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We discuss the systematic evaluation of 3-loop vacuum integrals with arbitrary

masses. Using integration by parts, the general integral of this type can be reduced

algebraically to a few basis integrals. We define a set of modified finite basis inte-

grals that are particularly convenient for expressing renormalized quantities. The

basis integrals can be computed numerically by solving coupled first-order differential

equations, using as boundary conditions the analytically known special cases that

depend on only one mass scale. We provide the results necessary to carry this out,

and introduce an implementation in the form of a public software package called

3VIL (3-loop Vacuum Integral Library), which efficiently computes the numerical

values of the basis integrals for any specified masses. 3VIL is written in C, and can

be linked from C, C++, or FORTRAN code.

I. INTRODUCTION

With the discovery of the Higgs boson, the Standard Model has reached a milestone of ex-

perimental completion. Because all of the particle masses and couplings are now known directly

or indirectly with well-defined experimental precisions, it is worthwhile to extend the calculations

of the predictions of the Standard Model, as well as competitor extensions of it, to the kind of

accuracy that requires loop integrals to be calculated beyond 2-loop order. In general it is useful

to reduce theoretical uncertainties to the level at which they are completely negligible compared

to the corresponding experimental and parametric errors. In some cases, the only reliable way to

obtain estimates of theoretical error of a given calculation is to compute to an additional order

in perturbation theory. In this paper, we address the problem of calculating the general 3-loop

vacuum Feynman integral in dimensional regularization, with arbitrary propagator masses.†

The computation of 2-loop vacuum integrals with arbitrary masses has been reduced to poly-

logarithms or equivalent functions, see refs. [2–6]. At 3-loop order, the vacuum integrals with one

† A numerical solution of general 3-loop vacuum integrals has also independently been obtained by A. Freitas [1] in
a way different from ours, namely in terms of 1-dimensional (or, in the 6-propagator case, 2-dimensional) integral
representations, by making use of dispersion relations.
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non-zero mass have been solved [7–13]. In some special cases, 3-loop integrals with two distinct

non-zero masses are also known analytically [14–21]. These results are reviewed below in section

V, in our notations, and a few new two-scale special cases are added. The program MATAD [22] is

available for computations of vacuum diagrams with one non-zero mass scale, and more generally

can be used in conjunction with expansions in ratios of squared masses and external momenta (see,

for example, [23, 24]).

One obvious application of the results given below is to the 3-loop effective potential of a general

theory, with the Standard Model and its supersymmetric extensions as particular cases. In the

latter case it is not clear a priori what the ordering or hierarchies of the masses will turn out to be.

Even in the Standard Model case, it is helpful to be able to perform and present calculations in

a way that does not require expansions in particular mass hierarchies. Therefore, in the following

we use an approach that does not depend on such expansions. The evaluation of the integrals is

performed using the differential equations method [25, 26], [5], [27–37]. Here we use expressions for

the derivatives of the basis integrals with respect to their squared mass arguments. The method

is implemented in a public open-source computer package called 3VIL (3-loop Vacuum Integral

Library), which is structurally similar to, and compatible with, our earlier program TSIL [33] for

the calculation of 2-loop self-energy basis integrals.

The rest of this paper is organized as follows. In section II, we establish our notations and

conventions, including the basis of 3-loop vacuum integrals to which all others can be reduced

using the method of integration by parts [38]. Two related but distinct alternative sets of basis

integrals are defined, one incorporating counterterms in such a way that renormalized quantities

are efficiently written in terms of them. The relation between the ǫ expansions of the two sets of

basis integrals is given in a section III. The derivatives of the basis integrals with respect to the

propagator squared masses and the renormalization scale are given in section IV. In section V,

we review the known analytical special cases, all of which have only one or two distinct non-zero

masses. Section VI provides the differential equations used to compute the 3-loop vacuum integrals

in the more general case of arbitrary masses. Section VII describes the implementation of these

results and an introduction to our public and open-source computer program 3VIL. Section VIII

contains some concluding remarks.
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FIG. 2.1: The topologies for the 1-loop and 2-loop

basis integrals A(x) and I(x, y, z) defined in eqs. (2.3)

and (2.4).

II. BASIS INTEGRAL DEFINITIONS

In this section, we establish our notational conventions and define the vacuum basis integrals

up to 3-loop order. After Wick rotation, loop momentum integrations are carried out in

d = 4− 2ǫ (2.1)

Euclidean dimensions, and denoted by

∫

p
≡ µ4−d

∫

ddp

(2π)d
, (2.2)

where µ is a regularization mass scale. Vacuum Feynman diagrams at 1-loop and 2-loop orders

can be written in terms of the basis integrals A(x) and I(x, y, z) depicted in Figure 2.1. Here

A(x) = 16π2
∫

p

1

p2 + x
= Γ(−1 + ǫ)

(

4πµ2

x

)ǫ

x, (2.3)

where x is the propagator squared mass. The two-loop order basis integral is defined by

I(x, y, z) = (16π2)2
∫

p

∫

q

1

[p2 + x][q2 + y][(p − q)2 + z]
, (2.4)

which is symmetric on interchanges of any pair of squared masses x, y, z. Any 2-loop vacuum

Feynman diagram can be reduced to sums of I functions and products of two A functions, with

coefficients that are ratios of polynomials in the squared masses and the spacetime dimension d.

When presenting results for renormalized physical quantities (whether in the MS scheme or any

other scheme), it is convenient to eliminate the ǫ-dependent basis functions A and I in favor of

ǫ-independent functions that include the effects of counterterms. We define

ln(x) ≡ ln(x/Q2), (2.5)

with the MS renormalization scale Q defined by

Q2 = 4πe−γEµ2. (2.6)

Then we have the expansion:

A(x) = −x
ǫ
+A(x) + ǫAǫ(x) + ǫ2Aǫ2(x) + . . . , (2.7)
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where†

A(x) = x[ln(x)− 1], (2.8)

Aǫ(x) = x

[

−1

2
ln

2
(x) + ln(x)− 1− π2

12

]

, (2.9)

Aǫ2(x) = x

[

1

6
ln

3
(x)− 1

2
ln

2
(x) +

(

1 +
π2

12

)

ln(x)− 1− π2

12
+
ζ3
3

]

. (2.10)

The ǫ-expansion of the two-loop basis integral can be written as:

I(x, y, z) =
I2(x, y, z)

ǫ2
+
I1(x, y, z)

ǫ
+ I0(x, y, z) + ǫIǫ(x, y, z) + . . . , (2.11)

where the pole terms are

I2(x, y, z) = −(x+ y + z)/2, (2.12)

I1(x, y, z) = A(x) +A(y) +A(z)− (x+ y + z)/2. (2.13)

However, instead of writing results in terms of I0 and Iǫ, it is more convenient to follow‡ ref. [2] by

defining the “renormalized” basis integral:

I(x, y, z) = lim
ǫ→0

[

I(x, y, z)− I
(1)
div(x, y, z) − I

(2)
div(x, y, z)

]

, (2.14)

where the 1-loop and 2-loop ultraviolet (UV) sub-divergences are, respectively,

I
(1)
div(x, y, z) =

1

ǫ
[A(x) +A(y) +A(z)], (2.15)

I
(2)
div(x, y, z) =

1

2
(x+ y + z)

(

1

ǫ2
− 1

ǫ

)

. (2.16)

Then one obtains:

I(x, y, z) = I0(x, y, z) −Aǫ(x)−Aǫ(y)−Aǫ(z). (2.17)

Now the 2-loop renormalized effective potential can be written efficiently in terms of I(x, y, z)

and A(x), as was done in ref. [2] for the Standard Model and ref. [39] for general renormalizable

theories, without needing to use the functions I0 or Aǫ. For 3-loop renormalized quantities such

as the effective potential, it is possible and natural to avoid the use of Iǫ, and the functions I0 and

Aǫ only appear in the combination I. The integrals I(x, y, z) and I0(x, y, z) and Iǫ(x, y, z) can be

evaluated in terms of polylogarithms, using the methods of ref. [2]. For completeness, these results

are listed in section V below.

† For brevity, we never include the common scale Q explicitly among the arguments of loop integral functions.
‡ However, the notation is slightly different; I(x, y, z) in the present paper is equal to (16π2)2Î(x, y, z) in ref. [2].
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FIG. 2.2: The topology of the scalar Feynman diagram for the general

3-loop vacuum integral T(n1,n2,n3,n4,n5,n6)(x1, x2, x3, x4, x5, x6) defined in

eq. (2.18).

A general 3-loop order vacuum Feynman diagram will involve scalar integrals of the form shown

in Figure 2.2:

T(n1,n2,n3,n4,n5,n6)(x1, x2, x3, x4, x5, x6) = (16π2)3
∫

p1

∫

p2

∫

p3

1

[p21 + x1]n1 [p22 + x2]n2 [p23 + x3]n3 [(p1 − p2)2 + x4]n4 [(p2 − p3)2 + x5]n5 [(p3 − p1)2 + x6]n6

, (2.18)

where the propagator powers ni can be positive, negative, or 0. These integrals satisfy identities

involving interchanges of the pairs (ni, xi), as implied by the tetrahedral symmetry of the graphical

representation shown in Figure 2.2. They also satisfy 9 identities implied by integration by parts

[10, 22, 38]:

0 =

∫

p1

∫

p2

∫

p3

∂

∂pµi

[

pµjX
]

(2.19)

for i, j = 1, 2, 3, where X is any product of propagators as in eq. (2.18). The identities for

(i, j) = (1, 1) and (1, 2) can be written as, acting on eq. (2.18),

0 = d− 2n1 − n4 − n6 + 2x11
+n1 + (x1 − x2 + x4 − 1− + 2−)4+n4

+(x1 − x3 + x6 − 1− + 3−)6+n6, (2.20)

0 = n4 − n1 + (x1 + x2 − x4 − 2− + 4−)1+n1 + (x1 − x2 − x4 − 1− + 2−)4+n4

+(x1 − x3 − x4 + x5 − 1− + 3− + 4− − 5−)6+n6, (2.21)

and there are 2+5=7 other independent ones that can be obtained from the above two as permu-

tations implied by the tetrahedral symmetry. Here, the bold-faced raising and lowering operators

are defined to increase or decrease the power of the corresponding propagator:

j±T(...,nj ,...) = T(...,nj±1,...). (2.22)

The dimensional analysis identity

0 = 3d/2 +
6

∑

j=1

(xjj
+ − 1)nj . (2.23)
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can also be obtained by combining the three integration by parts identities that involve d. Equation

(2.20), and each of 11 identities (not all independent) obtained by permutations of it using the

symmetries of the tetrahedron, is an example of what is sometimes known as the triangle rule.

