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Abstract

We propose a novel general approach to locality of lattice composite fields, which in
case of QCD involves locality in both quark and gauge degrees of freedom. The method
is applied to gauge operators based on the overlap Dirac matrix elements, showing for
the first time their local nature on realistic path-integral backgrounds. The framework
entails a method for efficient evaluation of such non-ultralocal operators, whose com-
putational cost is volume-indepenent at fixed accuracy, and only grows logarithmically
as this accuracy approaches zero. This makes computation of useful operators, such as
overlap-based topological density, practical. The key notion underlying these features
is that of exponential insensitivity to distant fields, made rigorous by introducing the
procedure of statistical regularization. The scales associated with insensitivity property
are useful characteristics of non-local continuum operators.

1 Introduction

Local quantum field theories are quantum field systems with dynamics prescribed by local
action density. When such theories serve to describe particle interactions then, in addition,
n-point correlation functions of local operators encode most of the interesting observables.
The notion of a local operator is thus deeply engrained in these descriptions.

Locality is rarely viewed as problematic or subtle in formal continuum considerations.
Indeed, the presence of space-time derivatives invokes confidence that field variables sepa-
rated by non-zero distance are not explicitly coupled by the operator, consistently with the
intuitive meaning of locality. However, the concept becomes richer once an actual definition
of the theory, such as via lattice regularization which we follow here, is carried out.

A common approach to formulating lattice-regularized systems is to replace space-time
field derivatives with nearest-neighbor field differences. More generally, operators that only
depend on field variables within fixed lattice distance away from each other are referred to as
ultralocal. However, lattice operators with couplings extending to arbitrary distances natu-
rally arise in Wilson’s renormalization group considerations. Moreover, chirality-preserving
Dirac operators of Ginsparg-Wilson type [1] are all of such non-ultralocal variety [2, 3]. Lo-
cality becomes a more subtle notion in these situations, and requires some care.
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In this work, we consider non-ultralocal operators associated with overlap Dirac matrix
D ≡ {Dx,y(U)} [4] in the context of QCD. Here the color-spin indices are implicit and
U ≡ {Ux,µ} is the SU(3) lattice gauge field. There are at least two relevant circumstances
to consider. Firstly, since

∑
x ψ̄x(Dψ)x prescribes interactions of quarks and gluons, it

is required to be a sum of local contributions. Operator (Dψ)x thus has to be local with
respect to both fermionic and gauge variables. Secondly, there are interesting gauge operators
based on overlap matrix elements, such as topological charge density [5, 6], gauge action
density [7, 8, 9] or gauge field strength tensor [7, 10] constructed from Dx,x(U). To be used
in well-founded QCD calculations, these objects need to be local in gauge potentials.

While fermionic locality of the overlap operator was studied in some detail [11], the
aspects of gauge locality have barely been considered. In fact, they were not studied at all
for realistic gauge fields of lattice QCD ensembles. The theme of the present work is to
examine this issue, especially in relation to the above non-ultralocal gauge operators. The
novelty of our approach is that it naturally connects locality of an operator to efficiency
achievable in its evaluation. Consequently, the results that follow have direct bearing on the
practical use of these computationally demanding objects.

To start describing our approach, recall that the modern notion of locality for lattice-
defined operators includes their exponentially decreasing sensitivity to distant field variables.
Standard treatment formalizes this into exponential bound on the corresponding field deriva-
tives. For example, fermionic locality of (Dψ)x then simply requires sufficiently fast decay
of Dx,y as y is taken increasingly far away from x. Albeit less elegant due to gauge field
entering in a more complicated manner, this prescription can also be followed to study gauge
locality of (Dψ)x or locality of Dx,x(U).

However, for our purposes it is fruitful to replace the above “differential” treatment of
dependence on distant fields with a direct “integral” approach. In other words, we ask
how well is it possible to know the value of a composite operator Ox when the knowledge
of fundamental fields is restricted to some neighborhood of x. Exponentially suppressed
sensitivity to distant fields is then formalized as the existence of estimates whose precision
exponentially improves with the linear extent of these neighborhoods.

To explain this in more detail, consider operators Ox that only depend on the gauge
field1, such as covariant discretizations of FF̃ (x). The simplest ultralocal option is based on
minimal gauge loops (plaquettes), but general Ox(U) may couple fields everywhere. We will
use hypercubic neighborhoods of x with “radius” r to define patches Ux,r ⊂ U of the field,
as illustrated in Fig. 1. Note that r = ja is discrete at finite lattice cutoff a. Faced with
the task of estimating Ox(U) given an incomplete knowledge (Ux,r) of its argument, one is
led to construct approximants Or

x(U) = Or
x(U

x,r) depending only on variables in the patch.
If δ(r, U) ≡ ‖Ox(U) − Or

x(U)‖ denotes the associated error, one may choose to formalize
exponential insensitivity to distant fields of Ox by requiring the existence of Or

x and finite
positive constants B, R, s such that

δ(r, U) ≤ B exp (−r/R ) , r ≥ s , ∀U (1)

But the notion so construed is unnecessarily strong since violations of (1) involving config-
urations U that are statistically irrelevant in the path integral, are inconsequential in the

1This is the context for which we develop the method in detail here. Including other fundamental fields
is conceptually analogous with specifics, especially as it relates to fermions, forthcoming.
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Figure 1: Gauge field patch involved in simplest gauge covariant operators Ox (left) and the
geometry of hypercubic neighborhoods with radius r (right).

context of corresponding quantum theory. We thus replace condition (1) by

δ(r, p) ≤ B exp (−r/R ) , r ≥ s , ∀ p < 1 (2)

where δ(r, p) is a statistical construct representing “error with probability p”, effectively
demanding that the bound is satisfied up to events of probabilistic measure zero. In the
resulting procedure of statistical regularization, the bound is examined at fixed certainty p,
and this cutoff is eventually lifted via the appropriate p→ 1 limit (Sec.2). Note that tying
exponential insensitivity of an operator to path integral in which it is used implies that
minimal sensitivity range R→ R0 can have non-trivial dependence on the lattice spacing.
Locality then requires, among other things, that R0(a) vanishes in the continuum limit.

The notion of exponential insensitivity, outlined above, admits arbitrary Or
x to be con-

sidered in Eq. (2). However, if the property holds for Ox, the facilitating approximant is
clearly not unique, and different options may involve widely varied degrees of computational
complexity. In fact, albeit coupling fewer degrees of freedom, computational demands for
most precise choices of Or

x can be as large or larger than those for Ox itself. However, our
goal here is not to determine the best approximation. Rather, we are interested in finding Or

x

whose computational complexity scales with r/a in qualitatively the same manner as that of
Ox with L/a. Here L� r is the size of the system. Apart from demonstrating exponential
insensitivity, the existence of such approximants would offer great computational advantage.
Indeed, if the program computing Ox has no a priori knowledge about insensitivity, then
single evaluation incurs cost growing at least with the lattice 4-volume for non-ultralocal
operators of interest here. This is reduced as( L

a

)4+α
−→

( R
a

log
B

δ

)4+α′

, α, α′ ≥ 0 (3)

for the approximant that guarantees absolute precision δ. Computation could thus be per-
formed at a constant cost (independent of the volume) that only depends logarithmically on
the desired precision.
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Our suggestion for constructing generic and practical approximants Or
x of the above type

is to treat the neighborhood containing Ux,r as a finite system of its own. Indeed, definition
of non-ultralocal Ox implicitly involves a sequence of operators: one for each space-time
lattice involved in the process of taking the infinite-volume limit. Considering L4 lattices
and making the L-dependence explicit for the moment (Ox → Ox,L), the replacement

Ox,L(U) −→ Ox,L→2r+a(U
x,r) ≡ Or

x(U
x,r) = Or

x(U) (4)

offers a generic scheme for obtaining candidate approximants. Note that L/a is defined to
count the sites and hence 2r+a is the “size” of the lattice system contained in hypercubic
neighborhood with radius r. Variations on this prescription discussed in the body of the
paper correspond to different treatment of boundaries in the subsystem associated with
the patch. We refer to approximants of type (4) as boundary approximants since they test
sensitivity to the boundary created by the restriction U → Ux,r. If they exhibit the behavior
(2), then Ox is exponentially insensitive to distant fields, and a stronger notion of locality
(boundary locality) can be built around this concept.

The paper is organized as follows. In Sec. 2 we introduce the concept of exponential in-
sensitivity to distant fields via statistical regularization. Given its pivotal role in the present
discussion, this is carried out in detail so that relevantly distinct behaviors are discerned, and
the subtleties known to us are all accounted for. A notable feature of the resulting framework
is that the removal of lattice and statistical cutoffs necessitates not only a non-divergent ex-
ponential range R0, but also a non-divergent auxiliary (non-unique) scale ρ0 representing
the threshold distance for validity of the bound. This part concludes with connecting the
locality to exponential insensitivity and defining it correspondingly. In Sec. 3 the stronger
notions of boundary insensitivity and boundary locality are put forward, emphasizing their
practical relevance. In particular, the consequences of this property for efficient evaluation
of computable non-ultralocal operators is discussed in detail. The possibility that suitably
constructed boundary approximant can also serve as a standalone ultralocal operator, inter-
esting in its own right, is suggested here as well. In Sec. 4 we investigate the properties of
basic overlap-based gauge operators in the proposed framework. Our numerical results in
pure glue theory readily show the weak form of insensitivity (for any fixed statistical cutoff)
at the lattice level, and the corresponding weak form of locality in the continuum. They also
lend an initial support to full insensitivity (statistical cutoff removed) sufficiently close to
the continuum limit, and the associated locality.2 To illustrate the practical aspects of ex-
ponential insensitivity, we discuss in Sec. 5 the use of boundary approximants for efficiently
computing the “configurations” of overlap-based topological density. This lattice topological
field was crucial for identifying the low-dimensional long-range topological structure in QCD
vacuum [12]. The insensitivity properties tested here make large scale computations of this
type practical since, at fixed accuracy, the cost per configuration is simply proportional to
the volume, similarly to the case of generic ultralocal gauge operators.

