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1 Introduction

As the only known viable theory of quantum gravity, it is clearly important to determine

possible low energy manifestations of string theory. One promising route to forging such

connections is to examine generic string-motivated scenarios for physics beyond the Standard

Model of particle physics.

A generic feature of many string constructions is the presence of additional U(1) gauge

fields. These can arise from dimensional reduction of higher p-form potentials, that is,

from the “closed string sector” of a model. Another common way such gauge fields arise

is from degrees of freedom localized on lower-dimensional branes, that is, from the “open

string sector.” In many cases, there can be degrees of freedom charged under both the U(1)

hypercharge factor of the Standard Model gauge group and one of these extra U(1)’s. This

motivates the study of kinetic mixing in the context of string phenomenology. For a partial

list of references, see e.g., [1–17], as well as [18–28].

But another generic feature of many string constructions is the presence of sectors which

are strongly coupled [29]. Indeed, while it is certainly possible to arrange for some parameters

to remain weakly coupled (as necessary for realizing the perturbative couplings of our world),

it is typically more problematic to arrange for all couplings to be small. In the context of

closed string parameters, this is the statement that it is easier –albeit less calculable– to

produce models with some geometric moduli set at string scale values. In the case of open

string sectors, this is the statement that there are extra sectors at strong coupling.

Having such strongly coupled extra sectors is also expected to generate novel phenomeno-

logical scenarios. For a review of some recent work on composite dark matter with strong

coupling dynamics, see for example [30]. Unparticles with a mass gap [31,32] provide another

class of strongly coupled extra sectors with novel signatures.

In this paper we combine these considerations, that is, we study string-motivated scenar-

ios with an extra U(1) which is strongly coupled. From this perspective, the gauge group of

the Standard Model can be approximated as a weakly gauged flavor symmetry. It is natural

to expect there to be states (which may be quite heavy) that are charged under both the

Standard Model and such extra U(1)’s. As far as we are aware, there have been only limited

analyses of such systems, with very specialized structure for magnetic objects [11, 12].

Kinetic mixing between a visible sector U(1) and an extra sector U(1) is captured by the

effective Lagrangian:

LU(1) = Ldiag + Lmix (1.1)

Ldiag = −1

4
FµνF

µν − 1

4
F ′µνF

′µν +
g2θ

32π2
F ′µνF̃

′µν (1.2)

Lmix = −χelec

2
FµνF

′µν − χmag

2
FµνF̃

′µν , (1.3)

where F ′µν is the field strength of an extra U(1) with magnetic dual field strength F̃ ′µν =
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Figure 1: Depiction of kinetic mixing with a strongly coupled extra sector. In this limit, the
standard one loop calculation of kinetic mixing does not apply and we must instead resort to
non-perturbative methods. Integrating out messenger states between the two sectors leads
to electric and magnetic kinetic mixing with the visible sector U(1).

1
2
εµνρσF

′ρσ. Here, we have omitted the theta angle of the visible sector since all its magnetic

objects are assumed to be quite heavy. The analogue of the fine structure constant in the

extra sector is αextra = g2/4π, so that strong coupling corresponds to taking αextra ∼ O(1).

A priori, then, kinetic mixing can occur via both a CP preserving and a CP violating

term:

Electric Mixing: FµνF
′µν (1.4)

Magnetic Mixing: FµνF̃
′µν . (1.5)

Electric kinetic mixing has been heavily studied, starting with [1, 2], and has led to a slew

of novel dark matter scenarios. For some examples, see references [33–39].

Magnetic kinetic mixing is far more challenging to study. If we have both electrically

and magnetically charged states of comparable mass, we are inherently at strong coupling,

and there is no duality transformation available to eliminate terms such as FµνF̃
′µν . Indeed,

another symptom of this fact is that when magnetic monopoles are present, FµνF̃
′µν can no

longer be expressed as a total derivative because there is no Lorentz invariant formulation

of the theory with a vector potential.1 Indeed, it has been known for some time that the

analogue of the QCD theta angle plays an important role in the dynamics of abelian gauge

theories with dyons (i.e., states with electric and magnetic charge) [41].

Precisely because the extra U(1) is at strong coupling, standard methods from pertur-

bative quantum field theory do not apply. It is therefore important to see whether we can

extract any quantitative information about kinetic mixing at strong coupling.

In this paper we develop a general set of methods to extract these mixing effects. In

the limit where the extra sector enjoys approximate N = 2 supersymmetry, we show how

to adapt formal methods from Seiberg-Witten theory [42, 43] to extract the exact form

of electric and magnetic mixing. We also use these methods to extract the spectrum of

stable objects, and to calculate the leading order effects of supersymmetry breaking induced

from coupling to the MSSM. Additionally, we calculate the leading order contributions to

1See, however, [40].
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scattering between visible sector states and heavy extra sector states. For some previous uses

of extended supersymmetry in the model building literature, see for example [44] and for

some discussion on other uses of magnetically charged states of an extra sector, see e.g. [45].

In F-theory realizations of the Standard Model (see e.g., [46–48] for reviews), the canon-

ical example of such an extra sector is a D3-brane probing a stack of seven-branes with E8

gauge symmetry [14, 15, 49–54]. That is, this realizes an N = 2 superconformal field the-

ory with E8 flavor symmetry [55, 56]. Tilting the seven-branes and activating background

fluxes then breaks this flavor symmetry down to the Standard Model gauge group, which in

particular contains a U(1) ⊂ E8 which we identify with hypercharge of the Standard Model.

Approximate conformal symmetry of the extra sector means that the overall mass scales

of the extra sector are dictated by coupling it to additional sectors. This can include both

mass scales associated with the visible sector Standard Model and its embedding in the

MSSM and a stringy GUT, but can also include other decoupled sectors (for example, in

gravity mediated supersymmetry breaking scenarios). For this reason, motivated values for

approximate N = 2 supersymmetric extra sector states can range from the TeV scale up to

the GUT scale. As noted in reference [15], partial breaking to N = 1 supersymmetry via

T-brane deformations [49] can induce a seesaw like mechanism for dark exra sector states,

which in turn can generate sub-TeV mass scales.

We also put some of these considerations together to provide a preliminary analysis of how

such extra sectors can serve as toy models for more realistic phenomenology. In particular, we

explain how such extra sectors arise in specific string constructions, and how to incorporate

the leading order effects of supersymmetry breaking. Since the resulting cosmological history

greatly depends on the associated mass scales, we mainly illustrate the general contours of

how such models work.

The rest of this paper is organized as follows. First, in section 2 we discuss in greater

detail some additional features of electric and magnetic mixing, as well as the effect such

terms make on scattering cross sections. Next, in section 3 we show how to apply formal

methods from the study of theories with N = 2 supersymmetry to calculate such mixing

effects, and how to incorporate the leading effects of supersymmetry breaking. Section 4

sets up the ingredients needed for theories with a single extra U(1), which we follow with

an analysis of kinetic mixing when the extra sector is the rank one H1 Argyres-Douglas

theory. In section 5 we discuss some aspects of the resulting phenomenology. We present

our conclusions in section 6. Some of the results presented in this paper also appear in the

PhD thesis of A. Malekian [57].

2 Electric and Magnetic Mixing

Our plan in this section will be to discuss some basic aspects of electric and magnetic kinetic

mixing. We also show how to extract some information about how visible states can scatter
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off of dark dyons of an extra sector. For a complementary account of some aspects of

magnetic mixing, see for example [11,12].

Our starting point is a system with r total U(1)’s, with effective Lagrangian:

LU(1)′s =
∑
i

(
−1

4
F i · F i +

g2
iiθii

32π2
F i · F̃ i

)
(2.1)

+
∑
i 6=j

(
−
χelec
ij

4
F i · F j −

χmag
ij

4
F i · F̃ j

)
. (2.2)

Working in terms of the electric and magnetic field strengths, we see two types of interaction

terms: Those which preserve CP and those which do not:

CP Preserving: F i · F j (2.3)

CP Violating: F i · F̃ j, (2.4)

which are respectively associated with electric kinetic mixing and magnetic kinetic mixing.

Now, since our extra U(1)’s will typically be at strong coupling, it is actually more

convenient to make use of a basis of fields in which charge quantization is manifest. By

abuse of notation, we shall use the same expression for the field strengths:

LU(1)′s = − 1

4g2
ij

F i · F j +
θij

32π2
F i · F̃ j (2.5)

= − 1

16π

(
Im τijF

i · F j − Re τijF
i · F̃ j

)
, (2.6)

where we sum repeated indices, and we have introduced the complexified parameter:

τij =
4πi

g2
ij

+
θij
2π
. (2.7)

The original mixing parameters are then given by:

χelec
ij =

Im τij√
Im τii

√
Im τjj

and χmag
ij = − Re τij√

Im τii
√

Im τjj
. (2.8)

We are interested in extra sectors which contain both monopoles and dyons. Some

care must be taken in properly defining a basis of electric and magnetic charges which

is also consistent with Dirac quantization. It is convenient to adopt a basis in which all

magnetic charges are integral and in which the physically measured electric charges may

contain shifts by the various theta angles [41]. So, we introduce 2r integers nelec
i and nimag,
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and corresponding electric and magnetic charges:

Qelec
i =

(
nelec
i − θij

2π
njmag

)
and Qi

mag = nimag. (2.9)

In our conventions, the electric fields ~Ei and magnetic fields ~Bi for a point particle with

these integral values satisfy:

~∇ · ~Ei = 4πδ3(~x)×
(

1

Im τ

)ij
nelec
j and ~∇ · ~Bi = 4πδ3(~x)× nimag. (2.10)

Electric-Magnetic duality in this setting amounts to the collection of transformations

which preserve the form of the Dirac pairing. We can, without loss of generality, adopt a

basis in which the pairing Ω has the block-diagonal form:

Ω =

[
1r×r

−1r×r

]
. (2.11)

We shall sometimes write ΩIJ with indices I, J = 1, ..., 2r, i.e., the index runs over both the

electric and magnetic charges.