By repeated application of these integration by parts identities, any 3-loop vacuum integral T

can eventually be reduced to a linear combination of integrals from a basis set, with coefficients

that are ratios of polynomials in d and the squared masses. The integrals in the basis are of five

types, and can be defined as:

H(u, v, w, x, y, z) = T(1,1,1,1,1,1)(u, v, w, x, y, z), (2.24)

G(w, u, z, v, y) = T(1,1,1,0,1,1)(u, v, w, x, y, z), (2.25)

F(u, v, y, z) = T(2,1,0,0,1,1)(u, v, w, x, y, z), (2.26)

A(u)I(v,w, y) = T(1,1,1,0,1,0)(u, v, w, x, y, z), (2.27)

A(u)A(v)A(w) = T(1,1,1,0,0,0)(u, v, w, x, y, z), (2.28)

and the integrals obtained by permutations of the arguments of these according to the symmetries

of the tetrahedron. The last two are products of lower loop integrals, and therefore present no

problems. The integral defined by

E(u, v, y, z) = T(1,1,0,0,1,1)(u, v, w, x, y, z) (2.29)

is useful, as we will see below, but it is not part of this canonical basis, because it can be reduced

to the F integrals using the linear algebraic identity

E(u, v, y, z) = [uF(u, v, y, z) + vF(v, u, y, z) + yF(y, u, v, z) + zF(z, u, v, y)] /(−2 + 3ǫ), (2.30)

which follows from dimensional analysis. Note that

F(u, v, y, z) = − ∂

∂u
E(u, v, y, z), (2.31)

which allows some identities satisfied by the F integrals to be more easily derived or succinctly

written in terms of the E integrals. The graph topologies associated with the functions H, G, F,

and E are shown in Figure 2.3. We note that the relation of our notations and conventions to those

of the functions Un defined in [1] is given by:

(Q2)−3ǫ F(u, v, y, z) = −U4(u, v, y, z), (2.32)

(Q2)−3ǫ G(w, u, z, v, y) = −U5(u, z, v, y, w), (2.33)

(Q2)−3ǫ H(u, v, w, x, y, z) = U6(u, v, y, z, x, w), (2.34)
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FIG. 2.3: The topologies for the integrals H(u, v, w, x, y, z) and G(w, u, z, v, y) and F(u, v, y, z) and

E(u, v, y, z) defined in eqs. (2.24), (2.25), (2.26), and (2.29), respectively. The dot on the diagram for

F(u, y, z, v) is used to indicate a squared propagator. A complete basis for the 3-loop vacuum integrals

consists of integrals of the types H, G, F, and the products of 1-loop and 2-loop integrals A and I. The

integral E is a useful adjunct, but is not included in the basis due to its redundancy, because of eq. (2.30).

where the MS renormalization scale Q is defined by eq. (2.6).

It is again useful to define ǫ-independent modified basis integrals that will appear in renormalized

quantities written in their most succinct forms. This is done by subtracting UV sub-divergences

and then taking the 4-dimensional limit. For the E and F integrals, we define:

E(u, v, y, z) = lim
ǫ→0

[

E(u, z, y, v) − E
(1)
div(u, v, y, z) − E

(2)
div(u, v, y, z) − E

(3)
div(u, v, y, z)

]

, (2.35)

where the 1-loop, 2-loop, and 3-loop UV sub-divergences are, respectively,

E
(1)
div(u, v, y, z) =

1

ǫ
A(u)A(v) + (5 permutations), (2.36)

E
(2)
div(u, v, y, z) =

[

1

2ǫ2
(v + y + z) +

1

2ǫ

(u

2
− v − y − z

)

]

A(u) + (3 permutations), (2.37)

E
(3)
div(u, v, y, z) =

[

1

3ǫ3
− 2

3ǫ2
+

1

3ǫ

]

(uv + uy + uz + vy + vz + yz)

+

[

1

6ǫ2
− 3

8ǫ

]

(u2 + v2 + y2 + z2). (2.38)

Then, renormalized quantities can be written in terms of the function

F (u, v, y, z) = − ∂

∂u
E(u, v, y, z). (2.39)

From eq. (2.30) and the other definitions above, one finds the linear algebraic expression of the

redundancy of E:

E(u, v, y, z) =
1

2

[

−uF (u, v, y, z) − vF (v, u, y, z) − yF (y, u, v, z) − zF (z, u, v, y)

+A(u)A(v) +A(u)A(y) +A(u)A(z) +A(v)A(y) +A(v)A(z) +A(y)A(z)

+ (u/2− v − y − z)A(u) + (v/2− u− y − z)A(v)

+ (y/2− u− v − z)A(y) + (z/2− u− v − y)A(z)
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+uv + uy + uz + vy + vz + yz − 9(u2 + v2 + y2 + z2)/8
]

. (2.40)

However, the function F (u, v, y, z) has a logarithmic infrared divergence in the limit u→ 0. There-

fore, we further define:

F (u, v, y, z) ≡ F (u, v, y, z) + ln(u)I(v, y, z), (2.41)

which is well-defined for all finite values of its squared mass arguments. Some of the results

described below are given in terms of the modified basis function F , and the program library 3VIL

uses F rather than F internally, but both functions are available as outputs, and eq. (2.41) can

of course be used to translate between the F and F functions whenever necessary. In expressions

below, we will use whichever of F or F is more convenient.

Similarly, we define the modified basis function:

G(w, u, z, v, y) = lim
ǫ→0

[

G(w, u, z, v, y) −G
(1)
div(w, u, z, v, y) −G

(2)
div(w, u, z, v, y)

−G(3)
div(w, u, z, v, y)

]

, (2.42)

where the 1-loop, 2-loop, and 3-loop UV sub-divergences are

G
(1)
div(w, u, z, v, y) =

1

ǫ
[I(w, u, z) + I(w, v, y)] , (2.43)

G
(2)
div(w, u, z, v, y) =

(

− 1

2ǫ2
+

1

2ǫ

)

[A(u) +A(v) +A(y) +A(z)] − 1

ǫ2
A(w), (2.44)

G
(3)
div(w, u, z, v, y) =

(

− 1

6ǫ3
+

1

2ǫ2
− 2

3ǫ

)

(u+ v + y + z) +

(

− 1

3ǫ3
+

1

3ǫ2
+

1

3ǫ

)

w. (2.45)

A useful aspect of the definition eq. (2.42) is that when renormalized expressions are written in

terms of G rather than G, then one does not need to use the ǫ1 parts of the expansions of I

functions; only I functions are necessary.

Finally, the H function is free of 1-loop and 2-loop UV sub-divergences, but does have a 3-loop

UV sub-divergence. Therefore we define:

H(u, v, w, x, y, z) = lim
ǫ→0

[

H(u, v, w, x, y, z) −H
(3)
div(u, v, w, x, y, z)

]

(2.46)

where

H
(3)
div(u, v, w, x, y, z) = 2ζ3/ǫ. (2.47)

The function H(u, v, w, x, y, z) is finite [except in the case u = v = w = x = y = z = 0 where it

has an infrared logarithmic divergence; see any one of eqs. (5.52)-(5.61) below].
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By use of the integration by parts identities, the evaluation of a general 3-loop Feynman vacuum

diagram is thus reduced to the problem of computing I(x, y, z), F (u, v, y, z), G(w, u, z, v, y), and

H(u, v, w, x, y, z). Although renormalized quantities are most efficiently written in terms of these

quantities rather than their bold-faced counterparts I(x, y, z), F(u, v, y, z), G(w, u, z, v, y), and

H(u, v, w, x, y, z), the formulas for the ǫ-expansions of the latter are provided in the next section.

The 2-loop integral I(x, y, z) is known in terms of dilogarithms, but in general F (u, v, y, z),

G(w, u, z, v, y), and H(u, v, w, x, y, z) cannot be done analytically in terms of polylogarithms or

other simple functions. Therefore, numerical methods are necessary.

III. EXPANSIONS IN ǫ FOR THE INTEGRALS E, F, G, AND H

The ǫ expansions of the E, F, G, and H integrals can be written in the forms:

E(u, v, y, z) =
1

ǫ3
E3(u, v, y, z) +

1

ǫ2
E2(u, v, y, z) +

1

ǫ
E1(u, v, y, z)

+E0(u, v, y, z) + . . . (3.1)

F(u, v, y, z) =
1

ǫ3
F3(u, v, y, z) +

1

ǫ2
F2(u, v, y, z) +

1

ǫ
F1(u, v, y, z)

+F0(u, v, y, z) + . . . , (3.2)

G(w, u, z, v, y) =
1

ǫ3
G3(w, u, z, v, y) +

1

ǫ2
G2(w, u, z, v, y) +

1

ǫ
G1(w, u, z, v, y)

+G0(w, u, z, v, y) + . . . (3.3)

H(u, v, w, x, y, z) =
1

ǫ
H1(u, v, w, x, y, z) +H0(u, v, w, x, y, z) + . . . . (3.4)

Using the formulas in section II, one obtains:

E3(u, v, y, z) = (uv + uy + uz + vy + vz + yz)/3, (3.5)

E2(u, v, y, z) = −[(v + y + z)A(u) + (u+ y + z)A(v) + (u+ v + z)A(y) + (u+ v + y)A(z)]/2

+(uv + uy + uz + vy + vz + yz)/3 − (u2 + v2 + y2 + z2)/12, (3.6)

E1(u, v, y, z) = A(u)A(v) +A(u)A(y) +A(u)A(z) +A(v)A(y) +A(v)A(z) +A(y)A(z)

−(v + y + z)[Aǫ(u) +A(u)]/2 − (u+ y + z)[Aǫ(v) +A(v)]/2

−(u+ v + z)[Aǫ(y) +A(y)]/2 − (u+ v + y)[Aǫ(z) +A(z)]/2

+
[

uA(u) + vA(v) + yA(y) + zA(z)
]

/4

+(uv + uy + uz + vy + vz + yz)/3 − 3(u2 + v2 + y2 + z2)/8, (3.7)

E0(u, v, y, z) = E(u, v, y, z) +A(u)
[

Aǫ(v) +Aǫ(y) +Aǫ(z)
]

+A(v)
[

Aǫ(u) +Aǫ(y) +Aǫ(z)
]

+A(y)
[

Aǫ(u) +Aǫ(v) +Aǫ(z)
]

+A(z)
[

Aǫ(u) +Aǫ(v) +Aǫ(y)
]
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−(v + y + z)
[

Aǫ(u) +Aǫ2(u)
]

/2− (u+ y + z)
[

Aǫ(v) +Aǫ2(v)
]

/2

−(u+ v + z)
[

Aǫ(y) +Aǫ2(y)
]

/2− (u+ v + y)
[

Aǫ(z) +Aǫ2(z)
]

/2

+[uAǫ(u) + vAǫ(v) + yAǫ(y) + zAǫ(z)]/4. (3.8)

Then one can use

Fn(u, v, y, z) = − ∂

∂u
En(u, v, y, z) (3.9)

for n = 0, 1, 2, 3, which can be evaluated using

∂

∂u
A(u) = A(u)/u+ 1, (3.10)

∂

∂u
Aǫ(u) = [Aǫ(u)−A(u)]/u, (3.11)

∂

∂u
Aǫ2(u) = [Aǫ2(u)−Aǫ(u)]/u, (3.12)

with the results:

F3(u, v, y, z) = −(v + y + z)/3, (3.13)

F2(u, v, y, z) = (v + y + z)A(u)/2u + [A(v) +A(y) +A(z)]/2 + (u+ v + y + z)/6, (3.14)

F1(u, v, y, z) = −[A(v) +A(y) +A(z)]A(u)/u + (v + y + z)Aǫ(u)/2u

+[Aǫ(v) +Aǫ(y) +Aǫ(z)−A(u)−A(v)−A(y)−A(z)]/2 + u/2 + (v + y + z)/6, (3.15)

F0(u, v, y, z) = F (u, v, y, z) + (v + y + z)Aǫ2(u)/2u − [A(v) +A(y) +A(z)]Aǫ(u)/u

+[A(v) +A(y) +A(z) −Aǫ(v)−Aǫ(y)−Aǫ(z) + u/4− v/2 − y/2− z/2]A(u)/u

+[Aǫ2(v) +Aǫ2(y) +Aǫ2(z) −Aǫ(u)−Aǫ(v)−Aǫ(y)−Aǫ(z)]/2. (3.16)

Similarly, we obtain:

G3(w, u, z, v, y) = −(2w + u+ v + y + z)/6, (3.17)

G2(w, u, z, v, y) =
[

A(u) +A(v) +A(y) +A(z) − u− v − y − z
]

/2 +A(w) − 2w/3, (3.18)

G1(w, u, z, v, y) = I(u,w, z) + I(v,w, y) +Aǫ(w) +
[

Aǫ(u) +Aǫ(v) +Aǫ(y) +Aǫ(z)

+A(u) +A(v) +A(y) +A(z)
]

/2 + (w − 2u− 2v − 2y − 2z)/3, (3.19)

G0(w, u, z, v, y) = G(w, u, z, v, y) + Iǫ(u,w, z) + Iǫ(v,w, y) −Aǫ2(w) +
[

Aǫ(u) +Aǫ(v)

+Aǫ(y) +Aǫ(z) −Aǫ2(u)−Aǫ2(v) −Aǫ2(y)−Aǫ2(z)
]

/2. (3.20)

Finally,

H1(u, v, w, x, y, z) = 2ζ(3), (3.21)



11

H0(u, v, w, x, y, z) = H(u, v, w, x, y, z). (3.22)

Note that the the ǫ-independent terms in the expansions, E0(u, v, y, z) and F0(u, v, y, z) and

G0(w, u, z, v, y), are not the same things as the more useful functions E(u, v, y, z) and F (u, v, y, z)

and G(w, u, z, v, y). The latter appear in renormalized quantities when put into the simplest forms.

