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Recently, we developed an effective theory of pions and a light dilatonic meson

for gauge theories with spontaneously broken chiral symmetry that are close to

the conformal window. The pion mass term in this effective theory depends on

an exponent y. We derive the transformation properties under dilatations of the

renormalized fermion mass, and use this to rederive y = 3 − γ∗m, where γ
∗
m is

fixed-point value of the mass anomalous dimension at the sill of the conformal

window. This value for y is consistent with the trace anomaly of the underlying

near-conformal gauge theory.
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I. INTRODUCTION

In Ref. [1] we developed a low-energy effective action of pions and a dilatonic meson,

which are the pseudo Nambu-Goldstone bosons for approximate chiral and scale symmetries,

respectively, in near-conformal gauge theories that still undergo dynamical chiral symmetry

breaking, and in which the scale symmetry is broken by the trace anomaly. The effective

theory is organized in terms of a systematic power counting in

p2/Λ2 ∼ m/Λ ∼ 1/N ∼ |nf − n∗
f | ∼ δ , (1.1)

where δ stands for the small expansion parameter. As in the usual chiral lagrangian, m

is the fermion mass (we assume a common mass for all flavors for simplicity), and p2 is a

shorthand for the product of two external momenta, while Λ is the scale associated with

chiral symmetry breaking. We invoke the Veneziano limit N → ∞, where the number of

colors Nc = N tends to infinity in proportion to the number of fundamental representation

flavors Nf [2]. Here nf = Nf/Nc, and n
∗
f is the critical value where the conformal window

is entered in the Veneziano limit,

n∗
f = lim

Nc→∞

N∗
f (Nc)

Nc

. (1.2)

It is defined in terms of N∗
f (Nc), which, in turn, is the smallest number of flavors for which

the SU(Nc) theory is infrared conformal.

The effective action is constructed in terms of the usual chiral source field χij(x), where

i, j = 1, 2, . . . , Nf are flavor indices, and the “dilaton” source field σ(x), as well as effective

fields for the pions and the dilatonic meson. After setting these sources equal to their

expectation values, χij(x) = mδij and σ(x) = 0, the leading-order lagrangian of the effective

theory is [1]

L = Lπ + Lτ + Lm + Ld , (1.3)

where

Lπ =
f 2
π

4
e2τ tr (∂µΣ

†∂µΣ) , (1.4)

Lτ =
f 2
τ

2
e2τ (∂µτ)

2 , (1.5)

Lm = −
f 2
πBπm

2
eyτ tr

(

Σ + Σ†
)

, (1.6)

Ld = f 2
τBτ e

4τ (c0 + c1τ) . (1.7)
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Here Σ(x) ∈ SU(Nf ) is the usual non-linear field describing the pions, while τ(x) is the

effective field of the dilatonic meson; fπ, fτ , Bπ, Bτ and c0,1 are low-energy constants.

In Ref. [1] we argued that the exponent y in Eq. (1.6) is given by

y = 3− γ∗m , (1.8)

where γ∗m is the mass anomalous dimension at the sill of the conformal window in the

Veneziano limit.1 Here we give a more complete derivation of this result, and explore its

relation to the trace anomaly. This new derivation was motivated by the observation, made

in Ref. [3], that y may be determined by matching the divergences of the dilatation current

in the underlying and effective theories.2

The power counting (1.1) hinges on the assumption that, near the chiral symmetry break-

ing scale Λ, the beta function of the renormalized ’t Hooft coupling α̃r ≡ g2N/(16π2) behaves

like [1, 4]

β(α̃r(Λ)) = O(nf − n∗
f ) +O(1/N) . (1.9)

This relation expresses the fact that the theory is on the verge of developing an infrared at-

tractive fixed point (a situation that is sometimes referred to as “emergent” scale invariance).

The systematic expansion in nf − n∗
f derives from this central dynamical assumption.

In order that the effective action will manifestly exhibit the expansion in nf − n∗
f we

have to choose the renormalization scale µ such that Eq. (1.9) is applicable. In other words,

we need µ ∼ Λ; we must renormalize the microscopic theory near the scale where chiral

symmetry breaking takes place. Since the microscopic and the effective theories depend on

the same set of external sources, the mass parameter occurring in Eq. (1.6) is therefore the

renormalized mass, m = mr(µ), with the renormalization scale µ chosen as above. As we

will show in Sec. II, Eq. (1.8) is then a direct consequence of the transformation properties of

mr(µ) under dilatations.
3 In Sec. III we explore the matching procedure proposed in Ref. [3],

finding that this procedure reproduces Eq. (1.8) as well. Sec. IV contains our conclusions.

