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We consider, in the context of a braneworld cosmology, the motion of the universe coupled to a four-form

gauge field, with constant field strength, defined in higher dimensions. It is found, under rather general initial

conditions, that in this situation there is a period of exponential inflation combined with cyclotron motion in the

inflaton field space. The main effect of the cyclotron motion is that slow roll conditions on the inflaton potential,

which are typically necessary for exponential inflation, can be evaded. There are Landau levels associated

with the four-form gauge field, and these correspond to quantum excitations of the inflaton field satisfying

unconventional dispersion relations.

I. INTRODUCTION

Braneworld cosmology is a concept that exists in many

variations. There are versions in which the higher dimensions

are compactified, as in the Arkani-Hamed, Dimopoulous,

Dvali proposal [1], or large but warped, as in the Randall-

Sundrum model [2] and string-motivated DBI inflation [3, 4].

There is also the intriguing Dvali-Gabadadze-Porrati (DGP)

version where the extra dimension is large but nearly flat [5].

Consideration of the four-dimensional effective theory in the

DGP model has led to a very general class of four-dimensional

galileon models [6] with powers of derivative terms greater

than two, for which there now exists an extensive literature

(see, e.g., [7–10] and references therein).

In this article I would like to describe some interesting fea-

tures of the following action, describing a brane with standard

model particle content evolving in a flat higher-dimensional

background, with a coupling of the brane to an external four-

form gauge field in the bulk:

S =
1

16πG

∫

d4x
√−gR+ SSM

−
∫

d4x
√−g

(1

2
gµν∂µϕs∂ν ϕs +V(ϕ)

)

+
q0

4!

∫

d4x Aabcd [φ(x)]ε
αβ γδ ∂α φa∂β φb∂γφ c∂δ φd ,

(1)

where SSM is the action of standard model (and possibly

beyond-standard-model) fields, and

gµν = ∂µφAηAB∂νφB , A,B = 0,1, ...,D (2)

is the induced metric of a three brane in a D+ 1-dimensional

Minkowski space. We adopt the convention that upper case

Latin indices run from 0 to D, indices r,s run from D+ 1 to

D+N, and all other lower case Latin indices run from 0 to

D+N. We also define

φ s =
1

σ2
ϕs , (3)

where σ is a constant with dimensions of mass. The ϕs fields

are a set of N inflaton fields, with V (ϕ) the inflaton potential,

and Aabcd is a potential which is totally antisymmetric in the

indices. It can be thought of as a four-form gauge field in

D+ 1+N dimensions. The induced metric corresponds to

D+ 1 dimensions, however.

The main novelty of this formulation is the interaction of

the braneworld with an external four-form gauge field in the

bulk, and it is the purpose of this article to describe some pos-

sible consequences in an inflationary scenario. Like the DGP

model there are large flat extra dimensions, but unlike that

model there is no Einstein-Hilbert action in the bulk. Unlike

Galileon models in general there is no galilean invariance, and

the external four-form gauge field singles out special direc-

tions in the bulk. Inflation, in the scenario suggested below,

is driven by inflaton fields with an ordinary V (ϕ) potential in

the inflaton action, rather than by galileon fields.

Without the external gauge field, a model with an Einstein-

Hilbert action and other fields on the brane seems to have been

first considered long ago by Regge and Teitelboim [11]. The

first question to ask of a model of this type is whether the

equations of motion are equivalent, at the classical level, to

standard general relativity at Aabcd = 0. The answer is: not

quite. Denote

Eµν ≡ δS[A = 0]

δgµν

=
1

2

√−g

{

− 1

8πG
Gµν +T µν

}

. (4)

Where T µν is the stress-energy tensor of the standard model

and inflaton fields. Then the field equations resulting from

variation of the φA at Aabcd = 0 are

ηAB∂µ(E
µν ∂νφB) = 0 . (5)

These equations are obviously satisfied by the Einstein field

equations Eµν = 0. Moreover, any solution of Eµν = 0 can be

embedded locally in a ten-dimensional flat Minkowski space,

although globally an embedding may require still higher di-

mensions [12]. But of course there may be also be solutions
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of (5) which are not solutions of the Einstein equations. A

simple (and intriguing) example is pure gravity with a cosmo-

logical constant, in which case

Eµν =
1

2

√−g

{

− 1

8πG
Gµν −λ gµν

}

. (6)

In this case the equations of motion are certainly solved by de

Sitter space, for which Eµν = 0. But flat Minkowski space is

also a solution: just choose φ µ = xµ , µ = 0− 3 and φA>3 =
constant. Then gµν = ηµν , Gµν = 0, and the equations of

motion boil down to �φA = 0, which is satisfied trivially.

A criticism of Deser et at. [13] is that the embedding of

a four-manifold is not unique. Some embeddings of a four-

manifold may satisfy the equations of motion (5), and some

may not. This fact does not necessarily rule out the embedding

formulation of general relativity on experimental grounds; it

could simply be that the Eµν = 0 alternative is selected by

initial conditions on the φa.