IV. DERIVATIVES OF THE BASIS FUNCTIONS

In this section, we give the derivatives of the basis functions defined in the section II with

respect to the squared mass arguments and the renormalization scale Q. These can be obtained

using the integration by parts identities, and are special cases of the general fact that any vacuum

integral can be reduced to the basis. Note that the derivatives of E and E functions are trivial, in

the sense that they are just given by F and F functions, respectively.

We start with the results in terms of the bold-faced integrals A, I, F, G, and H. For the 1-loop

and 2-loop order basis integrals,

∂

∂x
A(x) = (d/2 − 1)A(x)/x, (4.1)

∂

∂x
I(x, y, z) =

{

(d− 3)(x − y − z)I(x, y, z) + (d− 2)
[

(x− y + z)A(x)A(y)/2x

+(x+ y − z)A(x)A(z)/2x −A(y)A(z)
]

}

/λ(x, y, z), (4.2)

where

λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2xz − 2yz. (4.3)

The derivatives of I(x, y, z) with respect to y and z follow from symmetry.

For the 3-loop basis integrals, the results are more complicated, so that only the structural

forms will be shown in print here, with the complete explicit expressions relegated to an ancillary

electronic file called derivatives.txt, which is included with the arXiv source of this paper. In

all cases, the derivatives can be written as:

∑

i

kiXi (4.4)

where Xi are basis integrals, and ki are rational functions of the squared masses and the spacetime

dimension d. In the cases of

∂

∂u
F(u, v, y, z) (4.5)



12

and

∂

∂v
F(u, v, y, z), (4.6)

the basis integrals appearing in the sum are:

Xi =
{

F(u, v, y, z), F(v, u, y, z), F(y, u, v, z), F(z, u, v, y), A(u)A(v)A(y),

A(u)A(v)A(z), A(u)A(y)A(z), A(v)A(y)A(z)
}

. (4.7)

The derivatives ∂
∂yF(u, v, y, z) and ∂

∂zF(u, v, y, z) follow from ∂
∂vF(u, v, y, z) by symmetry. The

denominators of the coefficients ki in these derivatives contain factors of

ψ(u, v, y, z) ≡ u4 + v4 + y4 + z4 − 4u3(v + y + z)− 4v3(u+ y + z)− 4y3(u+ v + z)

−4z3(u+ v + y) + 4u2(vy + vz + yz) + 4v2(uy + uz + yz)

+4y2(uv + uz + vz) + 4z2(uy + uv + vy) + 6u2v2 + 6u2y2 + 6u2z2

+6v2y2 + 6v2z2 + 6y2z2 − 40uvyz. (4.8)

In the cases of

∂

∂w
G(w, u, z, v, y) (4.9)

and

∂

∂u
G(w, u, z, v, y), (4.10)

the basis integrals in the sum are:

Xi =
{

G(w, u, z, v, y), F(u, v, y, z), F(v, u, y, z), F(y, u, v, z), F(z, u, v, y),

A(v)I(w, u, z), A(y)I(w, u, z), A(u)I(w, v, y), A(z)I(w, v, y)
}

. (4.11)

The denominators of the coefficients for ∂
∂wG(w, u, z, v, y) contain factors of λ(u,w, z) and

λ(v,w, y), while the denominators in ∂
∂uG(w, u, z, v, y) contain only the factor λ(u,w, z). The

derivatives ∂
∂zG(w, u, z, v, y), ∂

∂vG(w, u, z, v, y), and ∂
∂yG(w, u, z, v, y) follow from ∂

∂uG(w, u, z, v, y)

using symmetry.

Finally, in the case of

∂

∂u
H(u, v, w, x, y, z), (4.12)

the necessary basis integrals are:

Xi =
{

H(u, v, w, x, y, z), G(u, v, x,w, z), G(v, u, x,w, y), G(w, u, z, v, y),
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G(x, u, v, y, z), G(y, v, w, x, z), G(z, u,w, x, y), F(u, v, y, z), F(u,w, x, y),

F(v, u, y, z), F(v,w, x, z), F(w, u, x, y), F(w, v, x, z), F(x, u,w, y),

F(x, v, w, z), F(y, u, v, z), F(y, u,w, x), F(z, u, v, y), F(z, v, w, x),

A(w)I(u, v, x), A(y)I(u, v, x), A(z)I(u, v, x), A(v)I(u,w, z),

A(x)I(u,w, z), A(y)I(u,w, z), A(u)I(v,w, y), A(x)I(v,w, y),

A(z)I(v,w, y), A(u)I(x, y, z), A(v)I(x, y, z), A(w)I(x, y, z)}. (4.13)

The denominators of the coefficients for ∂
∂uH(u, v, w, x, y, z) contain factors of λ(u, v, x) and

λ(u,w, z) and

χ(u, v, w, x, y, z) = u2y + v2z + w2x+ x2w + y2u+ z2v + uvx− uwx− vwx

−uvy − uwy + vwy − uxy − wxy − uvz + uwz − vwz

−vxz − wxz − uyz − vyz + xyz. (4.14)

The derivatives of H(u, v, w, x, y, z) with respect to the other arguments follow from the tetrahedral

symmetry.

The corresponding derivatives of the functions A, I, F , F , G, and H can be obtained straight-

forwardly from the results above and the formulas in the previous sections, by expanding in ǫ.

The results are quite complicated, so again they are not presented in print here, but are given

explicitly in the ancillary file derivatives.txt. Where the denominator factors mentioned above

vanish, the differential equations governing the basis functions have pseudo-thresholds, but the

basis functions themselves are well-defined and smooth for all non-negative u, v, w, x, y, z.

It is also useful to have derivatives with respect to the renormalization scale, for example to

check the renormalization group invariance of a calculation of the 3-loop effective potential. Here

we present results in terms of the renormalized integrals A, I, E, F , F , G, and H. For the 1-loop

and 2-loop integrals, one finds:

Q2 ∂

∂Q2
A(x) = −x, (4.15)

Q2 ∂

∂Q2
I(x, y, z) = A(x) +A(y) +A(z)− x− y − z. (4.16)

For the 4-propagator 3-loop integrals, we find:

Q2 ∂

∂Q2
E(u, v, y, z) = A(u)A(v) +A(u)A(y) +A(u)A(z) +A(v)A(y) +A(v)A(z) +A(y)A(z)

+(u/2 − v − y − z)A(u) + (v/2− u− y − z)A(v)
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+(y/2− u− v − z)A(y) + (z/2 − u− v − y)A(z)

+uv + uy + uz + vy + vz + yz − 9(u2 + v2 + y2 + z2)/8, (4.17)

Q2 ∂

∂Q2
F (u, v, y, z) = [v + y + z − u−A(v)−A(y)−A(z)]A(u)/u + 7u/4, (4.18)

Q2 ∂

∂Q2
F (u, v, y, z) = A(v) +A(y) +A(z)−A(u)− I(v, y, z) − v − y − z + 7u/4. (4.19)

For the 5- and 6-propagator 3-loop integrals, we obtain:

Q2 ∂

∂Q2
G(w, u, z, v, y) = I(w, u, z) + I(w, v, y) +A(u) +A(v) +A(y) +A(z)

−2u− 2v − 2y − 2z + w, (4.20)

Q2 ∂

∂Q2
H(u, v, w, x, y, z) = 6ζ3. (4.21)

V. KNOWN ANALYTICAL CASES

For some special cases, it is possible to give analytical expressions in closed form for the basis

integrals, in terms of the polylogarithm functions Lin(z) of complex argument [40]. Although indi-

vidual terms in expressions below are sometimes complex numbers, the basis vacuum integrals are

always real when the squared masses are non-negative. Besides the usual transcendental numbers

such as ln(2), π, ζ3 and Li4(1/2), some expressions below involve the log-sine definite integrals:

Ls2 ≡ Ls2(2π/3) = −
∫ 2π/3

0
dx ln[2 sin(x/2)] ≈ 0.6766277376064358, (5.1)

Ls3 ≡ Ls3(2π/3) = −
∫ 2π/3

0
dx ln2[2 sin(x/2)] ≈ −2.1447672125694944, (5.2)

Ls′4 ≡ Ls
(1)
4 (2π/3) = −

∫ 2π/3

0
dxx ln2[2 sin(x/2)] ≈ −0.4976755516066472. (5.3)

The function Ls2(x) is also known as the Clausen function of order 2, and is often denoted instead

as Cl2(x).

The 2-loop vacuum integral basis function I(x, y, z) is well-known, in various cosmetically dif-

ferent but equivalent forms [2–6]. For z ≥ x, y:

I(x, y, z) = s
[

Li2(k1) + Li2(k2)− ln(k1) ln(k2) +
1

2
ln(x/z) ln(y/z)− π2/6

]

+
1

2
(z − x− y)ln(x)ln(y) +

1

2
(y − x− z)ln(x)ln(z) +

1

2
(x− y − z)ln(y)ln(z)

+2xln(x) + 2yln(y) + 2zln(z)− 5

2
(x+ y + z) (5.4)

where

s =
√

λ(x, y, z), (5.5)
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k1 = (x+ z − y − s)/2z, (5.6)

k2 = (y + z − x− s)/2z. (5.7)

The cases with y ≥ x, z or x ≥ y, z are obtained by permuting the arguments of eq. (5.4). Some

useful special cases are:

I(0, y, z) = (y − z)
[

Li2(1− y/z) +
1

2
ln

2
(z)

]

− yln(y)ln(z)

+2yln(y) + 2zln(z)− 5

2
(y + z), (5.8)

I(x, x, x) = x

[

−15

2
+ 3

√
3Ls2 + 6ln(x)− 3

2
ln

2
(x)

]

, (5.9)

I(0, x, x) = x
[

−5 + 4ln(x)− ln
2
(x)

]

, (5.10)

I(0, 0, x) = x

[

−5

2
− π2

6
+ 2ln(x)− 1

2
ln

2
(x)

]

, (5.11)

I(0, 0, 0) = 0. (5.12)

Now the results for I0(x, y, z) can be obtained easily from eqs. (2.9) and (2.17).