Non-trivial duality transformations are then captured by 2r×2r matrices M with integer

values subject to the condition:

MTΩM = Ω, (2.12)

that is, the dualities are captured by Sp(2r,Z) transformations. It acts on the complexified

parameter matrix τij as:

τ 7→ (Aτ +B)(Cτ +D)−1, (2.13)

where we have decomposed M according to the block structure:

M2r×2r =

[
Ar×r Br×r

Cr×r Dr×r

]
∈ Sp(2r,Z). (2.14)

An important aspect of such duality transformations is that we must ensure that our

answers are compatible with this Sp(2r,Z) redundancy.2 It is common to work in a “fun-

damental domain” for τ , and label all charges with respect to this basis choice. For the

purposes of mapping out possible values of parameters, however, it is sometimes convenient

to work on the enlarged covering space. Unitarity imposes the condition that:

Im τ > 0, (2.15)

2More precisely, it may happen that duality transformations may only involve a congruent subgroup of
Sp(2r,Z). This is in turn dictated by the precise spectrum of BPS objects which transform into one another
under various duality transformations. We shall not dwell on this point in what follows.
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that is, that we have a positive definite matrix of kinetic terms. As we have already remarked,

this choice of parameterization contains some redundancies, because we can also quotient by

the duality group.

2.1 Dark Rutherford Scattering

Let us now suppose we have fixed a choice of fundamental domain, as well as a basis of

electric and magnetic charges. We would like to know how visible sector states interact with

hidden sector dyons.

The main idea will be to introduce a fixed background for our various fields. We then

consider small fluctuations around this background, which we identify with the visible sector

gauge potential. For this approximation to be valid, we really need the extra sector states to

be heavy, i.e., that we can simply substitute in the background values of the various fields.

This can be viewed as a mild generalization of the calculation given in [58] (see also [12]).

With this in mind, we shall aim to expand the various field strengths around background

values, with fluctuations captured by a vector potential:

F i
µν = F i,bkgnd

µν + ∂µA
i
ν − ∂νAiµ. (2.16)

Our goal will be to determine how the vector potentials Aiµ couple to the background sourced

by a dyon. To proceed further, it is helpful to work directly with the electric and magnetic

field strengths. The mixing Lagrangian is then given by:

LU(1)′s =
1

2g2
ij

(
~Ei · ~Ej − ~Bi · ~Bj

)
− θij

8π2
~Ei · ~Bj. (2.17)

Since we are working with static pointlike sources, it suffices to consider the coupling of the

scalar potential to this background:

~Ei = ~Ei
bkgnd − ~∇ϕi. (2.18)

Plugging in to our effective Lagrangian, the scalar potential couples to a source term:

Jeff
i = δ3(~x)×

(
nelec
i − Re τijn

j
mag

)
. (2.19)

Consequently, we see that in matrix elements between visible sector currents and a heavy

dark dyon, all our amplitudes will be proportional to the quantity:

Π(Mvis, Nhid) = qvis

(
1

Im τ

)vis,j (
nelec
j − Re τjkn

k
mag

)
, (2.20)

in the obvious notation.
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It is tempting to organize this into a single duality invariant expression. Indeed, the

scattering amplitude we compute cannot depend on the particular basis of fields we choose to

use in performing our calculation. The caveat is that if we perform a duality transformation

on the gauge fields and couplings, we must also transform the charges of the external states

entering into the scattering amplitude.

So, following the discussion in [12], we note that the Sp(2r,Z) invariant bilinear between

dyonic charges is:

Π(M,N) = MIΠ
IJNJ (2.21)

where:

MI =

[
nelec
i

nimag

]
, NJ =

[
nelec
j

njmag

]
, (2.22)

and:

ΠIJ =

[ (
1

Im τ

)il −
(

1
Im τ

)ij
Re τjl

−Re τij
(

1
Im τ

)jl
Re τij

(
1

Im τ

)jk
Re τkl + Im τil

]
, (2.23)

in the obvious notation. We view MIΠ
IJNJ as calculating the matrix element between a

visible sector current associated with MI and a hidden sector current associated with NJ .

Consider, then, the special case where we have a state with charge MI which couples to a

weakly coupled gauge boson, i.e., this is our “visible sector.” Assuming the extra sector state

is quite heavy and that the visible sector state has mass mvis and charge qvis and moves with

velocity ~v, we then get a mild generalization of the standard result for Rutherford scattering

(see e.g. [59]):
dσ

dΩ
=
|Π(M,N)|2

4m2
visv

4 sin4 θ
2

. (2.24)

An interesting feature of this formula is the dependence of the cross section on electric and

magnetic charge of the extra sector. In particular, we see that the strength of the magnetic

mixing term can have a non-trivial impact on scattering of dark magnetic states.

We caution that to really apply this formula, we need to have at least one scattering

state to be near the free field limit, i.e., we need it to be charged with respect to only weakly

coupled gauge boson, and for the states of the extra sector to be heavy. Thankfully, this is

the case of maximal interest for phenomenology, where we consider a visible sector electron

/ charged nucleon scattering off of a heavy hidden sector dyon.

It is also convenient to package the contribution to the scattering amplitude in terms of

an effective electric charge from the extra sector. We define an effective electric charge for a

dark sector state which scatters off a visible sector state:

qeff ≡
|Π(Mvis, Nhid)|
|Mvis|αvis

. (2.25)

Note that since Π is linear in Mvis, the overall value of the visible sector charge drops out of

this expression.
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One might also ask whether we can extend this calculation to a regime in which we

do not treat the extra sector as a fixed classical source. This is of particular relevance

for strongly coupled sectors where we can typically expect a rich spectrum of composite

bound states. When we do this, we need to have much more detailed information about

the spectrum of asymptotic scattering states. It is analogous to the problem in QCD of

determining the precise form of the parton distribution functions. Nevertheless, we can

already see that several novel features will present themselves in the general case. Precisely

because we expect a general theory of dyons to include non-trivial bound states with a

finite radius, these configurations can have non-trivial angular momentum (as dictated by

the Dirac pairing). This already tells us that if we consider a scattering event in which

the internal state of the composite object undergoes a transition, conservation of angular

momentum will lead to non-trivial selection rules on possible interaction terms. One can

view this as a generalization of the Callan-Rubakov effect [60–62].

3 Supersymmetric Approximation

In the previous section we presented some general considerations on electric and magnetic

mixing, and explained how in the regime where the dark charged objects are quite heavy, we

can determine the net effect of magnetic mixing on the visible sector. In particular, many

of the same considerations used to study electric kinetic mixing also carry over to this case

as well.

This prompts the question: Can we realize specific examples in which magnetic mixing

is generated, and moreover, can we actually calculate the overall strength of such mixing

terms? To frame the discussion to follow, let us recall that in a weakly coupled theory, the

leading order contribution to kinetic mixing between two U(1)’s is:

1

g2
ij

=
∑
ψ

c(ψ)
q

(ψ)
i q

(ψ)
j

16π2
log

(
M2

(ψ)

µ2

)
, (3.1)

where the sum is over states of mass M(ψ), and the q’s are the electric charges under the

respective gauge groups. Additionally, c(ψ) is a numerical pre-factor which depends on the

spin of the state.

We would like to generalize this calculation to the case where our extra sector states

interact with a strongly coupled U(1). The issue we face is that perturbative methods via

Feynman diagrams will no longer apply.

To give specific examples of how to integrate out massive dyonic states to calculate

possible mixing terms, we shall use the general formalism of supersymmetric gauge theories.

Our conventions follow [63]. Recall that in a supersymmetric gauge theory, we can package

the N = 1 vector multiplet (with a gauge field and its superpartner the gaugino as dynamical
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degrees of freedom) in terms of the superfield Wα = −iλα(y)+.... In this context, the electric

and magnetic mixing terms both descend from a single complexified parameter:

τij =
4πi

g2
ij

+
θij
2π
, (3.2)

and the kinetic term is:

LU(1)′s =
∑
i,j

Im

∫
d2θ

τij
8π
W (i) ·W (j) (3.3)

=
∑
i,j

− 1

4g2
ij

F (i) · F (j) +
θij

32π2
F (i) · F̃ (j). (3.4)

In spite of this canonical holomorphic structure, it is still challenging to extract the

parameters τij for a theory with both electric and magnetically charged states, even withN =

1 supersymmetry. To proceed further, we now assume that we have N = 2 supersymmetry.

Let us hasten to add that this will not require us to extend the U(1)vis gauge theory to

actually have N = 2 supersymmetry. All that is really required is that all extra sector states

organize into N = 2 supersymmetry multiplets. Indeed, we shall view the visible sector as

a weakly gauged flavor symmetry.

