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The boundary Weyl anomalies live on a codimension-1 boundary, ∂M. The entanglement entropy
originates from infinite correlations on both sides of a codimension-2 surface, Σ. Motivated to have
a further understanding of the boundary effects, we introduce a notion of reduction entropy, which,
guided by thermodynamics, is a combination of the boundary effective action and the boundary
stress tensor defined by allowing the metric on ∂M to fluctuate. We discuss how a reduction might
be performed so that the reduction entropy reproduces the entanglement structure.

It is believed that a better understanding of black hole
entropy [1, 2] can be achieved by a deeper understanding
of the notion of entropy itself, even in flat spacetime [3].
The concept of entanglement entropy (EE), which serves
as a measure of the information lost in correlations on
either side of a boundary, is widely argued to be a key
source of black hole entropy [4, 5]. Assuming the Hilbert
space can be factorized into two spatial regions, A and
B, one defines the EE as

SEE = − tr(ρA ln ρA) , (1)

where the reduced density matrix, ρA = trB ρ, is ob-
tained by tracing over the degrees of freedom in the com-
plementary region B; ρ = |Ψ〉〈Ψ| is the full density ma-
trix constructed from a pure state.

The standard method to compute the EE is the replica
method [6–8], where the path integral is performed on an
n-fold cover of the background geometry with a conical
singularity being produced. In this work we focus on the
universal EE for d = 4 conformal field theories (CFTs)
in flat space with an entangling curved surface Σ. The
flat space EE obtained using the conical method [9, 10]
is given by

SEE = − 1

2π

∫
Σ

(
aRΣ + c tr k̂2

)
ln(

l

δ
) + (non-universal) ,(2)

with

RΣ =

2∑
a=1

(k2
a − tr k2

a) , tr k̂2 =

2∑
a=1

(tr k2
a −

1

2
k2
a) , (3)

where a = (1, 2) represent the coordinates normal to Σ.
The non-universal pieces depend on the regularization
scheme; a and c are central charges. Denoting γij as the
metric on the codimension-2 manifold Σ, the traceless

part of the extrinsic curvature is k̂ij ≡ kij − k
2γij , which

transforms covariantly under Weyl transformation; RΣ is
the intrinsic Ricci scalar on Σ.

Motivated by the holographic computation of the EE
[11], a field theory method was developed in [12], which
shows that employing a conformal transformation allows
one to map the EE (restricted for a spherical entangling

surface, where only the a-charge contributes) in CFTs to
the ordinary thermodynamical entropy in certain curved
spaces. This approach however generates a subtle issue
related to the boundary effects; these authors found a
mismatch when comparing the thermal entropy with the
universal EE. The resolution was recently given by [13],
emphasizing the importance of boundary terms in the
conformal anomaly. An interpretation of [13] is that the
universal EE can be viewed as a purely boundary effect:

SEE,ball = −W̃ [δµν ] + (non-universal) , (4)

where W̃ [δµν ] is the a-type anomaly effective action with
a boundary term, whose expression will be given in the
next section, evaluated in flat space where only the
boundary term contributes. A moral of the computation
of [13] is that the universal structure of the EE is already
dictated by flat geometry, and the conformal mapping
seems somehow unnecessary.

The motivation of this work is to generalize (4), going
beyond the spherical surface restriction. We would like
to see if the complete universal structure of the EE can
be re-captured from boundary anomalies, including the
c-charge contribution, directly from the flat space data.
Moreover, we wish not to adopt the conformal mapping
or the replica method, but simply to rely on the effec-
tive action with boundary terms. In other words, we
are interested in finding a new way to compute the EE.
To achieve this goal, there are two immediate challenges.
First, the universal contribution to the EE comes from a
codimension-2 surface while the boundary anomalies live
on a codimension-1 manifold; and second, the boundary
effective action, as we will discuss more later, related to
the c-charge vanishes in the flat limit.