When the four-form gauge field is included, there will in

general be some deviation from the standard Einstein field

equations. The equations of motion in this case are

2ηAB∂µ(E
µν∂νφB)

−q0

4!
FAabcdεαβ γδ ∂α φa∂β φb∂γφ c∂δ φd = 0 , (7)

and

∂µ(
√−ggµν∂νϕs)−√−g

∂V

∂ϕs

+
q0

4!σ2
Fsabcdεαβ γδ ∂α φa∂β φb∂γ φ c∂δ φd = 0 , (8)

where Ff abcd is the field strength

Ff abcd =
∂Aabcd

∂φ f
− ∂A f bcd

∂φa
+

∂A f acd

∂φb
− ∂A f abd

∂φ c
+

∂A f abc

∂φd

(9)

corresponding to the four-form gauge field. These are sup-

plemented by the usual equations of motions of the standard

model fields.

In this article I would like to explore the cosmological

consequences of these equations of motion in the simplest

non-trivial case, namely, a constant field strength Ff abcd in

a homogenous isotropic spacetime. For this purpose it will

be sufficient to work in a five-dimensional embedding space,

A = 0, ..,4, with two inflaton fields ϕ5,6, and ignoring, at the

classical level, all standard model fields.

II. INFLATION

It is well known that a four dimensional manifold described

by a Friedman-Lemaitre metric can be embedded in five-

dimensional space, and for simplicity we adopt the version

with zero spatial curvature. We take the embedding to be

[14, 15]

φ0 =
1

2

{

a(t)+

∫ t dt ′

da/dt ′
+ a(t)r2

}

φ1 = a(t)r cos(θ )

φ2 = a(t)r sin(θ )cos(χ)

φ3 = a(t)r sin(θ )sin(χ)

φ4 =
1

2

{

a(t)−
∫ t dt ′

da/dt ′
− a(t)r2

}

, (10)

and it is not hard to see that

ds2 = ηABdφAdφB , A,B = 0,1,2,3,4

= −dt2 + a2(t)(dr2 + r2(dθ 2 + sin2(θ )dχ2)) (11)

is the Friedman-Lemaitre metric. But let us also suppose that

there is a four-form gauge field dependent on the coordinates

φa, whose non-zero components are

A5123[φ ] = −1

2
Bφ6 ,

A6123[φ ] =
1

2
Bφ5 . (12)

The four-form gauge field Aabcd is antisymmetric under per-

mutations of indices, but apart from (12) and components ob-

tained from (12) by permutation, it is assumed that all other

components vanish. This choice leads to a constant non-zero

field strength F56123 = B, and we are interested in exploring

the consequences for early-universe dynamics in a situation

of this kind. In this context we also assume the simplest pos-

sible inflaton potential

V [φ ] =
1

2
m2ϕsϕs . (13)

We begin with the usual simplifying assumptions of spatial

homogeneity and isotropy, taking in particular

φ5,6(x,y,z, t) = φ5,6(t) , (14)

and φa = 0 for a > 6. In conjunction with (12), this has the

consequence that

FAabcdεαβ γδ ∂α φa∂β φb∂γ φ c∂δ φd = 0 . (15)

This is because two of the indices abcd must be 5 and 6, so the

expression necessarily includes at least one space derivative

of ϕs, which vanishes according to (14). Then the equation

of motion (7) is satisfied by Eµν = 0, which are the standard

Einstein field equations. For a Friedman-Lemaitre metric, dis-

regarding the other standard model fields, the Einstein equa-

tions are just the conventional expressions for the a(t) scale
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factor coupled to a pair of scalar fields:

ȧ2

a2
=

8πG

3

(

1

2
∂tϕ

s∂tϕ
s +

1

2
m2ϕsϕs

)

,

ä

a
=

8πG

3

(

−∂tϕ
s∂tϕ

s +
1

2
m2ϕsϕs

)

. (16)

The equations of motion for the ϕs, however, involve the field

strength

∂ 2
t ϕ5 − qB∂tϕ

6 + 3
ȧ

a
∂tϕ

5 +m2ϕ5 = 0 ,

∂ 2
t ϕ6 + qB∂tϕ

5 + 3
ȧ

a
∂tϕ

6 +m2ϕ6 = 0 , (17)

where q = q0/σ4. It is not hard to verify consistency of (16)

and (17).

If we set ȧ/a = 0 and m2 = 0 in (17), then these equations

are obviously the equations of motion of a charged particle

moving, in the ϕ5 −ϕ6 plane, under the influence of a mag-

netic field orthogonal to that plane; i.e. this is cyclotron mo-

tion. If we instead set qB = 0, then these are the equations

used in simple models of inflation. In models of that type it

is normally important to impose slow roll conditions, which

imply either a large initial value for the inflaton field, or else,

unlike (13), a very flat potential (see, e.g., Chapter 8 in [16]).

For the simple potential (13) these slow roll conditions boil

down to

ϕsϕs ≫ 1

6πG
, (18)

i.e. a large initial field.

The model we are discussing has a fairly large space of

parameters and initial conditions {qB,m2,ϕs(0),∂tϕ
s(0)} but

the time development is typically a spiral in the ϕ5−ϕ6 plane.

