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Abstract

We propose a mechanism for the enhancement of vacuum fluctuations by means of a classical

field. The basic idea is that if an observable quantity depends quadratically upon a quantum field,

such as the electric field, then the application of a classical field produces a cross term between

the classical and quantum fields. This cross term may be significantly larger than the purely

quantum part, but also undergoes fluctuations driven by the quantum field. We illustrate this

effect in a model for lightcone fluctuations involving pulses in a nonlinear dielectric. Vacuum

electric field fluctuations produce fluctuations in the speed of a probe pulse, and form an analog

model for quantum gravity effects. If the material has a nonzero third-order susceptibility, then

the fractional light speed fluctuations are proportional to the square of the fluctuating electric

field. Hence the application of a classical electric field can enhance the speed fluctuations. We give

an example where this enhancement can be an increase of one order of magnitude, increasing the

possibility of observing the effect.
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Quantum field fluctuations, such as vacuum fluctuations of the electromagnetic field,

are responsible for a variety of physical effects, including the Lamb shift and the Casimir

effect. In some cases, the effect can be expressed in terms of a time average of a field

operator or of a square of the operator. For example, the one-loop QED vertex correction

to quantum potential scattering can be interpreted as due to fluctuations of the averaged

electric field [1]. Other effects, such as those associated with the stress tensor, are quadratic

in the fields. Quantum fluctuations of the gravitational field can be of either variety, and

may lead to lightcone fluctuations [2]. The active fluctuations of spacetime geometry due

the quantum nature of gravity itself can be linear, whereas the passive fluctuations driven

by quantum stress tensor fluctuations are quadratic in the matter fields. Both types of

lightcone fluctuations can be modeled by nonlinear optical materials, where fluctuations of

either the electric field or the squared electric field can produce fluctuations in the speed of

a probe pulse [3–6].

In systems where the observable effect depends nonlinearly upon the field, it may be

possible to enhance the fluctuations by the application of a classical field. Consider the

square of the electric field, E2, and suppose that E = EC + EQ, where EC is a classical

electric field, and EQ is the fluctuating quantum field. Then E2 = E2
C +2EC ·EQ +E2

Q. The

square of the classical field does not fluctuate, and E2
Q describes the effect in the absence of

the classical field. If we can arrange that 2|EC · EQ| > E2
Q, then the quantum fluctuation

effects can be enhanced by the presence of the classical field. We can make this statement

more precise by relating the observable quantities to expectation values of time averages of

the quantum fields. Note that in the vacuum state, the expectation values of the quantum

field, and hence of the cross term vanish, 〈EQ〉 = 〈EC ·EQ〉 = 0. However, the classical field

does give a nonzero contribution to the variance of E2. Here we treat the explicit example

of the nonlinear optics model for lightcone fluctuations.

In a nonlinear material, the presence of a background field, E0, can alter the effective

index of refraction and hence the speed of propagation of a probe pulse through the material.

The change in the effective index of refraction can be linear in the background field (Pockels

effect), or quadratic in this field (Kerr effect). If the background field fluctuates, then the

propagation speed will also be subject to fluctuations. The optical properties of a material

are described by the various susceptibilities which appear in the induced polarization, or

dipole moment density. Unless stated otherwise, we use Lorentz-Heaviside units with ~ =
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c = 1. The conversion between these units and SI units can be facilitated by noting that in

our units, ε0 ≈ 8.85× 10−12 C2/(N m2) = 1, implying that 1V ≈ 1.67× 107m−1.

The induced polarization vector P of a nonlinear optical material, can be expanded as a

power series in the electric field as

Pi = χ(1)

ij Ej + χ(2)

ijkEjEk + χ(3)

ijklEjEkEl + · · · , (1)

where χ(1)

ij are the components of the linear susceptibility tensor, while χ(2)

ijk and χ(3)

ijkl, are

the second- and third-order nonlinear optical susceptibilities of the medium [7], respectively.

We use the convention that Latin indices i, j, k, ... run from 1 to 3, and repeated indices are

summed upon. The susceptibilities are generally dependent on frequency. However most

materials exhibit approximately constant susceptibilities within a certain range of frequen-

cies, defining a dispersionless regime, which will be assumed here. We follow the procedure

in Refs. [3–6], in which the electric field is written as a superposition of a background field

E0 and a smaller, but more rapidly varying probe field EP. To leading order, the probe field

satisfies a linear wave equation. If we take this field to be propagating in the x-direction,

but have linear polarization in the z-direction, EP = EP(x, t)ẑ, the equation is

∂2EP

∂x2
− 1

v2ph

∂2EP

∂t2
= 0 . (2)

Here

v2ph =
1

np
2

[
1 + 2γiE

0
i + 3γijE

0
iE

0
j

]−1
, (3)

where

γi =
χ(2)

z(zi)

np
2
, (4)

and

γij =
1

np
2

(
χ(3)

zzij + χ(3)

zizj + χ(3)

zijz

3

)
, (5)

with χ(2)

z(zi) = (χ(2)

zzi + χ(2)

ziz)/2. That is, the parentheses denote symmetrization on the pair of

enclosed indices.