1 More precisely, γ∗

m
= γm(α̃∗), where α̃∗ is infrared fixed-point ’t Hooft coupling at the sill of the conformal

window.
2 However, we disagree with the actual result for y claimed in Ref. [3].
3 We refer to Ref. [1] for a general discussion of the dilatation transformation properties of the effective

theory, both with and without the σ(x) source field.
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II. DILATATION TRANSFORMATION OF THE RENORMALIZED MASS

We start from the bare lagrangian of the microscopic theory, using dimensional regular-

ization. After a rescaling of the bare gauge and fermion fields by the bare coupling g0, the

d-dimensional action is

S =

∫

ddx
µ
(d−4)
0

ĝ20
(Lk + Lm) , (2.1)

where

Lk =
1

4
F a
µνF

a
µν + ψi /Dψi , (2.2)

Lm = m0ψiψi , (2.3)

and m0 is the bare mass. To expose the fact that g0 is dimensionful for d 6= 4 we substituted

g0 = ĝ0 µ
2−d/2
0 , (2.4)

so that ĝ0 is dimensionless for any d. As the only dimensionful parameter in the massless

bare action, µ0 may be interpreted as an ultraviolet cutoff scale.

A dilatation transformation acts on the fields and parameters occurring in the bare la-

grangian according to their canonical dimension,

Aµ(x) → λAµ(λx) , (2.5a)

ψ(x) → λ3/2ψ(λx) , ψ(x) → λ3/2ψ(λx) , (2.5b)

m0 → λm0 , (2.5c)

µ0 → λµ0 , (2.5d)

ĝ0 → ĝ0 . (2.5e)

It is easy to check that the d-dimensional action is invariant under this transformation.

Here we take m0 and µ0 to be global spurions, with transformation rules that make the bare

action (2.1) invariant.4

We next proceed to the renormalized parameters. The renormalized coupling gr is defined

as usual via

Zg(ǫ; gr)gr = µ−ǫg0 = (µ0/µ)
ǫ ĝ0 , (2.6)

4 The formulation in terms of spurion fields, and its relation with Eqs. (2.1) and (2.5), will be discussed in

Sec. III below. For our purposes here the global spurions m0 and µ0 are sufficient.
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and the renormalized mass mr by

m0 = mr Zm(ǫ; gr) . (2.7)

Here ǫ = 2 − d/2, and in the second equality of Eq. (2.6) we have used Eq. (2.4). We use

a mass-independent renormalization scheme, which implies that all Z factors have a series

expansion in 1/ǫ and in g2r . It follows that the renormalized coupling itself, as well as all the

Z factors, depend on µ and µ0 only through their ratio µ/µ0. In particular, the renormalized

mass satisfies the renormalization-group equation

∂ logmr

∂ logµ
= −γm = −

∂ logZm

∂ logµ
=
∂ logZm

∂ logµ0
, (2.8)

where in the last equality we have used that Zm = Zm(µ/µ0).

The dilatation transformation rule of the renormalized mass is obtained as follows. What

needs to be calculated is the response of the renormalized mass to the transformation (2.5),

which is applied to the bare theory while holding fixed the physical scale represented by the

renormalization scale µ. Letting m0(λ) = λm0 and µ0(λ) = λµ0, the transformation rule of

mr = mr(λ) under an infinitesimal dilatation is obtained by differentiating Eq. (2.7) with

respect to log λ,
1

Zm

∂m0

∂ log λ
=

∂mr

∂ log λ
+
mr

Zm

∂µ0

∂ log λ

∂Zm

∂µ0
. (2.9)

The derivative with respect to µ0 can be traded with a derivative with respect to µ with the

help of Eq. (2.8). It follows that

mr =
m0

Zm

=
1

Zm

∂m0

∂ log λ
=

∂mr

∂ log λ
−mrγm , (2.10)

or
∂mr

∂ log λ
= (1 + γm)mr . (2.11)

As explained in the introduction, in the effective theory we are expanding in nf − n∗
f . In

the limit nf ր n∗
f (and N → ∞) the ’t Hooft coupling behaves like α̃r(Λ) → α̃∗, where α̃∗ is

the location of the infrared fixed point at the sill of the conformal window, in the Veneziano

limit. For small |nf − n∗
f |, α̃r(Λ) is close to α̃∗, and γm(α̃r(Λ)) = γ∗m up to corrections of

order nf − n∗
f . In the leading-order effective action we thus have γm = γ∗m. Since this is

a constant, we can integrate Eq. (2.11) in closed form, obtaining the transformation rule

under a finite dilatation

mr → λ1+γ∗

mmr . (2.12)
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The dilatation transformation rules of the effective fields are [1]

Σ(x) → Σ(λx) , (2.13a)

τ(x) → τ(λx) + log λ . (2.13b)

Using Eqs. (2.12) and (2.13) it is easy to check that Lm is invariant under dilatations if and

only if y is given by Eq. (1.8). This is our main result.