Let us review some basic aspects of N = 2 supersymmetric gauge theory. For further

details, see for example [64,65]. Now, an N = 2 vector multiplet consists of an N = 1 vector

multiplet and an N = 1 chiral multiplet. In our conventions, the scalar component of each

N = 2 vector multiplet is ai. When the ai have generic values, all states charged under the

U(1)’s will have picked up a mass and we can integrate them out.3 In this limit, then, we

get a low energy effective action involving N = 2 abelian vector multiplets. The key point

for us is that the parameters τij are given by:

∂aDi
∂aj

= τij, (3.5)

where we have introduced the scalar of the magnetic dual theory aDi given by the derivative

of the N = 2 pre-potential:4

∂F
∂ai

= aDi . (3.7)

3For example, for a weakly coupled U(1) gauge theory in which we have an N = 2 hypermultiplet with
electric charge qelec, we have a superpotential coupling W =

√
2Hc(qeleca)H. So, giving a background value

to the scalar a gives a mass to the corresponding hypermultiplet.
4Recall that in terms of N = 2 superfields (which by abuse of notation we also denote by ai and aDi ), the

low energy effective Lagrangian specifies the pre-potential F
(
ai
)

via:

Leff =
1

8π
Im

∫
d2θd2θ̃

(
F
(
ai
)
− aiaDi

)
. (3.6)
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An additional benefit of knowing the specific values of these parameters is that we can

also extract the mass M of BPS states with prescribed electric and magnetic charges from

the central charge Z. For a state of charge QI = (q1
elec, ..., a

r
elec; q

mag
1 , ..., qmag

r ) which also

transforms in a representation R of a flavor symmetry Gflav, we have:

Z =
∑
I,J

ΩIJQ
IAJ +

1√
2

dimR∑
b=1

qbm
b, with M2 = 2 |Z| . (3.8)

Here, we have introduced AJ = (aD1 , ..., a
D
r ; a1, ..., ar), which pair with the charges via the

Dirac pairing ΩIJ of equation (2.11). We have also introduced background mass parame-

ters mb which transform in the representation R along with corresponding half integrally

quantized charges:

qb ∈
1

2
Z. (3.9)

Physically, we should view the mass parameters as being specified by weakly gauging a

flavor symmetry and moving onto the Coulomb branch. From this perspective, we introduce

a complex scalar φ in the adjoint representation of Gflav. Activating a vev for this field yields

a mass for the hypermultiplet:5

mb

√
2

= ~wb · ~φ, (3.10)

where ~wb is a weight vector for a representation R of Gflav, and:

~φ =
rk G∑
s=1

~αsφ
s, (3.11)

where the ~αs’s are a basis of positive roots of the flavor symmetry algebra.

To extract the kinetic mixing with a visible sector, as well as the mass of various electric

and magnetic states, our task therefore reduces to computing aDi as a function of the values

aj and the φs. In particular, if we identify one of the flavor U(1)’s with the visible sector

U(1) so that φvis = avis, we can extract the kinetic mixing term:

τvis,i =
∂aDj
∂φvis

=
∂aDj
∂avis

. (3.12)

Thankfully, this is precisely what the general method outlined by Seiberg and Witten

in [42, 43] provides. The key point for us is that there is an auxiliary Riemann surface and

a meromorphic one-form λ (i.e., a one-form with simple poles) such that the parameters ai,

aDi and mb are encoded as contour integrals [42, 43]. The presence of marked points can

be visualized as the effect of weakly gauging a U(1), i.e. adding a long narrow tube to the

5For example, in a weakly coupled model, with a hypermultiplet in a representation R, we have the
superpotential coupling

√
2HcTRA φ

AH, where TRA are generators of Gflav in the representation R.
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Seiberg-Witten curve.

3.1 Supersymmetry Breaking Effects

A priori, it could happen that even if supersymmetry is badly broken in the visible sector,

it may be preserved in some approximate form in the extra sector. Indeed, the primary

assumption we make throughout this work is the presence of (possibly mildly broken) N = 2

supersymmetry in the extra sector. The nature of supersymmetry breaking will of course

impact some details of the mass spectrum, as well as the amount of mixing between the

visible and hidden sectors. Our aim here will therefore be to focus on aspects which are

more generic. In particular, we focus on those contributions which come from coupling to

the visible sector.

Since we are working in the limit where we treat the visible sector as a weakly gauged

symmetry, we can parameterize possible contributions in terms of non-zero background values

to the corresponding N = 2 vector multiplet. Assuming these effects are small, we can

expand in their auxiliary fields. In terms of N = 1 superfields avis and W vis, we can therefore

make the subsitutions:

avis 7→ avis + θ2F vis and W vis
α 7→ W vis

α + θαD
vis. (3.13)

For example, F-term breaking could arise from a symmetry breaking pattern which also

breaks a GUT group to the Standard Model gauge group. D-term breaking will inevitably

arise in the MSSM and its extensions due to the D-term potential of the MSSM. Expand-

ing as in line (3.13) is valid provided these mass scales are sub-dominant compared with

supersymmetric mass terms:

F vis

M2
SUSY

� 1 and
Dvis

M2
SUSY

� 1. (3.14)

Let us begin by tracking the impact of F-term supersymmetry breaking on the hyper-

multiplets. First of all, we can see that the BPS mass formula will now receive corrections.

To see why, note that the mass of a hypermultiplet with electric-magnetic charge vector QI

and flavor charges qb has central charge:

ZQ,q(a, a
D,m) =

∑
I,J

ΩIJQ
IAJ +

1√
2

∑
b

qbm
b. (3.15)

In particular, a hypermultiplet Hc ⊕H has a superpotential coupling:

Leff ⊃
∫
d2θ
√

2HcZQ,qH + h.c.. (3.16)
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Expanding around the background of line (3.13), we get:

ZQ,q 7→ ZQ,q + θ2F vis∂ZQ,q
∂avis

. (3.17)

If this is the only effect of supersymmetry breaking, we can calculate the correction to the

masses of states in the hypermultiplets:

∣∣MBosons
±

∣∣2 = 2 |ZQ,q|2 ±
√

2

∣∣∣∣F vis∂ZQ,q
∂avis

∣∣∣∣ and
∣∣MFermions

∣∣2 = 2 |ZQ,q|2 . (3.18)

This approximation requires F vis/M2
SUSY � 1. Observe also that the lightest state in the

hypermultiplet is a boson, and that the supertrace relation on the mass spectrum is obeyed.

An interesting feature of this answer is that there are actually two distinct contributions

to the mass splitting formula. First, we have the expected electric contribution from the

mass parameters proportional to qbm
b. For a magnetically charged state, there is another

contribution proportional to ∂aD/∂avis = τmix.

Consider next the effects of D-term supersymmetry breaking on the vector multiplets.

To track these contributions, we return to our kinetic mixing interactions, and make the

substitution of line (3.13):

Leff ⊃
1

8π

(
Im

(∫
d2θτijW

(i) ·W (j)

)
+ Im

(
F vis ∂τij

∂avis
λ(i) · λ(j)

)
+ Im

(
τvis,jD

(vis) ·D(j)
))

.

(3.19)

The middle term induces a gaugino mass matrix, which in particular can mix a visible sector

gaugino with the extra sector gauginos. The last term specifies an effective FI parameter for

the extra sector [37,38].

The net combination of contributions, in particular the presence of FI parameters and

mass terms for the hypermultiplets provides multiple ways in which supersymmetry may be

partially or fully broken. First of all, in the N = 2 supersymmetric limit, we see that in

various weakly coupled models, having a large mass but with an FI parameter switched on

will lead to a partial breaking of N = 2 to N = 1 supersymmetry [66]. Additionally, in

this case the vacuum generically sits at the origin of the Coulomb branch and one of the

scalars of the hypermultiplet develops a vev, breaking the U(1), thus screening some charges

(the ones which are local with respect to the hypermultiplet charge) and confining others

(the ones which are non-local with respect to the hypermultiplet charge). In such cases, we

do not expect to retain as much analytic control, because N = 2 supersymmetry has been

badly broken.

An alternative way to retain more analytic control is to also introduce a superpotential

mass term for the Coulomb branch scalar of the extra sector. In the context of string con-

structions where the extra sector originates from a D3-brane probing a visible sector, this will

generically happen in the presence of appropriate fluxes / instanton effects [14,15,49,67–69].
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Provided the mass of the Coulomb branch scalar is lower than that of the hypermultiplets,

but still higher than the supersymmetry breaking terms from mixing with the visible sector,

we can continue to use the N = 2 supersymmetric approximation developed here.

4 Rank One Theories

In this section we turn to some concrete examples of kinetic mixing at strong coupling. For

simplicity, we consider rank one theories, i.e., those with a single U(1) in the extra sector

Coulomb branch.

We further specialize to extra sectors which are obtained from a deformation of a strongly

coupled N = 2 superconformal field theory with a flavor symmetry group Gflav. This case is

particularly well-motivated from string constructions, as it arises from a probe D3-brane next

to a stack of intersecting seven-branes with exceptional gauge symmetry. In such examples,

the Standard Model is realized via the stack of seven-branes, and the D3-brane realizes an

extra sector [14,15,49–54]. We can describe these theories as N = 1 deformations of N = 2

superconformal field theories with exceptional flavor symmetry [55, 56]. Our discussion of

the associated N = 2 Seiberg-Witten geometry follows the presentation and analysis of

reference [70].