The result for Iǫ(x, y, z) can be obtained as a straightforward application of the method in

ref. [2], and has been given in a more compact form in eqs. (15)-(21) and (41) of the preprint

version of ref. [4], based on functions defined in eqs. (11), (12), and (29) of ref. [41]. (See also

ref. [42] for the expansion of I(x, y, z) to all orders in ǫ.) These results for Iǫ(x, y, z) take different

forms depending on whether x+ y is greater or less than z. However, the results can be rewritten

in a unified way for all z ≥ x, y with s 6= 0 and z 6= x+ y, as:

Iǫ(x, y, z) = [3− ln(x)− ln(y)]I(x, y, z) + [xln
3
(x) + yln

3
(y) + zln

3
(z)]/6

+[xln
2
(x) + yln

2
(y)− 3zln

2
(z)]/2 + [(y − x− z)/4]ln(x)ln(z) ln(x/z)

+[(x− y − z)/4]ln(y)ln(z) ln(y/z) + [(z − x− y)/4]ln(x)ln(y)[ln(x) + ln(y)]

+[2x+ 2y − zln(z)]ln(x)ln(y) + 2zln(z)[ln(x) + ln(y)] + (π2/6 + 1)zln(z)

+(π2/6− 3/2)[xln(x) + yln(y)]− 5[(y + z)ln(x) + (x+ z)ln(y)]/2

+(ζ3/3− π2/4)(x + y + z) + s
{

Li3(1− rx) + Li3(1− ry) + Li3(1− rz)

−Li3(1− 1/rx)− Li3(1− 1/ry)− Li3(1− 1/rz) + ln(z/x)Li2(1− rx)

+ ln(z/y)Li2(1− ry) +
1

4
ln(rx) ln(ry) ln(rz) +

1

4
ln(z/x) ln(rx) ln(xrx/z)

+
1

4
ln(z/y) ln(ry) ln(yry/z) +

η

4

[

ln2(−s2/xy)− ln(rx) ln(ry)

+[ln(rx) + ln(ry)− ln(rz)]
2/4

]}

, (5.13)
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where s was defined above in eq. (5.5), and

rx = (s + x− y − z)2/4yz, (5.14)

ry = (s + y − x− z)2/4xz, (5.15)

rz = (s + z − x− y)2/4xy, (5.16)

which implies that rxryrz = 1, and

η ≡ ln(rx) + ln(ry) + ln(rz) =

{

−2πi (for x+ y < z),

0 (for x+ y > z).
(5.17)

The special case with s = 0 is obtained by simply removing all of the terms multiplied by s (i.e.,

the ones enclosed in curly brackets) in eq. (5.13). The special case z = x+ y can be computed by

taking the limit z → x + y of eq. (5.13), either from above or from below; these limits coincide,

despite the branch cut discontinuity in eq. (5.17). Other mass orderings x ≥ y, z or y ≥ x, z are

obtained by permuting the arguments of eq. (5.13). Some useful special cases are:

Iǫ(0, x, y) = (y − x)
{

Li3(1− x/y)− Li3(1− y/x) + [ln(x) + ln(y)− 3]Li2(1− x/y)
}

+(y/6)ln
3
(x) + (x− y/2) ln

2
(x)ln(y) + (y/2)ln(x)ln

2
(y)

+ (y/2− x/3) ln
3
(y)− (3x/2)ln

2
(x)− 3xln(x)ln(y) + (3x/2 − 3y) ln

2
(y)

+
(

7 + π2/6
)

[xln(x) + yln(y)] +
(

ζ3/3− 15/2 − π2/4
)

(x+ y), (5.18)

Iǫ(x, x, x) = x
{

2ln
3
(x)− 9ln

2
(x) +

[

21 + π2/2− 6
√
3Ls2

]

ln(x)− 45/2 − 3π2/4

+[3− ln(3)]3
√
3Ls2 + 3

√
3Ls3 + ζ3 + π3/2

√
3
}

, (5.19)

Iǫ(0, x, x) = x
[4

3
ln

3
(x)− 6ln

2
(x) +

(

14 +
π2

3

)

ln(x)− 15− π2

2
+

2ζ3
3

]

, (5.20)

Iǫ(0, 0, x) = x
[2

3
ln

3
(x)− 3ln

2
(x) +

(

7 +
π2

2

)

ln(x)− 15

2
− 3π2

4
+

4ζ3
3

]

, (5.21)

Iǫ(0, 0, 0) = 0. (5.22)

The results for the 3-loop integrals E, F, G, H involving propagators that are either massless or

contain a single non-zero mass scale were obtained in [7–13]. A particularly useful and systematic

source for them is found in [13]. For convenience, we provide below these results in terms of our

modified functions E,F, F ,G,H. The expansions of E, F, G, H up through order ǫ0 can be

reconstructed from these results, using the results of section III of the present paper.

The special cases involving four propagators with all propagator squared masses equal to either

0 or x include:

E(0, 0, 0, 0) = 0, (5.23)
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E(0, 0, 0, x) = x2
[

−133

48
− π2

12
+

13

8
ln(x)− 1

4
ln

2
(x)

]

, (5.24)

E(0, 0, x, x) = x2
[

8ζ3
3

− 89

24
− 3

4
ln(x) +

3

2
ln

2
(x)− 1

3
ln

3
(x)

]

, (5.25)

E(0, x, x, x) = x2

[

9
√
3

2
Ls2 −

45

16
− 57

8
ln(x) +

21

4
ln

2
(x)− ln

3
(x)

]

, (5.26)

E(x, x, x, x) = x2
[

− 1

12
− 35

2
ln(x) + 11ln

2
(x)− 2ln

3
(x)

]

, (5.27)

and

F (x, 0, 0, 0) = x

[

47

12
+
π2

6
− 11

4
ln(x) +

1

2
ln

2
(x)

]

, (5.28)

F (x, 0, 0, x) = x

[

49

12
− 8

3
ζ3 −

3

4
ln(x)− ln

2
(x) +

1

3
ln

3
(x)

]

, (5.29)

F (x, 0, x, x) = x

[

17

4
− 3

√
3Ls2 +

5

4
ln(x)− 5

2
ln

2
(x) +

2

3
ln

3
(x)

]

, (5.30)

F (x, x, x, x) = x

[

53

12
+

13

4
ln(x)− 4ln

2
(x) + ln

3
(x)

]

, (5.31)

and

F (0, 0, 0, 0) = 0, (5.32)

F (0, 0, 0, x) = x

[

1

6
+
π2

6
− 2

3
ζ3 −

(

1

2
+
π2

6

)

ln(x) +
1

2
ln

2
(x)− 1

6
ln

3
(x)

]

, (5.33)

F (0, 0, x, x) = x

[

1

3
+

8

3
ζ3 − ln(x) + ln

2
(x)− 1

3
ln

3
(x)

]

, (5.34)

F (x, 0, 0, 0) = x

[

47

12
+
π2

6
− 11

4
ln(x) +

1

2
ln

2
(x)

]

, (5.35)

F (x, 0, 0, x) = x

[

49

12
− 8

3
ζ3 −

(

13

4
+
π2

6

)

ln(x) + ln
2
(x)− 1

6
ln

3
(x)

]

, (5.36)

F (x, 0, x, x) = x

[

17

4
− 3

√
3Ls2 −

15

4
ln(x) +

3

2
ln

2
(x)− 1

3
ln

3
(x)

]

, (5.37)

F (x, x, x, x) = x

[

53

12
+

(

3
√
3Ls2 −

17

4

)

ln(x) + 2ln
2
(x)− 1

2
ln

3
(x)

]

, (5.38)

and others obtained by permutations implied by the symmetries of the graphs. There is only one

such case for which we do not know an exact analytic expression:

F (0, x, x, x) ≈ x

[

9.09686753726327768 . . . + (3
√
3Ls2 − 3/2)ln(x) +

3

2
ln

2
(x)− 1

2
ln

3
(x)

]

.(5.39)

Here, the numerical part was found using high-order series solutions of the differential equation.

The cases with five or six propagators that are all the same or 0 are:

G(0, 0, 0, 0, 0) = 0, (5.40)
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G(0, 0, 0, 0, x) = x

[

−15

2
− π2

2
+

2

3
ζ3 +

(

11

2
+
π2

6

)

ln(x)− 3

2
ln

2
(x) +

1

6
ln

3
(x)

]

, (5.41)

G(x, 0, 0, 0, 0) = x

[

−7

3
− 2π2

3
− 2

3
ζ3 +

(

4 +
π2

3

)

ln(x)− 2ln
2
(x) +

1

3
ln

3
(x)

]

, (5.42)

G(0, 0, 0, x, x) = x

[

−15− 8

3
ζ3 + 11ln(x)− 3ln

2
(x) +

1

3
ln

3
(x)

]

, (5.43)

G(0, 0, x, 0, x) = x

[

−15− π2

3
+

16

3
ζ3 +

(

11 +
π2

3

)

ln(x)− 3ln
2
(x) +

1

3
ln

3
(x)

]

, (5.44)

G(x, 0, 0, 0, x) = x

[

−59

6
− π2

2
+

(

19

2
+
π2

6

)

ln(x)− 7

2
ln

2
(x) +

1

2
ln

3
(x)

]

, (5.45)

G(0, 0, x, x, x) = x

[

−45

2
+ 9

√
3Ls2 +

(

33

2
+
π2

6

)

ln(x)− 9

2
ln

2
(x) +

1

2
ln

3
(x)

]

, (5.46)

G(x, 0, 0, x, x) = x
[

−52

3
+ 6

√
3Ls2 −

π2

3
− 2π3

9
√
3
− 4

3
ζ3 +

(

15 +
π2

6
− 3

√
3Ls2

)

ln(x)

−5ln
2
(x) +

2

3
ln

3
(x)

]

, (5.47)

G(x, 0, x, 0, x) = x
[

−52

3
+

8

3
ζ3 + 15ln(x)− 5ln

2
(x) +

2

3
ln

3
(x)

]

, (5.48)

G(0, x, x, x, x) = x
[

−30 +
56

3
ζ3 + 22ln(x)− 6ln

2
(x) +

2

3
ln

3
(x)

]

, (5.49)

G(x, 0, x, x, x) = x
[

−149

6
+ 9

√
3Ls2 +

(

41

2
− 3

√
3Ls2

)

ln(x)− 13

2
ln

2
(x) +

5

6
ln

3
(x)

]

, (5.50)

G(x, x, x, x, x) = x

[

−97

3
+ 12

√
3Ls2 + 6ζ3 +

(

26− 6
√
3Ls2

)

ln(x)− 8ln
2
(x) + ln

3
(x)

]

, (5.51)

and

H(0, 0, 0, 0, 0, x) =
π4

30
+ 6ζ3[1− ln(x)], (5.52)

H(0, 0, 0, 0, x, x) = −π
4

18
+ 6ζ3[1− ln(x)], (5.53)

H(0, x, 0, 0, 0, x) = 16Li4(1/2) −
7π4

60
+

2

3
ln2(2)[ln2(2) − π2] + 6ζ3[1− ln(x)], (5.54)

H(0, 0, 0, x, x, x) = −11π4

180
− 9(Ls2)

2 + 6ζ3[1− ln(x)], (5.55)

H(0, 0, x, 0, x, x) = −π
4

10
+ 6ζ3[1− ln(x)], (5.56)

H(0, 0, x, x, 0, x) = −π
4

24
− 27

2
(Ls2)

2 + 6ζ3[1− ln(x)], (5.57)

H(0, 0, x, x, x, x) = −77π4

1080
− 27

2
(Ls2)

2 + 6ζ3[1− ln(x)], (5.58)

H(0, x, x, x, 0, x) = 32Li4(1/2) −
11π4

45
+

4

3
ln2(2)[ln2(2)− π2] + 6ζ3[1− ln(x)], (5.59)

H(0, x, x, x, x, x) =
7π4

30
− 6(Ls2)

2 + 4πLs3 − 6Ls′4 −
26

3
ln(3)ζ3 + 6ζ3[1− ln(x)], (5.60)

H(x, x, x, x, x, x) = 16Li4(1/2) −
17π4

90
+

2

3
ln2(2)[ln2(2)− π2]− 9(Ls2)

2 + 6ζ3[1− ln(x)], (5.61)
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and others obtained by permutations implied by the symmetries of the graphs.