In a dispersionless regime, the phase velocity vph is also approximately the group velocity

of wave packets, and the flight time is proportional to
∫
dx/vph. Following Refs. [5, 6]

we introduce a sampling function F (x) which describes the density profile of a slab of

material and also acts as a switching function for the electric field fluctuations. It has the
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normalization ∫ ∞
−∞

F (x) dx = d , (6)

where d is the effective width of the slab. The flight time operator is given by

td = np

∫ ∞
−∞

[
1 + γiE0

i (x, t) + µij : E0
i (x, t)E0

j (x, t) :
]
F (x) dx , (7)

where an expansion to second order in E0 has been performed. Here we take quadratic

operators to be normal ordered, and define

µij =
1

2

(
3γ(ij) − γiγj

)
. (8)

Thus the probe pulse flight time can depend nonlinearly upon the background field.

In Refs. [5, 6], E0 was taken to be the quantized electric field operator, and the state to

be the vacuum, so the background field arises from vacuum fluctuations. Now we wish to

add a classical electric field EC and write

E0 = EC + EQ , (9)

where now EQ is the quantized electric field operator

The fight time operator can be written as td = tCd + tQd + tCross
d , where

tCd = np

∫ d

0

(
1 + γiEC

i + µijEC
i E

C
j

)
F (x)dx, (10)

tQd = np

∫ d

0

(
γiE

Q

i + µij : EQ

i E
Q

j :
)
F (x)dx, (11)

tCross
d = 2np

∫ d

0

µijEC
i E

Q

j F (x)dx. (12)

Note that tCross
d is a cross term coupling classical and quantum contributions of the back-

ground electric field. The vacuum expectation value of td is just tCd , as 〈tQd 〉 = 0 and

〈tCross
d 〉 = 0. However, as tCd is a c-number, only tQd and tCross

d contribute to the variance of

the flight time, i.e.,

(∆td)
2 = 〈td2〉 − 〈td〉2 = 〈(tQd + tCross

d )2〉 =

= np
2

∫ ∞
−∞

dxF (x)

∫ ∞
−∞

dx′ F (x′)
[
Γi Γj 〈EQ

i (x, t)EQ

j (x′, t′)〉

+ µijµlm〈: EQ

i (x, t)EQ

j (x, t) :: EQ

l (x′, t′)EQ
m(x′, t′) :〉

]
. (13)
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where we have defined

Γi = γi + 2µkiEC
k . (14)

Next, we use Wick’s theorem to simplify the last term in Eq. (13), and introduce the

needed correlation functions of the electric field for a non-dispersive isotropic material with

refractive index nb [6]. We then obtain

(∆td)
2 =

∫ ∞
−∞

dxF (x)

∫ ∞
−∞

dx′F (x′)

[
A

(∆x)4
+

α

(∆x)8

]
, (15)

where we have defined the A and α parameters by

A =
nbnp

2

π2 (np
2 − nb

2)2

[
Γ2
x +

(
Γ2
y + Γ2

z

) (np
2 + nb

2)

(np
2 − nb

2)

]
, (16)

α =
2nb

2np
2

π4 (np
2 − nb

2)4

[
2
(
µ2
xy + µ2

xz

) (np
2 + nb

2)

(np
2 − nb

2)

+µ2
xx +

(
µ2
yy + µ2

zz + 2µ2
zy

) (np
2 + nb

2)
2

(np
2 − nb

2)2

]
. (17)

Now, in order to describe the physical transition experienced by the probe pulse as it

enters and exits the optical material, we choose the two parameter switching function [6]

F (x) = Fb,d(x), where

Fb,d(x) =
1

π

[
arctan

(x
b

)
+ arctan

(
d− x
b

)]
, (18)

which satisfies Eq. (6). Here, parameter d describes the width of Fb,d(x), while b determine

how fast the function rises and falls. For instance when b → 0 we recover a step function,

x/d

b ! 0

b = 0.1d

b = 0.01d

b = d

Fb,d(x)

0.5 1

0.5

1

FIG. 1: Plots of Fb,d(x) for few values of b/d. Notice that as b/d → 0 the switching function

approaches a step function.

which describes a sudden transition between the different regimes, and for b ≈ 0.9d we
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find a broad function similar to a Lorentzian. Figure 1 depicts the behavior of Fb,d(x) for

some representative values of the ratio b/d. We are especially interested in the case where

0 < b � d, so the transition occurs over a finite region smaller than the width. The

derivative of Fb,d(x) with respect to x is a sum of two Lorentzian functions. Assuming that

∆x = x−x′− iε, with ε > 0, the integrals in Eq. (15) can be evaluated by means of residue

theorem, which leads to

(∆td)
2 =

d2(d2 + 12b2)

12b2(d2 + 4b2)2
A+

d2(21504b10 + 1344b6d4 + 240b4d6 + 24b2d8 + d10)