We assume that U(1)vis corresponds to a weakly gauged subgroup of Gflav. There can

potentially be additional weakly gauged U(1)’s contained in Gflav. We therefore denote the

local electric and magnetic coordinates as a and aD, and the various mass parameters as mb.

The central charge of a state with electric charge nelec and magnetic charge nmag transforming

in a representation R of Gflav is:

Z = neleca− nmaga
D +

1√
2

dimR∑
b=1

qbm
b , with M2 = 2 |Z|2 . (4.1)

The vacua are parameterized by u, the coordinate on the moduli space of vacua. In physical

terms, u is given by the vacuum expectation value (vev) of an operator of the strongly

coupled field theory. A non-zero value for this operator breaks conformal symmetry and

gives masses to the hypermultiplets of the theory.6 The corresponding Seiberg-Witten curve

is given by:

y2 = x3 + f(u,m)x+ g(u,m). (4.2)

The coefficients f and g are determined by our choice of a strongly coupled theory.

Let us now turn to the Seiberg-Witten differential. In general, we need to introduce

6In a weakly coupled SU(2) gauge theory, it would be given by Tr φ2, where φ is the adjoint valued scalar
of the N = 2 vector multiplet. In the case of a strongly coupled theory, this characterization is not available.
One symptom of this is that for the H1 Argyres-Douglas theory [71], for example, the scaling dimension of
u is 4/3, and for the E8 Minahan-Nemeschansky theory [55, 56] it has scaling dimension 6. These scaling
dimensions are calculated using the method given in [72] (see also [73]).
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a meromorphic one-form with appropriate periods which captures the spectrum of dyonic

states in our theory. In fact, there can be more than one choice, and this is dictated by

picking a representation R for the flavor symmetry group, so we denote the Seiberg-Witten

differential by λR. Physically, however, the coupling constants will not depend on this choice.

In more formal terms, we are specifying a section of the elliptic fibration over the u-plane.

The general form of λR is:

λR = α
xdx

y
+ β

dx

y
+
∑
b

γbyb
dx

y(x− xb)
, (4.3)

where the coefficients α, β and γb depend on the parameters u and m. Here, yb is the value

of y in equation (4.2) evaluated at the point x = xb. The parameters of the effective action

are in turn obtained by evaluating the contour integrals:

a =

∮
γA

λR, aD =

∮
γB

λR,
1

kR

mb

2
√

2
=

∮
xb

λR, (4.4)

where we have introduced mass parameters mb of the weakly gauged flavor symmetry. These

mb transform in the representation R. Here, kR = Ind(R)/n with Ind(R) the index of the

representation, which in our conventions is set to 1 for the fundamental representation.

Additionally, the parameter n = 1 if all mass parameters are associated with a unique pole

xb, and n = 2 if each pole xb is associated with two mass parameters. The additional factor

of 1/2 in the last contour integral is due to the fact that we have a two sheeted Riemann

surface, but are only encircling the pole on one of the sheets.

Physically, the xb are marked points associated to long narrow cylinders (i.e. weakly

gauged flavor symmetries) and where γA and γB are a basis of one-cycles on the Riemann

surface such that:

γA ∩ γB = 1, γA ∩ γA = 0, γB ∩ γB = 0. (4.5)

Now, our aim is to calculate the kinetic mixing couplings of our model. To this end, we

will need to evaluate the derivatives:

τextra ≡
∂aD

∂a
and τmix ≡

∂aD

∂avis
, (4.6)

where avis is the local coordinate of the visible sector Coulomb branch, associated with the

weakly gauge visible sector U(1). In this approximation we also have τvis ' i∞. Electric

/ Magnetic duality in the strongly coupled U(1) is the geometric statement that there is

in general an ambiguity in defining which one-cycle of our curve is γA, and which is γB. A

duality invariant way to parameterize the strength of the extra sector coupling is in terms
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of the Klein invariant J-function:

J(τextra) =
4f 3

4f 3 + 27g2
, (4.7)

which satisfies J(i) = 1 and J(e2πi/6) = 0.

Our plan in the remainder of this section will be to illustrate how to calculate the explicit

form of these mixing terms. We first present the expressions for the period integrals. We

will need these in order to extract numerical quantities of interest. After this, we turn to

a concrete model which exhibits strong coupling. We calculate the electric and magnetic

kinetic mixing parameters in this model, and also determine the spectrum of lightest stable

charged objects. One can view this as defining an interesting phenomenological scenario in

its own right, though from the perspective of a complete string theory construction, it is

better viewed as a toy model.

4.1 Elliptic Integrals

Since our eventual aim is to extract numerical values of the magnetic mixing, we will need

explicit expressions for the contour integrals of line (4.4). Following [74–76], we introduce a

basis of three elliptic integrals which we use to express the contour integrals of the Seiberg-

Witten differential around the one-cycles of the Seiberg-Witten curve. In addition to the

contours encircling the poles, we have one-cycles which encircle the roots of the cubic in x

appearing in equation (4.2):

y2 = x3 + fx+ g = (x− e1)(x− e2)(x− e3), (4.8)

where the roots of the cubic are:

ei = − 1

ξi−1

(
2

3Λ

)1/3

f+
ξi−1

3

(
3Λ

2

)1/3

with Λ = −9g+
√

3
√

4f 3 + 27g2 and ξ = e2πi/3.

(4.9)

We take a basis in which for u and m real, the cycle γA is given by encircling e2 and e3, and

the cycle γB encircles e1 and e2. Using the presentation in [76], we have the explicit form of
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the contour integrals in terms of elliptic integrals:

I
(1)
A =

∮
γA

dx

y
=

4

(e1 − e3)1/2
K(k) (4.10)

I
(2)
A =

∮
γA

xdx

y
=

4

(e1 − e3)1/2
[e1K(k) + (e3 − e1)E(k)] (4.11)

I
(3)
A (c) =

∮
γA

dx

y(x− c)
=

4

(e1 − e3)3/2

[
1

1− c̃+ p
K(k) +

4p

1 + p

1

(1− c̃)2 − p2
Π1

(
ν(c),

1− p
1 + p

)]
(4.12)

with:

k2 =
e2 − e3

e1 − e3

, p2 =
e2 − e1

e3 − e1

, c̃ =
c− e3

e1 − e3

, ν(c) = −
(

1− c̃+ p

1− c̃− p

)2(
1− p
1 + p

)2

. (4.13)

Similar considerations hold for the integrals around γB by interchanging e1 and e3.

In the above, we have introduced the elliptic integrals (see e.g. [77]):

K(k) =

1∫
0

dx

[(1− x)2(1− k2x2)]1/2
(4.14)

E(k) =

1∫
0

dx

(
1− k2x2

1− x2

)1/2

(4.15)

Π1(ν, k) =

1∫
0

dx

[(1− x)2(1− k2x2)]1/2 (1 + νx2)
, (4.16)

which in Mathematica are respectively given byK(k) = EllipticK[k2], E(k) = EllipticE[k2],

Π1 (ν, k) = EllipticPi[−ν, k2].

In obtaining numeric results, we must be mindful of a few subtleties. First of all, the

actual period integral expressions will depend on a basis of electric and magnetic charges for

the visible and extra sector. This can lead to shifts in the evaluation of period integrals by

contributions proportional to m/
√

2. Our guiding principle is that we recover the correct

asymptotics for all periods and masses in suitable decoupling limits.

An additional subtlety has to do with the specific implementation in Mathematica. In

the numerical evaluation of these expressions we will encounter branch cuts in the roots of

the cubic in x. To account for this, we fix one patch of values of the parameters for m real

and for small phases of u, and then continue to other values by permuting the roots of the

cubic to retain smooth behavior for all numerically evaluated quantities.
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4.2 The H1 Argyres-Douglas Theory

We now turn to a detailed analysis in the case where the extra sector is a deformation of

the H1 Argyres-Douglas theory [71]. This is also sometimes referred to as the “A3 Argyres-

Douglas theory” because of the way it is engineered by taking type IIB string theory on

the background R3,1 ×X, where X is a non-compact Calabi-Yau threefold with a local A3

singularity [78–80].

This is a four-dimensional N = 2 superconformal field theory which enjoys an SU(2)

flavor symmetry.7 Now, in this theory, there is a single U(1) subalgebra of SU(2), so we

have our Coulomb branch parameter u and a single complex scalar parameterizing breaking

patterns of the flavor symmetry. It therefore suffices to introduce mass parameters m1 and

m2 transforming in the doublet representation. Returning to equation (3.10), we have:

m1

√
2

= φ and
m2

√
2

= −φ, (4.17)

so we can work in terms of a single mass parameter m =
√

2φ.

The Seiberg-Witten curve and Seiberg-Witten differential in the fundamental represen-

tation are (see reference [70]):

y2 = x3 + ux+ w2 (4.18)

λ =

√
2

4πi

(u
3

+
m1y1

x

) dx
y

(4.19)

where:

w2 = −4m1m2 = 4m2 (4.20)

is the mass dependent quadratic Casimir, and y1 = 2m1. Physically, one can view w2 as the

gauge invariant operator proportional to Trφ2 we would get from weakly gauging the SU(2)

flavor symmetry. In the above, we used equation (4.4) with kR = 1/2 (since we have the SW

differential in the fundamental representation, but there is a single pole).