What may be of interest is the fact that for qB 6= 0 it is pos-

sible to have a period of approximately exponential inflation,

with a large number of e-foldings, even when the slow-roll

condition (18) is strongly violated.1 A single example should

suffice. Working in Planck units, we choose parameters and

initial conditions

qB = 0.2 , m2 = 2× 10−4 ,

ϕ5(0) = 0 , ϕ6(0) = 10−2 ,

(∂tϕ
5)t=0 = 0 , (∂tϕ

6)t=0 = 0 . (19)

The resulting spiral evolution in the ϕ5 −ϕ6 plane is shown

in Fig. 1(a), with ȧ/a and ä/a vs. cosmic time t shown in

Figs. 1(b) and 1(c) respectively. The expansion is very nearly

a simple exponential up to t ≈ 104 in Planckian units, which

is evident in the rather flat curves on the log-log plots, and the

1 It should be noted, however, that there are other mechanisms for easing the

slow roll conditions in the context of a braneworld cosmology, cf. [17].
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FIG. 1: Numerical solution of the evolution equations (16) and (17),

with parameters and initial conditions (19). (a) trajectory in the

ϕ5 −ϕ6 plane; (b) log-log plot of ȧ/a vs. time t; (c) log-log plot

ä/a vs. time t. Note that the log-log plots of ȧ/a and ä/a vs. time

t are almost flat in the period 1 < t < 104, indicating a period of

exponential expansion, in this case with about 100 e-foldings.

fact that

ä

a
≈
(

ȧ

a

)2

(20)

in this period. Expansion continues after this period, however,

resulting in a total of about 100 e-foldings by t = 106.

The potential V (φ) is responsible for a force towards the

origin of the ϕ5 − ϕ6 plane, while the “Lorentz force” due

to the four form gauge field is directed away from the origin.
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FIG. 2: The trajectory of Fig. 1(a) at the beginning of the time evolu-

tion, in period 0 < t < 500, showing the effect of the “Lorentz force,”

directed away from the center of the ϕ5 −ϕ6 plane.
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FIG. 3: Trajectory in the ϕ5 − ϕ6 plane for parameters

qB =−1,m2 = 0.5,φ6(0) = 0.03.

Eventually these forces balance to produce a circular motion,

spiraling towards the center. To see this, we plot the initial

stage of the evolution in Fig. 2. In the absence of the gauge

field, the system simply falls to the center, oscillating around

the ϕ6 axis, and, because slow roll conditions are not satis-

fied, there is no inflationary period. The Lorentz force, how-

ever, deflects the initial fall to the center into an arc, and this

interplay between the central potential, the Lorentz force, and

gravitational friction continues until the inward and outward

forces sum to a centripetal force for (roughly) circular motion,

with gravitational friction causing a gradual spiral to the ori-

gin. The trajectory resulting from a quite different set of pa-

rameters is shown in Fig. 3. While this last example does not

lead to many e-foldings, it does very clearly display the initial

interplay of forces, leading to an eventual spiral towards the

origin.

III. LANDAU LEVELS

After inflation, the constant field strength of the four-form

gauge field still has an effect at the quantum level, in the form

of Landau excitation levels of the quantized ϕ fields. We will

see that these excitations satisfy a rather unusual dispersion

relation.

We consider the post-inflationary period at some time t0
where ȧ/a is negligible, a(t) ≈ R. With φA given by the em-

bedding (10), and Aabcd as in (12), we have

q0

4!
Aabcd[φ(x)]ε

αβ γδ ∂α φa∂β φb∂γφ c∂δ φd

= qAs123ε0i jk∂tϕ
s∂iφ

1∂ jφ
2∂kφ3

= qAs∂tϕ
s(R3r2 sinθ ) , (21)

where As ≡ σ2As123. The factor of R can be absorbed into a

coordinate redefinition, and we then consider quantizing the

action

Sϕ =

∫

d4x
(1

2
∂tϕ

s∂tϕ
s − 1

2
∇ϕs ·∇ϕs

−1

2
m2ϕsϕs + qAs(ϕ)∂t ϕ

s
)

, (22)

where again the index s = 5,6. The corresponding Hamilto-

nian is

H =
1

2

∫

d3x
{

(ps − qAs)
2 +(∇ϕs)2 +m2ϕsϕs

}

, (23)

and ϕs, ps′ have standard quantization conditions. Define

ωk =

√

k2 +
1

4
q2B2 +m2

ϕs(x) =

∫

d3k

(2π)3

1√
2ωk

(as(k)e
ikkk·xxx + a†

s (k)e
−ikkk·xxx)

ps(x) =

∫

d3k

(2π)3

√

2ωk

1

2i
(as(k)e

ikkk·xxx − a†
s(k)e

−ikkk·xxx) ,(24)

with the usual commutation relations

[as(k1),a
†
r (k2)] = (2π)3δ 3(kkk1 − kkk2)δrs (25)

Then

H =

∫

d3k

(2π)3

{

ωk(a
†
s (k)as(k)+ δ 3(0))

+i
1

2
qB(a†

5(k)a6(k)− a
†
6(k)a5(k))

