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Abstract

A model is presented in which O(10 TeV) stop masses, typically required by the Higgs boson

mass in supersymmetric models, do not originate from soft supersymmetry breaking terms that

would drive the Higgs mass squared parameter to large negative values but rather from the mixing

with vectorlike partners. Their contribution to the Higgs mass squared parameter is reduced to

threshold corrections and thus it is one loop suppressed compared to usual scenarios. New fermion

and scalar partners of the top quark with O(10 TeV) masses are predicted.
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I. INTRODUCTION

Electroweak symmetry breaking (EWSB) is very elegant in supersymmetric models. It

is radiatively driven by the top Yukawa coupling and the electroweak (EW) scale is tightly

related to masses of superpartners of the top quark (stops) propagating in the loops.

However, the most straightforward explanation of the measured value of the Higgs boson

mass, mh ' 125 GeV, suggests at least O(10 TeV) stop masses [1, 2] and, in such scenarios,

generating two orders of magnitude smaller EW scale requires tremendous fine tuning, at

least 1 part in 104, in relevant parameters. It might be possible to avoid this little hierarchy

problem if a model is built with specific relations between soft supersymmetry (SUSY)

breaking parameters that lead to required cancellations or that generate large additional

contributions to the Higgs boson mass, for example, contributions from stop mixing in

the minimal supersymmetric model (MSSM) or from new couplings in models beyond the

MSSM. Nevertheless, avoiding large fine tuning in EWSB requires significantly more complex

models or stretching the parameters far beyond what was considered reasonable before the

Higgs discovery (and often giving up some desirable features, like perturbativity to a high

scale) [3].

In this paper, a solution is presented in which O(10 TeV) stop masses do not originate

from soft SUSY breaking terms that would drive the Higgs mass squared parameter, m̃2
Hu

,

to large negative values but rather from the mixing with vectorlike partners. Therefore,

arbitrarily small contribution to m̃2
Hu

is generated from the Yukawa coupling to scalars in

the renormalization group (RG) evolution from a high scale. The contribution from scalars

is reduced to threshold corrections and higher order effects. Thus, it is one loop suppressed

compared to usual scenarios allowing for more natural EWSB.

The need for heavy stops can be seen from the approximate analytic formula for the

Higgs boson mass,

m2
h 'M2

Z +
3y2

t

4π2
m2

t ln

(
m2

t̃

m2
t

)
, (1)

assuming medium or large tan β (the ratio of vacuum expectation values of the two Higgs

doublets) in which case the tree level result (the first term) is maximized. Alternatively, it

can be seen in the plot of the RG evolution of the Higgs quartic coupling in the standard

model (SM) and its tree level prediction in the MSSM given by SU(2) and U(1)Y gauge

couplings, λh,SUSY−tree = (g2
2 + g2

Y )/4. From Fig. 1 we see that they intersect at about 10
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FIG. 1: RG evolution of top Yukawa coupling, yt, the Higgs quartic coupling in the SM, λh,SM , and

in the SM with electroweak gauginos and Higgsinos (indicated by dashed line). RG evolution of the

tree level prediction for λh in the MSSM is shown in shaded region with the solid line representing

its maximum value, λh,SUSY−tree = (g2
2 + g2

Y )/4. The m/M line and shaded region indicate the

value required to obtain the correct yt(Q) for λ = 1± 0.1 at Q = (M2 +m2)1/2.

TeV which indicates the scale at which superpartners should be integrated out to obtain the

measured value of the Higgs mass. The exact stop masses needed depend on the assumptions

for masses of gauginos and higgsinos (collectively called inos), with light inos favoring smaller

stop masses, as indicated by dashed line in Fig. 1. We use two loop RG equations summarized

in Refs. [4–7] [2].

Large soft trilinear couplings, A-terms, result in stop mixing which modifies Eq. (1);

analogous formula can be found in Ref. [8]. These contributions can also be viewed as

threshold corrections to Higgs quartic coupling that modify the tree level prediction and alter

the scale at which SUSY should be matched to the SM in Fig. 1. However, large threshold

corrections require specific relations between parameters, far from typically obtained in

SUSY models. In this letter we focus on generic spectrum that typically leads to small

threshold corrections.