2The precise meaning of these qualifications on insensitivity/locality is given in the body of the paper.
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2 Exponential Insensitivity to Distant Fields

The concept of exponential insensitivity to distant fields is central to this work, and we
thus begin by working out the necessary details. The issues in need of attention arise
mostly due to the quantum setting we are dealing with. To see this, consider some extended
operator (functional) Ox[A] of gauge fields A≡{Aµ(y)} in the continuum space-time. The
analog of Eq. (1), involving spherical neighborhoods of x in Euclidean space, is intended to
characterize exponential insensitivity of Ox. However, the required bound may not hold, or
even be meaningful, for arbitrary A, and yet be satisfied by a subset of fields relevant to
the situation at hand. Indeed, the proper definition requires specifying the class of fields in
question. Problems involving classical dynamics of Ox naturally come with needed analytic
restrictions since they deal with fields A obeying classical equations of motion.3

However, in field theory regularized and quantized via lattice path integral, there is no
a priori restriction on the fundamental fields (“configurations”) U : there is only a hierarchy
induced by their statistical weights. While this forces one to adopt the notion of exponential
insensitivity involving all lattice fields in principle, it also makes room for the concept to be
viable even when there are sufficiently improbable configurations violating any exponential
bound. Indeed, we are led to a statistical approach respecting the path integral hierarchy
of fields and, at the same time, facilitating the systematic separation of potential outliers in
the process we refer to as statistical regularization. Its idea is to replace the sharp construct
of least upper bound with the statistical “least upper bound with probability p”. Before
defining the concept in Sec.2.3, we need to discuss some preliminaries.

2.1 The Setup

Unless stated otherwise, the position coordinates of an underlying infinite system are spanned
by entire d-dimensional hypercubic lattice with cutoff a, i.e.

H∞ ≡ {x | xµ=anµ , nµ ∈ Z , µ = 1, 2, . . . , d } (5)

The general case where infinite volume involves a subset of points in H∞ is described in
Appendix D, and allows e.g. for applying our methods to arbitrary spatial geometry, or to
theories at finite temperature. The hypercubic neighborhood of point x with radius r is

Hx,r ≡ { y ∈ H∞ | |xµ − yµ| ≤ r , ∀µ } r ∈ { ja | j = 1, 2, 3, . . . } ≡ Na (6)

We consider operator Ox=Ox(U), composed of gauge field U≡{Uy,µ}, in theory defined
by S(U), namely the effective gauge action after integrating out quark fields, if any. This
quantum dynamics is infrared-regularized on symmetric lattices of (L/a)4 sites centered
around x, i.e. the center of the lattice is at x for L/a odd, and at x+ (a/2, . . . , a/2) for L/a
even. Each Hx,r contained within given finite system is assigned a hypercubic field patch

Ux,r ≡ { Uy,µ ∈ U | y, y+µ̂ ∈ Hx,r } , 2r + a < L (7)

3Mere definition of Ox[A] directly in the continuum often forces A to satisfy certain analytic properties.
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Note that Ux,r doesn’t include links “dangling” with respect to Hx,r. For example, the set
of red links in Fig.1 (left) is Ux,r=a. Any operator Or

x with range in the normed space of Ox

and satisfying Or
x(U)=Or

x(U
x,r), will be referred to as approximant of Ox with radius r.

2.2 Kinematics of Exponential Bounds

Important technical aspect of the analysis that follows involves sufficiently detailed descrip-
tion of exponential bounds which we now discuss. Generic real-valued “error function”

0 ≤ δ(r) <∞ , r ∈ Na (8)

is said to be exponentially boundable if there are finite positive R, ∆, s such that

δ(r) ≤ ∆ exp

(
−r − s

R

)
, r ≥ s ∈ Na (9)

Note that, in this form, the prefactor ∆ specifies the bound at threshold distance s. Our
goal is to identify a region in parameter space R>0, ∆>0, s∈Na, if any, where (9) holds.

Explicit solution to this problem is obtained by rewriting (9) as

∆ ≥ exp (−s/R) sup { δ(r) exp (r/R) | r ≥ s } ≡ ∆0(R, s) (10)

Thus, for given (R, s), the indicated range of valid ∆ materializes, as long as ∆0(R, s) <∞.
At the same time, finiteness of ∆0(R, s) only depends on R. Indeed, s→ s′ induces at most
a finite change in ∆0 since the sets involved in suprema only differ by finite number of finite
elements. Consequently, the following defines an s-independent object

R0 ≡ inf {R > 0 | ∆0(R, s) <∞} ≥ 0 (11)

namely the effective range of δ(r). Exponential boundability of δ(r) is equivalent to R0 <∞,
and the parameter domain of validity for (9) is R > R0, s ∈ Na, ∆ ≥ ∆0(R, s). We will
work with description of this domain in which the threshold error ∆, rather than threshold
distance s, enters as an unconstrained free parameter. Since ∆0(R, s) is decreasing in s, and
lims→∞∆0(R, s) = 0, its “inverse” defines the desired representation, namely

R > R0 ∆ > 0 s ≥ s0(R,∆) ≡ min { r | ∆0(R, r) ≤ ∆ } (12)

Function s0(R,∆) is a core size outside of which a bound with desired (R,∆) sets in.
This detailed kinematics of exponential bounds acquires relevance in quantum setting,

where ultraviolet and statistical regularizations produce error functions depending on asso-
ciated cutoffs. It turns out that monitoring cutoff dependence of R0 alone is not sufficient to
ensure requisite bounds upon regularization removal, and information in s0 is also needed.
To that end, it is useful to treat s0 as a continuous entity (like R0) so that trends can be
detected even for small changes in the cutoffs. We thus extend ∆0(R, s) at fixed R, into a de-
creasing continuous map ∆0(R, ρ) from ρ∈(0,∞) onto (0,∞). Omitting the R-dependence,
the exponential behavior of ∆0(s) motivates a practical choice

log ∆0(ρ) ≡

{
Lin

(
log ∆0(s) , ρ

)
for ρ ≥ a

−1 + a/ρ+ log ∆0(a) for ρ < a
(13)

6



where Lin (f(s), ρ) denotes linear interpolation of f(s) via variable ρ. The arbitrary comple-
tion for ρ<a only serves to realize the desired range. With ∆0(R, ρ) so fixed, the associated
core-size function ρ0(R,∆) is uniquely defined via ∆0(R, ρ0)=∆, guaranteeing that

δ(r) ≤ ∆ exp

(
−r − ρ

R

)
for r ≥ ρ R > R0 ∆ > 0 ρ ≥ ρ0(R,∆) (14)

Note that setting R=R0 to optimize the bound at large distances is not always possible
since ρ0(R,∆) may diverge for R→ R+

0 . This occurs when δ(r) decays as an exponential
modulated by an unbounded function, e.g. δ(r) ∝ r exp(−r/R0). Such cases require R
in (14) that may be arbitrarily close but larger than R0, as indicated. However, setting
ρ=ρ0(R,∆), whenever finite, always produces a valid bound

δ(r) ≤ ∆ exp

(
−r − ρ0(R,∆)

R

)
, r ≥ ρ0(R,∆) (15)

Vice versa, when ρ0(R,∆) is ill-defined (infinite), there is no exponential bound involving
range R and threshold error ∆. The core-size function is thus a master construct containing
complete information on exponential bounds of δ(r). The bounds in 2-parameter family (15)
are optimal in that they cover the maximal range of distances for given (R,∆).

2.3 Statistical Regularization

Given a composite field Ox(U) and its approximant Or
x(U) = Or

x(U
x,r), the properties of the

latter are described by distribution Pr(δ) of its errors over the path integral ensemble. The
corresponding cumulative probability function Fr(δ) is explicitly given by

Fr(δ) ≡
〈
H
(
δ − ‖Ox(U)−Or

x(U)‖
)〉

Pr(δ) ≡
d

dδ
Fr(δ) (16)

with H denoting a Heaviside step function and 〈. . .〉 the path integral average specified by
S(U). This information can be recast into error bounds δ(r, p) satisfied by fractions p of the
overall population with smallest deviations by imposing

Fr

(
δ(r, p)

)
≡ p (17)

i.e. by inverting Fr(δ). By construction, the meaning of δ(r, p) is that of an “error bound
with probability p”: if Or

x is used to estimate Ox, the expected error is less than δ(r, p) with
probability p. This family of error functions is central to the analysis proposed here.

For Ox to exhibit exponential insensitivity to distant fields, statistically regularized by
fixed 0<p< 1, we require that δ(r, p) decays at least exponentially at asymptotically large
r, i.e. that it is exponentially boundable. The advertised “separation of potential outliers”
is thus accomplished by fixing the degree of certainty p in examining the influence of distant
fields on error. Examples of measured r-dependencies for several overlap-based operators are
shown in Fig. 2, with details described in Sec. 3. The observed behavior is clearly compatible
with exponential falloff at rates depending very weakly (if at all) on p.
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Figure 2: The behavior of δ(r, p) at fixed p for overlap-based gauge operators (Sec. 4). Note
that Tr γ5Dx,x ∝ q(x) (topological density) has the strongest dependence on p.

Exponential insensitivity at any non-zero p is in itself (without p→ 1 considerations) a
notable feature of non-ultralocal lattice operator. Indeed, at minimum, it signals the exis-
tence of insensitive subpopulation in the path integral, which can be useful computationally
and otherwise. We formalize this lattice concept as follows.

Definition 1 (exponential insensitivity at fixed p)

Let Ox(U) be the operator with values in normed space and S(U) the action of Euclidean
gauge theory, both defined on hypercubic lattices of arbitrary size L. We say that Ox is
exponentially insensitive to distant fields with respect to S at probability p, if there is an
r-dependent approximant Or

x(U) = Or
x(U

x,r) such that

(i) The infinite-volume limit δ(r, p) ≡ limL→∞ δ(r, p, L) of its error function exists.

(ii) δ(r, p) is exponentially boundable.

Here Ux,r is the patch of U contained in hypercubic neighborhood of x with radius r. �

This definition categorizes lattice operators at given position in terms of their dependence
on remote fields. Abbreviating exponential insensitivity to distant fields as “insensitivity”,
if there is no p>0 at which Ox is insensitive, then Ox is sensitive, while in the opposite case
it is said to contain an insensitive component. When the latter holds for all p< 1 then Ox

is referred to as weakly insensitive provided that the “outliers” do not contribute finitely to
Ox in p→1 limit.4 Weakly insensitive operator is under exponential control with any preset

4The second requirement bars a logical possibility that samples defying any exponential bound would
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probability short of certainty which, among other things, can provide a powerful advantage
for its evaluation. Finally, if removing statistical cutoff (p→ 1) in weakly insensitive Ox

leaves some exponential bounds in place, we speak of insensitive operator. However, the
process of cutoff removal needs to be specified and discussed in some detail.

2.4 The Removal of Statistical Cutoff

Imposing the statistical cutoff p turns a quantum situation, involving path integral over fields,
into classical-like setting specified by single error function δ(r, p). Regularized exponential
insensitivity to distant fields is synonymous with its exponential boundability which, in
turn, is equivalent to the associated effective range R0(p) being finite. It is thus tempting
to conclude that limp→1R0(p)<∞ is the proper requirement for weakly insensitive operator
Ox to be fully insensitive.