}

. (26)

Introduce

b1(k) =
1√
2

(

a5(k)+ ia6(k)

)

b2(k) =
1√
2

(

a5(k)− ia6(k)

)

. (27)

which again have the usual commutation relations

[bi(k1),b
†
j(k2)] = (2π)3δ 3(kkk1 − kkk2)δi j (28)
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with indices i, j = 1,2. The Hamiltonian takes the form

H =
∫

d3k
{

ωk(b
†
i (k)bi(k)+ δ 3(0))

+
1

2
qB(b†

1(k)b1(k)− b
†
2(k)b2(k))

}

, (29)

and the corresponding spectrum is

E = ∑
k

{

√

k2 +
1

4
q2B2 +m2

(

n1(k)+ n2(k)

)

+
1

2
qB

(

n1(k)− n2(k)

)}

+E0 , (30)

where n1(k),n2(k) are occupation numbers, E0 is the ground

state energy, and the sum runs over momenta with non-zero

occupation numbers. We also find, by standard manipulations,

the conserved total momentum

Pi = ∑
k

ki

(

n1(k)+ n2(k)
)

. (31)

Were it not for the term proportional to qB in (30), the spec-

trum would simply consist of two types of particles of mass

M′ =

√

1

4
q2B2 +m2 . (32)

Instead, defining M = 1
2
qB, it is seen that excitations which

are eigenstates of both H and Pi (with momentum eigenvalues

ki) satisfy dispersion relations

E1(k) =
√

k2 +M2 +m2 +M , and

E2(k) =
√

k2 +M2 +m2 −M , (33)

respectively, which is clearly at odds with the relativistic ex-

pression for a free particle. But of course these excitations are

not free particles, and the Lagrangian (22) they derive from

is not Lorentz invariant, or even (unlike Newtonian mechan-

ics) boost invariant. It is the external four-form gauge field

which singles out a preferred time direction (much as, e.g.,

an ordinary background magnetic field along the z-axis would

introduce a preferred spatial direction for objects sensitive to

that field), and the only remaining space-time symmetries are

rotation and time/space translation invariance. Therefore the

breaking of both Lorentz and boost invariance, so far as these

inflaton excitations are concerned, is not a surprise. The ques-

tion is how this breaking might manifest itself.

IV. PROPERTIES OF LANDAU LEVEL EXCITATIONS

A. Group velocity

To begin with, consider how a wavepacket corresponding

to a single “heavy” Landau excitation of energy E1(k), or a

“light” Landau excitation of energy E2(k), and momentum

kkk, will propagate in time. Let |kkk, j〉 correspond to a parti-

cle eigenstate of energy and momentum E j(k),kkk respectively,

with conventional normalization

|kkk, j〉 =
√

2ωkb j(kkk)|0〉

|xxx, j〉 =
∫

d3k

(2π)3
e−ikkk·xxx|kkk, j〉 , (34)

and we consider initial wavepackets of the form

|ψ j〉t=0 =

∫

d3k

(2π)3

1√
2ωk|

f (k)|kkk, j〉

ψ j(xxx, t = 0) = 〈xxx, j|ψ j〉t=0

=

∫

d3k

(2π)3
f (k)eikkk·xxx . (35)

Then at a later time

ψ j(xxx, t) = 〈xxx, j|e−iHt |ψ j〉t=0

= e−i(3−2 j)Mt

∫

d3k

(2π)3
f (k)ei(kkk·xxx−ωkt) . (36)

From this we conclude that wavepackets of both heavy and

light Landau excitations (we might as well call them “lan-

dons”) propagate with a group velocity v = p/ωp appropri-

ate to a particle of mass M′ ≈ M (for m ≪ M). On the other

hand, at low momenta in the frame singled out by the external

four-form gauge field,

E1(k) ≈ k2

2M
+ 2M+

m2

2M

E2(k) ≈ k2

2M
+

m2

2M
, (37)

which means that the rest energy of the heavy landons is ap-

proximately 2M, while that of the light landons is approxi-

mately m2/2M.

B. Scattering in a gravitational field

Because of the mismatch between the inertial mass in the

momentum-dependent k2/2M term and the rest energy, we

may expect an apparent violation of the principle of equiva-

lence, if it would be possible to somehow observe the motion

of these excitations in a gravitational field. This can be veri-

fied by calculating the differential scattering cross section of

heavy and light landons in the weak gravitational field of a

static massive object of mass M .

Let gµν = ηµν + hµν with

g00 = −
(

1− 2GM

r

)

, gii =

(

1+
2GM

r

)

gµν = 0 (µ 6= ν) , (38)

be the metric corresponding to the massive object at the origin,

at distances r such that the gravitational field is weak. For our
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purposes it is sufficient to ignore this restriction on r, unless

we are interested in large angle scattering. We first need the

interaction Hamiltonian to lowest order in GM . For this we

consider the part of the total action S′ = Sϕ +SA containing ϕ ,

where

Sϕ = −
∫

d4
√−g(

1

2
gµν∂µϕs∂ν ϕs +

1

2
m2ϕsϕs)

SA =
∫

d4x qAsε
0i jk∂tϕ

s∂iφ
1∂ jφ

2∂kφ3 . (39)

Expanding Sϕ to first order in GM we have

Sϕ =

∫

d4x

{

1

2

(

1+
4GM

r

)

∂tϕ
sϕs − 1

2
(∇ϕs) · (∇ϕs)

−1

2

(

1+
2GM

r

)

m2ϕsϕs

}

. (40)

To compute SA to leading order in hµν we use

SA ≈ SA(h = 0)+

∫

d4x
δSA

δgµν
hµν . (41)

Now SA depends on the metric through the ∂µφA. As noted

already, there is no unique mapping from the metric to the

three-brane coordinates, but this turns out not to be a problem.