III. RELATION TO THE TRACE ANOMALY

It was recently observed in Ref. [3] that the relation of y with the mass anomalous

dimension may be inferred via the following alternative procedure. One first obtains the

divergence of the dilatation current ∂µSµ by applying a suitable differential operator to the

action. This is done separately in the (bare) microscopic theory and in the effective theory.

One then requires that the same differential operator will yield ∂µSµ in both cases, following

the general requirement that correlation functions obtained by differentiating the partition

functions of the microscopic and of the effective theories will match.5 In particular, the

same differential operator that yields ∂µSµ in the microscopic theory should therefore also

reproduce ∂µSµ at the level of the effective theory. In Ref. [3] it was claimed that the

outcome of this consistency requirement is that y = 3, which is in conflict with the value

we derived in Sec. II. Here we will show that also this procedure leads to y = 3 − γ∗m, in

disagreement with Ref. [3]. The key point is that, before it can be applied to the effective

theory, the differential operator needs to be expressed in terms of the renormalized mass.

We begin by coupling the bare action to local sources, which is done by replacing Eq. (2.1)

with

S =

∫

ddx
(µ0e

σ(x))(d−4)

ĝ20
(Lk + Lsrc) , (3.1)

where now

Lsrc =
1

2

(

χij ψi(1 + γ5)ψj + χ∗
ji ψi(1− γ5)ψj

)

. (3.2)

The dilatation transformation rules of the dynamical bare fields remain the same as before,

5 Note that Sµ itself does not renormalize, because it is equal to xνTµν with Tµν the conserved energy-

momentum tensor.
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whereas the transformation rules of the source fields and the parameters are given by

χ(x) → λχ(λx) , (3.3a)

σ(x) → σ(λx) + ζ log λ , (3.3b)

µ0 → λ(1−ζ)µ0 , (3.3c)

ĝ0 → ĝ0 . (3.3d)

Notice the freedom to choose the parameter ζ , which follows from the redundancy between

µ0 and the constant mode of the σ(x) field, which we will denote as σ0.

There are two variants of the matching procedure. One can obtain ∂µSµ(x) via suitable

differentiations with respect to the local sources; or one can obtain the integrated version
∫

ddx ∂µSµ(x), for which we may set the local sources to the constant values σ(x) = σ0,

χij(x) = m0δij . Here we will choose the second variant.

The integrated divergence
∫

ddx ∂µSµ(x) is obtained by applying an infinitesimal dilata-

tion to the dynamical fields only. Since S is invariant when the dilatation is applied to both

fields and sources or parameters, it follows that

∫

ddx ∂µSµ = −δ̂S , (3.4)

where the differential operator on the right-hand side is

δ̂ = ζ
∂

∂σ0

∣

∣

∣

∣

∣

m0,µ0

+ (1− ζ)µ0
∂

∂µ0

∣

∣

∣

∣

∣

m0,σ0

+m0
∂

∂m0

∣

∣

∣

∣

∣

µ0,σ0

, (3.5)

and we have indicated explicitly which parameters are held fixed during each differentiation.

Because the bare action depends only on eσ0µ0, the only change in Eqs. (2.6) and (2.7) is

that now gr and all the Z factors are functions of the combination

eσ0µ0

µ
. (3.6)

It follows that the derivative ∂/∂σ0 is interchangeable with ∂/∂ log µ0. We thus have the

alternative forms,

δ̂ = µ0
∂

∂µ0

∣

∣

∣

∣

∣

m0,σ0

+m0
∂

∂m0

∣

∣

∣

∣

∣

µ0,σ0

=
∂

∂σ0

∣

∣

∣

∣

∣

m0,µ0

+m0
∂

∂m0

∣

∣

∣

∣

∣

µ0,σ0

, (3.7)

which correspond to ζ = 0 and ζ = 1 in Eq. (3.5).
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As explained in the introduction, the effective theory depends on the renormalized mass

mr (or, more generally, on the renormalized chiral source χr(x)). In order to be able to

compare the action of δ̂ on the bare microscopic action and on the effective action, we must

first trade the bare mass for the renormalized mass. One has

µ0
∂

∂µ0

∣

∣

∣

∣

∣

m0,σ0

= µ0
∂

∂µ0

∣

∣

∣

∣

∣

mr ,σ0

+ µ0
∂mr

∂µ0

∣

∣

∣

∣

∣

m0,σ0

∂

∂mr

∣

∣

∣

∣

∣

µ0,σ0

(3.8)

= µ0
∂

∂µ0

∣

∣

∣

∣

∣

mr ,σ0

+ γmmr
∂

∂mr

∣

∣

∣

∣

∣

µ0,σ0

,

where the last step follows from Eq. (2.8).6 In addition, Eq. (2.7) implies that

m0
∂

∂m0

∣

∣

∣

∣

∣

µ0

= mr
∂

∂mr

∣

∣

∣

∣

∣

µ0

, (3.9)

when acting on the microscopic action. Putting it together gives

δ̂ = µ0
∂

∂µ0

∣

∣

∣

∣

∣

mr ,σ0

+ (1 + γm)mr
∂

∂mr

∣

∣

∣

∣

∣

µ0,σ0

(3.10a)

