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We show that universality near a critical end point implies a characteristic relation between
third- and fourth-order baryon susceptibilities χ3 and χ4, resulting in a banana-shaped loop when
χ4 is plotted as a function of χ3 along a freeze-out line. This result relies only on the derivative
relation between χ3 and χ4, the enhancement of the correlation length and the scaling symmetry
near a critical point, and the freeze out line near the critical point not too parallel to the µB axis.
Including the individual enhancements of χ3 and χ4 near a critical point, these features may be a
consistent set of observations supporting the interpretation of baryon fluctuations data as arising
from criticality.

Introduction— Determining the existence of a crit-
ical point in the QCD phase diagram would provide in-
valuable information on the behaviour of nuclear mat-
ter at high density, indicating the existence of a first
order phase transition line extending to higher density
and lower temperature [1]. Models of chiral symmetry
breaking suggest a critical end point (CEP ) may exist at
high enough temperature and low enough density to be
accessible to heavy-ion collisions at small center-of-mass
energy per nucleon

√
sNN , motivating the beam energy

scan at RHIC [2–6] and future work at FAIR. Predicting
signals of a critical point in QCD is made challenging by
strong-coupling in analytic theory and the sign-problem
on the lattice. The motivated hypothesis of a critical
point allows us to use the universality of critical phenom-
ena to study the impact of a CEP on some observables.
One universal characteristic of a critical point is diverg-

ing correlation length ξ → ∞, due to the order param-
eter field becoming massless. Higher order fluctuation
moments of observables coupled to the order parameter
also diverge, in particular baryon number and transverse
momentum [7, 8]. These susceptibilities can be measured
by event-by-event fluctuations in heavy-ion collision ex-
periments [9]. The approach via universality requires as-
suming the existence of a critical point. It yields robust
qualitative features which are supported by models cal-
culations near the CEP [10–14]. However, it remains a
challenge to predict quantitatively the magnitude of a
signal in heavy ion collisions.
We show that a diverging correlation length implies

a strict ordering of features in the third- and fourth-
order baryon number susceptibilities, which offers a ro-
bust qualitative signature of criticality. Baryon number
is conserved by QCD reactions, and the susceptibilities,
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χn = −∂n lnZ/∂µn
B, are derivatives of the logarithm of

the partition function Z with respect to baryon chemical
potential, are robust observables that are measured in
heavy ion collisions [15, 16]. The third-order (skewness)
and fourth-order (kurtosis)

χ3 =
∂χ2

∂µB
, χ4 =

∂χ3

∂µB
(1)

are expected to provide stronger signals of criticality be-
cause they diverge with a larger power of ξ than the
second order susceptibility [7]. As indicated, they are
related to each other and the second-order susceptibility
by a µB derivative. For comparison to experimental ob-
servables, volume dependence is eliminated in the ratios

m1 =
Tχ3

χ2
m2 =

T 2χ4

χ2
. (2)

In the vicinity of a critical point, these ratios exhibit
divergences and non-monotonic behaviour and differ
from the analogous ratios of net proton number sus-
ceptibilities only by non-singular contributions, which
should be sub-leading [17]. Therefore, in the scaling
region the behaviour of m1,m2(baryon) should predict
qualitatively the behaviour of net proton susceptibilies
m1,m2(proton), which are measured in experiment.
Using the 3D Ising model which is in the same univer-

sality class as QCD, we show that: (a) Universality im-
plies that, along a freeze-out line passing near a critical
end point, third and fourth-order fluctuation moments
are strictly ordered

Tmin,m2
> Tmax,m1

> Tmax,m2
> TCEP . (3)