Choose any mapping gµν → ∂µφA and observe that, acting on

any functional of the metric,

δ

δ (∂µ φA)
=

∂gαβ

∂ (∂µ φA)

δ

δgαβ

= 2ηAB∂α φB δ

δgαµ
, (42)

which can be inverted to give

δ

δgµν
=

1

2
gµα ∂α φA δ

δ (∂ν φA)
. (43)

Applying this operator to SA in (39), we find

δSA =

∫

d4x

(

δSA

δgµν

)

gαβ=ηαβ

hµν

=
3

2

∫

d4x
2GM

r
qAs∂tϕ

s . (44)

Altogether

S′ =

∫

d4x

{

1

2

(

1+
4GM

r

)

∂tϕ
s∂tϕ

s − 1

2
(∇ϕs) · (∇ϕs)

−1

2

(

1+
2GM

r

)

m2ϕsϕs +

(

1+
3GM

r

)

qAs∂tϕ
s

}

.

(45)

We go to the Hamiltonian formulation, introducing canonical

momenta conjugate to the ϕs

ps =

(

1+
4GM

r

)

∂tϕ
s +

(

1+
3GM

r

)

qAs∂tϕ
s , (46)

leading to a Hamiltonian operator

H =

∫

d3x

{

1

2

(

1+
4GM

r

)−1(

ps −
(

1+
3GM

r

)

qAs

)(

ps −
(

1+
3GM

r

)

qAs

)

+
1

2
(∇ϕs) · (∇ϕs)+

1

2

(

1+
2GM

r

)

m2ϕsϕs

}

= H0 +

∫

d3x

{

−2GM

r
(ps − gAs)(ps − gAs)+

GM

r
m2ϕsϕs − 3GM

r
qAs(ps − gAs)

}

. (47)

Then the Hamiltonian density in the interaction picture, to first order in GM , is 2

HI =−2GM

r

{

∂tϕ
s∂tϕ

s − 1

2
m2ϕsϕs +

3

2
M(ϕ5∂tϕ

6 −ϕ6∂tϕ
5)

}

. (48)

2 Note that in the interaction picture the GM = 0 operator identification ps = ∂tφs +qAs must be used for the interaction Hamiltonian density.
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Using interaction picture operators

ϕ5(x) =

∫

d3k

(2π)3

1√
2ωk

1√
2

(

b1(k)e
i(kkk·xxx−E1(k)t)+ b

†
1(k)e

−i(kkk·xxx−E1(k)t)+ b2(k)e
i(kkk·xxx−E2(k)t)+ b

†
2(k)e

−i(kkk·xxx−E2(k)t)

)

ϕ6(x) =
∫

d3k

(2π)3

1√
2ωk

1√
2i

(

b1(k)e
i(kkk·xxx−E1(k)t)− b

†
1(k)e

−i(kkk·xxx−E1(k)t)− b2(k)e
i(kkk·xxx−E2(k)t)+ b

†
2(k)e

−i(kkk·xxx−E2(k)t)

)

, (49)

we can compute matrix elements

〈ppp2, j|
∫

d4xHI |ppp1, j〉 , (50)

and from there it is a standard exercise to calculate the dif-

ferential cross sections for the heavy/light ( j = 1,2) Landau

excitations in the specified gravitational field. The answer is

(

dσ

dΩ

)grav

type j

= (GM )2
(E2

j (p)− 1
2
m2 ∓ 3

2
ME j(p))2

p4 sin4(θ/2)
, (51)

where the minus sign is for type 1 and the plus sign for type

2 landons. The type-changing cross sections, in which an

initial type 1 landon scatters into a type 2 final state or vice

versa, both vanish. We note that for normal scalar fields, i.e.

Ep =
√

p2 +m2, As = M = 0, eq. (51) agrees with the gravi-

tational cross section previously obtained by Golowich et al.

[18].

Now let us go to the low-momentum p2 ≪ m2 ≪ M2 limit.