The mass of the Z boson in the MSSM, away from small tan β regime, is given by:

M2
Z ' −2µ2(MZ)− 2m̃2

Hu
(MZ), (2)

where µ is the supersymmetric Higgs mass parameter. Heavy stops contribute to the RG
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running of m̃2
Hu

:
d m̃2

Hu

d lnQ
=

3y2
t

8π2

(
m̃2

Hu
+ m̃2

tL
+ m̃2

tR

)
, (3)

where we neglected contributions from gaugino masses and A-terms. In this approximation,

stop soft masses squared, m̃2
tL

and m̃2
tR

, have the same RG equations up to overall factors 1/3

and 2/3 respectively. The typical outcome of the RG evolutions from a high scale is m̃2
Hu
'

−(m̃2
tL

+ m̃2
tR

) and, for O(10 TeV) stops, it results in already mentioned ∼ 0.01% tuning

required in Eq. (2). More importantly however, large contribution is already generated in

the RG evolution over one decade in the energy scale, requiring ∼ 0.1% tuning.

Besides stop masses, a significant fine tuning can also result from the gluino mass. Al-

though gluino doesn’t couple to Hu directly it drives stop masses to positive values which

in turn drive m̃2
Hu

to negative values. Solving coupled RG equations we find that current

limits on gluino mass, O(1 TeV) result in ∼ 1% tuning in EWSB for high scale mediation

scenarios. Alternatively, not larger than ∼ 10% tuning allows for about 3 decades of RG

evolution and thus favors models with low scale mediation of SUSY breaking.

While limits on gluino do not necessarily prevent building a model with natural EWSB

without specific relations between parameters, O(10 TeV) stops make it impossible in models

like MSSM even for low mediation scale. In the model that follows, the m̃2
Hu

does not run

at one-loop level due to scalar masses irrespectively of the mediation scale.

II. MODEL

Part of the superpotential related to the top quark is given by:

W ⊃ λqūHu +mqqQ̄+muUū+MQQQ̄+MUUŪ, (4)

where q and ū, collectively called f , have the quantum numbers of SU(2) doublet and singlet

up-type quarks in the MSSM. The Hu is the Higgs doublet that couples to up-type quarks,

and λ would be the usual top Yukawa coupling if there was no mixing with vectorlike quarks.

Capital letters denote extra vectorlike pairs that do not couple directly to the Hu; Q and

Ū , collectively called F , (Q̄ and U , collectively called F̄ ) have the same (opposite) quantum

numbers as q and ū.

Although the explicit mass terms in Eq. (4) are the most general consistent with SM gauge

symmetries, the Yukawa couplings are not. However, presence of other couplings, if they are
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sufficiently small, does not alter our discussion and thus we neglect them. Alternatively, the

explicit mass terms may originate from vevs of SM singlets Sm and SM : mq,u = λq,u〈Sm〉 and

MQ,U = λQ,U〈SM〉. This allows us to distinguish F from f by a U(1) charge and uniquely fix

the structure of the superpotential in Eq. (4). For example: QF = +1, QF̄ = −1, QSm = +1

with other fields not being charged. The same charges can be extended to whole families. We

will see that assuming this origin of vectorlike mass terms also allows for a natural connection

between vectorlike masses and soft SUSY breaking masses of corresponding scalars.

The mass matrix for fermions with ±2/3 electric charge in the basis

(
q Q U

)
MF


ū

Q̄

Ū

 (5)

is given by:

MF =


λvu mq 0

0 MQ 0

mu 0 MU

 , (6)

where we use the same labels for the ±2/3 charge components of doublets as for whole

doublets (this should not result in any confusion since we only discuss the sector related to

top quark). The vu = v sin β is the vev of Hu in a normalization with v ' 175 GeV.

Assuming diagonal soft SUSY breaking masses, the corresponding 6 × 6 scalar mass-

squared matrix, in the basis (q,Q, U, ū∗, Q̄∗, Ū∗), is given by

M2
S = diag

(
MFM

†
F ,M

†
FMF

)
(7)

+ diag
(
m̃2

q, m̃
2
Q, m̃

2
U , m̃

2
ū, m̃

2
Q̄, m̃

2
Ū

)
, (8)

where m̃s are soft SUSY breaking scalar masses of corresponding fields. We neglect soft

SUSY breaking trilinear couplings, b-terms, the µ term and electroweak D-terms which are

all assumed to be of order the EW scale.1

1 Vectorlike families were previously considered in connection with naturalness of EWSB because additional

large Yukawa couplings increase the Higgs boson mass [9, 10]. However, extra Yukawas also contribute

to the running of m̃2
Hu

and the net benefit is not dramatic [10]. We use vectorlike fields to generate stop

masses.
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For simplicity, in what follows we assume: mq = mu ≡ m, MQ = MU ≡ M , m̃2
q = m̃2

ū ≡

m̃2
f , m̃2

Q = m̃2
Ū
≡ m̃2

F and m̃2
U = m̃2

Q̄
≡ m̃2

F̄
. These assumptions are not crucial for our

discussion.