As a first step towards understanding the parameter space of our model, we compute the

Klein-Invariant J-function:

J(τextra) =
4u3

4u3 + 27(4m2)2
. (4.21)

So depending on the parameters, we can either be at strong coupling or weak coupling. For

7The name H1 simply comes from the fact that in an F-theory construction of this model, we have a
D3-brane probing a non-perturbative bound state of (p, q) seven-branes with SU(2) flavor symmetry. Indeed,
in F-theory there are two distinct ways to realize an SU(2) gauge symmetry on a seven-brane, one which is
perturbative and is called A1 (realized by a type I2 fiber), and one which is non-perturbative, and is called
H1 (realized by a type III fiber). For additional discussion on this point, see e.g. [81] and [82].
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example, three canonical values of interest are:

τextra = i for m = 0 (4.22)

τextra = e2πi/6 for u = 0 (4.23)

τextra ' i∞ for
(u

3

)3

+ 4m4 = 0. (4.24)

The parameters u and m each implicitly specify mass scales. More precisely, because the

H1 Argyres-Douglas theory is (at the origin of moduli space) actually a superconformal field

theory, homogeneity allows us to fix the scaling of u and m as a function of energy scales.

We have:

u ∼ Mass4/3 and m ∼ Mass. (4.25)

The fractional power in the scaling of u is one of the hallmarks of a strongly coupled super-

conformal field theory. This leaves us with one unfixed dimensionless ratio, m4/u3.

Depending on the phenomenological scenario, the actual mass scales involved could be

anywhere from the GUT scale down to the TeV or sub-TeV scale. For example, in many

string-motivated scenarios, it is natural to take m ∼ 1016 GeV since this is the implicit scale

set by separating the various seven-branes from each other. On the other hand, if we assume

that the dominant contribution to conformal symmetry breaking is set by supersymmetry

breaking effects, a far lower reference scale is also possible.

We now turn to the calculation of the periods a and aD and their derivatives. We have:

a =

√
2

4πi

(
2u

3
I

(1)
A + w2I

(3)
A (0)

)
− 2

3

m√
2

(4.26)

aD =

√
2

4πi

(
2u

3
I

(1)
B + w2I

(3)
B (0)

)
+

2

3

m√
2
, (4.27)

with w2 = 4m2, as per equation (4.20). Let us make a few comments on the presence of the

terms proportional to m in our period integrals. Strictly speaking, this last piece is just an

artifact of how we pick a basis of contour integrals, i.e., how we choose to define our basis of

electric charges with respect to the visible sector. The choice in the above equation comes

from imposing the condition that as we take the m→∞ decoupling limit, a and aD should

be independent of m. Additionally, we pass to a theory with no continuous flavor symmetry,

and in which the asymptotic value of aD/a→ exp(2πi/6), i.e., the value of τextra in this limit

is frozen. This induces a flow from the H1 Argyres-Douglas theory to what is known as the

H0 Argyres-Douglas theory.

The first derivatives of the periods provide us with the complexified gauge coupling and

the mixing parameter:

τextra ≡
∂aD

∂a
=
∂aD/∂u

∂a/∂u
and τmix ≡

∂aD

∂φ
=
√

2
∂aD

∂m
. (4.28)
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Taking one more derivative provides us with the terms which appear in gaugino mixing (after

supersymmetry breaking) as well as the coupling between the Coulomb branch scalar and

the U(1) gauge fields. In evaluating these derivatives, we must treat a and φ as independent

variables.

To get a sense of the overall values of these coupling constants, and to emphasize the

point that these really are calculable quantities, we present a few of the numerically evaluated

derivatives obtained via our method. In general, it is challenging to obtain a set of parameters

which remains in a single fundamental domain (i.e., a single basis of electric and magnetic

charges). To bypass these issues and get a sensible class of examples, we hold fixed fixed

u = 0.1, with m in powers of 5. For the first derivatives of aD, we have:

τextra = ∂aD/∂a τmix = ∂aD/∂φ

m = 0.04 0.13 + 0.99i (−2.0 + 1.0i)× 10−1

m = 0.2 0.45 + 0.90i (−2.4 + 3.5i)× 10−2

m = 1.0 0.50 + 0.87i (−2.6 + 4.4i)× 10−3

m = 5.0 0.50 + 0.87i (−3.0 + 5.2i)× 10−4

, (4.29)

and for the second derivatives of aD, we have:

∂2aD/∂a∂a ∂2aD/∂a∂φ ∂2aD/∂φ∂φ

m = 0.04 3.6× 100 − 5.4i 3.7− 2.4i (5.1− 1.4i)× 100

m = 0.2 3.1× 10−1 − 3.4i −0.7− 2.1i (2.4− 2.9i)× 10−1

m = 1.0 6.9× 10−3 − 0.65i −0.2− 0.4i (4.9− 8.0i)× 10−3

m = 5.0 1.6× 10−4 − 0.13i −0.05− 0.08i (1.1− 1.9i)× 10−4

. (4.30)

Let us stress that the physically more meaningful quantity is given by a duality invariant

expression such as a scattering amplitude, as in our discussion in section 2. The reason is

that to get a proper notion of the overall strength of kinetic mixing, we also need to know

the spectrum of charges in the extra sector which can couple to the visible sector.

4.2.1 BPS Spectrum

For various model building considerations it is important to know the spectrum of stable

objects in our system, and their charges in some duality frame under both the extra sector

U(1), and the visible sector U(1). In more realistic models where supersymmetry is broken,

the spectrum will be deformed with a mass splitting specified as in our discussion around

equation (3.18). A non-zero mass splitting within a multiplet also means that there can now

be non-trivial decays to the lowest mass state. With an unbroken U(1), however, this bottom

component will be stable. We therefore view the N = 2 supersymmetric approximation as

telling us the leading order structure of stable objects in our theory.

Let us now turn to the BPS spectrum of the H1 Argyres-Douglas theory. With the explicit

19



form of the period integrals in hand, we can also determine the lightest BPS particles at

any point on the Coulomb branch. For early work on the BPS spectrum of Argyres-Douglas

theories, see reference [80]. In general terms, the spectrum of stable BPS states in the

system will depend on the value of the Coulomb branch parameter and mass parameters of

the model. An additional feature is that we should expect “wall-crossing phenomena” in

which the spectrum of stable objects actually changes as we cross real codimension one loci

in the moduli space of vacua [42,83,84].

Returning to the BPS formula for the mass of our states given in equation (4.1), we have

for a state of the rank one H1 Argyres-Douglas theory:

Z = neleca− nmaga
D + qflav

m√
2

, with M2 = 2 |Z|2 , (4.31)

so we see that if we take m → ∞, a state with non-zero charge with respect to the flavor

symmetry will develop a large mass.

It is also possible to arrange for the flavor neutral state to be lightest by appropriately

tuning the parameters and moduli of the theory. For example, we can ensure that we have

an approximately massless state by working in the special limit where the discriminant is

nearly zero:

4u3 + 27(w2)2 ' 0, (4.32)

with w2 = 4m2 given by equation (4.20). Indeed, in this case the length of the cycle used to

generate the period a collapses to zero size, and the corresponding BPS mass of a U(1)extra

electrically charged state will be zero. In the special case of the H1 Argyres-Douglas theory,

we can also see that when u and m are both non-zero, the coupling constant τextra will be

near i∞, i.e., the point of weak coupling.

Let us now turn to the calculation of the BPS spectrum of the theory in the Coulomb

phase. There are by now various methods for performing such a calculation. These include

the method of “BPS quivers” e.g., [85–89], as well as the method of spectral networks,

e.g. [90,91]. Since we have an explicit presentation for all of the period integrals and we can

track the dependence on moduli, we shall use the method of BPS quivers.

The main idea in the BPS quiver method is to recognize that all of the BPS particles

are obtained as bound states of smaller elementary constituent particles. The number of

independent charges for these particles is completely fixed by the number of U(1) factors of

the model. For each gauged U(1), we get two charges (one electric and one magnetic), while

for each U(1) flavor symmetry we get one charge (just electric). The dynamics governing

the stability of a configuration is encoded by a supersymmetric quiver quantum mechanics

(SQM) with four conserved supercharges [92]. The quiver is determined by the elementary

constituents as follows: it has nodes in one to one correspondence with the charges of the

elementary constituents and directed arrows between two such quiver nodes specified by the

Dirac pairing for these charges. In string theory terms, we view the nodes as candidate BPS
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objects, and the directed arrows as open strings which stretch from one BPS object to the

next. The existence of a bound state of given charge corresponds to the existence of a ground

state for the corresponding SQM [92,93].

For the Argyres-Douglas theory, the total number of generators of the Coulomb branch

charge lattice is 2 + 1 = 3. Indeed, we can express the charge of a candidate state as a three

component vector which we write as a linear combination of the form:

(nelec, nmag, qflav) = γ =

2r+f∑
i=1

niγi for ni ≥ 0. (4.33)

Here, the γi are the constituent charges out of which all other stable bound states are

constructed.

Now, as we vary the value of the complex phase in u, we can expect some new bound

states to enter or exit the spectrum. For the H1 Argyres-Douglas theory, the full list of

candidate states is dictated by the root space of the corresponding A3 lattice [80]:

Candidate Charges = {±γ1,±γ2,±γ3,±(γ1 + γ2),±(γ2 + γ3),±(γ1 + γ2 + γ3)}. (4.34)

For this model, all the stable BPS states are hypermultiplets.8

The task of finding the spectrum of stable states therefore decomposes into two pieces.