For comparison, the differential cross section for a particle of

mass m in a potential

V (r) =−λ

r
, (52)

computed via the Born approximation in non-relativistic

quantum mechanics is the familiar Rutherford result

(

dσ

dΩ

)Ruth

=
1

4
λ 2 1

m2v4 sin4(θ/2)
. (53)

For normal scalar particles ( 1
2
qB=M = 0), using (51) with the

approximations (37) in the low momentum limit, the gravi-

tional cross section can be expressed

(

dσ

dΩ

)grav

normal

=
1

4
(GM m)2 1

m2v4 sin4(θ/2)
, (54)

which, comparing to the Rutherford potential, corresponds to

scattering from the potential

V (r) =−GM m

r
. (55)

In other words, the gravitational mass and the inertial mass are

the same. In contrast, for landons of types 1 and 2, eq. (51)

becomes in the limit p2 ≪ m2 ≪ M2

(

dσ

dΩ

)grav

type 1

=
1

4
(GM 2M)2 1

M2v4 sin4(θ/2)
(

dσ

dΩ

)grav

type 2

=
1

4

(

GM
m2

2M

)2
1

M2v4 sin4(θ/2)
. (56)

This is a result that we might have guessed. By comparison

to the Rutherford cross-section, the gravitational masses of

both types 1 and 2 landons are equal to their rest energies,

which (for m ≪ M) are 2M and m2/2M respectively, while

the inertial mass, in accordance with its appearance in group

velocity, is approximately M in both cases.

The principle of equivalence, of course, asserts the identity

of gravitational and inertial mass, which would seem to be

badly violated for both heavy and light landons. Indeed, in the

present scenario, if it were possible to drop a heavy and a light

landon from the top of a tall building and observe how they

propagate, the heavy landon would accelerate at 2g, while the

light landon would drift downwards (assuming m ≪ M) only

very slowly, with acceleration (m2/2M2)g. These odd effects

should be viewed as only an apparent violation of the equiv-

alence principle, arising due to interaction with an external

four-form gauge field that singles out a particular time direc-

tion. A rough analogy might be the retardation in the gravita-

tional acceleration of a falling conducting ring in the presence

of a constant magnetic field directed parallel to gravitational

field. If we were unaware of the external field, this might also

seem like a violation of the principle of equivalence, rather

than a manifestation of Lenz’s Law. In the present situation,

the external four-form gauge field makes a contribution to the

landon rest energies which cannot be absorbed into the inertial

masses, resulting in both an unusual dispersion relation, and a

seeming violation of the equivalence principle.

C. Energy density in the early Universe

If the inflaton field couples only to gravity and the external

four-form gauge field, as assumed from the beginning in (1),

then observations of the sort just mentioned would be difficult

carry out, and it may be more useful to look for signatures of

the unconventional dispersion relations in the early universe,

due to an unconventional equation of state. Since it requires

an energy of at least 4M to pair-create the heavy excitations,

and assuming M is O(1) in Planck units, then after inflation

the number density of these objects is fixed. Assuming a dilute
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ideal gas, the equation of state is conventional:

ρ = n

(

2M+
m2

2M

)

+
3

2
P , (57)

where ρ ,n are energy and number density, respectively, and P

is pressure. The result follows from Boltzmann statistics, plus

the fact that, in a non-relativistic regime where (37) applies,

momentum degrees of freedom enter quadratically. Hence the

equipartition theorem applies, and the result is no different

than that of a monatomic ideal gas, with particles of rest en-

ergy 2M+m2/2M. Heavy excitations would contribute to de-

celeration in the matter-dominated era, but their contribution

cannot be easily distinguished from that of other types of mat-

ter.

The situation is more interesting with respect to light exci-

tations. It is assumed that the rest energy m2/M is so small

that the number of these excitations is not fixed in the hot en-

vironment of the early universe3 and the chemical potential

can be taken to be zero. In that situation, as with photons,

it is necessary to carry out the analysis in a grand canonical

ensemble. Following the usual analysis, the logarithm of the

grand canonical partition function Z is

logZ = −V

∫

d3k

(2π)3
ln
(

1− e−β E2(k)
)

= βVP , (58)

with E2(k) defined in (37). The energy density is

ρ =
∫

d3k

(2π)3

E2(k)

eβ E2(k)− 1
. (59)

We assume that in the early universe m ≪ k ≪ M, and observe

that

d

dk
ln
(

1− e−β E2(k)
)

=
β

eβ E2(k)− 1

d

dk

(

k2 +m2

2M

)

=
β k

M

1

eβ E2(k)− 1
(60)

Applying this identity we have

ρ =
4π

(2π)3

∫ ∞

0
dk k2E2(k)

M

β k

d

dk
ln
(

1− e−β E2(k)
)

=
4π

(2π)3

M

β
kE2(k) ln

(

1− e−β E2(k)
)∣

∣

∣

∞

0

− 4π

(2π)3

M

β

∫ ∞

0
dk

(

d

dk
kE2(k)

)

ln
(

1− e−β E2(k)
)

(61)

3 At least, the number is not fixed if there are any interaction terms in the

inflaton potential. If this is not the case and the number is fixed, then the

analysis is the same as for an ideal gas with particle rest mass m2

2M
. Taking

m2/M ≪ P, result is ρ ≈ 3
2

P, which, it will be seen, is the same as the

grand canonical result derived below.