We will overcome the first challenge by adopting a
metric near Σ, which allows us to perform a reduction
sending configurations from ∂M to Σ. We suggest that
the second issue can be resolved by allowing the metric
on ∂M to fluctuate: δgµν |∂M 6= 0. There then exists
the boundary stress tensor contribution, even in the flat
limit. Guided by thermodynamics, we will introduce a
notion of reduction entropy (RE), which is a combina-
tion of the boundary effective action and the boundary
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stress tensor. Our main result is to show how the RE re-
produces the EE structure and therefore conjecture the
relation RE=EE might apply more generally. The dis-
cussion of the details we shall leave in the main text. Let
us start with a brief review on boundary anomalies.

Boundary Terms of Conformal Anomaly: Consider
d = 4 CFTs embedded in a curved spacetime M with
a smooth boundary ∂M. The theory can be character-
ized by the Weyl anomaly. The classification based on
the Wess-Zumino consistency [14] was presented in [13].
(See [15, 16] for the classification of the bulk anomaly.)
Denoting the induced metric as hµν = gµν−nµnν with nµ
being a unit, outward normal vector to ∂M, the anomaly
is given by

〈Tµµ 〉 =
1

16π2

(
cW 2

µνλρ − aE4

)
+
δ(x⊥)

16π2

(
aE

(bry)
4 − b1 tr K̂3 − b2hABK̂CDWACBD

)
,(5)

where E4 is the d = 4 Euler density and Wµνλρ is the
Weyl tensor. δ(x⊥) is a Dirac delta function with support
on the boundary; indices A,B,C... represent boundary
coordinates. The Chern-Simons-like boundary term of
the Euler characteristic reads [17]

E
(bry)
4 = −4δABCDEF KD

A

(
1

2
REFBC +

2

3
KE
BK

F
C

)
, (6)

which is used to supplement E4 to preserve the topologi-
cal invariance. Boundary b-type anomalies, with charges
b1 and b2, are defined through the traceless part of the
extrinsic curvature, K̂AB ≡ KAB − K

3 hAB , which trans-
forms covariantly under Weyl scaling. The b1-and b2-type
were pointed out first in [18] and [19], respectively.

It is convenient to foliate the spacetime with hyper-
surfaces labelled by r and adopt the Gaussian normal
coordinates. The metric is given by ds2 = dr2 +
hAB(r, x)dxAdxB . Using the standard Gauss-Codazzi
and Ricci relations, we convert bulk variables into bound-
ary variables and write

E
(bry)
4 = 4

(
2

3
trK3 −K trK2 +

1

3
K3

)
+ 8KABE̊AB ,(7)

tr K̂3 = trK3 −K trK2 +
2

9
K3 , (8)

hABK̂CDWACBD =
1

6
K3 − 5

6
K trK2 +

1

2
KAB∂rKAB

− 1

6
K∂rK +

1

2
KABCAB , (9)

where we have denoted ∂r = nµ∂µ; E̊AB is the boundary

Einstein tensor and CAB = R̊AB− R̊
3 hAB is the trace-free

part of the 3-dimensional Ricci tensor. (R̊AB/R̊ denotes
the boundary Ricci tensor/scalar.)

It was recently conjectured that the b2-charge is related
to the bulk c-charge by b2 = 8c. Using the heat kernel
method, ref. [20] confirmed this relation for free fields of
spin 0, 1/2, and 1; an argument for this relation based
on the variational method was given by [21].