First, we need to determine a good quiver basis {γi}i in the sense of references [87, 93] and

second, we determine which values of ni in equation (4.33) lead to stable particles.9 The

actual presentation of the quiver as well as the spectrum of stable particles will depend on

the particular region of moduli space where we are located. The basis of charges we use to

construct our bound states will change, i.e. we have a transformation of the form:

γi 7→ γ′i =
∑
j

Mijγj, (4.35)

for Mij an integer valued matrix.10 This leads to a “mutation” or Seiberg duality on the

quiver SQM. The candidate physical charges of line (4.34) can also change, i.e., we build

our spectrum of candidates using γ′i rather than γi. A mutation simply reflects the fact

that the structure of composite objects may change as we change the moduli / parameters

of the model: an object which looks elementary in one frame, can look like a bound state

in another. In string theory terms, this means that we must alter the BPS states used to

construct bound states, and correspondingly the spectrum of open strings will also change.

8 Borrowing from standard techniques in soliton theory, the spin of a BPS multiplet is determined
‘quantizing’ the moduli space of vacua for the SQM [94,92] (see also [95])

9 We find, however, that the technical definition specified in [87,93] for a good quiver basis is not enough
to determine it uniquely, there is an extra condition (compatibility among mutations and wall-crossings)
which needs to be imposed. The details of this point are discussed in appendix A.

10 The precise form of the allowed matrices Mij is subject to the same caveat discussed in footnote 2.
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On top of that the actual spectrum of stable BPS states can change as we move in moduli

space (wall-crossing phase transitions).

Since we have an explicit presentation of the various period integrals, it is straightforward

for us to sweep over possible choices of charge assignments. The main complication is to

ensure that we have indeed found all of the stable particles at a given point in the moduli

space, i.e. wall crossing.

At a qualitative level, there are three general regimes of possible interest:

Large Mass: |m| �
∣∣u3/4

∣∣ (4.36)

Tuned Mass:
(u

3

)3

+ 4m4 ' 0 (4.37)

Small Mass: |m| �
∣∣u3/4

∣∣ . (4.38)

For illustrative purposes, we study in detail the large mass regime. We shall also explain

how a similar analysis applies at small mass parameters.

Consider, then, the large mass regime. Here, we have τextra ' e2πi/6 ' e2πi/3, so we are

at strong coupling. An additional simplification is that we always expect the lightest object

to be neutral under the flavor symmetry. To determine the spectrum near this point, it is

helpful to rely on the existing analysis of BPS quivers presented for example in [87,89]. For

the H1 theory, there are always at least three stable BPS states corresponding to the three

nodes of the BPS quiver. These are always N = 2 hypermultiplets. In addition to these

three states, there can in principle be others which are also stable.

We find that when |u| = 0.1 and m = 1, we are effectively in the large mass regime. So

let us turn to an analysis of the BPS quiver in this regime. To illustrate, suppose that we

hold fixed the parameters:

u = 0.1 exp(iθ), m = 1. (4.39)

When 5π/3 ≤ θ ≤ 2π, the quiver SQM governing the dynamics of the BPS solitons is the

quiver with nodes:

BPS Quiver: γ1 −→ γ2 ←− γ3, (4.40)

with:
node \ charge nelec nmag qflav

γ1 +1 +1 +1/2

γ2 −1 0 0

γ3 +1 +1 −1/2

, (4.41)

so the 3 hypermultiplets with charges γ1, γ2, and γ3 are the elementary BPS states in this

region of moduli space. Notice that we have a stable “dark electron” with charge γ2. This

is a stable BPS particle which is neutral under the flavor symmetry. For these values of θ

there is an additional bound state with charge γ2 + γ3 in the spectrum. Now, as we vary

the phase θ, we can expect that some of these objects ceases to be elementary and decay to
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Figure 2: left: Plot of the spectrum of masses for the stable states as a function of θ in the
large mass regime. For numerical purposes, we take u = 0.1 exp(iθ) and m = 1. Notice that
a BPS state with charge γ3 − γ1 + γ2 enters the spectrum in the region 0.525 < θ < 3.65.
This is possible precisely because the BPS quiver relevant in that region is a mutant of the
one in line (4.40) (see appendix A for the details). right: Magnified region of the plot of
|Z| with u = 0.1 exp(iθ) and m = 1, which shows γ3 destabilizing and γ1 + γ2 stabilizing in
complementary regions.

other stable constituents. To figure out the possible changes as we move around, we need to

explore the various mutants quiver SQMs occurring as we vary θ in line (4.39). The actual

pattern of wall-crossings is analyzed in details in appendix A. The precise structure of the

BPS spectrum as a function of θ is plotted in figure 2. We find that in sweeping over all

values of the phases for |u| ∼ 0.1 the “dark electron” with charge γ2 remains a stable object

of the spectrum.

Let us also note that although the “dark dyon” with charge γ1 + γ2 + γ3 has lower mass

than its flavor charged counterparts, it is nevertheless not a stable object in the large mass

regime for |u| ∼ 0.1. Rather, it can enter the spectrum as we decrease the value of m (see

figure 3 as well as appendix A).

Similar analyses can be carried out for all of the regions of moduli space and mass

parameter space. An important point is that near the region m = 0, we also have a restored

SU(2) flavor symmetry, so as a consequence, the states have a mass degeneracy compatible

with this fact. Another interesting feature close to this region is that the state of charge γ2

is not always the lightest in the spectrum.

4.2.2 The Dark Electron and Dark Dyon

From our analysis of the mass spectrum of the H1 Argyres-Douglas theory, we can also draw

some conclusions about the spectrum of stable particles which are neutral under the visible

sector gauge coupling. For both the large and small mass regime, the states of charge ±γ2

are stable. We refer to this as a “dark electron” since it only has electric charge under the

extra sector U(1). Additionally, in some regions of parameter space, there is another flavor

neutral state which in a suitable basis of electric and magnetic charges has charge vector

±(γ1 + γ2 + γ3) which we refer to as the “dark dyon” since it has both electric and magnetic
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Figure 3: left: Plot of the spectrum of masses for the stable states as a function of m
interpolating from the large mass regime m = 1 to m = 0. For numerical purposes, we take
u = 0.1 exp(i5.5). The whole deformation is covered by the BPS quiver in line (4.40): no
mutation occurs. right: Magnified region of the plot which shows 1.) the region where
the dark dyon stabilizes and 2.) the small region where the dark electron ceases to be the
lightest massive excitation.

charge under the extra sector U(1).

Now, even when these states are unstable, they can still play an important role in scat-

tering events between the visible and hidden sector. The reason is that with a sufficiently

energetic process in the extra sector, we may still be able to generate such charged states.

Since we can also calculate the effects of kinetic mixing, we now ask what the effective elec-

tric charge under the visible sector U(1) is for each of these states. The effective electric

charge follows from our formula for dark Rutherford scattering presented in equation (2.25).

To keep the analysis simple yet tractable, we shall primarily focus on the single slice of

parameters u = 0.1, with m varying by powers of 5. As in our earlier analyses, we work in

dimensionless units, i.e., depending on the scale of conformal symmetry breaking (dictated

by its coupling to other sectors) the actual mass of the state could be anywhere from the

TeV scale to the GUT scale. Here then, is the list of effective electric charges as we vary the

value of m:

Dark Electron m = 0.04 m = 0.2 m = 1.0 m = 5.0

|qeff (γ2)| 2.0× 10−2 1.0× 10−3 1.3× 10−5 1.8× 10−7

|Z(γ2)| 2.9× 10−2 1.8× 10−2 1.1× 10−2 6.3× 10−3

, (4.42)

Dark Dyon m = 0.04 m = 0.2 m = 1.0 m = 5.0

|qeff (γ1 + γ2 + γ3)| 4.0× 10−1 8.1× 10−2 1.0× 10−2 1.2× 10−3

|Z (γ1 + γ2 + γ3)| 5.6× 10−2 3.2× 10−2 1.9× 10−2 1.1× 10−2

(4.43)

where for reference we have also included the corresponding values of the central charge.

Again, we emphasize that the dark dyon is not stable in some regions of parameter space,

e.g., in the large mass regime |m| & 1.
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5 Phenomenological Toy Models

Having spelled out the main technical elements of how to compute kinetic mixing at strong

coupling, we now turn to some aspects of how these models embed in more realistic phe-

nomenological scenarios. Even so, we will keep our discussion at the level of toy models,

using the H1 Argyres-Douglas theory as our primary example.

Indeed, in the context of string constructions, the Argyres-Douglas theory should be

viewed as a subsector of a more complete model. From a bottom up perspective, however,

we can view deformations of the H1 Argyres-Douglas theory as a candidate extra sector in

its own right. Even in this case, however, there are several moving parts which can impact

the resulting phenomenology.

The rest of this section is organized as follows. First, we place the H1 Argyres-Douglas

theory in the context of more general stringy constructions which incorporate the Standard

Model. After this, we explain how different scales of conformal symmetry breaking lead to

different types of phenomenological scenarios.