The boundary terms go to zero linearly with k as k → 0, and

exponentially to zero like exp(−β k2/2M) as k →∞. Carrying

out the derivative inside the integral we have

ρ = − 4π

(2π)3

3

2β

∫ ∞

0
dk k2 ln

(

1− e−β E2(k)
)

− 4π

(2π)3

1

2β

∫ ∞

0
dk m2 ln

(

1− e−β E2(k)
)

(62)

The magnitude of the integrand of the second integral only

exceeds the magnitude of the integrand of the first integral

for k < m/
√

3. However, the logarithm is O(1) up k ≈
√

2M/β , after which it falls exponentially. Therefore, if

m2/2M ≪ 1/β , then the interval m/
√

3 < k <
√

2M/β is far

larger than the interval 0 < k < m/
√

3. The second integral is

therefore negligible compared to the first, and, comparing to

(58), we have

ρ = − 3

2β

∫

d3k

(2π)3
ln
(

1− e−β E2(k)
)

=
3

2
P (63)

An equation of state with P = wρ leads, in an FRW metric,

to a dependence ρ ∼ a−3(1+w). In our case, with w = 2
3
, that

implies ρ ∼ a−5. This raises the interesting possibility, since

ordinary radiation energy density goes as a−4, that following

inflation there might have been a “Landau level-dominated”

era, just prior to the radiation-dominated era. Of course, to

pin down the time of transition between these two eras it

would be necessary to know an additional cosmological pa-

rameter ΩLandau in the Friedmann equation, and at the mo-

ment this number is unknown. It is understood that since the

light landons only manifest their effects through gravitation,

they could only be in thermal equilibrium with other particles

when gravity is relatively strong, i.e. near the Planck time.

D. Causality

On a flat gµν = ηµν background, the field commutators are

[ϕ5(x),ϕ5(y)] = cos(M(x0 − y0)){DM′(x− y)−DM′(y− x)}
[ϕ6(x),ϕ6(y)] = cos(M(x0 − y0)){DM′(x− y)−DM′(y− x)}
[ϕ5(x),ϕ6(y)] = sin(M(x0 − y0)){DM′(x− y)−DM′(y− x)} ,

(64)

where

DM′(x− y) =
∫

d3k

(2π)3

1

2ωk

ei(kkk·(xxx−yyy)−ωk(x0−y0)) (65)

and ωk,M
′ were defined in (24) and (32) respectively. For

spacelike separations x− y, the difference

∆DM′ = DM′(x− y)−DM′(y− x) (66)
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vanishes, and hence the field commutators vanish, consistent

with causality. It has been assumed that the ϕs fields are only

observable via their coupling to gravity; i.e. through the stress-

energy tensor. The commutation relations (64) also imply that

spacelike separated stress-energy operators commute.

V. CONCLUSIONS

It has been shown that, within a braneworld scenario in

which the three-brane is coupled to a four-form gauge field,

a cosmological version of cyclotron motion can result in a pe-

riod of exponential inflation with an appropriate number of e-

foldings, even in the absence of the usual slow-roll conditions

on the inflaton potential. The mechanism is that the tendency

of the inflaton field to fall to the minimum of the potential is

countered by a Lorentz force in the inflaton field space. We

also find a spectrum of quantum excitations of the inflaton

fields, essentially a cosmological version of Landau levels,

satisfying unusual dispersion relations. One consequence of

the unconventional dispersion relations is the possible exis-

tence of a Landau level-dominated era, with energy density

ρ ∼ a−5, preceding the radiation-dominated era.

So far only the simplest aspects of this scenario have been

discussed. The fluctuation spectrum, production of standard

model particles, and possible observational signatures in the

CMB, call for further investigation.

Appendix: No-Brane Version

We may also consider the action (1) without the assumption

of an embedding (2) and corresponding braneworld cosmol-

ogy. In other words, the φa are simply taken to be ordinary

scalar fields, which may have a potential of some kind, and

are degrees of freedom completely distinct from the metric,

which is fundamental rather than induced. While this alterna-

tive setup may not be so relevant to inflationary cosmology,

the formulation may still be interesting as a generalization of

the Lorentz force law to Wheeler-DeWitt superspace.

The action of a charged spinless point particle in interaction

with an electromagnetic field is

S = −m

∫

dτ

√

−gµν
dxµ

dτ

dxν

dτ
+ q

∫

dxµAµ , (A.1)

leading to the equation of motion

gµν
d2xν

ds2
+

1

2

(

∂gµα

∂xβ
+

∂gµβ

∂xα
−

∂gαβ

∂xµ

)

dxα

ds

dxβ

ds
=

q

m
Fµ ,

where Fµ = Fµν
dxν

ds
, (A.2)

and Fµν is the electromagnetic field strength tensor. This is

simply the Lorentz force law in curved spacetime.