A natural question then, which we tentatively answer
in the affirmative, is if one can recover the c-type EE from
this b2 boundary anomaly. Note that the b2 anomaly (5)
vanishes in flat space, while the c contribution to the
EE (2) requires only a curved boundary. On the other
hand, so far there is no indication that the b1 anomaly,
which does not vanish in flat space and which depends
on boundary conditions, will contribute to the EE. We
will find that b1 contributes to the entropy in our ap-
proach and the known universal EE structure is obtained
only when excluding this boundary-condition-dependent
charge. (See [22, 23] for earlier discussion of the sur-
face term of the Einstein-Hilbert action and black hole
entropy.)
Response from the Boundary: Let W be the effective

action including boundary terms. The stress tensor in
Euclidean space is defined by 〈Tµν〉 ≡ − 2√

g
δW
δgµν

. We

are interested in the anomaly part of the action, denoted

as W̃ . In the dimensional regularization the anomaly
effective action for d = 4 CFTs is essentially given by
multiplying the anomaly evaluated in 4 → 4 + ε di-

mensions by an overall factor µε

ε , where µ stands for a
mass scale. (To write the effective action in a more pre-
cise manner, one introduces additional vierbeins to con-
struct curvature tensors moving away from the physical
dimensions; see for instance [24, 25] for related discus-
sion.) The log contribution comes from the expansion
µε

ε →
1
ε + lnµ +O(ε). Hence, we focus on the variation

in the physical dimensions. One should distinguish the
divergent part of the stress tensor from the finite part; the
effective action is a divergent quantity but the anomaly
is a finite quantity obtained by tracing the finite part of
the stress tensor. The divergent part of the variational
response contributes to the universal entropy. We denote

〈Tµν〉 = µε

ε 〈t
µν〉 where 〈tµν〉 is obtained by varying the

integrated anomaly with respect to the metric.
It is useful to adopt the following expression for the

EE in d = 4 CFTs in flat space:

µ
∂SEE

∂µ
= c′

Area(Σ)

(l/δ)
2 − 1

2π

∫
Σ

(
aRΣ + c tr k̂2

)
, (10)

where c′ is a cut-off-dependent constant; Area(Σ) is the
magnitude of the entangling surface’s area. In what fol-
lows, we take lnµ→ ln (l/δ) where a dimensional scale l
is inserted to have a dimensionless argument. The quan-
tities we will be computing, the integrated anomaly and
〈tµν〉, correspond to the contributions to the right-hand-
side of (10). By integrating over (10) we have, up to the
finite piece, that

SEE = −c
′

2

Area(Σ)

(l/δ)
2 − 1

2π

∫
Σ

(
aRΣ + c tr k̂2

)
ln(

l

δ
) .(11)

The first term, the area-law of EE, is sometimes dropped
in the literature since the coefficient c′ depends on the
way one determines the cut-off. However, we would like
to emphasize that the a-charge does not contribute to c′

while c-charge does contribute to c′. (See, for instance,
eq(4.28-29) in [26] for the discussion.) In general, there
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could be non-anomalous contributions to the 1/r2 term
as well. Having this in mind, we would like to see if we
can also obtain an additional power-law divergence from
the c-charge related anomaly action.

Allowing the boundary metric to fluctuate gives the
boundary stress tensor. The Gaussian normal coordi-
nate is adopted after performing the variation. We fix
δgnA = 0 where n is the normal-direction. After per-
forming the variation we take the flat limit so that the
bulk contributions are removed. The shape of the bound-
ary remains generally curved. Assuming the boundary
is smooth and compact, we perform integration by parts
along ∂M using the covariant derivative compatible with
the boundary metric. We denote ∇̊A as the boundary co-
variant derivative and �̊ = ∇̊A∇̊A; Dn = nµDµ where
Dµ is the bulk covariant derivative. The computation
is straightforward but tedious in details; here we simply
state the final results.

For a-type, we obtain

lim
gµν→δµν

1√
h
δ

∫
∂M

E
(bry)
4

= 4

∫
∂M

(
KAB(K2 − trK2) + 2KAC(KD

CK
B
D −KKB

C )

− 2

3
hAB(trK3 − 3

2
K trK2 +

1

2
K3)

)
δgAB .(12)

Note the normal-normal component and the contribu-
tion ∼ ∂nδgAB vanish. In curved-space, the contribu-
tion ∼ ∂nδgAB gets cancelled by integrating the bulk
action by parts. Moreover, we observe that the stress
tensor obtained from the boundary variation (12) can
be written as tAB ∼ δACDEBFGHK

F
CK

G
DK

H
E , which vanishes

identically for any d = 3 boundary, because of the 4
totally-antisymmetic indices. This in fact simply reflects
the topological nature of the Euler characteristic, even in
the flat limit.