1344b6(4b2 + d2)6
α, (19)

where we assumed the classical field to be a constant. We now define the fractional fluctu-

ations in the flight time, δ, by

δ2 =
(∆td)

2

〈td〉2
. (20)

We will be interested in the regime of b/d << 1, for which

δ2 ≈ A

12np
2d4

(
d

b

)2

+
α

1344np
2d8

(
d

b

)6

. (21)

In the case of a crystal possessing spatial inversion symmetry (a centrosymmetric mate-

rial), the second order polarizability must vanish [7]. We can see this from Eq. (1), which

must be invariant under change of the signs of the applied electric field and of the polarization

vector for such a material, leading to χ
(2)
ijk = 0. Then γi = 0, which leads to µij = (3/2)γ(ij)

and Γi = 3γ(ij)EC
j . In this case, the first term in Eq. (21) is proportional to (EC )2, and

describes the effect of the classical electric field on the enhanced vacuum fluctuations. The

second term is independent of the classical field, and describes the vacuum fluctuations in

the absence of the classical field.

We may estimate the magnitudes of both effects for the case of silicon. This material has

a third order susceptibility χ
(3)
zzzz ≈ 2.80 × 10−19m2V−2 and a refractive index nb = 3.418,

both at wavelength λb = 11.8µm [8–10]. Assume that the probe field wave packet is

prepared so that its peak wavelength is λp = 1.4µm, for which np = 3.484 [11], and set

EC
j = ECδjz. This leads to

A ≈ 5.07× 10−36(EC )2(m4/V4) , (22)

and

α ≈ 2.21× 10−34(m4/V4) . (23)
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Now Eq. (21) may be expressed as

δ2 ≈ 1.24× 10−17
(

10µm

d

)4(
d

b

)2(
EC

E
Break

)2

+ 1.74× 10−27
(

10µm

d

)8(
d

b

)6

. (24)

Here E
Break

≈ 3.15 × 107Vm−1 is the breakdown electric field for silicon [12], and we need

to require EC < E
Break

. Now set b = 0.01d, which corresponds to the most rapid switching

which is compatible with our neglect of dispersion [6]. Then we have the estimate

δ2 ≈ 1.24× 10−13
(

10µm

d

)4(
EC

E
Break

)2

+ 1.74× 10−15
(

10µm

d

)8

. (25)

In the absence of the classical field, the vacuum effect gives δ ≈ 4.2 × 10−8 (10µm/d)4, as

found in Ref. [6]. However, if EC & 0.1E
Break

, then the first term in Eq. (25) dominates,

and we have

δ ≈ 3.52× 10−7
(

10µm

d

)2(
EC

E
Break

)
. (26)

Thus the presence of the classical electric field can enhance the fractional flight time variation

due to vacuum fluctuation by close to one order of magnitude. This may aid experimental

observation of vacuum driven lightcone fluctuations.

In this paper, we have been concerned with the effects of vacuum fluctuations, but have

not explicitly considered the effects of finite temperature. Here we wish to give some esti-

mates of when thermal fluctuations can be ignored. At temperature T , the thermal effects

are characterized by the parameter β = 1/(kB T ), where kB is Boltzmann’s constant, which

has dimensions of time in units where ~ = 1. Low temperature corresponds to large β, so if

β is large compared to other time scales in a problem, then one can expect thermal effects

to be small. This is seen, for example, in Ref. [13] where the combined thermal and vacuum

effects on the Brownian motion of a charge near a mirror were calculated. These authors

find that for motion on time scales less than β, vacuum fluctuations dominate over thermal

fluctuations. In our problem, there are two relevant time scales. One is the time required

for the probe pulse to pass through the slab of material, td ≈ np d. If b � d, then there is

shorter time, tb ≈ np b, required for the pulse to pass through the transition regions at either

end of the slab. The effect of the classical electric field treated here is described by the first

term on the right hand side of Eq. (25), which is proportional to 1/(b2 d2). This suggests

that the time scale associated with vacuum fluctuations is the geometric mean,
√
td tb. A
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conservative estimate of the range of dominance of vacuum effects takes the longest of these

scales, and estimates that vacuum effects dominate thermal ones if β & td, or

T . 60K

(
3

np

) (
10µm

d

)
. (27)

However, if the relevant criterion is β &
√
td tb, as the above argument suggests, then vacuum

fluctuations can be dominant even at room temperature. This issue will be studied in more

detail in future work.

In summary, we have constructed a specific model in which application of a classical field

can enhance vacuum fluctuations effects. The extent to which this enhancement can be

observed in an experiment remains to be seen. This model illustrates the general principle

that fluctuations of a quantity which is quadratic (or higher power) in a quantum field can be

enhanced by the presence of a classical field. This includes fluctuations of the stress tensor

for a quantum field, which is typically quadratic in the field. Note that the probability

distribution associated with the cross term between a quantum field and a classical field will

be the Gaussian distribution for free field fluctuations. However, the probability distribution

associated with quantities quadratic in quantum fields can be very different, and sensitive

to the choice of sampling function. [14–16].
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