A. Top quark mass and fermion spectrum

Masses of three Dirac fermions, that can be obtained by rotating matrix (6) into mass

eigenstate basis, are approximately given by: λvuM
2/(m2+M2), (M2+m2)1/2, (M2+m2)1/2,

where the corrections to the smallest mass are O(λ3v3
u/M

2) and the two heavy eigenvalues

are split by O(λvu), assuming that m and M are of the same order. In the limit of no

mixing, m → 0, we recover the expected result, mtop = λvu and two heavy fermions have

masses M . For non-zero m and fixed Yukawa coupling, the measured value of the top quark

mass imposes a relation between m and M .

The top Yukawa coupling is given by yt = λM2/(m2 +M2), the flavor diagonal couplings

to heavy quarks are ±λm2/(2m2 + 2M2) and the flavor violating couplings between heavy

quarks and the top quark are generated (detailed discussion, although in the lepton sector

and in different basis, can be found in Refs. [11, 12]). The ratio of m/M required to

reproduce the top quark Yukawa coupling at the scale where heavy quarks are integrated

out, Q = (M2 +m2)1/2, for λ = 1± 0.1 is plotted in Fig. 1 together with the RG evolution

of the top Yukawa.

B. Spectrum of scalars

Assuming equal vectorlike masses and soft masses of doublets and singlets highly simpli-

fies the discussion of the spectrum of scalars because the mass eigenvalues become doubly

degenerate. Furthermore, neglecting the contribution from Yukawa coupling, the masses

squared of scalars are:

m2
t̃1,2

=
1

2
M̃2 − 1

2

√
M̃4 − 4(M2m̃2

f +m2m̃2
F + m̃2

fm̃
2
F ),

m2
t̃3,4

=
1

2
M̃2 +

1

2

√
M̃4 − 4(M2m̃2

f +m2m̃2
F + m̃2

fm̃
2
F ),

m2
t̃5,6

= M2 +m2 + m̃2
F̄ , (9)
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FIG. 2: The mt̃1,2
/M (left) and mt̃3,4

/M (rigt) plotted in m/M – m̃2
F /M

2 plane, assuming m̃2
f = 0.

where M̃2 ≡M2 +m2 + m̃2
f + m̃2

F . The crucial observation is that all scalars acquire masses

even if m̃2
f = 0. The mt̃1,2 and mt̃3,4 normalized to M are plotted in m/M – m̃F/M plane,

assuming m̃2
f = 0, in Fig. 2.

III. ONE-LOOP RG EVOLUTION AND THRESHOLD CORRECTIONS

Let us neglect contributions from gaugino masses and A-terms and assume that soft

masses squared of scalars that couple to Hu are small at the mediation scale, for simplicity

m̃2
Hu

= m̃2
f = 0. Then in the RG evolution, at one-loop order, m2

Hu
and m̃2

f will remain zero

for arbitrarily large soft masses of the other fields, m̃F and m̃F̄ , since these do not couple

to Hu. Sufficiently large m̃2
f can be generated by mixing with vectorlike quarks as discussed

above without contributing to m2
Hu

over a large range in the energy scale. This completely

eliminates the largest source of fine tuning in the EWSB.

Near the (M2+m2)1/2 scale the heavy fermions and all scalars are integrated out. Because

of the mixing that generates masses for t̃1,2, heavy mass eigenstates (both fermions and

scalars) acquire couplings to the Hu and generate threshold corrections to m2
Hu

. For fixed

M and m these corrections do not depend on the renormalization scale at which heavy

particles are integrated out (besides the dependence through Yukawa coupling λ). The

threshold corrections are plotted in Fig. 3 in m̃2
F/M

2 – m̃2
F̄
/M2 plane, for M = 23 TeV,

λ = 1.
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FIG. 3: Contours of constant contribution to m̃2
Hu
/|m̃2

Hu
|1/2 [GeV] from threshold corrections

plotted in m̃2
F /M

2 – m̃2
F̄
/M2 plane, for M = 23 TeV, λ = 1 (m is fixed by the top quark mass)

and m̃2
f = 0. Along the green line (and shaded area) mh = 125 GeV (±1%) in our approximation.