For the b2-type, we obtain

lim
gµν→δµν

1√
h
δ

∫
∂M

hABK̂CDWACBD

=

∫
∂M

(
AABδgAB +BABDnδgAB − Cδgnn

)
−1

4

∫
∂M

(
tr K̂2∂nδgnn − K̂AB∂n(DnδgAB)

)
,(13)

with

AAB =
1

6
KAB(K2 − trK2) +

1

2
KAC(KD

CK
B
D −KKB

C )

+
1

12
(�̊KAB − hAB�̊K) , (14)

BAB =
1

6
hAB(K2 − 3

2
trK2) +

1

2
KA
CK

BC − 5K

12
KAB ,

C =
1

2
trK3 − 2K

3
trK2 +

1

6
K3 − 1

6
�̊K . (15)

This result implies there are normal derivatives of the
metric variation contributions left over on the boundary,
even in the flat limit. This means the approach of [21],

which derives b2 = 8c as a consequence of the variational
principle, in fact requires fixing some boundary geometry
as a boundary condition (BC). In general, the anomaly
effective action however does not need a well-posed vari-
ational principle and the choice of a BC would depend
on the precise theory one is interested in. (Note we are
writing an effective action by integrating out all the dy-
namical fields; the metric left is an external field.) One
of our main tasks therefore is to determine what BC is
natural for recovering the entanglement structure. We
would like to take the viewpoint that the EE boundary
is not really a physical barrier, and the BC imposed for
an EE-related computation could be different from that
in other considerations; we will discuss more about this
point after we introduce the reduction entropy in the next
section.

Finally, for the b1-anomaly we have

1√
h
δ

∫
∂M

tr K̂3 =

∫
∂M

(
XABδgAB + Y δgnn

)
+

∫
∂M

ZABDnδgAB , (16)

with

XAB =
hAB

2
tr K̂3 , Y = −3

2
tr K̂3 , (17)

ZAB =
hAB

3
(K2 − 3

2
trK2) +

3

2
KACKB

C −KKAB .(18)

Reduction and Entropy: We aim to relate the struc-
ture on ∂M to that of Σ through a notion of reduction
entropy. Our basic picture (figure-1) is to first thicken Σ
by putting a circle with a radius r around each point on
Σ; the resulting tube-like manifold is referred to as ∂M
on which the boundary anomalies live. Having the infor-
mation (the boundary effective action and the boundary
stress tensor) localized on ∂M, we want to see how these
configurations contribute when being projected on Σ.

Figure 1: The codimension-2 surface Σ (red line) is
thickened to define a codimension-1 boundary ∂M

(tube), where the boundary metric is allowed to
fluctuate. A reduction is performed by sending

configurations evaluated on ∂M back to Σ.

To perform the reduction, we adopt the metric in the
vicinity of Σ. We refer the reader to the appendix B in
[27] (see also [10, 28]) for the detailed construction. Per-
forming a Wick rotation to Euclidean space, the metric
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moving away from Σ to the second order in the distance
is given by

ds2 = δabdx
adxb +Aiεabx

adxbdyi +
[
γij + 2k

(a)
ij x

a

+xaxb(δabAiAj + k
(a)
imk

(b)m
j )

]
dyidyj +O(x3) , (19)

where {xa}a=1,2 denote the 2-dimensional transverse
spaces and {yi}i=1,2 are coordinates parametrizing Σ,
which is located at xa = 0; εac is the volume form of
the transverse space and γij is the corresponding in-
duced metric on the codimension-2 surface. The gauge
field Ai = 1