Some cases involving two distinct non-zero masses can also be given analytically. Equation (4.19)

of ref. [14] gives H(0, 0, x, y, x, x) through order ǫ0, in terms of Nielsen generalized polylogarithm

functions, and eq. (3.27) of ref. [15] provides the ǫ expansion of G(y, x, x, x, x) in terms of log-sine

integrals. For brevity, those results are omitted here. Reference [17] obtained the equivalent of

E(x, x, y, y) and F(x, x, y, y) to all orders in ǫ in terms of hypergeometric functions. Reference [18]

obtained the equivalent of E(x, x, y, y) and F (x, x, y, y). Reference [19] contains the expansions

of G(x, 0, 0, 0, y) and G(x, 0, 0, y, y) and E(0, x, x, y) and F(x, 0, x, y), in eqs. (64), (81), (90), and

(90) respectively, while ref. ([20]) contains an expression for G(x, 0, 0, 0, y) to all orders in ǫ in

terms of hypergeometric functions. Reference [16] found results for E(0, 0, x, y) and F(0, 0, x, y)

and F(x, 0, 0, y) to all orders in ǫ in terms of hypergeometric functions. Reference [21] also found

results for the ǫ expansions of the equivalents of E(0, 0, x, y) and F(x, 0, 0, y) in terms of harmonic

polylogarithms. Each of those results can be written in terms of only ordinary polylogarithms

up through order ǫ0. We have also solved the differential equations to obtain a few more cases

involving two distinct non-zero masses. Below we list only the cases that can be written in terms

of ordinary polylogarithms. This includes the 4-propagator cases:

E(0, 0, x, y) = xy
[

−2Li3(1− x/y)− 2Li3(1− y/x) + (1/3)ln
3
(x)− (1/6)ln

3
(y)

−ln
2
(x)ln(y) + (1/2)ln(x)ln

2
(y) + 2ln(x)ln(y)− 2ln(x)− 2ln(y) + 8ζ3/3

+11/6
]

+ [(x2 − y2)/2 + xy ln(x/y)]Li2(1− x/y)− (x2/2)ln(x)ln(y)

+[(x2 − y2)/4]ln
2
(y) + (13x2/8)ln(x) + (13y2/8)ln(y)− 133(x2 + y2)/48, (5.62)

F (x, 0, 0, y) = 2yLi3(1− x/y) + 2yLi3(1− y/x) + [y ln(y/x)− x+ y]Li2(1− x/y)

−(y/3)ln
3
(x) + (y/6)ln

3
(y) + yln

2
(x)ln(y)− (y/2)ln(x)ln

2
(y)

+(x− 2y)ln(x)ln(y) + [(y − x)/2]ln
2
(y) + (5y/2 − 11x/4)ln(x)

−(y/2)ln(y) + 47x/12 + y/6− 8ζ3y/3, (5.63)

F (0, 0, x, y) = −2xLi3(1− y/x)− 2yLi3(1− x/y) +
[

xln(x)− yln(y)− x+ y
]

Li2(1− x/y)

+(x/3)ln
3
(x)− (y/6)ln

3
(y)− xln

2
(x)ln(y) + (x/2)ln(x)ln

2
(y) + xln(x)ln(y)

+[(y − x)/2]ln
2
(y)− (x/2)ln(x)− (y/2)ln(y) + (x+ y)(1/6 + 4ζ3/3), (5.64)

E(x, x, y, y) = −2(x− y)2
[

Li3(1− x/y) + Li3(1− y/x) + ln(y/x)Li2(1− x/y)

−(1/6)ln
3
(x) + (1/3)ln

3
(y)− 7ζ3/3

]

+ (2xy − 2x2 − y2)ln
2
(x)ln(y)

+(2x2 − 4xy + y2)ln(x)ln
2
(y) + x(3x/2− y)ln

2
(x) + y(3y/2 − x)ln

2
(y)
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+10xyln(x)ln(y)− x(8y + 3x/4)ln(x)− y(8x+ 3y/4)ln(y)

−89(x2 + y2)/24 + 22xy/3, (5.65)

F (x, x, y, y) = 2(x− y)
[

Li3(1− x/y) + Li3(1− y/x) + ln(y/x)Li2(1− x/y)− (1/6)ln
3
(x)

+(1/3)ln
3
(y)− ln(x)ln

2
(y)− 7ζ3/3

]

+ (2x− y)ln
2
(x)ln(y)− xln

2
(x)

−4yln(x)ln(y) + yln
2
(y) + (5y − 3x/4)ln(x)− yln(y) + 49x/12 + y/3, (5.66)

E(0, x, y, y) = y(y − x)
[

4Li3(−k) + (1/3) ln3(k)− (1/3)ln
3
(y) + (π2/3) ln(k)− 4ζ3/3

]

−(x+ 2y)
√

x2 − 4xy
[

Li2(−k) + (1/4) ln2(k) + π2/12
]

+ [(x2 + 6y2)/4]ln
2
(y)

−xyln(x)ln2(y) + [x(8y − x)/2]ln(x)ln(y) + [x(13x − 32y)/8]ln(x)

−[y(16x + 3y)/4]ln(y)− 133x2/48 + 11xy/3 − 89y2/24, (5.67)

F (x, 0, y, y) = 4yLi3(−k) +
√

x2 − 4xy
[

2Li2(−k) + (1/2) ln2(k) + π2/6
]

+(y/3)
[

ln3(k)− ln
3
(y) + π2 ln(k) + 1− 4ζ3 + 3ln(x)ln

2
(y)− 3ln(y)

]

+(y − x/2)ln
2
(y) + (x− 4y)ln(x)ln(y) + (5y − 11x/4)ln(x) + 47x/12, (5.68)

F (y, 0, y, x) = (x− 2y)
[

2Li3(−k) + (1/6) ln3(k)− (1/6)ln
3
(y) + (π2/6) ln(k)− 2ζ3/3

]

+
√

x2 − 4xy
[

2Li2(−k) + (1/2) ln2(k) + π2/6
]

+ (x/2)ln(x)[ln
2
(y)− 1]

−xln(x)ln(y)− (y + x/2)ln
2
(y) + (5x/2 − 3y/4)ln(y) + x/6 + 49y/12, (5.69)

with, in the last three equations,

k ≡
(

1−
√

1− 4y/x
)

/
(

1 +
√

1− 4y/x
)

. (5.70)

Equations (5.62) and (5.63) are equivalent to results already found by ref. [21]. Equations (5.65)

and (5.66) are equivalent to results obtained by refs. [17] and [18]. Equations (5.67), (5.68) and

(5.69) are equivalent to results already found in eq. (90) of ref. [19]. Of course, the corresponding

F integrals can also be obtained from the results above, using eq. (2.41).

The 5-propagator integrals with two distinct non-zero masses that we have been able to find

analytically in terms of ordinary polylogarithms are:

G(0, 0, 0, x, y) = 2yLi3(1− x/y) + 2xLi3(1− y/x) + [3(x− y)− xln(x) + yln(y)]Li2(1− x/y)

−(x/3)ln
3
(x) + (y/6)ln

3
(y) + xln

2
(x)ln(y)− (x/2)ln(x)ln

2
(y)

−3xln(x)ln(y) + [3(x− y)/2]ln
2
(y) + (11x/2)ln(x) + (11y/2)ln(y)

−(15/2 + 4ζ3/3)(x+ y), (5.71)

G(0, 0, x, 0, y) = (x+ y)
[

−2Li3(1− x/y)− 2Li3(1− y/x)− (1/6)ln
3
(y) + (1/3)ln

3
(x)
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+8ζ3/3− π2/6− 15/2
]

+ [2(x− y) + (x+ y) ln(x/y)] Li2(1− x/y)

+(x/2 + y)ln(x)ln(y) ln(y/x)− (x/2)ln
2
(x) + (x− 3y/2)ln

2
(y)

−2xln(x)ln(y) + [(33x + π2y)/6]ln(x) + [(33y + π2x)/6]ln(y), (5.72)

G(x, 0, 0, 0, y) = (y − x)
{

Li3(1− x/y) + Li3(1− y/x) +
[

ln(y)− 2
]

Li2(1− x/y)

−(1/6)ln
3
(x) + (1/3)ln

3
(y)− (1/2)ln(x)ln

2
(y)− (π2/6)ln(x)− ζ3/3

}

+(y/2)ln
2
(x)ln(y)− xln

2
(x)− 2xln(x)ln(y) + (x− 3y/2)ln

2
(y)

+4xln(x) + (33/6 + π2/6)yln(y)− (7 + π2)x/3 − (15/2 + π2/6)y, (5.73)

G(x, 0, x, 0, y) = −2yLi3(1− x/y)− 2yLi3(1− y/x) + [3x− 3y + (2y − x)ln(x)

−yln(y)]Li2(1− x/y) + (y/3)ln
3
(x)− (y/6)ln

3
(y) + (x− y)ln

2
(x)ln(y)

+(y − x/2)ln(x)ln
2
(y)− 2xln

2
(x)− 3xln(x)ln(y) + [3(x− y)/2]ln

2
(y)

+(19x/2)ln(x) + (11y/2)ln(y)− 59x/6 − 15y/2 + 8ζ3y/3, (5.74)

G(x, 0, y, 0, y) = −[2(x− y)2/x]Li3(1− x/y) + 2(x− y)[2− ln(y)]Li2(1− x/y)

+[(y − 2x)/3]ln
3
(y) + [xln(x) + 2x− 3y]ln

2
(y) + 4xln(x)[1− ln(y)]

+11yln(y)− 7x/3− 15y + 2(1 + y/x)(3y − x)ζ3/3, (5.75)

G(0, x, x, y, y) = (
√
x−√

y)2
[

2Li3(1− x/y) + 2Li3(1− y/x) + 2 ln(y/x)Li2(1− x/y)

−(1/3)ln
3
(x)

]

+
√
xy

[

−32Li3(−
√

x/y) + 16 ln(x/y)Li2(−
√

x/y)

+4 ln2(x/y) ln(1 +
√

x/y) + 2ln(x)ln(y) ln(y/x)− (2/3)ln
3
(y) + 4ζ3

]

+(x+ y)[(2/3)ln
3
(y)− 15 − 14ζ3/3] + (2x+ y)ln(x)ln(y) ln(x/y)

−3xln
2
(x)− 3yln

2
(y) + 11xln(x) + 11yln(y), (5.76)

G(x, 0, x, y, y) = −F (x, 0, y, y) + [2− ln(x)]I(x, y, y) + xln(x)/4 + 2yln(y)

−11x/12 − 14y/3, (5.77)

G(x, 0, x, x, y) = −F (x, 0, x, y) + [2− ln(x)]I(x, x, y) + 5xln(x)/4 + yln(y)

−13x/4 − 7y/3, (5.78)

G(y, x, x, x, x) = (4− y/x)F (y, 0, x, x) + [8− y/x− 2ln(x)]I(x, x, y)