5.1 String-Motivated Examples

One of the motivations for this work is the fact that string constructions typically contain

extra U(1)’s which can mix with the visible sector U(1). To illustrate the general suite of

ideas, we focus on the class of extra sectors introduced in [14,15,49,50,96]. In these models,

the Standard Model is realized from a stack of intersecting seven-branes, and the extra sector

is realized by a probe D3-brane. This D3-brane is energetically attracted to the visible sector

by the same mechanism which generates quark and lepton masses and mixing angles [67,97]

(see also [68,69]). As a passing remark, we note that in constructions of the Standard Model

via heterotic M-theory, a similar class of extra sectors are realized by M5-branes wrapped

on a curve of the compactification manifold.

A priori, there may be other local minima for the D3-brane, so fluxes may localize it at

other points of the compactification manifold. Indeed, we can expect there to typically be

many such D3-branes. The total number in a general type IIB background is given by the

formula [98]:

ND3 =
χ(CY4)

24
+

∫
B

HNS ∧HRR, (5.1)

where χ(CY4) is the Euler characteristic of the elliptically fibered Calabi-Yau fourfold used to

define an F-theory background, and HNS and HRR are three-form fluxes which are integrated

over the six-dimensional internal spacetime B. Values of χ(CY4)/24 can range from O(102)

to O(104) (see e.g., [99, 100]), so depending on the choice of background fluxes, one can

contemplate scenarios with either many D3-branes, or only a small number.

One of the interesting features of kinetic mixing is that because it comes from integrating
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out heavy states to generate marginal couplings, we can expect there to be possible contribu-

tions to electric and magnetic kinetic mixing even for those D3-branes which are far removed

from our visible sector stack. So, even for extra sector models where other direct couplings

to the Standard Model are suppressed (as they typically will be), kinetic mixing at strong

coupling can still survive.

Let us now turn to more details of the resulting effective field theory on a D3-brane.

In the limit where the D3-brane is close to the Standard Model stack of intersecting seven-

branes, we can visualize this extra sector as an N = 2 superconformal field theory with E8

flavor symmetry [55,56] which is subject to N = 1 relevant and marginal deformations which

induce a flow to an N = 1 superconformal field theory in which the flavor symmetry of this

IR theory includes the gauge group of the Standard Model [14,15,49,50,96].

We organize our discussion according to the decomposition of SU(5)GUT × SU(5)⊥ ⊂
E8, with corresponding mass deformations valued in the adjoint representations, i.e. we

schematically write φGUT and φ⊥ for these Coulomb branch parameters. Geometrically, the

main idea is that the Coulomb branch parameter u describes the position of a D3-brane

normal to the SU(5)GUT seven-brane. There are also two complex directions u1 and u2

parallel to the seven-brane. In the associated field theory, u1 ⊕ u2 parameterize a decoupled

hypermultiplet. To get an N = 1 deformation, we therefore allow the mass parameters of the

theory to depend on u1 and u2, so we make the substitution φ⊥ 7→ φ⊥(u1, u2). Additionally,

we need not require that φ⊥ is even diagonal. We can also consider mass deformations which

break SU(5)GUT to SU(3) × SU(2) × U(1), i.e. by taking a mass deformation in the same

direction as U(1)Y .

To apply the methods of the present paper, we must also assume that the deformation to

an N = 1 vacuum is sufficiently mild, i.e. we have a ”short flow” from a neighboring N = 2

theory. Now, even though we only have N = 1 supersymmetry, there is still a notion of a

Seiberg-Witten curve, with the Seiberg-Witten differential now replaced by a meromorphic

four-form of a non-compact Calabi-Yau fourfold. The main caveat to extracting numerical

estimates, however, is that the physical couplings may now receive non-trivial contributions

from wave function renormalization. This shows up quite directly in other contexts as

corrections to the scaling dimensions of operators in the deformed theory, see e.g., [15, 50].

While we leave a complete analysis of this more involved case to future work, it is in-

teresting to already explore some of the general features of these models. First of all, we

see that if we take most of the mass parameters to be of the GUT scale or higher, then the

lightest states which can meaningfully participate at low energies will be those which are

neutral under the flavor symmetries. As we have already seen in the H1 Argyres-Douglas

theory, there is a lightest state which is neutral under all such flavor symmetries, with mass

controlled primarily by the Coulomb branch parameter. Additionally, we can re-incorporate

some of the effects of heavier states of the model. These will show up as line operators (that

is, heavy quarks) of the theory, and we can also contemplate bound states of comparatively

light objects to these line operators. The excitation scale for these heavy objects can natu-
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rally be at the GUT scale or higher, so in this sense, their direct relevance for phenomenology

may be more limited. It is interesting to note, however, that in some cases we can tune pa-

rameters of the string-based model to realize excitations of these objects at lower energy

scales. Indeed, an intriguing novelty of rank one theories with larger flavor symmetry groups

such as E6, E7 and E8 is the presence of whole Regge trajectories of stable objects in certain

ranges of moduli space [89,101–103]. This clearly leads to a rich class of possibilities, which

would be quite interesting to study in future work.

5.2 Mass Scales

To make more contact with model building considerations, we clearly need to specify possible

mass scales for our model. Since we have an extra sector with approximate conformal

symmetry, we expect that the masses of the extra sector states will be dictated by the scale

of conformal symmetry breaking. Even in this case, however, we can get different mass

hierarchies, since as we saw in the case of the H1 Argyres-Douglas theory, taking the mass

parameter m very large still leaves us with a light state which we referred to as the “dark

electron.” In other regimes of parameter space, this can also be accompanied by a “dark

dyon.” Let us step through the different kinds of scenarios associated with each sort of mass

scale.

5.2.1 GUT Scale Masses

Suppose we take the simplest scenario in which all hypermultiplets have GUT scale masses.

This possibility is also well-motivated in the context of string constructions. In this case,

we expect to be left at low energies with a collection of U(1) gauge bosons and their N = 2

superpartners. Transmission of supersymmetry breaking to the extra sector will then lead

to further mass splittings amongst the states.

The phenomenological bounds on extra decoupled U(1)’s are quite weak, since without

any charged states from the extra sector, there is no way to directly detect these vector

bosons.

The caveat to this statement is that we also have the N = 2 superpartners, which

include a gaugino, and a decoupled N = 1 chiral multiplet. As we have already remarked,

the extra sector gauginos can mix with visible sector gauginos. These mixing terms depend

on the details of supersymmetry breaking, but we have shown in section 3 how to calculate

these contributions in certain supersymmetry breaking scenarios by computing the second

derivatives of aD with respect to a and m. Some aspects of the phenomenology of these

photini mixing have been studied for example, in reference [104].

Consider next the N = 1 chiral multiplet. In the limit of exact N = 2 supersymmetry,

the presence of a complex scalar with no potential suggests the presence of a modulus,

which if left unstabilized, can lead to a cosmological history in which the energy density is
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dominated by such a rolling scalar.

There is a simple way to ameliorate this issue by introducing an overall superpotential

deformation of the system, i.e. W (u), for the Coulomb branch parameter. For us to continue

to use our N = 2 supersymmetric approximation, we simply need to require that the mass

scale for the scalar is small compared to those of the charged states, i.e. that ma � 〈a〉,
with a the local expression for the Coulomb branch scalar. This is technically natural since

such mass terms are conformally suppressed in this class of models [15, 49].

5.2.2 TeV and Sub-TeV Scale Masses

It is also natural to consider scenarios in which some of the extra sector states have masses

far below the GUT scale. For example, if the D3-brane remains close to the Standard Model

stack, we can still expect some flavor neutral hypermultiplets to survive to much lower ener-

gies. Again, this is technically natural since a superpotential deformation for the Coulomb

branch parameter can be conformally suppressed [15, 49]. In such cases, transmission of su-

persymmetry breaking to the extra sector will also contribute to the masses of these states.

We can also see from our analysis near lines (4.42) and (4.43) that the effective electric

charge for these flavor neutral states can be quite small. For some discussion on cosmologi-

cal constraints on millicharged particles, as well as scenarios with an exactly massless U(1)

decoupled from the Standard Model, see respectively [105] and [106] (see also [107]).

In the TeV scale mass range, much of the phenomenology is dictated by whether the

extra sector U(1) is electrically screened / magnetically confined or remains as a long range

force carrier. Some aspects of the former case were studied in detail in reference [15] to

which we refer the interested reader for further details. In this case, we get string-motivated

examples of asymmetric dark matter models with order 10 GeV masses for dark matter.

The sub-TeV mass scale originates from a seesaw like mechanism for dark states connected

with partial breaking to N = 1 supersymmetry [15]. Even lower mass scales are potentially

possible, though the presence of heavier extra sector states charged under the visible sector

means that we must exercise some care in building such models.

If, on the other hand, we assume that the extra sector U(1) remains as a long range force

carrier, then we have a conserved electric and magnetic charge, and so we can also expect

there to be stable dark states. We have also seen that visible sector charged states can be

decoupled.

Assuming we have a TeV scale dark state, we can estimate its cosmological relic abun-

dance. The fact that we have kinetic mixing with the visible sector, as well as a strongly

coupled extra sector means that the overall thermally produced relic abundance will be

lower than that of the standard WIMP example. For example, letting Ωextra denote the relic
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abundance of such an extra sector state, and ΩDM that of WIMP dark matter, we have:

Ωextra

ΩDM

∼ α2
WIMP

α2
extra

M2
extra

M2
WIMP

∼
(

10−3

α2
extra

)(
Mextra

1 TeV

)2

, (5.2)

so we see that if our extra sector states are around the TeV scale, an order one value for αextra

suppresses the overall contribution of these states. For this reason, we see that any individual

extra sector will make only a small contribution to the net relic abundance, i.e. we can easily

satisfy various cosmological bounds. Observe also that if we have a non-thermal epoch in

the evolution of the Universe, i.e., one with a late decaying scalar, it can also be beneficial to

overproduce this relic abundance, as is common in some string based constructions [108,109].