2ε
ac∂agic|Σ is a Kaluza-Klein-like field asso-

ciated with dimensional reduction on Σ; this gauge field
does not contribute upon reduction in our later compu-
tation. (In (19) we have set the background metric to be
flat; the metric computed in [27] contains curved-space
corrections.) We next make a transformation to polar
coordinates by letting xa = r(cos θ, sin θ). The metric
becomes

ds2 = dr2 + r2dθ2 + 2r2Aidθdy
i +
[
γij + 2r cos θk

(1)
ij

+2r sin θk
(2)
ij + r2

(
AiAj + cos2 θk

(1)
imk

(1)m
j + sin2 θk

(2)
imk

(2)m
j

+ sin(2θ)k
(1)
imk

(2)m
j

)]
dyidyj +O(x3) . (20)

We can use this metric to write the codimension-1 extrin-
sic curvature, KAB , as a function of the codimension-2

extrinsic curvature, k
(a)
ij : KAB → KAB(k

(a)
ij , r, θ).

We next define a notion of the entropy for this reduc-
tion picture. Note the polar coordinates we adopt nat-
urally introduce a temperature defined as the inverse of
the periodicity 2π. But a consequence of adopting the
metric (20) is that we are dealing with non-static con-
figurations. For instance, 〈T θθ 〉 has explicit θ-dependence
with periodicity 2π. We consider a natural extension by
integrating the θ (time) variable and define the following
notion as the “reduction entropy” (RE):

SRE = lim
∂M→Σ

(
− W̃ +

∫
M

(E + P)
)
, (21)

where ∂M→ Σ stands for a reduction process. W̃ is the
effective action with boundary terms. The energy den-
sity is E ≡ −〈T θθ 〉 and the pressure is interpreted here
as the normal-normal component of the stress tensor,
P = 〈T rr 〉. We are largely guided by the thermodynam-
ical entropy in the ensemble maintaining constant tem-
perature and pressure; the corresponding entropy reads
S = −W +β(〈H〉+P 〈V 〉) with β = 1/T . The reduction
is performed by integrating θ from 0 to 2π and taking
r → 0 to pick up the contribution localized on Σ. In flat
space, all bulk contributions are removed. (We find that
if instead making an analogy with the canonical ensem-
ble, S = −W + β〈H〉, the c-type EE structure can not
be fully recovered and the resulting RE is not Weyl in-
variant. See the appendix for the discussion. Note that
〈T rr 〉 is non-zero only for b1-and b2-type actions.)

Let us first consider the simplest case: entropy in d = 2
CFTs. The anomaly effective action with a boundary is

given by

W̃ = −µ
ε

ε

c2
24π

(∫
M
R+ 2

∫
∂M

K
)
, ε = d− 2 , (22)

where c2 stands for the central charge in d = 2. We
focus on the d → 2 divergent contribution. The metric
variation gives the boundary stress tensor tAB ∼ (KA

B −
hABK) = δACBDK

D
C , which vanishes identically for any d =

1 boundary. Thus, the pressure and the energy do not
contribute to d = 2 RE. The partition function in flat
space is determined by the boundary term. Note here Σ
represents two end-points of an entangling interval. We
obtain (up to non-universal pieces)

SRE = − lim
∂M→Σ

W̃ =
c2
3

ln (
l

δ
) = SEE , (23)

which is the classic universal EE in d = 2 CFTs [6].
We next turn to the d = 4 a-type contribution. There

is no a-type boundary stress tensor contribution. Thus,

lim
∂M→Σ

∫
M
〈tθθ〉

(a)
= lim
∂M→Σ

∫
M
〈trr〉

(a)
= 0 . (24)

The a-type RE then solely comes from the partition func-
tion, with only the boundary term surviving in flat space.
Performing the reduction, we find, up to non-universal
terms, that

S
(a)
RE = − lim

∂M→Σ
W̃ (a) = −

( a
2π

∫
Σ

RΣ

)
ln (

l

δ
) . (25)

This recovers the a-type EE (2). This expression gener-
alizes the earlier result (4), which is restricted to a spher-
ical surface. The boundary stress tensor was ignored in
[13]. However, as shown in the present approach, even if
one restores the boundary stress tensor, the result of [13]
remains valid.