+y[−8/3− 2ln(x)− ln(y) + 4ln(x)ln(y)− ln
2
(x)ln(y)]

+x[26/3 − 16ln(x) + 6ln
2
(x)] + (y2/4x)[17/3 − 3ln(y)] + (8x− 2y)ζ3, (5.79)

G(x, x, y, x, y) = (y/x− 1)F (x, x, y, y) + y(y − 4x)F (y, 0, x, x)/2x2

+[8x2 − 4xy + y2 + 2x(y − 2x)ln(x)− 2xyln(y)]I(x, x, y)/2x2

+x[27/4 + (47/4)ln(x) + 6ln
2
(x)− ln

3
(x)]
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+y[−217/12 + (47/4)ln(x) + 7ln(y)− 3ln
2
(x)− 4ln(x)ln(y) + ln

2
(x)ln(y)]

+(y2/x)[29/6 − 4ln(x)− (11/2)ln(y) + 4ln(x)ln(y) + ln
2
(y)− ln(x)ln

2
(y)]

+(y3/8x2)[−17/3 + 3ln(y)] + (8y − 2y2/x)ζ3, (5.80)

G(x, 0, 0, y, y) =
√

x2 − 4xy
{

2Li3(−k) + 4Li3(k/[1 + k]) + Li2(−k)[2ln(y)− 4]

+(1/12) ln3(k) + ln2(k)[ln(x) + ln(y)− 4]/4 − ln(k)[(1/4) ln2(x/y) + π2/6]

−(1/12) ln3(x/y) + π2(ln(x)− 2)/6 − 2ζ3

}

+ (y/3 − x/6)ln
3
(y)

+(x/2)ln
2
(x)ln(y) + (x− 3y)ln

2
(y)− 2xln(x)ln(y)− xln

2
(x) + 4xln(x)

+[π2x/6 + 11y]ln(y) + 4(x− 2y)ζ3/3− (7 + π2)x/3− 15y, (5.81)

where k in the last equation was given in eq. (5.70). Equations (5.73) and (5.81) are equivalent to

the results already obtained in eqs. (64) and (81) of ref. [19]. The equivalent of eq. (5.75) has also

been obtained in terms of harmonic polylogarithms in ref. [21].

In addition to the analytical cases, we find various identities that can be obtained by requiring

the absence of pole singularities in the derivatives of the basis integrals for special values of the

input squared masses. For example, the following identities allow for all remaining cases of G with

first argument vanishing to be written in terms of integral functions with fewer propagators:

G(0, u, v, y, z) =
{

vF (v, u, y, z) − uF (u, v, y, z) + [A(v) −A(u)]I(0, y, z)

+[uA(u)− vA(v)]/4
}

/(u− v) +

+
{

zF (z, y, u, v) − yF (y, z, u, v) + [A(z)−A(y)]I(0, u, v)

+[yA(y)− zA(z)]/4
}

/(y − z)− 2(u+ v + y + z)/3, (5.82)

G(0, u, u, y, z) = 2
{

zF (z, y, u, u) − yF (y, z, u, u) + [A(z)−A(y)]I(0, u, u)

+[yA(y)− zA(z)]/4
}

/(y − z)− F (u, u, y, z) − ln(u)I(0, y, z)

−A(y)−A(z) +A(u)/4, (5.83)

This is useful because we find that when the first argument of G vanishes, it tends to be especially

sensitive to non-negligible numerical error from the Runge-Kutta integration described in sections

VI and VII below, but we can always replace that value by the results of one of eqs. (5.71), (5.72),

(5.76), (5.82), or (5.83).

Another special identity is:

G(x, u, v, y, z)
∣

∣

u=(
√
x−

√
v)2

= (r − 1)F (u, v, y, z) − rF (v, u, y, z)

+ [1− rA(v)/v + (r − 1)A(u)/u] I(x, y, z)
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+(r/4)[A(v) + v] + [(1 − r)/4][A(u) + u] +A(y) +A(z)

+(19x− 41u− 41v − 32y − 32z)/24, (5.84)

where r =
√

v/x. In the special case u = 0, this reduces to

G(x, 0, x, y, z) = −F (x, 0, y, z) + [1−A(x)/x]I(x, y, z) +A(x)/4 +A(y) +A(z)

−(2x+ 4y + 4z)/3, (5.85)

which in turn has the fully analytic (in terms of ordinary polylogarithms) special cases of eqs. (5.74),

(5.77), and (5.78). Also, the following 4-propagator integral identity provides a useful check when

one of the squared mass arguments vanishes:

0 = u(u− y − z)F (u, 0, y, z) + y(y − u− z)F (y, 0, u, z) + z(z − u− y)F (z, 0, u, y)

+λ(u, y, z)I(u, y, z) + 2A(u)A(y)A(z) − 2uA(y)A(z) − 2yA(u)A(z) − 2zA(u)A(y)

+(3u− 4y − 4z)(u − y − z)A(u)/4 + (3y − 4u− 4z)(y − u− z)A(y)/4

+(3z − 4u− 4y)(z − u− y)A(z)/4

+2(u2y + u2z + y2u+ y2z + z2u+ z2y − u3 − y3 − z3)/3. (5.86)

These identities can be useful in reducing analytical expressions before numerical evaluation.

Finally, in all cases with two squared mass scales x, y, it is possible to find series expansions in

expansion parameters such as y/x, x/y, (1−y/x), and (1−y/4x), with overlapping regions of conver-

gence that in their union cover all x, y. In the code 3VIL described below, we have incorporated such

series results for the cases H(0, 0, 0, 0, x, y), H(0, 0, x, y, 0, 0), H(x, x, 0, 0, y, y), H(x, x, 0, y, x, x),

H(0, 0, x, 0, y, y), H(0, 0, x, y, x, x), H(0, 0, x, x, x, y), H(0, x, y, x, x, y), and H(0, 0, x, y, x, y), to-

gether with the only subordinate 4-propagator and 5-propagator integrals of these that are not al-

ready given above analytically, namely F (0, x, x, y), G(x, 0, 0, x, y), G(y, 0, x, x, x), G(x, 0, y, x, y).

The coefficients of the terms in the series expansions are implemented as pre-computed numerical

values. In future updates of 3VIL, we plan to include more such special cases.

VI. DIFFERENTIAL EQUATIONS FOR NUMERICAL EVALUATION

In this section we describe the differential equations method used for finding the 3-loop ba-

sis integrals in the case of generic squared mass arguments. The equations described below are

implemented in the software package 3VIL, as described in the following section.
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For a given master tetrahedral topology corresponding to a basis integral

H(u, v, w, x, y, z), (6.1)

the list of subordinate 3-loop basis integrals G obtained by removing one propagator is:

G(w, u, z, v, y), G(x, u, v, y, z), G(u, v, x,w, z), (6.2)

G(y, v, w, x, z), G(v, u, x,w, y), G(z, u,w, x, y). (6.3)

The list of subordinate F integrals obtained by removing a second propagator is

F (w, u, x, y), F (w, v, x, z), F (x, u,w, y), F (x, v, w, z), (6.4)

F (u, v, y, z), F (u,w, x, y), F (y, u, v, z), F (y, u,w, x), (6.5)

F (v, u, y, z), F (v,w, x, z), F (z, u, v, y), F (z, v, w, x). (6.6)

Also, there are associated 2-loop basis integrals, obtained by removing from H(u, v, w, x, y, z) any

three propagators forming a complete loop:

I(u, v, x), I(x, y, z), I(u, x, y), I(v, x, z), I(u,w, z), I(v,w, y), (6.7)

I(u,w, y), I(v,w, z), I(v, y, z), I(w, x, y), I(u, v, z), I(u,w, x), (6.8)

I(u, y, z), I(w, x, z), I(u, v, y), I(v,w, x). (6.9)

Although the I functions are known analytically in terms of dilogarithms, in practice it is more

efficient to treat them as dependent variables and solve for them simultaneously with the 3-loop

basis functions.

We now introduce a dimensionless independent variable t, and an arbitrary† reference squared

mass a, and define the quantities

U = a+ t(u− a), V = a+ t(v − a), W = a+ t(w − a),

X = a+ t(x− a), Y = a+ t(y − a), Z = a+ t(z − a). (6.10)

Now consider the 3-loop and 2-loop basis integrals, generically denoted fi, as functions of arguments

(U, V,W,X, Y, Z), or equivalently as functions of u, v, w, x, y, z and t. These functions satisfy

coupled first-order differential equations of the general form:

dfi
dt

=
∑

j

cijfj + ci. (6.11)

† In principle, the results should not depend on the choice of a. By default, 3VIL chooses a = 2 |Max(u, v, w, x, y, z)|,
which we find avoids some numerical complications, with some exceptions noted below which require a different
choice. As an option, a can be specified at run time. Changing a allows a check on the numerical errors.
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Here, the cij are ratios of polynomials in the squared masses and t and, in the case where fj is

an I function, also linear functions of the logarithms ln(U), ln(V ), etc. The ci are up to cubic

functions of the logarithms when i is a 3-loop integral, and quadratic functions of the logarithms

when fi is an I integral. The differential equations are given explicitly below. These coupled

differential equations in t can be solved numerically by Runge-Kutta, using appropriate boundary

conditions. At t = 0, all of the propagator squared masses are equal to a, while at the endpoint of

the integration t = 1 we have (U, V,W,X, Y, Z) = (u, v, w, x, y, z) equal to the desired values.

We now provide the derivatives of the basis integrals with respect to t. It is convenient to first

define some auxiliary functions, in addition to the functions λ and ψ defined in eqs. (4.3) and (4.8)

respectively:

κ(x, y, z) = x2 + y2 + z2 − xy − xz − yz, (6.12)

∆(w, x, y, z) = λ(x, y, z) + 2w(x+ y + z)− 3w2, (6.13)

φ(w, x, y, z) = ψ(w, x, y, z) + 8a(w + x− y − z)(w − x+ y − z)(w − x− y + z), (6.14)

Then define:

r±(x, y, z) = a
[

x+ y + z − 3a± 2
√

κ(x, y, z)
]

/λ(a− x, a− y, a− z), (6.15)

and, if ∆(w, x, y, z) 6= 0,

r4(w, x, y, z) = 8a(w + x− y − z)(w − x+ y − z)(w − x− y + z)/φ(w, x, y, z), (6.16)

while in the alternative,

r4(w, x, y, z) = a/(a− w) [if ∆(w, x, y, z) = 0]. (6.17)

Note that if ∆(w, x, y, z) 6= 0, one must be careful not to choose a to be the specific value such

that φ(w, x, y, z) = 0; otherwise a singularity would occur in eq. (6.16). These are the exceptions

referred to in the previous footnote. Our program 3VIL automatically ensures that a is chosen

appropriately.

Then we can write:

d

dt
I(X,Y,Z) = cII(x, y, z)I(X,Y,Z) + cILL(x, y, z)ln(X)ln(Y )

+cILL(x, z, y)ln(X)ln(Z) + cILL(y, z, x)ln(Y )ln(Z)

+cIL(x, y, z)ln(X) + cIL(y, x, z)ln(Y ) + cIL(z, x, y)ln(Z) + cI(x, y, z), (6.18)
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where we suppress the a and t dependences when writing the arguments of the coefficient functions.