=
∂

∂σ0

∣

∣

∣

∣

∣

mr ,µ0

+ (1 + γm)mr
∂

∂mr

∣

∣

∣

∣

∣

σ0,µ0

. (3.10b)

In the effective theory, the leading-order expressions for the Noether current Sµ and its

divergence were calculated in Ref. [1]. As first observed in Ref. [3], the leading-order ∂µSµ

may also be obtained as follows. Starting from the leading-order effective action Seff which

depends on the dilaton source σ(x) and the renormalized chiral source χij,r(x) as detailed

in Sec. 3.2 of Ref. [1], we let σ(x) = σ0 and χij,r(x) = δijmr, and find that the (integrated)

divergence of Sµ is equal to
∫

d4x ∂µSµ = −δ̂effSeff , (3.11)

where

δ̂eff =
∂

∂σ0

∣

∣

∣

∣

∣

mr

+ (4− y)mr
∂

∂mr

∣

∣

∣

∣

∣

σ0

, (3.12)

and σ0 is set equal to zero in the end. The requirement that the effective theory match

the microscopic theory thus implies that the differential operators δ̂ and δ̂eff must be the

6 The term proportional to γm was overlooked in Ref. [3].
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same. Comparing Eqs. (3.10b) and (3.12) (and remembering that the effective theory does

not depend explicitly on µ0) shows that this agreement will be reached provided that

4− y = 1 + γm . (3.13)

Finally, taking the renormalization scale to be as described in the introduction, we reproduce

γm = γ∗m to leading order in the power counting, and, with that, Eq. (1.8) as well.

The manipulations we have carried out in this section are closely related to the original

derivation of the trace anomaly in Ref. [5], which we will refer to as “CDJ.” At the starting

point, CDJ introduces a parameter a (called the loop expansion parameter), and multiplies

the bare lagrangian by 1/a. If we again rescale the bare fields as we did in Sec. II, so that

the bare gauge coupling appears as an overall factor 1/g20 in front of the lagrangian density,

we reach the equivalence

1

ag20
⇔

e(d−4)σ0

g20
=

(µ0e
σ0)d−4

ĝ20
, (3.14)

where the left-hand side refers to CDJ, and the right-hand side to Eq. (3.1) (with σ(x) =

σ0). We already observed that our Z factors depend on µ, µ0 and σ0 only through the

variable (3.6). If we consider the dependence on ĝ0 as well, our Z factors depend only on

the variable
1

ĝ20

(

eσ0µ0

µ

)d−4

. (3.15)

Correspondingly, CDJ observes that their Z factors depend only on

µ4−d

ag20
. (3.16)

At a key step in the argument, CDJ then trades the derivatives with respect to a (holding

µ fixed) with derivatives with respect to the renormalization scale µ. Evidently, what we

have done is completely analogous, taking derivatives with respect to µ0 (or with respect

to σ0), which are the variables that play the role of a in our setting, and trading them for

derivatives with respect to µ. This close correspondence has to exist, because, as we have

seen, acting on the bare action with the differential operator δ̂ generates the integral of ∂µSµ.

In particular, the term proportional to γm in Eq. (3.10) corresponds directly to the term

proportional to γm in the trace anomaly.
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IV. CONCLUSION

In this note we provided a more complete discussion of the relation between the parameter

y in the pion-mass term of the effective lagrangian (1.3) and the mass anomalous dimension

γm, thereby confirming the result already conjectured in Ref. [1]. We traced the incorrect

result obtained in Ref. [3] to the difference between the behavior of bare and renormalized

sources under scale transformations. We also pointed out that our result is required for

consistency with the expression for the trace anomaly in the underlying gauge theory [5].

In principle, the scale at which we renormalize the microscopic theory can be chosen

arbitrarily. Imagine that we are very close to the gaussian fixed point at g0 = 0, by taking the

renormalization scale µ higher and higher. We may then use the one-loop expression for the

mass anomalous dimension, so that γm is linear in the renormalized ’t Hooft coupling α̃r(µ).

We see that γm becomes arbitrarily small if we take µ arbitrarily large, and, eventually,

y = 3−γm(α̃r(µ)) will approach y = 3. This, of course, is merely a reflection of the fact that

the theory is asymptotically free. However, if we want to define our effective theory (1.3)

as the leading term in a systematic expansion in |nf − n∗
f | ∼ δ, we are forced to choose

the renormalization scale near the chiral symmetry breaking scale, and, consequently, the

difference 3− y = γ∗m is of order one.
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