However, this cutoff-removal prescription is not sufficient because it doesn’t guarantee
the existence of p-independent exponential bound. For example, consider the family of error
functions δ(r, p) taking constant value ∆ for r≤ r0(p), and decaying as pure exponential of
range R0 for r>r0(p). With ∆ and R0 being p-independent, if radius r0(p) of the constant
core grows unbounded as the cutoff is lifted (limp→1 r0(p)=∞) then there is no exponential
bound valid for all p<1, albeit the condition of finite limiting range is readily satisfied.

The possibility of such behavior should not be too surprising in light of our analysis in
Sec. 2.2, and its result (14). Indeed, the subset of parameter space (R,∆, ρ) describing valid
exponential bounds is determined not only by R0(p) but also by the core size ρ0(R,∆, p).
Finiteness of both is needed in p→1 limit, namely

lim
p→1

R0(p) <∞ and ∃ R > 0 , ∆ > 0 : lim
p→1

ρ0(R,∆, p) <∞ (18)

The example of previous paragraph violates the second condition which is, strictly speaking,
alone sufficient for insensitivity since it implies finite limiting range.5 However, keeping both
requirements explicit is more reflective of steps involved in determination of insensitivity in
practice. The equivalent formal definition, given below, closely mimics this process and is
tailored for the eventual step of ultraviolet cutoff removal. Instead of (R,∆), this formulation
specifies the bounds of δ(r, p) via relative parameters (κ,E), namely

R = κR0(p) , κ > 0 ∆ = E 〈 ‖Ox‖ 〉 , E > 0 ρ0(R,∆, p)→ ρ0(κ,E, p) (19)

and monitors the finiteness of ρ0(κ,E, p) in p→1 limit. At fixed κ>1, i.e. κR0(p)>R0(p),
this limiting process is manifestly well-defined for weakly insensitive operator. Introduction
of E corresponds to measuring the error in units of typical magnitude of the operator, which
is inconsequential at fixed ultraviolet cutoff but essential for taking the continuum limit.
Indeed, since the operator values depend on lattice spacing, a meaningful assessment of

finitely influence Ox albeit forming a set of measure zero. The property expressing the absence of such
singular behavior is formulated in Appendix A and will be referred to as regularity. It is automatically
satisfied by bounded lattice operators with bounded approximants, such as those studied here.

5Indeed, finite limiting core size implies R0(p)≤R, ∀ p < 1, because ρ0(R,∆, p) is non-decreasing in p.
Moreover, since R0(p) is also non-decreasing, the p→1 limit exists and satisfies limp→1R0(p)≤R<∞.
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insensitivity is to be performed at fixed E. Reparametrization (19) puts optimal bounds (15)
of δ(r, p) into the form

δ(r, p) ≤ E 〈‖Ox‖〉 exp

(
− r − ρ0(κ,E, p)

κR0(p)

)
, r ≥ ρ0(κ,E, p) (20)

and the aforementioned definition of exponential insensitivity is as follows.

Definition 2 (exponential insensitivity)

Let Ox(U) be a weakly insensitive operator with respect to S(U), implying the existence of
approximants Or

x(U) = Or
x(U

x,r) characterized by finite length scales R0(p), ρ0(κ,E, p), for
all 0<p<1, κ>1, E>0. If there is Or

x and κ, E for which the finite limits below exist

lim
p→1

R0(p) ≡ R0 <∞ and lim
p→1

ρ0(κ,E, p) ≡ ρ0(κ,E) <∞ (21)

we say that Ox is exponentially insensitive with respect to S. �

Note that the p-independent optimal bound for given (κ,E) is obtained by inserting R0 and
ρ0(κ,E) into formula (20). There are two points regarding Definition 2 we wish to emphasize.

(i) It is shown in Appendix B that, if ρ0(κ,E) < ∞, then ρ0(κ
′,E′) < ∞ for all (κ′,E′)

with E′> 0 and κ′≥ κ. Thus, the threshold relative error E remains an unconstrained free
parameter to keep fixed in p→1 limit: its choice is purely a matter of practical convenience.
However, Appendix B also shows that finiteness of ρ0 is not guaranteed for 1<κ′<κ. As a
practical consequence, examining a single value ρ0(κ,E) is not always sufficient to determine
insensitivity. Indeed, if ρ0(κ,E) is infinite, there may be κ′> κ for which ρ0(κ

′,E) is finite.

(ii) As discussed in Sec. 2.2, there is a class of error functions δ(r, p) obeying an exponential
bound with R set to the effective range R0(p). In this case the p→1 limiting procedure at
κ=1 can be set up and examined. This, however, cannot be assumed in general.

2.5 The Removal of Ultraviolet Cutoff

The prescription of monitoring ρ0 at fixed (κ,E) as statistical cutoff is lifted (p→ 1 limit),
is directly applicable to the process of ultraviolet cutoff removal (a→ 0 limit). Indeed, an
uncontainable core can emerge in the process of continuum limit as well. The importance
of fixing E is further underlined by the fact that 〈 ‖Ox‖ 〉 is a-dependent, making it imper-
ative that the approximation error (and thus core size ρ0) relates to this changing typical
magnitude in fixed proportion.

We now formulate this precisely in order to classify continuum operators defined by
arbitrary lattice prescriptions in terms of their sensitivity to distant fields. Making the
dependence on lattice spacing explicit, the error function δ(r, p, a) assigned to the pair Ox

and Or
x depends on both cutoffs, as do the associated characteristics R0(p, a), ρ0(κ,E, p, a).

Following the structure of our formalism at fixed ultraviolet cutoff, the first step is to define
the continuum version of exponential insensitivity at fixed p.

10



Definition 3 (exponential insensitivity at fixed p – continuum)

Let Ox(U) be the lattice operator exponentially insensitive with respect to S(U) at given p
and lattice spacings 0<a<a0 i.e. sufficiently close to the continuum limit. Thus, there exist
approximants Or

x(U) = Or
x(U

x,r) with finite characteristics R0(p, a) and ρ0(κ,E, p, a) for all
0<a<a0, κ>1, E>0. If it is possible to find Or

x and κ, E for which

lim
a→0

R0(p, a) ≡ Rc
0(p) <∞ and lim

a→0
ρ0(κ,E, p, a) ≡ ρc0(κ,E, p) <∞ (22)

we say that the continuum operator Oc
x defined by Ox is exponentially insensitive at proba-

bility p in the continuum theory Sc defined by S. �

There are two points regarding this definition we wish to highlight.

(i) The existence of indicated a→0 limits is a somewhat stronger requirement than what is
sufficient to capture the concept of exponential insensitivity. Indeed, the latter only requires
that the characteristics in question are bounded for a sufficiently close to zero. For example,
dependencies bounded on (0, a0) where increasingly rapid oscillations near a=0 destroy a→0
limits, still allow for exponential bound of δ(r, p, a) simultaneously valid for all 0< a< a0.
While such behavior is not expected to occur in intended applications, Appendix C describes
the adaptation of the formalism to the most general context. Note that this subtlety doesn’t
arise when removing statistical cutoff at fixed a because p-dependence is always monotonic,
making boundedness and existence of finite limit interchangeable.

(ii) Similarly to the situation with statistical cutoff (see discussion point (i) following Defi-
nition 2), one can infer finiteness of generic ρc0(κ

′,E′, p) from finiteness of single ρc0(κ,E, p).
In particular, ρc0(κ

′,E′, p) is guaranteed to be finite for all E′>0 and κ′≥κ.6

Using Definition 3, continuum operators can be classified via the same scheme we used
at fixed ultraviolet cutoff. In particular, if there is no 0<p<1 such that Oc

x is exponentially
insensitive, then it is considered sensitive to distant fields. In the opposite case, Oc

x is said to
contain an insensitive component. If Oc

x is insensitive for all 0<p<1 and regularly approx-
imated (Appendix A), it is referred to as weakly insensitive. The definition of insensitive
operator then straightforwardly proceeds as follows.

Definition 4 (exponential insensitivity – continuum)

Let Oc
x be weakly insensitive continuum operator in theory Sc. Thus, there are approximants

Or
x(U

x,r) of its defining lattice operator Ox(U), with finite length scales Rc
0(p) and ρc0(κ,E, p)

for all 0<p<1, E>0 and sufficiently large κ>1. If there is Or
x, κ, E such that

lim
p→1

Rc
0(p) ≡ Rc

0 <∞ lim
p→1

ρc0(κ,E, p) ≡ ρc0(κ,E) <∞ (23)

we say that Oc
x is exponentially insensitive with respect to Sc. �

The above leaves us with the option offering the highest degree of control over the con-
tribution of distant fields to a non-ultralocally defined continuum operator. This can arise

6It is worth emphasizing that, in generic situations of interest, the parametric dependence of ρc0 is in fact
entirely universal, i.e. finiteness occurs for any E′>0 and κ′>1.
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when lattice definition is strictly exponentially insensitive (Definition 2), thus guaranteeing
p-independent bound (up to events of probabilistic measure zero) at successive ultraviolet
cutoffs defining the continuum limit. If the associated length scales tend to finite values
in this process, then both p and a-independent bounds (at least sufficiently close to the
continuum limit) can be found. We then speak of strong insensitivity as formulated below.

Definition 5 (strong exponential insensitivity)

Let Ox(U) be the lattice operator exponentially insensitive with respect to S(U) for lattice
spacings 0<a<a0. Thus, there are approximants Or

x(U
x,r) characterized by finite R0(a) and

ρ0(κ,E, a) for 0<a<a0, E>0 and sufficiently large κ>1. If there is Or
x and κ, E such that

lim
a→0

R0(a) ≡ R̄c
0 <∞ lim

a→0
ρ0(κ,E, a) ≡ ρ̄c0(κ,E) <∞ (24)

we say that the continuum operator Oc
x defined by Ox(U) is strongly exponentially insensitive

in theory Sc defined by S(U). �

We emphasize that, although defined statistically, the bounds constructed via the process of
statistical regularization are as consequential as conventional upper bounds. The convenience
of strongly insensitive operators (Definition 5) is that these bounds exist, and can be taken
full advantage of, even within the context of ultraviolet-regularized dynamics. Note that the
difference relative to insensitive operators (Definition 4) is in the order of limits, namely

lim
p→1

lim
a→0

lim
L→∞

(insensitive) vs lim
a→0

lim
p→1

lim
L→∞

(strongly insensitive) (25)

Finally, it is important that the proposed formalism of exponential insensitivity is not
only relevant for the issues of locality, but also for characterizing non-local operators. Indeed,
such operators are useful in field theory if they have well-defined scale(s) associated with
them (e.g. a spatial Wilson loop of fixed physical size). Exponentially insensitive operators
with finite effective range are natural objects of interest in this regard.