These are given by

cII(x, y, z) =
1

2(t− p+)
+

1

2(t− p−)
, (6.19)

cILL(x, y, z) =
cILL+
t− p+

+
cILL−
t− p−

, (6.20)

cIL(x, y, z) = a− x+
cIL+
t− p+

+
cIL−
t− p−

, (6.21)

cI(x, y, z) = 2x+ 2y + 2z − 6a+
cI+
t− p+

+
cI−
t− p−

, (6.22)

with simple poles at

p± = r±(x, y, z), (6.23)

and coefficients:

cILL± = [a+ (x+ y − z − a)p±]/4, (6.24)

cIL± = (a− x)p± − a, (6.25)

cI± = 5[3a + (x+ y + z − 3a)p±]/4. (6.26)

In 3VIL, the t-independent coefficients appearing in eqs. (6.18)-(6.26) and similar equations below

are computed only once, before the Runge-Kutta running begins.

Similarly, we find:

d

dt
F (U, V, Y, Z) = cFF1(u, v, y, z)F (U, V, Y, Z) + cFF2(u, v, y, z)F (V,U, Y, Z)

+cFF2(u, y, v, z)F (Y,U, V, Z) + cFF2(u, z, v, y)F (Z,U, V, Y )

+cFLLL1(u, v, y, z)ln(V )ln(Y )ln(Z) + cFLLL2(u, v, y, z)ln(U)ln(V )ln(Y )

+cFLLL2(u, v, z, y)ln(U)ln(V )ln(Z) + cFLLL2(u, y, z, v)ln(U)ln(Y )ln(Z)

+cFLL1(u, v, y, z)ln(V )ln(Y ) + cFLL1(u, v, z, y)ln(V )ln(Z)

+cFLL1(u, y, z, v)ln(Y )ln(Z) + cFLL2(u, v, y, z)ln(U)ln(V )

+cFLL2(u, y, v, z)ln(U)ln(Y ) + cFLL2(u, z, v, y)ln(U)ln(Z)

+cFIL(u, v, y, z)ln(U)I(V, Y, Z) + cFI(u, v, y, z)I(V, Y, Z)

+cFL1(u, v, y, z)ln(U) + cFL2(u, v, y, z)ln(V ) + cFL2(u, y, v, z)ln(Y )

+cFL2(u, z, v, y)ln(Z) + cF (u, v, y, z), (6.27)

Note that the right side contains F functions, which in the 3VIL code are expressed in terms of F

functions using eq. (2.41). The coefficient functions on the right side again can be written as sums
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over simple poles in t:

cFF1(u, v, y, z) =
3

4t
+

1

4(t− p3)
, (6.28)

cFF2(u, v, y, z) = − 1

4t
+
cFF22

t− p2
+
cFF23

t− p3
, (6.29)

cFLLL1(u, v, y, z) =
3a

4t
+
cFLLL12

t− p2
+
cFLLL13

t− p3
, (6.30)

cFLLL2(u, v, y, z) = − a

4t
+
cFLLL23

t− p3
+
cFLLL24

t− p4
+
cFLLL25

t− p5
, (6.31)

cFLL1(u, v, y, z) = −a
t
+
cFLL12

t− p2
+
cFLL13

t− p3
, (6.32)

cFLL2(u, v, y, z) =
a

t
+
cFLL23

t− p3
+
cFLL24

t− p4
+
cFLL25

t− p5
, (6.33)

cFIL(u, v, y, z) =
1

2(t− p4)
+

1

2(t− p5)
, (6.34)

cFI(u, v, y, z) =
1

t− p2
, (6.35)

cFL1(u, v, y, z) = u− a− 63a

16t
+
cFL13

t− p3
+
cFL14

t− p4
+
cFL15

t− p5
, (6.36)

cFL2(u, v, y, z) = a− v +
21a

16t
+
cFL22

t− p2
+
cFL23

t− p3
, (6.37)

cF (u, v, y, z) = −13

4
a− 11

4
u+ 2v + 2y + 2z +

cF2

t− p2
+

cF3

t− p3
, (6.38)

where the coefficients cFF22 etc. on the right side are independent of t, and there are simple poles

in t at

p1 = 0, (6.39)

p2 = a/(a− u), (6.40)

p3 = r4(u, v, y, z), (6.41)

p4,5 = r±(v, y, z). (6.42)

Note that there are always poles at t = 0. If a squared mass argument vanishes, then there will also

be a pole at t = 1. The explicit forms for some of the t-independent coefficients on the right sides

of eqs. (6.28)-(6.38) are somewhat complicated, so they are relegated to an ancillary electronic file

called dFbardtcoeffs.txt, which is included with the arXiv submission for this paper. There are

two separate forms for these coefficients, depending on whether ∆(u, v, y, z) is zero or non-zero.

The differential equations for the G functions have the form:

d

dt
G(W,U,Z, V, Y ) = cGG(w, u, z, v, y)G(W,U,Z, V, Y )

+cGF (w, u, z, v, y)[F (U, V, Y, Z) + ln(U)I(V,W, Y )]
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+cGF (w, z, u, v, y)[F (Z,U, V, Y ) + ln(Z)I(V,W, Y )]

+cGF (w, v, y, u, z)[F (V,U, Y, Z) + ln(V )I(U,W,Z)]

+cGF (w, y, v, u, z)[F (Y,U, V, Z) + ln(Y )I(U,W,Z)]

+cGI(w, u, z, v, y)I(U,W,Z) + cGI(w, v, y, u, z)I(V,W, Y )

+cGL(w, u, z, v, y)U ln(U) + cGL(w, z, u, v, y)Zln(Z)

+cGL(w, v, y, u, z)V ln(V ) + cGL(w, y, v, u, z)Y ln(Y )

+cG(w, u, z, v, y) (6.43)

where again the F functions on the right side are re-expressed in terms of F functions in the 3VIL

code using eq. (2.41). The coefficient functions are:

cGG(w, u, z, v, y) = − 1

t− p1
+

1

2

[

1

t− p2
+

1

t− p3
+

1

t− p4
+

1

t− p5

]

, (6.44)

cGF (w, u, z, v, y) =
cGF1

t− p1
+

cGF4

t− p4
+

cGF5

t− p5
, (6.45)

cGI(w, u, z, v, y) =
1

t− p1
− 1

t− p2
− 1

t− p3
, (6.46)

cGL(w, u, z, v, y) = − 1

2(t− p2)
− 1

2(t− p3)
− 1

4
cGF (w, u, z, v, y), (6.47)

cG(w, u, z, v, y) = cG0 +
cG1

t− p1
+

cG2

t− p2
+

cG3

t− p3
+

cG4

t− p4
+

cG5

t− p5
, (6.48)

with simple poles at

p1 = a/(a− w), (6.49)

p2,3 = r±(y, v, w), (6.50)

p4,5 = r±(u, z, w). (6.51)

The coefficients in eq. (6.48) are given by

cG0 = −11a− w + 3u+ 3v + 3y + 3z, (6.52)

cG1 = 11a(4w − u− v − y − z)/12(a − w), (6.53)

cG2,3 = 175a/48 + p2,3(−175a − 19w + 56u + 56z + 41v + 41y)/48, (6.54)

cG4,5 = 175a/48 + p4,5(−175a − 19w + 56v + 56y + 41u+ 41z)/48, (6.55)

and those in eq. (6.45) are given by, if u 6= z:

cGF1 = (w − u)/(u − z), (6.56)

cGF4,5 =
[

u− w ±
√

κ(u,w, z)
]

/2(u − z), (6.57)
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while if u = z they are:

cGF1 = 0, (6.58)

cGF4,5 = ±sign(w − u)/4, (6.59)

with sign(x) = x/|x| if x 6= 0, and sign(0) ≡ 0.

Finally, the differential equation for H is:

d

dt
H(U, V,W,X, Y, Z) = cHG(u, v, w, x, y, z)

{

G(X,U, V, Y, Z) − F (X,V,W,Z)

−F (X,U,W, Y ) + [2− ln(X)][I(U,W,Z) + I(V,W, Y )]

+W ln(W ) +Xln(X)/2 − 5X/2− 7W/3
}

+ (5 permutations)

+cH(u, v, w, x, y, z), (6.60)

where the “(5 permutations)” of squared masses (u, v, w, x, y, z) are determined by the tetrahedral

symmetry of Figure 2.3, and are given by (u, z, x, w, y, v) and (u,w, v, z, y, x) and (u, x, z, v, y, w)

and (w, v, u, y, x, z) and (x, v, y, u, w, z). The coefficient functions have the forms:

cHG(u, v, w, x, y, z) =
cHGn(u, v, w, x, y, z)

cHd1(u, v, w, x, y, z)cHd2(u, v, x)cHd2(x, y, z)
, (6.61)

cH(u, v, w, x, y, z) =
cHn(u, v, w, x, y, z)

cHd1(u, v, w, x, y, z)
ζ3 (6.62)

where cHGn, cHd1, cHd2, and cHn are polynomials in t of orders 4, 3, 2, and 2, respectively. The

roots of the quadratic polynomials cHd2(u, v, x) and cHd2(x, y, z) are respectively t = r±(u, v, x)

and t = r±(x, y, z). The cubic polynomial in t appearing in these denominators is:

cHd1(u, v, w, x, y, z) = −2a3 + (6a− u− v −w − x− y − z)a2t+ [−6a2 + 2a(u+ v

+w + x+ y + z) + u2 + v2 + w2 + x2 + y2 + z2 − uv − uw − vw − ux

−vx− vy −wy − xy − uz − wz − xz − yz]at2 + [uvx− uwx− vwx− uvy

−uwy + vwy − uxy − wxy − uvz + uwz − vwz − vxz − wxz − uyz − vyz

+xyz + u2y + uy2 + v2z + vz2 + w2x+ wx2 + a(uv + uw + vw + ux+ vx

+vy + wy + xy + uz + wz + xz + yz − u2 − v2 − w2 − x2 − y2 − z2)

−a2(u+ v + w + x+ y + z) + 2a3]t3. (6.63)

In terms of the roots R1,2,3 of this cubic polynomial in t, the expression for cH can be rewritten in

a very simple form:

cH(u, v, w, x, y, z) = −2ζ3

[

1

t−R1
+

1

t−R2
+

1

t−R3

]

. (6.64)
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Unfortunately, however, attempting to write cHG as a sum of simple poles leads to extremely

complicated expressions related to the solutions of a cubic equations, with residue coefficients that

are also singular in a variety of special cases for the squared masses. Therefore, we instead write:

cHG(u, v, w, x, y, z) =
(

4
∑

k=0

c
(k)
HGn t

k
)

/
(

7
∑

k=0

c
(k)
HGdt

k
)

, (6.65)

with coefficients c
(k)
HGn and c

(k)
HGd that are complicated polynomials in u, v, w, x, y, z. They are

given in an ancillary file called cHG.txt, both in the generic case and in all special cases involving

degenerate masses in which simplification occurs because the numerator and denominator can be

reduced by a common factor. This is important for the Runge-Kutta evaluation because it avoids

spurious higher-order poles at (or near) t = 1 when one or more squared masses vanishes (or is

relatively small). All of the natural special cases involving one or more degenerate squared masses

are identified and treated separately within cHG.txt. The computer library 3VIL automatically

identifies and deals with these special cases. It should be noted that there are other special cases

of squared mass arguments in which our expression for cHG has higher-order poles in t, but those

are all unnatural in the sense that they require relationships between squared masses that are not

degeneracies and not consequences of any possible symmetry of a quantum field theory. At, and

near, such unnatural special points one should be aware that there may be some loss of numerical

precision.

From the above results, we can now make a list of all of the poles in t in the complete set

of coupled differential equations. They consist of the union of the points: 0, and a/(a − xi) for

xi = u, v, w, x, y, z, and r±(xi, xj , xk) for every triplet of arguments of I functions appearing in

eq. (6.9), and r4(xi, xj , xk, xl) for every quartet of arguments of F functions appearing in eq. (6.6),

and the three roots R1, R2, and R3 of the cubic equation (6.63).