The more challenging part is to recover also the c-type
EE. Having this b2 = 8c relation, we next consider the b2-
charge contribution to RE. In this case, the RE is given
instead only by the boundary stress tensor, since the ac-
tion simply vanishes in the flat limit. We should now
discuss our choice of BC. The standard way to deter-
mine the corresponding boundary stress tensor from the
result (13) is by imposing certain BCs removing all nor-
mal derivatives of the metric variation. However, impos-
ing any Neumann-like BC might not be natural for this
entanglement computation because the EE surface (and
∂M in the RE picture) should not be viewed as a real
boundary. Thus, in this particular computation, we chose
not to impose any BC or any constraint on the bound-
ary geometry. The resulting b2-boundary stress tensor
then contains some normal derivatives of the Dirac delta
function left over on the boundary.

Let us discuss how these delta functions contribute to
RE. We first adopt the following expression in the Gaus-
sian normal coordinates:

DrδgAB = ∂rδgAB −KC
A δgBC −KC

B δgAC . (26)
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The last two terms contribute to the stress tensor in the
standard manner. We also have

lim
gµν→δµν

∂r(DrδgAB) = ∂r∂rδgAB +KD
AK

C
DδgBC

+KD
BK

C
DδgAC −KC

A∂rδgBC −KC
B∂rδgAC , (27)

where we have used that in flat space ∂rK
B
A = −KC

AK
B
C .

Including all the contributions, the b2-type stress tensor
reads

〈tAB〉(b2) = − b2
8π2

(
AAB + ∆AB

1 + ∆AB
2

)
δ(r − r′)(28)

with

∆AB
1 = BAB∂r − 2BACKB

C , (29)

∆AB
2 =

K̂AB

4
∂2
r −

K̂ACKB
C

2
∂r +

K̂A
C

2
KB
DK

CD , (30)

where r′ denotes the location of ∂M; by sending r′ → 0,
we are performing the reduction back to the location of
Σ. We also have

〈trr〉(b2) =
b2

8π2

(
C +

1

4
tr K̂2∂r

)
δ(r − r′) . (31)

Notice in the formula (21) we integrate the density
over all space. (The bulk stress tensor vanishes in
the flat limit.) Focusing on the normal-coordinate de-
pendence and letting f(r) be the structure that mul-
tiplies the derivative of the delta function, in comput-
ing RE we use the property that

∫
drf(r)∂rδ(r − r′) =

−∂r′
∫
drf(r)δ(r − r′) = −∂r′f(r′) to proceed. Similarly

we have
∫
drf(r)∂2

rδ(r − r′) = ∂2
r′f(r′). Note f(r) in-

cludes the measure factor. We do not perform integration
by parts using the normal-derivative on the boundary.

Performing the reduction we obtain, in flat space,

µ
∂

∂µ
S

(b2=8c)
RE = lim

∂M→Σ

∫
M

(
− 〈tθθ〉+ 〈trr〉

)(b2=8c)

=
c

3π

Area(Σ)

r2
cut-off

− c

2π

∫
Σ

tr k̂2 , (32)

where we have adopted the conjectured b2 = 8c rela-
tion. The first term gives the area-law of the entropy as
mentioned in (10). (Such a power-law divergence gets in-
trinsically cancelled in the a-type RE.) The second term
of (32) reproduces the universal c-type EE (2). Showing
RE=EE from first principles would then provide a proof
of b2 = 8c.