Aside from their potential role in cosmology (if we have multiple decoupled extra sectors

to obtain a suitable relic abundance), we now have the strongly coupled analogue of extra

charged states which could be generated in collider experiments. Indeed, we have also

explained how these extra sector states can produce an effective electric charge (c.f. equation

(2.25)). This leads to generalizations of the standard Z ′ scenario which it would be interesting

to study further. It is important to emphasize, however, that the strongly coupled nature of

the extra sector means that some of the implicit assumptions usually made in the analysis of

Z ′ models should be revisited before drawing any definite conclusions on this class of models.

We leave a full analysis of this possibility for future work.

6 Conclusions

Kinetic mixing at strong coupling is well-motivated from both a top down and bottom up

perspective. We have shown how to extract the leading order mixing terms for an extra

sector with approximate N = 2 supersymmetry, and commented on their potential role in

phenomenological scenarios. In the remainder of this section we discuss some avenues of

future investigation.

It would be interesting to extend our analysis to larger unbroken flavor symmetry groups

for the extra sector. In particular, theories with exceptional flavor symmetry have a rich

spectrum of BPS objects which can also figure in model building considerations.

A related question is how to carry over our results to models in which N = 2 super-

symmetry is broken to N = 1 or N = 0 supersymmetry. Provided these supersymmetry

breaking effects are sufficiently mild, we anticipate that the formal techniques developed here

should be more broadly applicable.

Finally, it is tempting to speculate that because our N = 2 sector contains a scalar

modulus with a flat potential, that this mode could play the role of an inflaton in slow roll

inflation [14], with reheating triggered by reaching the origin of moduli space. This suggests

yet another potential role for such extra sectors.
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A Details on the BPS Spectrum of the H1 Model

The BPS quiver computation of the BPS spectrum is achieved by means of quiver represen-

tation theory [92]. By a standard geometric invariant theory argument, the Higgs branch

moduli space of the quiver SQM corresponding to a state of charge γ is equivalent to the

moduli space of stable representations of dimension vector (N1, ..., Nn), where γ =
∑

iNiγi,

and γi is a good quiver basis in the sense of references [87, 93] (i.e. one for which 1.) the

coefficients Ni are either all non-negative integers, or non-positive ones and 2.) ImZ(γi) > 0

∀ i = 1, ..., n). In our case we find two candidates of good quiver basis for the H1 model

at u ∼ 0.1 and m ∼ 1: the one outlined in the main body of the text and the one given by

γ1, (−γ2), γ3 in the region π < θ < 5π/3. Consider the former. See the LHS of figure 4 to see

that indeed it meets requirements 1.) and 2.) of [87, 93]. The candidate basis γ1, (−γ2), γ3

does not mutate to γ1, γ2, γ3 at θ = 5π/3, but rather it mutates to γ1− γ2, γ2, γ3− γ2, which

leads to an inconsistency. The quiver for this putative basis would be

γ1 ←− (−γ2) −→ γ3, (A.1)

from which we see that the representation with dimension vector (1, 1, 0) is indeed stable.

As θ approaches 5π/3 from the left, one can see from figure 4 that Z(−γ2) exits the upper

Z-plane from the negative real axis, which triggers the quiver mutation from the quiver in
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Figure 4: left: Putative quiver basis γ1,−γ2, γ3 for π < θ < 5π/3. right: Same basis
as θ approaches 5π/3 from the left: one can see that the boundstate γ1 − γ2 destabilizes
by wall-crossing, which is in contradiction with the mutation rule for the basis elements as
Z(−γ2) exits the upper Z-plane from the negative real axis.

equation (A.1) to

γ1 − γ2 −→ γ2 ←− γ3 − γ2. (A.2)

At the same time the state γ1 − γ2 is wall-crossing away (getting unstable and disappearing

from the spectrum), which is inconsistent with the charges on the nodes of the mutated

quiver, because quiver nodes always correspond to stable particles. This rules out the can-

didate basis γ1, (−γ2), γ3 with respect to the one we use in the main body of the text, which

does not lead to such inconsistencies.

Let us proceed by reviewing the computation of the BPS spectra we summarized in

figures 2 and 3. Let us first consider the large mass regime with u = 0.1 and m = eiθ.

For 5π/3 < θ < 2π, the quiver basis we start with gives a BPS quiver

γ1 −→ γ2 ←− γ3.

The corresponding central charges and stable states are depicted in figure 5, we have BPS

spectrum

γ1, γ2, γ3, γ2 + γ3, and CPT conjugates (A.3)

At θ = 2π a double mutation occurs (see figure 5): Z(γ1) and Z(γ3) exits the upper Z-plane

simultaneously. The mutated quiver is

− γ1 ←− γ2 + γ3 −→ −γ3. (A.4)

The BPS spectrum remains the one in (A.3), the stable particles have charges −γ1, γ2 +

γ3,−γ3, γ2. Now γ2 appears as a stable bound state with dimension vector (0, 1, 1) for the

A3 quiver in line A.4, adding CPT conjugates one gets the same charges as in line (A.3). At

θ ∼ 0.525 a wall-crossing phase transition occurs and the BPS state with charge γ2 + γ3− γ1
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Figure 5: up left: Stable states with charges γ1, γ2, γ3, γ2 + γ3 for θ = 5.3. up right:
double mutation at θ = 2π. center left: new quiver basis valid for 0 < θ < 1.05. center
right: the wall crossing at which the state of charge γ2 + γ3 − γ1 enters in the spectrum
occurs at θ = 0.525, here we plot the stable states in the Z-plane at θ = 0.7. down left:
Right after the θ ≈ 1.05 mutation at γ2 +γ3. down right: θ ≈ 2.06 right before the double
mutation at −γ1 + γ2 + γ3 and γ2 and the wall-crossing leading to the disappearence of γ3

from the spectrum and the appearance of γ1 + γ2.
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stabilizes: the BPS spectrum becomes

− γ1, γ2 + γ3,−γ3, γ2, γ2 + γ3 − γ1 and CPT conjugates. (A.5)

At θ ≈ 1.05 another mutation occurs (see figure 5) the charge γ2 + γ3 exits the upper half

Z-plane and the BPS quiver becomes

γ2 + γ3 − γ1 −→ −(γ2 + γ3)←− −γ2. (A.6)

The spectrum is still as in line (A.5), but now γ3 is a bound state corresponding to the

dimension vector (0, 1, 1). At θ ≈ 2.06 both the charge γ2 + γ3 − γ1 and the charge γ2 exit

the upper half Z-plane. Moreover, the state with charge γ3 destabilizes while and the state

with charge −(γ1 + γ2) stabilizes (see figure 5). The mutated BPS quiver is

− γ2 − γ3 + γ1 ←− −γ1 −→ −γ2, (A.7)

The new BPS spectrum is

− γ2 − γ3 + γ1,−γ1,−γ2,−γ2 − γ3,−γ1 − γ2 and CPT conjugates. (A.8)

At θ = π (see figure 6) the charge γ1 mutates and one has the quiver

− γ2 − γ3 −→ γ1 ←− −γ2 − γ1, (A.9)

At θ ≈ 3.65 there is a wall-crossing and the spectrum becomes:

γ1,−γ2,−γ2 − γ3,−γ1 − γ2 and CPT conjugates. (A.10)

At θ ≈ 4.15 we have another double mutation (see figure 6)

γ2 + γ3 ←− −γ2 −→ γ2 + γ1, (A.11)

followed at θ ≈ 5π/3 by a mutation at γ2 and simultaneously two wall-crossings leading to

the destabilization of the state with charge γ2 + γ1, and the stabilization of the state with

charge γ3, bringing us back to the original spectrum at θ > 5π/3 (see figure 6).

The BPS spectrum in figure 3 was obtained for u = 0.1ei5.5 tuning m from 0 to 1. The

whole line is covered by the quiver

γ1 −→ γ2 ←− γ3. (A.12)

The relevant pattern of wall-crossings in the Z-plane is illustrated in figure 7: for 0.2 < m < 1

the spectrum is constant. In the region 0.03 < m < 0.2 a series of wall crossing occurs leading
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Figure 6: up left: θ ≈ 3.1 right before the mutation at π. up right: θ ≈ 3.6 right before
the wall-crossing leading to the decay of the state γ1−γ2−γ3. down left: Right before the
mutation at θ ≈ 4.15. down right: Right before the wall-crossings destabilizing γ1 + γ2

and stabilizing γ3 while γ2 mutates at θ ≈ 5.2
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Figure 7: up left: m ≈ 0.2 same spectrum as at large mass for θ = 5.5. up right:
m ≈ 0.1 the state γ1 + γ2 enters the spectrum. down left: m ≈ 0.03 right after the
mutation leading to the stabilization of the dark dyon. down right: m ≈ 0 the flavor
symmetry gets restored.

to a maximal chamber with stable states

γ1, γ2, γ3, γ1 + γ2, γ2 + γ3, γ1 + γ2 + γ3 (A.13)

It should be possible to reproduce our results using the spectral networks as in [110].
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