The matching scale is Q = mt̃1,2
(' 9 TeV in this case).

For fixed λ and vectorlike masses the m̃2
F and m̃2

F̄
are the only free parameters that

determine masses of superpartners and thus the mass of the Higgs boson. The measured

value of the Higgs mass, mh = 125 GeV, is obtained along the green line and the shaded

area represents ±1% range from the central value. We assume that electroweak gauginos

and Higgsino are near the EW scale and we match the SM Higgs quartic coupling evolved

according to coupled RG equations including contributions from inos to the Higgs quartic

coupling predicted from the full model at the scale Q = mt̃1,2 . At this scale, the prediction

includes the SUSY tree level result and threshold corrections from integrating out extra

fermions and all scalars. The choice Q = mt̃1,2 is motivated by threshold corrections being

small near this scale, typically ' −0.01.

From Fig. 3 we see that threshold corrections to m̃2
Hu

are typically of order (1 TeV)2

for m̃2
F , m̃

2
F̄
≤ (30 TeV)2. This is expected since the resulting stop masses are O(10 TeV)

and the threshold corrections come with the factor 3y2
t /(8π

2) leading to about an order

of magnitude suppression. Thus this scenario, without any further assumptions, typically

requires about 1% tuning in EWSB.

However it is noteworthy that threshold corrections do not necessarily favor EWSB. They

can be both positive or negative and there is a range of parameters where the generated
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FIG. 4: The same as in Fig. 3 plotted in m̃2
F /M

2 – M plane assuming m̃2
F = m̃2

F̄
.

corrections are small. The existence of a region leading to small corrections to m2
Hu

does not

automatically mean that there is no tuning associated with this region. However the assess-

ment of fine tuning highly depends on further assumptions about the origin of soft scalar

masses, namely whether different soft scalar masses are related or independent parameters.

For example, each of m̃2
F and m̃2

F̄
represents two soft scalar masses that could be inde-

pendent parameters. If allowed to vary independently, the contours of m2
Hu

in similar plots

to Fig. 3 would spread by a factor of ∼
√

2. More interestingly, if all soft masses are the

same, m̃2
F = m̃2

F̄
, the region of parameters with small m2

Hu
is significantly enlarged. This

can be understood from Fig. 3 where m̃2
F = m̃2

F̄
condition implies moving along the diagonal

which is almost parallel to contours of m2
Hu

in the region of interest. It can also be seen in

Fig. 4 where we plot the correction to m2
Hu

in the m̃2
F/M

2 – M assuming m̃2
F = m̃2

F̄
.

Finally, if soft scalar masses and vectorlike masses are all related (have a common origin),

the contribution to m2
Hu

from threshold corrections is controlled by one mass parameter

and small correction to m2
Hu

might not require essentially any tuning with respect to that

parameter. This is demonstrated in Fig. 4 where contours of constant m2
Hu

are almost

horizontal lines.
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IV. DISCUSSION: TWO-LOOP EFFECTS AND SINGLET ALTERNATIVES

There are two loop contributions to soft masses of MSSM scalars in the RG evolution

originating from heavy scalar masses that can potentially destabilize the hierarchy m̃2
f <<

m̃2
F,F̄

and significantly affect previous results. The general form of these two loop terms is:

g4Tr[m̃2], where g is a gauge coupling and the trace goes over soft masses squared of all

scalars charged under given gauge symmetry [13]. The traces of masses squared of SU(2)

and U(1)Y charged scalars affect the m2
Hu

directly at two-loop level, while the trace of masses

squared of SU(3) charged scalars contributes to m2
Hu

indirectly, through contributing to stop

masses squared at two loop level that in turn contribute to m2
Hu

at one loop level. It turns

out that the latter contribution is the dominant two loop effect for the scenario we discussed.

However it is a resummed effect, similar to the contribution from the gluino, and as such it

requires evolution over larger energy interval in order to be effective.