Finally, we shall also discuss the b1 boundary anomaly.
Note the action does not vanish in flat space. The bound-
ary stress tensor can be read from (16). We have

〈tAB〉(b1) = − b1
8π2

(
XAB + ZAB∂r − 2ZACKB

C

)
δ(r − r′) ,

〈trr〉(b1) = − b1
8π2

Y δ(r − r′) . (33)

To be consistent, we again do not impose any BC. Adopt-
ing the same method discussed before to perform the re-
duction, we find that there is no power-law divergence
and we obtain

S
(b1)
RE =

b1
48π

(∫
Σ

RΣ

)
ln (

l

δ
) , (34)

up to non-universal terms. We see it contributes like the
topological a-type EE. The result (34) deserves a fur-
ther understanding. It would be of great interest to see
how the b1-charge might touch EE. But an interpreta-
tion might be that since b1-charge is sensitive to BCs
imposed on matter fields [20], one might in this sense not
regard it as a universal contribution to the entropy. An-
other possibility, which we do not explore further here,
is that b1 might be related to the c-charge under certain
BCs imposed on matter fields that are suitable in the EE
computation; see the appendix for a related viewpoint.

Conclusion: In this paper we have tried to establish
two main messages: First, the boundary geometry re-
lated to the anomaly is rather rich and of great potential
importance. The boundary terms are however largely
ignored in the literature when constructing a theory con-
taining an entangling surface or a conical singularity; and
secondly, it is possible to compute EE directly from flat
space, without introducing the n-fold manifold or per-
forming a conformal mapping to a curved space. Our
computation suggests the following identification:

SRE = SEE , (35)

up to non-universal pieces. (The conjecture (35) is for-
mulated by omitting the additional boundary-condition-
dependent b1 contribution to the RE. The expression (35)
is then independent of boundary conditions imposed on
the matter fields.)

There are however considerable questions and puzzles
that are worthy of future study. The most important
one perhaps is to have a direct understanding why the
universal pieces of the RE and EE should match. A
heuristic argument is that the universal structure due
to thermal excitations near a codimension-2 surface
is indistinguishable from that due to entanglement.
Let us here list three further topics for investigation:
(1) It would be interesting to restore boundary terms
also in the replica approach and see how the boundary
terms might interact with the conical singularity. (2)
It might be possible to search for new BCs for the
boundary metric, different from the one considered here,
for RE and compare it with EE. (3) One should better
understand why 〈trr〉 is important when recovering the
EE structure.
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Appendix: If we adopt the canonical expression,

SRE = lim
∂M→Σ

(
− W̃ +

∫
M
E
)
, (36)
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we instead find

µ
∂

∂µ
SRE = − b1

12π

Area(Σ)

r2
cut-off

+
(2b1 + b2

16π

∫
Σ

tr k̂2

− b2
48π

∫
Σ

tr k2 − a

2π

∫
Σ

RΣ

)
. (37)

The a-type result is untouched. If matching the above
expression with the universal EE one has

2b1 + b2 = −8c , (38)

as a consistency condition. (If b2 is still 8c, then b1 =
−b2 = −8c.) It would be nice to see under what kind
of BC does this scenario apply. However, there is an ad-
ditional ∼

∫
Σ

tr k2 contribution in (37). We notice such

a non-conformal invariant structure appears in [29] as a
potential contribution to EE from the scheme-dependent
�R anomaly. The �R term is produced by an R2 effec-
tive action; we emphasize that the corresponding action

is finite. It reads W̃ ∼ µε

ε (εR2). (If one instead takes

W̃ ∼ µε

ε R
2, the Weyl transformation generates an R2

which violates the Wess-Zumino consistency condition.)
Therefore, the universal part of the RE is free from this
�R ambiguity. In this sense RE is more robust than EE,
and one might instead ask what scheme used in EE can
match with RE. It would be interesting to further in-
vestigate the potential connection between the boundary
anomaly and the �R bulk anomaly.
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