2.6 Locality

The broadest naive notion of local composite field (operator) Oc
x in the continuum refers to

an object that doesn’t depend on fundamental fields residing non-zero distance away from
x. However, when the theory and Oc

x are rigorously defined via lattice regularization, more
detailed considerations come into play. In particular, since the naive approach is essentially
classical with continuum limit involving smooth fields only, two questions arise regarding the
full quantum treatment. (a) How to formulate the requirement that “Oc

x doesn’t depend on
fields non-zero distance away from x” for quantum definition involving general non-ultralocal
lattice operators? (b) Given the variety of possible behaviors, do all options consistent with
(a), when properly formulated, lead to acceptable definition of a local quantum Oc

x?
The formalism of statistical regularization and exponential insensitivity, just introduced,

provides an umbrella for both of these issues. Indeed, the resolution of (a) is the requirement
that the relative error function ε(r, p, a) defined by

δ(r, p, a) = 〈 ‖Ox‖ 〉a ε(r, p, a) (26)
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vanishes in a→ 0 limit for all r > 0 and 0<p< 1. Here 〈. . .〉a is the expectation at lattice
spacing a, and Ox is the lattice operator defining Oc

x.
With regard to (b), the chief worry is that non-ultralocal operator may couple distant

fields in a way that can mimic massless behavior in correlation functions. In other words,
power law decays could be introduced by virtue of operator’s explicit couplings, rather than
dynamics of fundamental fields, which can be very dangerous to the universality of quantum
definition. Thus, the basic “quantum” requirement beyond the properly formulated naive
one is that the influence of distant fields decays (at least) exponentially with distance in
the regularized operator. In other words, locality is expected to be safely realized within
the realm of exponentially insensitive operators, where vanishing contribution from fields at
non-zero distances translates into vanishing of the corresponding characteristic length scales
in the continuum limit. Our formalism then leads to the following hierarchy.

Definition 6 (statistical degrees of locality)

Let Oc
x be a continuum operator in continuum theory Sc, both defined via the process of

lattice regularization. We say that

(a) Oc
x has local component with respect to Sc if it has an exponentially insensitive com-

ponent and there is p<1, κ>1, E>0 for which the associated characteristics vanish

Rc
0(p) = 0 ρc0(κ,E, p) = 0 (27)

(b) Oc
x is weakly local with respect to Sc if it is exponentially insensitive and

Rc
0 = 0 ρc0(κ,E) = 0 (28)

(c) Oc
x is local with respect to Sc if it is strongly exponentially insensitive and

R̄c
0 = 0 ρ̄c0(κ,E) = 0 (29)

�

It should be emphasized that locality is a fairly subtle and complicated notion. Indeed,
while it would be ideal to list all necessary locality-related conditions, and thus identify the
maximal set of lattice operators defining single continuum dynamics, one is typically only
able to formulate generic constraints expected to be sufficient. In this regard, Definition 6 is
quite minimalistic in its requirements. Additional conditions can certainly be put in place,
but they tend to be motivated by convenience in working with such operators rather than the
notion of locality itself. For example, a well-motivated additional restriction is to demand
that the relative contribution to Ox from fields beyond distance r approaches zero faster
than any power of lattice spacing, i.e. faster than expected dynamical scaling violations in
ultralocal operators. One can easily inspect that this is guaranteed when R0(a) is boundable
by a positive power of a sufficiently close to a=0.

Finally, barring certain non-generic singular cases, the property of weak locality in Def-
inition 6 is already expected to be sufficient for universality. Nevertheless, given the qual-
itatively different levels of exponential control over dynamical degrees of freedom for listed
cases, we find it useful to keep the corresponding statistical distinctions in place.
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3 Boundary Insensitivity and Boundary Locality

Determination of exponential insensitivity for given non-ultralocal lattice operator Ox(U)
and action S(U) is a computable problem if both Ox(U) and S(U) are computable. In fact,
the task doesn’t require a search through possible approximants: there exists an algorithm,
albeit computationally demanding, that directly evaluates δop(r, p) of the optimal approx-
imant to arbitrary precision.7 However, as advertised in the Introduction, our chief goal
here is to describe a version of exponential insensitivity which, albeit somewhat stronger,
produces a scheme that is computationally efficient and generic in an essential way. The
merit of such concept will clearly depend on whether it captures the meaning of insensitivity
to distant fields in sufficiently robust physical terms.

The premise underlying our approach is that exponential insensitivity ofOx(U), as defined
in Sec. 2, should translate into exponential insensitivity to presence of a distant boundary:
a concrete physical requirement. While this is expected to hold generically, it is not strictly
guaranteed. At the same time, to single it out as a stronger defining feature is fruitful in
that, as explained below, “boundary effects” are associated with simple approximants whose
error functions just need to be computed and examined.

To explain the meaning of “boundary” in this context, recall that our infrared-regularized
setup involves the sequence of triples (LxL, SL, Ox,L) specifying the L4 lattice with x at its
center, the theory, and the operator respectively. This means that, working at fixed L, the
definition of the operator provides not only Ox(U)≡Ox,L(UL) for gauge field U≡UL on LxL,
but also a finite sequence of values

Ox(U) −→ O`
x(U) ≡ Ox,`(U`) , ` < L (30)

Here U` ⊂ U is the restriction of U to a valid gauge field on Lx` ⊂ LxL, namely on a congruent
system of smaller size `. The operation LxL → Lx` , U → U`, Ox → Ox,` eliminates distant
degrees of freedom by introducing an artificial boundary (that of Lx` ) just to probe the
operator Ox(U).8 This motivates referring to O`

x(U) as boundary approximant of Ox(U),
although “finite-size” or “smaller-size” approximant would be equally fitting.

We propose that boundary approximants are central objects for addressing the efficiency
of computations with non-ultralocal lattice operators. As such, they are interesting in their
own right, and Appendix D describes them in general lattice setting. They also provide
means for constructing relevant hypercubic approximants Or

x(U). The needed connection is
straightforward in the symmetric lattice setup employed here. Indeed, first note that

Hx,r = Lx`(r) Ux,r ⊆ U`(r) `(r) ≡ 2r + a (31)

with the second relation arising since, depending on the boundary conditions on Lx`(r), field

U`(r) may contain dangling links (relative to Lx`(r) =Hx,r), while Ux,r does not.9 This means

7To make this statement precise, several additional ingredients need to be defined. These details and the
associated construction are outside the main line of this paper, and will be addressed elsewhere [13].

8Even when finite setup is boundary-free, such as with periodic boundary conditions, U → U` still creates
a boundary effect by bringing together gauge variables in U` that were initially far apart in U .

9In general, when representing finite system (Lx` , S`) by its embedding in H∞, as done here, there can be
links that do not connect pair of points from Lx` that are neighbors in H∞, but rather connect non-neighbors
via a boundary condition: these are dangling links relative to Lx` .
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that hypercubic approximant can be constructed from boundary approximant on Lx`(r) by
freezing dangling links of U`(r) to values independent of U . In particular,

U`(r) = Ux,r ∪ {Ub } −→ Uh
`(r) ≡ Ux,r ∪ { Ūb } (32)

where {Ub } abbreviates the subset of dangling links and { Ūb } the choice of their fixed
values. The hypercubic boundary approximant associated with this { Ūb } is then

Ox(U) −→ Or
x(U) ≡ Ox,`(r)

(
Uh
`(r)

)
= Or

x(U
x,r) (33)

If there is a systematic choice of { Ūb }, i.e. prescription specifying it as r changes and L scales
to infinity, such that the error function δ(r, p) of the approximant (33) shows the types of
exponential behavior discussed in Sec. 2, then corresponding forms of boundary insensitivity
to distant fields arise. The notion of boundary locality is defined accordingly.

For practical purposes, it is useful to define standard choices of boundary approximant so
that different tests of boundary insensitivity for various operators can be directly compared.
To that end, we single out two simple systematic options wherein all dangling links are set
to identical values.

(i) Universal Form: Ūb = 1 (3×3 identity matrix)

Here Or
x(U) is guaranteed to be well-defined and computable if Ox(U) is. Indeed, since

1∈SU(3), configuration Uh
`(r) represents a valid SU(3) field, and the above follows from the

very definition and computability of Ox(U).

(ii) Covariant Form: Ūb = 0 (3×3 zero matrix)

Here Or
x(U) may be ill-defined for certain artificially constructed operators Ox(U), since

0 /∈ SU(3). For example, Ox,`(r) could become singular as U`(r) is deformed to Uh
`(r). When

Or
x(U) is well-defined (a generic situation), it is also computable. Indeed, one option is to

use the computer program evaluating Ox,`(r)(U`(r)), and add a parallel branch that applies
every operation performed on input U`(r) also on input Uh

`(r). The output from the parallel

branch is read off whenever the original branch, driving the execution of the code, halts.10

If Ox(U) admits hypercubic boundary approximant in covariant form, it is by definition its
default hypercubic approximant, while the universal form is assigned otherwise. To motivate
this choice, note that for operators of physical relevance, it is desirable that Or

x(U) can be
treated as another valid regularized operator on LxL, i.e. on equal footing with Ox(U). Its
transformation properties should thus match those of Ox(U) to the largest extent possible.
However, if U`(r) contains dangling links ({Ub } 6= ∅ ), such as with periodic boundary condi-
tions, the universal Or

x(U) may not inherit gauge covariance of Ox(U) (if any). Indeed, when
Ox,`(r)(U`(r)) is covariant in theory (Lx`(r), S`(r) ), it only involves a combination of closed
loops on Lx`(r) with its periodic definition. But closed loops containing dangling links gener-
ically translate into open line segments on LxL, thus spoiling gauge covariance of universal
Or
x(U) in theory (LxL, SL ). The use of covariant form, however, eliminates this issue: when

a dangling link is set to zero, any closed loop that contains it becomes zero as well, and such
non-covariant terms simply do not occur.

10This, in fact, is one of the universal ways to define the approximant in covariant form.
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Figure 3: The lattice arrangement of gauge links for fixed “large” lattice LxL (L=6) and its
“small” sublattice Lx` (`= 3, r= 1) in case of open boundary conditions (left) and periodic
boundary conditions in all directions (right).

To further exemplify the boundary approach, Fig. 3 illustrates two common situations.
First, let the defining sequence of triples (LxL, SL, Ox,L) be such that the prescription for
action SL = SL(UL) doesn’t involve any dangling links (left plot). This is the case of open
boundary conditions and, since {Ub }=∅ , there is a single hypercubic boundary approximant
Or
x(U) which is directly in covariant form. Secondly, assume that boundary conditions in

SL = SL(UL) are fully periodic in all directions (right plot). The subset of dangling links
is now maximal as are the options for possible hypercubic boundary approximants. We
emphasize that the sequence of triples (LxL, SL, Ox,L) represents entire information apriori
known about Ox. Given that, constructing covariant form Or

x(U) in periodic case can be
viewed as extending the definition of Ox(U) to the case with open boundary conditions.