For the particle content of our scenario, assuming universal heavy scalar masses,

the dominant two loop contribution to stop masses squared from heavy scalars is

−32(α3/(4π))2m̃2
F log[Λ/m̃F ], where Λ is the mediation scale. It has an opposite sign

to the 1-loop gluino contribution and these two contributions have equal size for M3 =

(3α3/(4π))1/2m̃F . Numerically, 25 TeV heavy scalars contribute approximately as much as a

4 TeV gluino would. In order for this contribution not to generate more than ∼ (400 GeV)2

correction to m2
Hu

and thus not requiring more than ∼ 10% tuning, the mediation scale

should not exceed ∼ 250 TeV.2 In comparison, the 10 TeV stops in the MSSM, assuming

the same mediation scale, would generate ∼ (3 TeV)2 contribution to m2
Hu

requiring ∼ 0.1%

tuning in EWSB. However, as the mediations scale increases, the relative improvement of the

scenario with heavy vectorlike quarks compared to the MSSM with 10 TeV stops diminishes.

It should be noted that the two loop contributions from heavy scalars can be absent

if their soft masses squared come in traceless combinations under every gauge symmetry.

Negative soft scalar masses squared for vectorlike fields are not problematic since, due to

supersymmetric masses, they do not necessarily lead to tachyons. Not changing any aspect of

2 The contribution to stop masses squared from heavy scalars for this mediation scale is −(2 TeV)2. Since

10 TeV stop masses in our scenario originate mostly from the mixing with ∼ 25 TeV scalars, this is a

small correction. Furthermore, this contribution to stop masses is partially canceled by the contribution

from gluino.
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the scenario we discussed, the easiest possibility would be to introduce additional vectorlike

fields that do not couple to the Higgs boson or mix with MSSM fields that have appropriate

negative soft masses squared.

Let us also comment on the scenario where explicit mass terms of vectorlike fields originate

from vevs of SM singlets: m = λf〈Sm〉 and M = λF 〈SM〉. Large soft scalar masses squared

of heavy fields will drive the soft scalar masses squared of Sm and SM in the RG evolution to

negative values in analogy to the RG evolution of m̃2
Hu

in the MSSM, see Eq. (3). The vevs

squared of singlets are related to negative of their masses squared and thus M2 ∼ m2 ∼ m̃2
F,F̄

can be achieved. The exact relations will depend on Yukawa couplings λf,F and couplings

from the part of a model that determines quartic couplings of the singlets, which are to a

large extent adjustable. However, special attention has to be paid to the λf coupling because

it also generates m̃2
f in the RG evolution. In order to preserve the hierarchy m̃2

f << m̃2
F,F̄

in the RG evolution the λf or the mediation scale should not be too large. In addition to

λf , couplings of Sm to other fields in a complete model would also contribute to the RG

evolution of its soft mass squared and could make it sufficiently large and negative.

Finally, let us briefly mention an intriguing possibility that the soft masses of heavy fields

are generated proportional to their U(1) charges as in D-term mediation of SUSY breaking.

Assuming QF = +1, QF̄ = +1, QSm = −1, QSM
= −2 with MSSM fields not charged, the

negative soft masses squared of singlets with appropriate sizes are generated directly and

in the RG evolution they are not modified due to λf,F couplings. Similarly, the m̃2
f would

not be generated in the RG evolution due to λf . Additional vectorlike fields can be added

with proper charges to eliminate 2-loop contributions from heavy scalars. Pursuing specific

models with singlet origin of vectorlike masses is beyond the scope of this paper.

V. CONCLUSIONS

We have discussed a scenario in which O(10 TeV) stops originate from mixing of states

that have a large Yukawa coupling and negligible soft masses and states with no Yukawa

coupling but sizable soft masses. As such, the contribution to m̃2
Hu

generated by large

Yukawa coupling to scalars in the RG evolution from a high scale can be eliminated. The

contribution from scalars is reduced to threshold corrections and 2-loop effects.

Avoiding large contribution to m̃2
Hu

from gluino favors models with low scale mediation
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of SUSY breaking. Assuming no specific scenario for generating heavy scalar masses, the

two loop effects from heavy scalars also favor a low mediation scale. However, even for a low

scale the scenario highly reduces the contribution to m̃2
Hu

from scalar masses. Possibilities

to further reduce the 2-loop contributions from scalars or remove them completely were

outlined.

The mechanism we have discussed does not require any specific relations between pa-

rameters and thus it can be attached to many models for SUSY breaking. It can also be

connected with a variety of models that increase the Higgs mass with appropriately lowered

scale of vectorlike fields.
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