We restrict the discussion to purely bosonic fields, in-

cluding gravity. To fix notation, let {qA(xxx), pA(xxx), A =
1,2, ...,n f } denote the canonical conjugate variables with the

non-gravitational fields scaled by an appropriate power of

Newton’s constant so as to be dimensionless. The index A

now runs over all spatial indices and quantum numbers car-

ried by the fields. In the absence of the four form field Aabcd ,

the first-order ADM action has the form

SADM =

∫

d4x [pA∂tq
A −NHx −NiH

i
x ] ,

Hx = κ2GAB pA pB +
√

gU(q) ,

H
i

x = OiA[q,∂x]pA , (A.3)

and the dynamics is given by Hamilton’s equations plus the

constraints Hx = H i
x = 0. In the case of pure gravity, the

correspondence with standard notation is

{A = 1− 6} ↔ {(i, j), i ≤ j}
qA(x) ↔ gi j(x)

pA(x) ↔
{

pi j(x) (i = j)
2pi j(x) (i < j)

GAB(x) ↔ Gi jnm(x)

√
gU = − 1

κ2

√
g (3)R

H
i = −2pik

;k , (A.4)

where
√

g is the determinant of the three-metric gi j, κ2 =

16πG, (3)R is the three-dimensional scalar curvature, Gi jkl

is the DeWitt superspace metric

Gi jkl =
1

2
√

g
(gikg jl + gilg jk − gi jgkl) , (A.5)

and of course Hamilton’s equations plus constraints are equiv-

alent to the Einstein field equations for pure gravity.

Now let qA(x) = φA(x) for indices A ∈ C , where C is a

subset of indices. We will denote indices in this subset by

lower-case Latin letters, and the φa are a set of scalar fields.

Adding the term

q0

4!

∫

d4x Aabcd [φ(x)]ε
αβ γδ ∂α φa∂β φb∂γφ c∂δ φd (A.6)

to the action, and going over to the Hamilitonian formula-

tion, it is readily verified that the expressions for Hx,H
i

x are

changed by minimal substitution

pa(x)→ pa(x)− q0Aa(x) , (A.7)

where

Aa(x)≡
1

3!
Aabcdε0i jk∂iφ

b∂ jφ
c∂kφd . (A.8)

In order that the constraint algebra is satisfied, it is necessary

that terms involving δAa/δφ f , which now arise in the usual

Poisson brackets among the Hx,H
i

x , all cancel. With a little

more effort, those cancellations can also be verified.

In the case of a standard action containing only bosonic

fields, i.e including the metric tensor but not the four-form
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Aabcd field, it has been shown [19] that the geodesic equation

derived from the following action

Sq = −
∫

dτ

√

−G(Axxx)(Byyy)
dq(Axxx)

dτ

dq(Byyy)

dτ

= −M

∫

ds , (A.9)

(reminiscent in some ways of the Baierlein-Sharp-Wheeler

action [20]) is equivalent to the equations of motion of the

standard action in a certain gauge. In other words, bosonic

field equations in general relativity can be expressed as the

geodesic motion of a point particle in Wheeler-DeWitt super-

space with a non-standard supermetric G . This is of course

in close analogy to Jacobi’s principle in mechanics. The no-

tation is as follows: We define a mixed discrete/continuous

index (Ax) as a “coordinate index” in superspace

q(Ax) =

{

N (x) A = 0

qA(x) A 6= 0
, (A.10)

with summation convention

V..(Ax)..W
..(Ax).. ≡

n f

∑
A=0

∫

d3x V..(Ax)..W
..(Ax).. , (A.11)

and the non-standard supermetric is taken to be

G(Ax)(By) =

[

∫

d3x′ N
√

gU

]

1

4N (x)κ2
GAB(x)δ

3(x− y) ,

(A.12)

while G(Ax)(By) = 0 for A = 0 and/or B = 0. With these def-

initions, it is found [19] that the equations of motion which

follow from (A.9) are the same as those for the standard ac-

tion in a shift gauge Ni = 0, with lapse function

N = M
N

∫

d3xN
√

gU(q)
, (A.13)

and M is any constant with dimensions of mass. The choice

of M is essentially a choice of affine parameter.

Adding (A.6) to (A.9), the equations of motion are

G(Ax)(By)
d2q(By)

ds2
+

1

2

(

δG(Ax)(By)

δq(Cz)
+

δG(Ax)(Cz)

δq(By)
−

δG(By)(Cz)

δq(Ax)

)

dq(By)

ds

dq(Cz)

ds
= q0F(Ax) , (A.14)

where F(Ax) = 0 for indices A /∈ C , while for A = f ∈ C

F( f x) =
1

3!
Ff abcd[φ(x)]ε

i jk0∂iφ
a∂ jφ

b∂kφ c ∂φd

∂ s
, (A.15)

and Ff abcd is given in (9). Inserting the supermetric (A.12)

in (A.14), one finds that these are the equations of motion

that follow from the standard action (1) (excluding fermionic

fields) in the shift gauge Ni = 0 and lapse function (A.13).

Equations (A.14) and (A.15) are the suggested extension of

the Lorentz force law to Wheeler-DeWitt superspace, reduc-

ing to the usual bosonic field equations (including gravity) for

Aabcd = 0. Of course these equations of motion are no differ-

ent from those obtained from the action (1), only dispensing

with (2) and treating the metric components as fundamental

degrees of freedom. It should be noted, however, that the φa

fields in this no-brane formulation have no particular correla-

tion with coordinates in a Friedman-Lemaitre metric, and for

this reason we do not expect the kind of cyclotron motion and

inflation that is seen in the braneworld version.
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