3.1 Computational Efficiency

Important feature of the boundary approach is that it connects insensitivity to distant fields
of an operator (and thus ultimately locality), to efficiency of its evaluation. More precisely,
our main message in this regard is that insensitive operators generically have an efficient
computer implementation provided by the boundary construction itself.

To formulate this, recall again that the operator Ox(U) is defined via a sequence of
triples (LxL, SL, Ox,L), and is assumed to be computable in this section. This guarantees the
existence of a program P that, given {L/a, U}, outputs Ox,L to arbitrary accuracy. For
simplicity, it is understood that the corresponding error is arranged to be much smaller than
any other accuracy measure in the problem. In that sense

P{L/a, U} = Ox,L(U) (34)

Note that we deal with a lattice situation and a is not essential: with eventual continuum
considerations in mind, we just chose to denote the parameter encoding the size of input
field U as L/a. Let C(P , L/a, U) be the cost of running P{L/a, U} measured in required
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number of arithmetic operations.11 The average cost function for Ox in realization P is then

CP(L/a) ≡
〈
C(P , L/a, U)

〉
SL

(35)

At the same time, the cost function of boundary approximant O`
x of Eq. (30) is

C ′P(`/a) ≡
〈
C(P , `/a, U`)

〉
S′
`

(36)

Here S ′`(U`) specifies the probability of fields U` on Lx` , arising when distribution of U on LxL
(given by SL(U)) is marginalized via the U → U` restriction.12 Thus, when replacing the
operator with its boundary approximant, the cost of evaluating it via P changes as

Ox −→ O`
x : CP(L/a) −→ C ′P(`/a) (37)

The situation is obviously analogous in case of hypercubic boundary approximants, except
that ` → `(r), and the action S ′`(r) = S ′`(r)(U

x,r) generally involves further marginalization

due to the fixing of “boundary” { Ūb }. If Ox is boundary insensitive, there exists hypercubic
approximant Or

x and κ>1, E>0 for which the bound (20) holds, and has p→ 1 limit with
finite R0 and ρ0(κ,E). The bound makes it possible to use the above default program P
for computing Ox(U) to arbitrary preset relative precision ε = δ/〈‖Ox‖〉 without invoking
the full volume. Indeed, it provides the minimal r=Rε for which Or

x(U) is guaranteed to
produce error smaller than ε, and we just feed P the input parameters `(Rε) and Uh

`(Rε).
This running comes at the average computational cost

CP
(
L

a

)
−→ CεP ≡ C ′P

(
`(Rε)

a

)
, Rε = ρ0 + max

{
0, κR0 log

E

ε

}
(38)

Note that Rε = ρ0(κ,E) for all ε > E. In other words, Oρ0
x is the “leading approximation”,

with logarithmic dependence setting in for ε ≤ E. There are several points to highlight.

(1) Formula (38) is universal in that it applies to arbitrary setup as described in Appendix D.
Indeed, various situations only differ by the precise form of function `(r).

(2) Using the boundary approximant in the above manner turns computation whose cost
normally strongly depends on volume (l.h.s. of (38)) into one that involves a fixed-size input
for given desired precision ε, and is in that sense volume-independent.13 Importantly, this
constant cost only depends logarithmically on ε.

(3) Note that the formula (38) doesn’t assume anything about the nature of program P .
Indeed, starting from any valid P , however inefficient, results in a volume-independent com-
putation at fixed precision.

(4) It is clear that the cost functions CP(s) and C ′P(s) are not identical14. However, their
asymptotic behaviors (s→∞) are expected to be of the same type, with cost driven mainly

11Measuring cost in arithmetic operations rather than elementary bit operations avoids dealing with cost
issues stemming from bit size of reals. Thus, the cost of a×b is one in the former, but diverges at least as
log 1/δ, due to increasing bit size of representing real a, b so that precision δ in a×b is achieved.

12Thus, S′
` and C′P also weakly depend on L which can be thought of as already taken to infinity in (36).

13Note that it is implicitly understood here, as is in (38), that L is sufficiently large (L � Rε) so that
finite-L correction to C′P is negligible for ε in question.

14They are identical if C(P, L/a, U) is U -independent, which is usually the case for ultralocal operators.
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by the number of field variables (input size) that have to be handled by the program as their
abundance grows unbounded. Thus, if CP(s) grows exponentially or as a power, C ′P(s) gener-
ically grows in the same qualitative manner. Nevertheless, the introduction of boundary may
affect the evaluation to the extent that the two cost functions are not simply asymptotically
proportional. Taking the relevant case of power growth as an example, we can have15

CP(s) ∼ sd+α C ′P(s) ∼ sd+α
′

s→∞ (39)

with possibly unequal α, α′. For all standard ways of taking the infinite volume in zero-
temperature calculations, function `(r) is linear in r. For example, `(r)=2r+a for maximally
symmetric case (see Eq. (31)). With that, we have the asymptotic reduction(

L

a

)d+α
−−−→
ε→0

(
`(Rε)

a

)d+α′

∼
(
R0

a
log

E

ε

)d+α′

, α, α′ ≥ −d (3’)

which is a generalized version of (3) in the relative error form. Note that α= α′ =−d for
ultralocal operator since the cost is constant, and one generically expects α ≥ 0 for non-
ultralocal operator coupled to all field variables, such as Dx,x(U) of overlap Dirac matrix.

(6) If the choice of input for program P was based on parameters at given statistical cutoff
p, i.e. R0(p), ρ0(κ,E, p), the result of any particular run would be good to relative precision
ε with probability at least p. This in itself is a powerful advantage of even weakly insensitive
non-ultralocal operators, where p can be set arbitrarily close to unity.

4 Overlap-Based Gauge Operators

In what follows, we apply the framework developed in Secs. 2,3 to study boundary insensi-
tivity and locality properties of the operator

Ox(U) ≡ Dx,x(U)−DF
x,x (40)

where D(U) is the overlap color-spin matrix and DF its free subtraction (Uy,µ → 1). Its
relevance is that useful operators of practical interest such as topological density q(x), scalar
gauge density s(x) and field-strength tensor Fµν(x) are based on it, namely

q(x) ∝ Tr γ5Ox s(x) ∝ TrOx Fµν(x) ∝ Trs σµνOx (41)

where Trs denotes the trace over spin indices only. Note that the free subtraction in Ox is
consequential for scalar density but not for the other two operators.

It should be remarked here that the obvious role of the above Ox(U) as a master construct
in definitions (41) is further underlined by the fact that its potential insensitivity at fixed p
and a descends onto these derived operators of interest. This can be seen from the fact that
the Frobenius matrix norm ‖M‖2 ≡ Tr(M+M), which we will use to quantify the differences
of matrix-valued operators and define the error functions δ(r, p), is sub-multiplicative, i.e.
‖M1M2‖ ≤ ‖M1‖‖M2‖. Thus, the requisite exponential bounds for Ox(U) can be used to
produce the associated (albeit non-optimal) bounds for derived operators. Nevertheless, the
concrete behavior of optimal bounds for individual operators is of practical interest since their
precise form guides the efficient evaluation of these operators. In particular, the threshold
distances ρ0 could vary appreciably among them.

15Here “∼” stands for “asymptotically proportional”.
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Figure 4: The behavior of δ(r) for covariant boundary approximant at three randomly chosen
individual points at β=6.0.

4.1 The Setup

For our numerical work, we use the symmetric L4 lattice geometry adopted as a template for
the general discussion of Secs. 2,3. The insensitivity and locality of the above overlap-based
gauge operators will be studied with respect to to pure-glue SU(3) theory with Wilson gauge
action, and periodic boundary conditions for gauge fields in all directions.

The overlap Dirac operator in (40) is based on the Wilson-Dirac kernel and the parameter
ρ ∈ (0, 2), specifying its negative mass, set to ρ=1.368 (κ=0.19). Definition of the operator
is given in Appendix E. Standard boundary conditions for quarks, i.e. periodic in “space”
and antiperiodic in “time”, are used although there is no fundamental preference in that
regard. In fact, when the sole purpose of utilizing the overlap is to define gauge operators,
one may opt for periodic boundaries in all directions to maximize hypercubic symmetries.
The resulting Dx,x(U) is gauge covariant and periodic in all directions.

With regard to the computational realization of the overlap, we follow the MinMax
polynomial approach of Ref. [14] in a specific implementation discussed in Ref. [15]. Using
deflation as needed, we explicitly ensured that the accuracy in evaluation of the overlap is
always significantly better than any quoted error of a boundary approximant.16 In other
words, in what follows, Eq. (34) can be assumed to be valid without further qualifications.17

To study the insensitivity and locality properties of the above operators, we generated
three ensembles of L/a= 24 configurations at β= 6.0, 6.2, 6.4. This corresponds to nominal

16Note that the overlap evaluations on original lattice of size L/a and on hypercubic subsystems of size
r/a are independent computations using their own polynomial approximations and deflations as appropriate.

17Rigorous treatment would require specifying the behavior of the program for backgrounds with exact
zeromodes of HW = γ5DW . Given that this occurs on a fixed subset of measure zero, it is not consequential.
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Figure 5: The volume comparison at p=0.95 for Ox (left) and Tr γ5Ox (right).

lattice spacings of a = 0.093, 0.068, 0.051 fm respectively, based on r0 = 0.5 fm. While the
finest (β = 6.4) lattice system is clearly quite squeezed in physical terms, this is of little
consequence for the current study. Indeed, as the discussion later in this paper reveals, the
finite volume effects on observables of our interest are negligible.

As expected on general grounds, the default hypercubic boundary approximant Or
x (co-

variant one) is well-defined, and can be computed straightforwardly by running the program
designed to evaluate Ox on input that corresponds to the boundary subsystem. For 20 con-
figurations from each of the above ensembles, we computed Ox as well as its approximants
Or
x for all possible distances r, at 16 points evenly distributed on the lattice. Note that this

calculation produces estimates for all derived operators (41).
To obtain a preliminary assessment of boundary approximants, we plot in Fig. 4 the

dependence of error δ on hypercubic radius r at three randomly chosen points x in a given
β=6.0 configuration. As can be seen quite clearly, a straightforward exponential-like decay
takes place even on an individual point basis. The behavior is least orderly in case of
pseudoscalar density (bottom right), but the overall trend is quite unmistakable in that case
as well. A systematic investigation using statistical regularization is thus warranted.

4.2 Finite Volume

As emphasized in Sec. 2 (see Definition 1), exponential insensitivity is an infinite-volume
concept. In particular, the property depends on the behavior of statistically regularized
error function in asymptotically large volumes, i.e. δ(r, p) = limL→∞ δ(r, p, L). However,
in practice, we are bound to infer the exponential behavior from a sequence of finite, and
usually limited volumes. To ensure that such estimates are reliable, it needs to be checked
that δ(r, p, L) is insensitive to L over the range of distances r used in such calculations.