VII. IMPLEMENTATION IN SOFTWARE: 3VIL

In this section, we describe the software package 3VIL, available at [43], which takes inputs

u, v, w, x, y, z and the renormalization scale Q, and outputs the numerical values of all of the basis

integrals listed above using either the analytic expressions from section V, or, when those do not

apply, a simultaneous Runge-Kutta computation involving their coupled differential equations in t

found in the previous section.

The t = 0 values are known from eqs. (5.9), (5.38), (5.51), and (5.61), and so in principle

could serve as boundary conditions for the Runge-Kutta integration. However, there is a technical
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difficulty in that some of the coefficients cij and ci have unavoidable poles at t = 0, even though

the basis integral functions are always well-defined and smooth there. Therefore, we instead choose

to integrate starting from a small non-zero value of t. This is done by first analytically solving the

coupled differential equations as power series expansions in t:

I(X,Y,Z) = I(a, a, a) +
∑

n≥1

tnI(n)(x, y, z; a), (7.1)

F (U, V, Y, Z) = F (a, a, a, a) +
∑

n≥1

tnF
(n)

(u, v, y, z; a), (7.2)

G(W,U,Z, V, Y ) = G(a, a, a, a, a) +
∑

n≥1

tnG(n)(w, u, z, v, y; a), (7.3)

H(U, V,W,X, Y, Z) = H(a, a, a, a, a, a) +
∑

n≥1

tnH(n)(u, v, w, x, y, z; a). (7.4)

The leading order (t0) terms can be read off immediately from eqs. (5.9), (5.38), (5.51), and (5.61),

and the coefficients of t1 are given by:

I(1)(x, y, z; a) = (3a− x− y − z)

[

1

2
−

√
3Ls2 − ln(a) +

1

2
ln

2
(a)

]

, (7.5)

F
(1)

(u, v, y, z; a) = (7u− 2z − 2y − 2v − a)/6 + 3
√
3Ls2(u− a) +

7

3
ζ3(v + y + z − 3u)

+
[
√
3Ls2(v + y + z − 3a) + (a− 7u+ 2v + 2y + 2z)/4

]

ln(a)

+
1

2
(u− a)ln

2
(a) +

1

6
(3a − v − y − z)ln

3
(a), (7.6)

G(1)(w, u, z, v, y; a) = 19a/3 + 5w/3 − 2u− 2v − 2y − 2z + 2(
√
3Ls2 + ζ3)(u+ v + y + z

−w − 3a) +
[
√
3Ls2(6a− 2w − u− v − y − z) + 5(u+ v + y + z − 4a)/2

]

ln(a)

+(5a− w − u− v − y − z)ln
2
(a) + [(2w + u+ v + y + z − 6a)/6]ln

3
(a), (7.7)

H(1)(u, v, w, x, y, z; a) = ζ3(6a− u− v − w − x− y − z)/a. (7.8)

We have computed the remaining terms of these expansions up through order t8. These results are

provided in an ancillary files, called texpansions.txt, provided with the arXiv sources for this

paper. In 3VIL, we use these expansions to initiate the Runge-Kutta running at a small non-zero

value t = tin with magnitude 0.013, so that the associated numerical relative error is of the order

10−16, comparable to the round-off error for long double arithmetic.

Another complication is that the coefficient functions cij and ci also have poles at non-zero t.

These poles always lie on the real t axis; their locations were listed at the end of section VI. For

many (but not all) choices of inputs u, v, w, x, y, z, one or more of the these poles will lie in the

range of t between 0 and 1 (for any choice of a). In order to avoid numerical problems when such

poles are present with 0 < t < 1, we promote t to a complex variable, and integrate the coupled
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Re[t]

Im[t]

1

FIG. 7.1: Schematic of the contour in the upper-

half complex t plane for simultaneous evalua-

tion of the basis integrals in eqs.(6.1)-(6.9) us-

ing Runge-Kutta integration. The integrals are

initiated near the origin using an expansion for

small |t| = 0.013, and the contour finishes at

t = 1. The dots on the Re[t] axis represent poles

in the coefficients in the differential equations.

differential equations (6.11) in the upper† half complex t plane along a contour that avoids the real

t axis, as shown in Figure 7.1. By default, the displacement of the contour in the Im(t) direction is

0.8, but this can be changed by the user at run time. The initial point is chosen to be t = i|tin| in
this case, by default. In the nicer case of inputs u, v, w, x, y, z, and a such that there is no pole in

any of the coefficients cij or ci for 0 < t < 1, we save time and numerical accuracy by integrating

the coupled differential equation directly along the real axis from t = |tin| to t = 1. The user can

also change the default value of the magnitude of the starting point |tin| from 0.013 to another

value at run time.

The Runge-Kutta running is performed with the 6-stage, 5th-order Cash-Karp algorithm [44]

with automatic step-size adjustment. However, in some cases, the endpoint t = 1 is also a pole of

one or more of the coefficients cij and ci, even though all of the I, F ,G, and H integrals are well-

defined there. (For example, this occurs if any of u, v, w, x, y, z vanishes.) In these cases, we need

to use a somewhat unusual Runge-Kutta integration algorithm for the final step, such that there

are no evaluations of coefficients at the final endpoint. We encountered a very similar problem in

the case of TSIL, and here we employ exactly the same solution as described there, involving a

particular choice of 5-stage, 4th-order Butcher coefficients. The reader is referred to ref. [33] for a

more detailed description of this rather specialized Runge-Kutta strategy.

In special cases where the analytical values of one or more of the integrals is known, 3VIL

automatically replaces the values obtained by Runge-Kutta by the results of the analytical formulas

[or reduction of G(0, u, v, y, z) to F and I functions], using the results of section V. This is

particularly useful because we find that the cases in which this is possible tend to be also cases in

† A vacuum loop integral function of real squared mass arguments can have an imaginary part if, and only if, one
or more of the arguments is negative. For example, integral functions dependent on one mass scale x are obtained
by taking ln(x) → ln(|x|) − iπ for real negative x. More generally, approaching t = 1 from above in the complex
t plane provides the correct m2 − iǫ Feynman propagator prescription, and thus ensures that the imaginary parts
of the integral functions will have the correct signs when one or more squared masses is negative.
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FIG. 7.2: Numerical values of the integral H for selected squared mass arguments, from top to bottom

H(x, x, x, x, x, 1), H(x, x, 1, 1, x, x), H(x, x, 1, x, 1, 1), H(x, 1, 1, 1, x, 1), andH(x, 1, 1, 1, 1, 1) (left panel), and

H(0, 0, 0, 0, x, 1), H(0, 0, 0, x, x, 1), H(0, 0, x, x, x, 1), H(0, x, x, x, 1, x), H(0, 1, x, x, x, 1), H(0, x, 1, 1, x, 1),

and H(0, 1, 1, 1, x, 1) (right panel), as a function of 0 ≤ x ≤ 1, as computed by 3VIL using the Runge-Kutta

solution of the differential equations in t. In each case, the renormalization scale is Q = 1. At the endpoints

x = 0 and x = 1, each of the values shown agrees with an analytic special case given in eqs. (5.52)-(5.61).

which the Runge-Kutta running is subject to relatively larger numerical errors.

For illustration,‡ we show in Figure 7.2 the results for the integral H for selected one-parameter

families of arguments, parameterized by a single variable squared mass 0 ≤ x ≤ 1. The other

non-zero squared mass arguments and the renormalization scale Q are chosen to be 1 in these

examples. The values at the endpoints x = 0 and x = 1 are analytically known, and given in

eqs. (5.52)-(5.61). Note that these integral functions vary smoothly with x, and tend to decrease

as the squared mass arguments are increased.

We have also checked consistency of all of the other analytic special cases for I, E, F , F , G,

and H functions in section V, compared to the results obtained from Runge-Kutta integration of

the differential equations in t. The results reported to the user by 3VIL are always the analytic

ones, when they are available.

For input squared masses u, v, w, x, y, z and renormalization scale Q, 3VIL automatically evalu-

ates simultaneously all of the basis functions H, G, F , and I, and the associated functions E and

‡ The code used to obtain the data in this figure is included with the 3VIL distribution, as one example of how to
use the software. Another provided sample user application program shows how to compute and extract all of
the basis integrals for the case (u, v, w, x, y, z) = (t, t, b, h,W,W ) in the Standard Model, where particle names are
used to represent squared masses.
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F and Iǫ, as well as the alternative basis bold functions (for those who may prefer them), E, F,

G, and H in the conventions and notation given in section III above. The latter are evaluated and

stored as the coefficients of ǫ−n for n = 0, 1, 2, 3 (n = 0, 1 only for H). Utilities are provided in

3VIL for extracting the basis function values from the data struct after computation, for printing

results, etc.

Although the integral functions are always real for non-negative squared mass arguments, they

are computed and given as long double complex numbers. The magnitude of the imaginary part,

which arises due to the Runge-Kutta integration off of the real axis in the complex t plane, therefore

can serve as a check of accuracy of the calculation, as it should vanish in the idealized case of no

computational error. Integration off of the real axis is not always necessary, and is avoided by

default when possible, but if desired it can be forced by the user, and the magnitude of the

deviation of the contour from the real t axis can be varied by the user, as a check. We find that

the magnitude of the imaginary part computed by the Runge-Kutta method is often larger than

the error in the real part (determined either by analytical evaluation when possible, or by varying

the default characteristics of the integration), so we expect that the imaginary part is often a

conservative error estimate.

For generic input parameters, the relative accuracy of the results is typically on the order of

10−9 or better, but it can be worse for difficult cases corresponding to pseudo-thresholds where

some triplet of squared masses (x, y, z) of propagators meeting at a vertex have a small magnitude

of |√x ± √
y ± √

z|. Even in the worst cases of H integrals with more than one such pseudo-

threshold, the relative accuracy is typically about 10−4 or better, which should be good enough for

practical applications at 3-loop order. For generic input parameters, the total computation time

by 3VIL for the simultaneous computation of all of the integrals is well under 1 second on modern

hardware, but it can be somewhat more for the especially difficult cases. For analytical cases, the

computation time is extremely short and relatively negligible.

The README.txt file included with the 3VIL distribution available at [43] provides additional

technical details regarding the numerical integration techniques employed, a complete description

of the user application programming interface, and some sample user programs illustrating how to

use the library.
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VIII. OUTLOOK

In this paper, we have studied the basis functions for 3-loop vacuum Feynman integrals, and

provided results and a public open-source software package, available at [43], to efficiently evaluate

them. We plan to maintain, update, and improve the code package 3VIL indefinitely, and welcome

suggestions and bug reports.

One obvious application of these results is to the computation of the effective potential (or

its derivatives) for a general theory, and for the Standard Model in particular, at full 3-loop

order. At present, the Standard Model effective potential is known at 2-loop order [2], with

3-loop contributions known at leading order in QCD and top Yukawa couplings [45], including

resummation of infrared-singular Goldstone boson contributions [46, 47] (see also [48–51] for further

developments), and at 4-loop order at leading order in QCD [52]. Another possible application is

to the computation of self-energy functions and higher point functions, for which the results of the

present paper can be used in the limit of zero external momentum, or in systematic expansions

in small external momentum. For example, in supersymmetry, loop corrections depend on a large

number of distinct heavier superpartner masses. At the present time, the mass hierarchies of the

superpartner sector are conjectural, at best, so that for the foreseeable future it seems most useful

to present results in terms of basis functions that can then be evaluated numerically on demand.
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