpler effective likelihood. In Fig. 10 (shaded region),
we also show the result of approximating thema posterior
as a multivariate Gaussian with mean m̄a and covariance
C

LG (data|m) =
e−

1
2 (m−m̄)TC−1(m−m̄)√

(2π)5|C|
. (16)

For an extremely fast but approximate effective likeli-
hood and for models near the peak of the distribution,
the Gaussian approximation may suffice.

Validated on the tanh model, our effective likelihood
technique allows a rapid exploration of other models
without the need for a separate MCMC analysis. To illus-
trate this usage, we consider the power-law (PL) models
that the Planck Collaboration also analyzed for the HFI
data [10]. The PL model

xe(z)

1 + fHe
=


1, 6 < z < zend,(

zearly−z
zearly−zend

)α
, zend ≤ z ≤ zearly,

0, zearly < z < zmax,

(17)

allows for an extended and asymmetric ionization history
unlike the tanh model. Here zearly < zmax is a parameter
that truncates reionization at zearly but has little effect
at lower redshift. In order to mimick the analysis in
Ref [10] but allow for the weaker constraints from Planck
2015, we fix zearly = 23.1 so that it does not significantly
impact the analysis. The power law index α controls
the duration of reionization ∆z defined so that xe(zend +
∆z) = 0.1(1 + fHe). It is therefore more convenient to
parameterize the model with zend and ∆z. We employ
the effective PC likelihood approach with flat priors for
this two parameter family within their allowed ranges.

In Fig. 11, we show the 2D posteriors in these parame-
ters. The Planck 2015 data do indeed allow an extended
period of reionization if zend ∼ 6 but do not particu-
larly favor it over a prompt reionization that maintains
the same total optical depth. Like the tanh model, the
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FIG. 11. Effective likelihood constraints on the two parameters
of the power law (PL) model: end (zend) and duration (∆z) of
reionization in redshift. The PL functional form forces the two
parameters to be anticorrelated given the constraint on the total
optical depth and hence does not allow a separate component of
high-z ionization.
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FIG. 12. Effective likelihood constraints on the cumulative opti-
cal depth τ(z, zmax) for the PL model. Although the PL model
allows an adjustable duration of reionization, its functional form
does not permit the high redshift optical depth of the PC mean
(blue dashed) without violating the total optical depth constraint.

PL model links the low redshift and high redshift ioniza-
tion history by assumption of a functional form appropri-
ate for models with a single phase of reionization. One
should therefore not equate a constraint on the duration
of reionization in the PL model with a constraint on high
redshift ionization in a more general context. To see this
more quantitatively, in Fig. 12 we show the cumulative
optical depth τ(z, zmax) constraints in the PL context.
The PL models allow very little optical depth at z > 15
compared with the mean in the full PC space from Fig. 5.

The PL example also illustrates the fact that to en-
compass the region favored by the PC effective likeli-

hood, a reionization model would need to have an addi-
tional source of high redshift ionization that is not di-
rectly linked in functional form to its low redshift be-
havior. We explore such cases in a separate work [24].
In fact, we also expect the effective likelihood method
to work even better for models that are favored by the
data since the underlying MCMC sample better repre-
sents these models.

V. DISCUSSION

By analyzing the Planck 2015 data with an observa-
tionally complete PC basis for the ionization history, we
show that it allows and even favors high redshift, z & 15,
optical depth at the ∼ 2σ level. The standard analysis
which includes just the total optical depth and assumes
a sharp step-like transition excludes this possibility by
prior assumption of form rather than because it is re-
quired by the data. The same is true for power law mod-
els that additionally varies the duration of reionization.

While a 2σ result amongst the 5 PC parameters is not
on its own surprising, it originates from the first and
best constrained component and hence has consequences
for the total optical depth. The total optical depth is
important for understanding a host of other cosmologi-
cal parameters from the amplitude of the current matter
power spectrum σ8 to the inferences from CMB lensing.
At the very least, this analysis highlights the need for a
complete treatment of CMB reionization observables to
guarantee a robust interpretation of the optical depth.

This preference for extra high redshift optical depth
mainly originates from the large angle polarization spec-
trum in the Planck 2015 data and appears related to
excess power in the multipole range 10 . ` . 20. It
is only slightly weakened by marginalizing gravitational
lensing information in the temperature power spectrum,
which is known to favor a higher optical depth, but more
significantly changed by replacing the Planck LFI with
WMAP9 polarization data.

While excess polarization power in this range favors
additional sources of high redshift ionization such as pop-
ulation III stars or dark matter annihilation it could
also indicate contamination from systematics and fore-
grounds. The latter have been significantly improved in
the as yet proprietary Planck 2016 intermediate results.
These results indicate that the low redshift end of the op-
tical depth as tested by step-like models, or equivalently
the low ` polarization power, is both better measured
and lower than the central value in the Planck 2015 data
[9]. On the other hand, these results exacerbate the ten-
sion with gravitational lensing in the shape of the tem-
perature power spectrum which probes the total optical
depth. It will be interesting to see if this complete analy-
sis still prefers an additional high redshift component in
the final Planck release.

Regardless of the outcome of resolving the mild tension
between step-like reionization scenarios and the Planck
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2015 data, the complete PC approach developed here
is useful because with a single analysis one can infer
constraints on the parameters of any reionization model
within the specified redshift range, here 6 < z < 30, but
easily extensible to any desired range. What has pre-
sented an obstacle for this approach in the past is the lack
of tools for converting posterior parameter constraints on
the PCs to parameter constraints on models and so be
able to combine them with other sources of reionization
information. For example, the ionization history can also
be tested in the CMB through the kinetic SZ effect from
temperature fluctuations beyond the damping scale, but
in a manner that is highly model dependent (e.g. [10, 25–
27]).

Towards this end, we have developed and tested an
effective likelihood code for inferring constraints on any
given ionization history provided by a model. This ap-
proach should be especially useful in constraining mod-

els where small high redshift contributions to the optical
depth need to be separated from the total.
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