To examine this issue, we supplemented the β = 6.0 ensemble at L/a= 24 with one at
L/a= 16. Notice that, since `(r) = 2r + a, the maximal hypercubic radius for given L/a is
rm/a = floor(L/2a), i.e. rm = 11a and rm = 7a correspondingly. In Fig. 5 we compare the
results on the two volumes for Ox and the pseudoscalar density at p= 0.95. The behavior
for other operators is completely analogous. It is quite obvious that we have an excellent
agreement over the range of common radii. Close to r=rm one expects some edge effects in
principle and, to avoid the possibility of such contamination, we only extract the parameters
of exponential behavior from distances up to r=rm−a in what follows.
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Figure 6: The behavior of ε(r) for covariant boundary approximant at p=0.95 and β=6.0.
The optimal exponential bounds are shown at κ=1 and E=10−3, indicating the thresholds.

4.3 Insensitivity and Weak Locality

The results of the volume study show that error functions of hypercubic boundary approxi-
mants at p=0.95 are exponentially boundable. Recalling the more complete results of Fig. 2,
including other operators and the range of cutoffs p, it is quite obvious that overlap-based
gauge operators are insensitive at any fixed p< 1. Thus, within the classification of Sec. 2,
they are weakly insensitive lattice operators at the ultraviolet cutoff in question (β = 6.0).
Results completely analogous to those of Fig. 2 were found also for the other two ensembles
representing finer lattices. The question then arises whether continuum operators Oc

x defined
by their overlap-based constructions are themselves weakly insensitive or insensitive. This
requires demonstrating the insensitivity of Oc

x at any fixed p (see Definition 3).
To undertake this, the relative error data has to be characterized in terms of the corre-

sponding bound parameters, as described in Sec. 2.5. In particular, we need to monitor the
scales R0(p, a) and ρ0(κ,E, p, a) associated with ε(r, p, a) (see Eq. (26)) at arbitrary but fixed
κ> 1 and E> 0. As seen from the representative data shown already, R0(p, a) can be esti-
mated by simply fitting the measured error functions to exponentials at large distances. In
what follows, we extract these effective ranges using the three largest radii smaller than rm.
Our analysis of the available data does not support the presence of unbounded modulation
in asymptotically exponential decays of ε(r). Consequently we can, and always do, deter-
mine ρ0 at κ=1. While the threshold error E can be set to arbitrary positive value, we use
E=10−3 here, i.e. the absolute error at ρ0 is one part in a thousand of the average operator
magnitude. The associated bound then describes the errors for r > ρ0 quite faithfully and
can be used to predict the needed hypercubic radii in practical calculations. The situation
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Figure 7: The behavior of ε(r, p= 0.95) at different ultraviolet cutoffs (top) and the lattice
spacing dependence of exponential bound parameters (bottom). Discussion is in the text.

for all operators of interest at statistical cutoff p=0.95 is shown in Fig. 6.
We are now equipped to examine the removal of ultraviolet cutoff at fixed p. Fig. 7 conveys

the relevant data forOx and topological density. In particular, the top row shows ε(r, p=0.95)
as a function of physical distance at all three ultraviolet cutoffs. The effect of gauge fields
beyond fixed distance r clearly decays very rapidly and there is thus no doubt that the
parameters of the corresponding exponential bounds R0(p= 0.95, a) and ρ0(p= 0.95, a) are
decreasing functions of a, and can only have finite continuum limits Rc

0(p=0.95), ρc0(p=0.95).
This behavior is readily present at all cutoffs p accessible by our statistics, and we conclude
that the corresponding continuum operators are weakly insensitive.

Making more restrictive conclusions about insensitivity, or assessing locality, requires
cutoff-monitoring of the bound parameters. The bottom row of Fig. 7 shows their dependence
on ultraviolet cutoff. With constant fits for R0/a and linear fits for ρ0/a added to guide the
eye, our data conveys quite clearly that finite extrapolations in lattice units exist in both
cases. This behavior is generic in p and we conclude that

R0(p, a) ∝ a ρ0(p, a) ∝ a , ∀ p < 1 (42)

for all operators in question. It follows that Rc
0(p) and ρc0(p) are zero, which in turn implies

that their p → 1 limits Rc
0 and ρc0 vanish as well. In other words, the continuum gauge

operators based on the overlap are exponentially insensitive to distant fields (Definition 4)
and weakly local (Definition 6).
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Figure 8: The p-dependence of exponential bound parameters for Ox (left column) and q(x)
(right column) at β=6.0. See the discussion in the text.

4.4 Strong Insensitivity and Locality

In the formalism we adopted, weak insensitivity of defining lattice operators (sufficiently
close to the continuum limit) constitutes a necessary precursor to insensitivity and weak
locality in the continuum. Indeed, these concepts feature the order limp→1 lima→0 in the
removal of cutoffs. As discussed in the previous section, our analysis indicates that both of
these properties in fact materialize in the overlap-based gauge operators.

In a similar manner, insensitivity of lattice operators (Definition 2) is a necessary pre-
cursor to continuum notions of strong insensitivity and locality, since the reverse order
lima→0 limp→1 of taking limits applies. Note that establishing strict lattice insensitivity can
be a demanding task. Indeed, here the question whether potential outliers of a given bound
form a set of measure zero enters most directly, and it is thus crucial that the statistics be
sufficient to capture the nature of parameter behavior in the vicinity of p=1.

While our statistics is rather limited in this regard, the look at the available data is
revealing. In Fig. 8 we show the p-dependence of R0 and ρ0 in lattice units at β = 6.0 for
Ox and topological density. First, one should realize that it follows from definitions of both
R0 and ρ0 that they are non-decreasing functions of p. In case of R0 we only observe an
extremely mild trend in this regard, well described by the linear behavior fitted to guide the
eye. The situation is similar for ρ0, albeit the rise in case of topological density is visibly
steeper than for Ox.

Assuming that the observed trends do not change dramatically closer to p = 1, the
above would suggest that finite p→ 1 limits of parameters exists and, consequently, that
the overlap-based gauge operators are exponentially insensitive at the lattice level. With
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that, the issues of strong insensitivity/locality in the continuum would become well-posed,
and the corresponding tendencies to obtain R̄0 and ρ̄0 in lattice units shown in Fig. 9 (top)
for topological density. Finite extrapolations to continuum limit are then readily concluded
from the data, implying both of the above continuum properties.

However, the assumption about the behavior closer to p→1 does need to be scrutinized.
Indeed, our statistics allows for reliable extraction of bound parameters up to p= 0.95, but
the fluctuations in error do become somewhat larger for the “outliers”. Indeed, in Fig. 9
(bottom, left) we show the p→1 extrapolated bound at β=6.0 together with actual samples
of approximation differences. While the bound at p = 0.95 would leave out 16 outliers
at each r/a, the extrapolated bound still leaves out about 4 on average, almost certainly
pushing a small residual probability outside its reach. This suggests that the behavior of
bound parameters is somewhat modified in the immediate vicinity of p= 1 at β = 6.0, and
significantly larger statistics needs to be invoked to extrapolate reliably.

Nevertheless, even with the current data, one can make the existence of p-independent
bound sufficiently close to the continuum limit quite plausible. Indeed, if R0(a0), ρ0(a0) are
the p→ 1 extrapolated bound parameters at lattice spacing a0, let R(a) = aR0(a0)/a0 and
ρ(a)=aρ0(a0)/a0 be the parameters of a (non-optimal) bound at lattice spacing a<a0. Thus,
in lattice units, this bound is the same for all a≤a0. Due to the observed decreasing trend
of ρ0(a)/a for a→0 (top right in Fig. 9) such bound may become p-independent sufficiently
close to the continuum limit. Associating a0 with β=6.0 ensemble, in Fig. 9 (bottom, right)
we show the relation of errors at β=6.4 to this bound and, indeed, there are no violations at
our level of statistics. Needless to say though, the issue of strong insensitivity and locality in
overlap-based continuum operators needs to be resolved via a direct extensive calculation.

24



0 2 4 6 8 10 12
0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

r/a

co
rr
ec
ts
ig
ns

Tr γ5Dx,x
β=6.0 covariant

Figure 10: Left: the rate of correct sign when approximating topological density by covariant
boundary approximant at β=6.0. Right: typical 2d slice through global topological structure
on 324 system, computed via boundary approximant with r=6a.

5 Application: Topological Structure in QCD Vacuum

The computational aspect of insensitivity considerations becomes relevant in practice when
the problem at hand significantly benefits from the use of non-ultralocal operators. One
example is the study of QCD vacuum structure via overlap-based topological charge density
q(x). This stems from the fact that q(x) is topological, i.e. stable under deformations of
the gauge field, directly on the lattice. Indeed, this property was instrumental in finding
that, when fluctuations at all scales are included, topological charge in QCD organizes into
low-dimensional global structure of space-filling type [12]. The structure takes the form of a
double sheet formed by topological densities of opposite sign, and is inherently global [16].
In particular, this space-spanning object cannot be broken into individual pieces without
severely affecting topological susceptibility.

Computational issue hampering extensive investigations of the above type is that, since
q(x) needs to be evaluated on entire lattices, the use of standard overlap implementations
leads to costs that scale at least as V 2. As we argued extensively, utilizing hypercubic bound-
ary approximants effectively turns this into a generic V -problem with pre-factor depending
only logarithmically on the desired precision. One should realize in this regard that, while
boundary insensitivity guarantees eventual fast convergence in the radius of the approxi-
mant, the sufficiency criteria for this radius are problem-specific. For example, if the goal
were to reliably determine the space-time structure in the sign of topological charge (see
Ref. [17]), then the relevant criterion would be a sufficiently low rate of sign violations in
the approximant. In Fig. 10 (left) we show such data for ensemble at β = 6.0. Within the
available statistics, no violations are observed already at r = 3a. More quantitatively, the
rate of violation can be estimated to be significantly better than 1% at r=3a, and is likely
negligible for all practical purposes at r=4a, providing for a safe choice to fix when working
at arbitrarily large volume.

If the goal is to gain more detailed information on the topological structure, we can use
the values of bound parameters at various statistical cutoffs p to obtain needed estimates.
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Alternatively, one can again examine the criterion in question as a function of hypercubic
radius r in a preliminary study. In the context of topological charge, a suitable generic
requirement is that its global integer value be reproduced to a prescribed accuracy in the
approximation. To gain some quantitative feel on this and other aspects, we have computed
configurations of topological charge at various couplings in pure-glue lattice gauge theory
with Iwasaki gauge action. While the analysis of these results will be given elsewhere,
here we point out that these computations for 244 system at a= 0.055 fm yield the typical
absolute error of 10−3 for global charge using r= 5a boundary approximant. The situation
is quantitatively similar for 324 system at a= 0.041 fm (same physical volume) using r= 6a
approximant. The typical profile of topological structure on 2d slice of space-time is shown
in Fig. 10 (right). The properties of the structure conform to those concluded in Ref. [12].

6 Summary and Conclusions

Locality is an important ingredient and guiding principle in describing natural phenomena
via quantum fields. In this paper we reexamined this notion in the context of Euclidean field
theories, such as Euclidean QCD, with quantum continuum dynamics defined via lattice-
regularized path integral. While the approach is entirely general with respect to the funda-
mental field content, our discussion was carried out for operators composed of gauge fields.
This is partially motivated by the fact that locality properties for useful non-ultralocal gauge
operators have not been previously studied.

Locality is a strictly continuum notion: it is a property of continuum object Oc
x(A), op-

erationally defined via certain lattice Ox(U) in the limiting process of driving the theory to
the continuum limit.18 However, there is a more general concept, meaningful already on the
lattice, that ushers locality into the continuum as its special case. Indeed, universality argu-
ments suggest that such lattice precursor of locality is the exponentially weak dependence
of Ox(U) on fields residing sufficiently far from x. One of the main results in this paper is a
novel formulation of this exponential insensitivity to distant fields.

Our approach to insensitivity is information-like in that it probes how well is it possible
to know Ox(U) when U itself is only known in the neighborhood of x with radius r, i.e.
when only the patch Ux,r ⊂ U of the gauge field is accessible. This can be quantified by
the accuracy achievable by the approximants Ox(U) → Or

x(U) = Or
x(U

x,r) enforcing this
restriction. Exponential insensitivity to distant fields is then the ability to construct the
sequence Or

x whose accuracy can be bounded by a decaying exponential in r.
Making this idea precise requires us to specify the measure for “accuracy” of a given

approximant, with subtlety being that there is, in fact, a distribution of errors generated
by the underlying path integral distribution of gauge fields for the theory in question. To
have a tunable control over the scope of these deviations, and to accommodate cases where
violations of exponential bound form a probabilistic set of measure zero, we introduce the
procedure of statistical regularization. Here boundability relates to the fraction p of the path
integral population with smallest errors, which amounts to the concept of least upper bound
with probability p. At every statistical cutoff p, the problem of exponential boundability is

18Note that any lattice operator that is not point-like already extends over finite physical distance at finite
lattice spacing, thus violating the physical meaning of locality.
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well-posed, and the general framework describing degrees of exponential insensitivity in the
process of statistical (p→ 1) and ultraviolet (a→ 0) cutoff removals ensues. Locality, then,
is simply associated with vanishing of scales describing the cutoff-removed bounds.

Classification of composite operators by degree of exponential insensitivity can in prin-
ciple proceed by examining the properties of their optimal approximant [13]. However, in
the realm of computable operators, the evaluation of this Or,op

x (Ux,r) is much more expensive
than that of Ox(U) alone, except for simple ultralocal cases. At the same time, construct-
ing any approximant with required properties demonstrates insensitivity. This motivates
our proposal to consider boundary approximants, wherein the value Ox,L(U) on the “large”
system of size L, is replaced by the value Ox,2r+a(U

x,r) on the “small” system spanned by
the hypercubic field patch alone. Such approximant probes insensitivity to distant fields by
inserting an artificial boundary distance r away from x, giving rise to a somewhat stronger,
but physically well-motivated notion of boundary insensitivity and boundary locality.

Determining boundary insensitivity is a straightforward task for any computable Ox(U).
Moreover, if there is a program evaluating Ox,L(U) with polynomial complexity in L/a (typ-
ical case), then the property of boundary insensitivity makes it possible for Ox,L(U) to be
computed efficiently. Indeed, running the same program on input corresponding to bound-
ary subsystem affording the desired accuracy ε, results in volume-independent computation
whose cost only grows as a power of log 1/ε. This connection between efficient computation
and exponential insensitivity/locality is one of the main conceptual points emphasized in
this paper. Its full scope and ramifications will be explored elsewhere.

1. The boundary insensitivity analysis was applied to gauge operators based on the
overlap Dirac matrix, such as topological charge density or field-strength tensor. Apart
from illustrating the general scheme, our goal was to examine locality properties of these
useful non-ultralocal operators on realistic equilibrium backgrounds. Invoking the hierarchy
developed here, our results clearly indicate that these operators are weakly insensitive at
the lattice level, and weakly local in the continuum. Quantitative evidence has also been
presented favoring insensitivity on the lattice, and locality in the continuum. However,
putting these latter findings on a firm ground requires more extensive simulations to be
performed. Overall, our analysis shows that there is little doubt that these operators follow
the universal behavior in the continuum.

2. Important practical outcome of our numerical experiments with boundary approxi-
mants is that their power of exponential improvement in estimating Ox(U) pans out already
at small values of hypercubic radii. Our experience with overlap-based topological density
in particular, suggests that using this technique makes extensive vacuum structure studies
with such complicated operator no longer computationally prohibitive.

3. For fixed r/a, the approximant Or
x, facilitating the insensitivity of Ox, is simply an

ultralocal lattice operator that could be interesting in its own right. In case of gauge oper-
ators studied here, the covariant form of boundary Or

x (default choice) inherits all potential
symmetries of Ox, making it a particularly attractive choice for standalone use.

4. The exponential insensitivity framework can be viewed as a tool to classify all lattice-
defined continuum operators Oc

x in terms of their reach. This is quantified by the charac-
teristic length scales introduced, such as the range Rc

0 and threshold ρc0. We expect such
description to be useful for defining non-local operators at fixed scale.
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A Regularity of the Approximation

The notion of exponential insensitivity aims at capturing the exponential (in distance) control
over values of the composite operator. Such concept would be unsatisfactory if it admitted
cases wherein the zero-measure sample set of violations contributed finitely to the statistics
of Ox. To prevent such singular behaviors from being considered insensitive, we formulate
here the corresponding requirement of regularity.

Strictly speaking, regularity needs to be examined in conjunction with any statistical in-
ference wherein Ox is replaced by its approximant Or

x. Relevant situations may also involve
arbitrary other operators but, as a defining property, it relates to Ox itself. Thus, in addi-
tion to the error function δ(r, p, a), function A(r, p, a) is defined as a contribution to mean
magnitude of Ox due to samples whose error is larger than δ(r, p, a), i.e. due to “violations”
at statistical cutoff p. If Ā(r, p, a) is the portion governed by cutoff p, then

〈 ‖Ox‖ 〉a = Ā(r, p, a) + A(r, p, a) (43)

In the same way, let Aap(r, p, a) be the part of 〈 ‖Or
x‖ 〉a due to violations. Approximation

Or
x of lattice operator Ox at fixed ultraviolet cutoff a is regular if there exists r0 such that

lim
p→1
A(r, p, a) = 0 lim

p→1
Aap(r, p, a) = 0 , ∀ r ≥ r0 (44)

While the first condition ensures that excluding the zero-measure set of violations doesn’t
lead to finite distortion, the second one ascertains that replacing it with zero-measure set of
approximants doesn’t do that either. Regularity of the approximation is required for lattice
operator Ox to be weakly insensitive.

Additional care needs to be taken when examining exponential insensitivity in the con-
tinuum (Definition 4). Here a→ 0 limit is taken at fixed p first, which may lead to a finite
influence in subsequent p→1 limit even when lattice operator is regularly approximated at
any a. Moreover, the contribution of outliers has to be considered relative to a-dependent
average magnitude. In particular, the continuum regularity condition reads

lim
p→1

lim
a→0

A(r, p, a)

〈 ‖Ox‖ 〉a
= lim

p→1
lim
a→0

Aap(r, p, a)

〈 ‖Ox‖ 〉a
= 0 , ∀ r ≥ r0 (45)

It is worth noting that, while lattice regularity (44) is automatically satisfied for bounded
pair Ox and Or

x, lattice boundedness at any a does not necessarily guarantee (45).
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B Parametric Freedom in Statistical Cutoff Removal

This Appendix elaborates on point (i) of discussion in Sec. 2.4. In particular, we first aim
to show that if ρ0(κ,E)<∞, then ρ0(κ,E

′)<∞ for all E′ > 0. More explicitly

lim
p→1

ρ0(κ,E, p) <∞ =⇒ lim
p→1

ρ0(κ,E
′, p) <∞ , ∀ E′ > 0 (46)

Before proceeding, it is useful to summarize the monotonicity properties of ρ0(κ,E, p). From
Eqs. (10,12,13,19) it follows that ρ0(κ,E, p) is decreasing in E and non-increasing in κ. More-
over, since δ(r, p) is non-decreasing in p, so is ∆0(R, ρ, p), and consequently ρ0(κ,E, p).

To show (46), first assume that E′ > E, implying that ρ0(κ,E
′, p) < ρ0(κ,E, p), ∀ p < 1.

Given that ρ0 is non-decreasing in p, the existence of p→ 1 limit on the right side of this
inequality implies the existence of the limit on the left side, as claimed by (46). To include
the case E′<E, first note that ρ0(κ,E, p) is a solution of the equation

∆0(R, ρ0, p) ≡ B(R, ρ0, p) exp
(
−ρ0
R

)
= E 〈‖Ox‖〉 with R = κR0(p) (47)

Combining this with the analogous equation for E′ and taking into account that function
B(R, ρ0, p) is non-increasing in ρ0 while ρ0 is itself decreasing in E, we obtain the inequality

ρ0(κ,E
′, p) ≤ ρ0(κ,E, p) + κR0(p) log

E

E′
, E′ < E (48)

Since ρ0 is non-decreasing in p, and a finite p→ 1 limit on the right side of this inequality
exists, the finite limit also exists on the left side, demonstrating (46).

The second claim we aim to substantiate here is that ρ0(κ,E)<∞ implies ρ0(κ
′,E)<∞

for κ′ > κ, but not for 1<κ′<κ. The former follows from monotonicity properties of ρ0 in a
manner analogous to that discussed in case of E. To show the latter, it suffices to construct
a possible δ(r, p) that exemplifies the corresponding behavior. One option is

δ(r, p) = Taylor

[
exp
( r

2R1

)
, floor

(
1

1− p

)]
exp
(
− r

R1

)
(49)

where R1 is a constant and Taylor(f(x), n) the Taylor series of f(x) around x=0 up to n-th
order. Clearly, limp→1R0(p) = limp→1R1 = R1 and, due to the chosen p-deformation of the
prefactor, finite ρ0(κ,E) is only obtained via κR0(p)≥2R1, i.e. with κ≥2.

C More on the Ultraviolet Cutoff Removal

Here we elaborate on the most general form of Definition 3, specifying exponential insensi-
tivity at fixed p in the continuum, i.e. on the procedure of ultraviolet cutoff removal. This
generalization requires the existence of Or

x, a0>0, κ>1 and E>0 such that

sup {R0(p, a) | 0<a<a0 } <∞ sup { ρ0(κ,E, p, a) | 0<a<a0 } <∞ (50)

Clearly, when Ox(U) satisfies Definition 3 at given p, it also satisfies the above, but not
vice versa. Indeed, it is possible to construct functions satisfying bounds (50), for which

29



a→ 0 limits (22) do not exist. While such a-dependences are not likely to occur for oper-
ators of practical interest, specifying a complete framework for characterizing exponential
insensitivity to distant fields is clearly of conceptual interest at the very least.

The question that remains to be answered in this regard is how to assign the continuum
effective range and the threshold distance to operator-approximant combinations that behave
in such non-standard way. Indeed, in cases covered by Definition 3, these are the scales Rc

0(p)
and ρ0(κ,E, p) specified by the limiting procedure which is ill-defined in this situation. For
the appropriate generalization, we denote the bounds (suprema) of (50) as Rb(p, a0) and
ρb(κ,E, p, a0) respectively, and define

Rc
b(p) ≡ lim

a0→0
Rb(p, a0) ρcb(κ,E, p) ≡ lim

a0→0
ρb(κ,E, p, a0) (51)

Note that, since Rb(p, a0) and ρb(κ,E, p, a0) are non-decreasing in a0, the existence of these
limits is guaranteed by (50). Clearly, the meaning of these characteristics is that they specify
the optimal exponential bounds (20) in the continuum.

Finally, we point out that the finiteness of ρcb(κ,E, p) implies finiteness of ρcb(κ
′,E′, p) for

all E′>0 and κ′≥κ. The proof involves a straightforward modification of steps followed in
Appendix B to the generalized situation described here.

D The General Case

This Appendix describes exponential insensitivity to distant fields (and its boundary coun-
terpart) of non-ultralocal composite fields Ox(U) in general lattice setting. Here the position
variables xµ = anµ label sites of an infinite hypercubic lattice H∞ in d dimensions, Eq. (5).
Since non-ultralocality involves arbitrarily large lattice distances, the notion of “infinite vol-
ume” is implicitly present, with x ∈ L∞ ⊂ H∞ denoting a connected subset of points com-
prising this infinite system. Note that L∞ can involve arbitrary boundaries. For example,
one could be interested in Ox defined at some point x ∈ L∞ = { y | yµ ≥ 0,∀µ }.

The definition of Ox on L∞ proceeds via infrared regularization. The procedure specifies
sequence of nested finite lattices (finite connected sets of points) Lxk

x ∈ Lx1 ⊂ Lx2 ⊂ Lx3 . . . ⊂ L∞ (52)

such that every point in L∞ also belongs to Lxk for sufficiently large values of k, i.e. L∞
is the “infinite-volume limit” of Lxk. For every k there is an action Sk = Sk(U) defining a
theory on Lxk, and thus probability distribution for the associated gauge fields, as well as the
prescription Ox,k =Ox,k(U) for the operator in question. Here “theory” is any model where
Sk is guaranteed to depend on all link variables connecting a pair of nearest neighbors from
Lxk, and to not depend on link variables with both endpoints outside Lxk. Operator Ox,k

depends on the same set of variables at most. If Nk is the number of lattice points in Lxk,
the effective length scale Lk and the associated discrete variables L and ` are specified by

Lk ≡ a (Nk)
1/d L, ` ∈ {Lk | k = 1, 2, . . . } (53)

The defining sequence (Lxk, Sk, Ox,k) can then be equivalently written e.g. as (LxL, SL, Ox,L).
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D.1 Exponential Insensitivity to Distant Fields

The finite-volume setup for studying exponential insensitivity involves fixing L, which is
treated as “large”, and examining possible approximations Or

x(U) of Ox(U)≡Ox,L(U), that
only involve gauge fields Ux,r within increasing hypercubic distance r away from x. In this
general case, the collection of link variables Uy,µ included in Ux,r is defined as

Ux,r ≡ { Uy,µ | y, y+µ̂ ∈ LxL ∩Hx,r } (54)

i.e. Ux,r doesn’t include any links that “dangle” with respect to LxL ∩ Hx,r. Note that even
though L is fixed, Ux,r is formally defined for arbitrarily large r, and Ux,r ⊆ U for any r.

With the above specifics in place, one can now proceed to investigate exponential insen-
sitivity as described in Sec.2. In other words, for any approximant Or

x(U) = Or
x(U

x,r) one
can compute statistically regularized error function δ(r, p, L) and its infinite-volume limit
δ(r, p). Various degrees of exponential insensitivity are then uniquely defined depending on
the existence of an approximant with required exponential behaviors.

D.2 Boundary Approximants

As an intermediate step toward boundary insensitivity to distant fields, we first construct
specific computable approximants of Ox(U) that are interesting in their own right. Given a
configuration U ≡ UL on LxL, a sequence of nested configurations

UL1 ⊂ UL2 ⊂ . . . U` . . . ⊂ U (55)

is defined by restricting U to a valid field U` on Lx` , i.e. ` < L. Note that a precise link
content of U` depends not only on Lx` but also on boundary conditions used in specifying S`.
This setup provides for a sequence of boundary approximants

Ox(U) −→ O`
x(U) ≡ Ox,`(U`) , ` < L (30)

depending only on variables contained in U`. Here “boundary” refers to the boundary of
Lx` in LxL, artificially invoked by restricting LxL to Lx` for this purpose. The existence and
computability of O`

x(U) follow from the very definition of Ox and its computability.
For physically relevant operator it is usually useful if its transformation properties are

matched by those of the approximant. However, gauge covariance of Ox(U), if any, will not
automatically transfer to O`

x(U) if U` contains dangling links with respect to Lx` . Indeed, for
covariantly defined Ox(U), each operator Ox,`(U`) is covariant in theory (Lx` , S` ). As such,
it only involves a combination of closed loops on Lx` , and dangling links can participate in
such loops via periodicity. However, loops with danglers generically translate into open line
segments on LxL, and spoil gauge covariance of O`

x(U) in theory (LxL, SL ).
Given the importance of gauge covariance, we formulate the version of boundary approx-

imant that automatically retains this feature. To that end, consider the partition of U` into
non-dangling (Und

` ) and dangling (Ud
` ) subsets of links

U` = Und
` ∪ Ud

` Und
` ≡ {Uy,µ | y, y+µ ∈ Lx` } (56)
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If a given link is set to 0 (3× 3 matrix of zero elements), then any Wilson loop containing it
becomes 0 as well. We can thus prevent non-covariant terms from occurring in the boundary
approximant by applying the replacement

Ud
` −→ Ūd

` = {Uy,µ → 0 | Uy,µ ∈ Ud
` } (57)

in order to construct a modified “configuration” U` → U c
` on Lx` via

U −→ U` = Und
` ∪ Ud

` −→ U c
` ≡ Und

` ∪ Ūd
` (58)

and defining the covariant form of the boundary approximant as

Ox(U) −→ O`
x(U) ≡ Ox,`(U

c
` ) , ` < L (30a)

Note that, while the standard form (30) of boundary approximant is apriori well-defined, the
covariant form (30a) may not be since 0 /∈SU(3). In particular, Ox,` could become singular
as generic U` is deformed to U c

` . Such operators can be constructed but are highly contrived.

D.3 Hypercubic Boundary Approximants and Insensitivity

We now use the idea of boundary approximant to arrive at the notion of boundary exponential
insensitivity to distant fields in this general setting. The basic step is to introduce distance
variable r so that gauge fields in U` can be restricted accordingly. Thus, we define function
` = `(r) as the smallest ` for which Lx` covers all points of LxL belonging to Hx,r, namely

`(r) ≡ min { ` | Lx` ∩Hx,r = LxL ∩Hx,r } (59)

This guarantees that Ux,r defined by (54) is a subset of U`(r), thus inducing its partition

U`(r) = Ux,r ∪ U b
`(r) U b

`(r) ≡ U`(r) r Ux,r (60)

If non-empty, we treat entire U b
`(r) as a “boundary” in that its links will be frozen to values

independent of underlying U . Each choice Ū b
`(r) of this fixing entails the assignement

U −→ U`(r) = Ux,r ∪ U b
`(r) −→ Uh

`(r) ≡ Ux,r ∪ Ū b
`(r) (61)

where the field Uh
`(r) on Lx`(r) depends on Ux,r only, and the hypercubic boundary approximant

Ox(U) −→ Or
x(U) ≡ Ox,`(r)

(
Uh
`(r)

)
= Or

x(U
x,r) (33)

If there is a systematic choice of boundary values such that δ(p, r) = limL→∞ δ(p, r, L)
for the associated Or

x(U) exhibits exponential behaviors described in Sec.2, then the corre-
sponding types of boundary insensitivity to distant fields occur. Here we wish to highlight
two practical choices (constant values) to test this property.

(i) Universal Form: U b
`(r) −→ Ū b

`(r) = {Uy,µ → 1 | Uy,µ ∈ U b
`(r) }

The associated hypercubic boundary approximant Or
x(U) is always well-defined and com-

putable, but gauge covariance of Ox(U), if any, is not automatically inherited.
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(ii) Covariant Form: U b
`(r) −→ Ū b

`(r) = {Uy,µ → 0 | Uy,µ ∈ U b
`(r) }

This hypercubic boundary approximant may be ill-defined for some artificial operators since
0 /∈ SU(3), but gauge covariance of Ox(U), if any, transfers to Or

x(U). Whenever it exists,
the covarint form is computable, and is taken to be the default approximant of Ox(U).

This Appendix specifies the framework for studying exponential insensitivity to distant
fields in arbitrary lattice hypercubic geometry. As such, it can be used to define the cor-
responding continuum notions, as described in Sec. 2.5. It should be remarked though that
the position of x within LxL (and L∞) has to maintain its continuum geometric meaning
throughout the process of ultraviolet cutoff removal. This is automatic in the symmetric
setup discussed in the body of the paper, but requires some care in general case.

Finally, the notion of boundary insensitivity can be used to define boundary locality
following the formalism described in Sec. 2.6

E Overlap Dirac Operator

The overlap Dirac operator used in the study of Sec. 4 is based on massless Wilson-Dirac
matrix in four space-time dimensions, namely

(DW )x,y = 4 δx,y −
1

2

4∑
µ=1

[
(1− γµ)Ux,µ δx+µ,y + (1 + γµ)U+

x−µ,µ δx−µ,y

]
(62)

The associated 1-parameter family of massless overlap Dirac operators [4] is then defined as

D(ρ) = ρ

[
1 + (DW − ρ)

1√
(DW − ρ)+(DW − ρ)

]
, 0 < ρ < 2 (63)

Note that the interval of allowed values for negative mass parameter ρ is dictated by spectral
properties of DW , and the space-time range of D(ρ) has been shown to depend on it [11].
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