(b) Obtaining signatures of criticality does not require
the experiment achieving freeze-out at temperature equal
or lower than TCEP. Scaling may be visible at signif-
icantly higher T , similar to the hypothesized quantum
critical point in the phase diagram of high-Tc supercon-
ductors which is at T = 0 and masked by a supercon-
ducting regime [18]. However, the magnitudes of m1 and
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m2 may provide a handle on the distance from the crit-
ical point. This will be demonstrated in the NJL model
with deformed couplings.
Taken together with measurements of χ3 and χ4 which

are expected to exhibit independently particular diver-
gences and functional dependences, this correlation of χ3

and χ4 along a freeze-out line is a consistency check that
would support interpretation of the experimental data as
bona fide signatures of criticality. Our discussion focusses
on the equilibrium susceptibilities, but the real system
created in heavy-ion collisions is an expanding gas that
may or may not be in local equilibrium. In particular,
long wavelength modes are subject to critical slowing,
with the result that the expansion generally reduces the
correlation length from its equilibrium expectation value
[19]. This slowing of the correlation length induces a
memory effect: the correlation length and higher order
susceptibilities reflect the state of the system at an earlier
time in the expansion [20, 21]. Notably, even with the
memory effect, the relative distribution of positive and
negative regions of kurtosis (Fig. 3 of [20]) appears to
preserve its equilibrium relation to the skewness, Eq. (1),
and it will be interesting to see how our equilibrium re-
sults are modified by the memory effect.
Interplay between Skewness and Kurtosis—As

we will show in the next section, the qualitative relation
between χ3 and χ4 in QCD only relies on (a) the deriva-
tive relation between χn in Eq. (1), and (b) the enhanced
correlation length and corresponding scaling symmetry
near a CEP. Here we start by studying order parame-
ter fluctuations in the 3D Ising model, which belongs to
the same universality class as QCD, just to illustrate our
points. Our analysis does not rely on the mapping be-
tween Ising model and QCD. However, we will also see
that if the CEP is too close to the T axis, such that the
phase boundary and freeze-out line near the CEP parallel
the µB axis, the signature banana shape of the m1-m2

plot becomes degenerate and can even change qualita-
tively.
In the Ising model, the general coordinates are (H, t)

with H the external magnetic field and t ≡ (T − Tc)/Tc

the reduced temperature. The order parameter, the mag-
netization M = −∂ lnZ/∂H , is an odd function of H .
M is discontinuous at H = 0 for t < 0. The CEP is at
the origin where the correlation length ξ diverges. The
non-analytic (long-distance) behavior near the CEP is
universal among systems of the same universality class
while the analytic (short-distance) behavior is model de-
pendent. The non-analytic part of the equation of state
M = M(H, t) near the CEP has the scaling symmetry:
if M is known for a specific positive (negative) t, then M
for all positive (negative) t is known.
The susceptibilities are derivatives with respect to H ,

κ2 ≡ ∂M

∂H
, κ3 =

∂κ2

∂H
, κ4 =

∂κ3

∂H
, (4)

paralleling the relation of χn+1 to χn, each κn+1 is re-
lated to κn by one derivative with respect to the classical

source. We first concentrate on susceptibilities at t = 0.2,
obtaining susceptibilities at all t > 0 by the scaling sym-
metry mentioned above. We expect that κ2 = ξ2 is a
decreasing function of |H | since ξ is larger when closer
to the CEP . Also, κ2 is a smooth function of H since
t = 0.2 is in the crossover region. Therefore, κ2 should
have a smooth peak centered at H = 0 and then asymp-
tote to zero as H → ∞ as shown in the upper panel of
Fig. 1, which is computed using the non-analytic part of
the equation of state of Ref. [22].

Once κ2 is obtained, its derivatives yield κ3 and κ4,
also shown in the upper panel of Fig. 1. It is easy to see
that, for H < 0, the peak of κ3 coincides with κ4 = 0
while the peak of κ4 is at larger |H | than the peak of
κ3. Then by scaling symmetry, the peaks of κ3 and κ4

lie on lines A and B, respectively, in the lower panel of
Fig. 1. At constant t < 0, however, κ2−4 are decreasing
functions of |H | with no inflection points. The density
plots of κ3(4) is shown in the upper panel of Fig. 2 with
a H-odd(even) heart-shaped pattern.

In QCD, the story is very similar. We expect the most
singular, non-analytic behavior near the CEP has scaling
symmetry as well. For a constant T > TCEP , χ2 has the
same single peak behavior as κ2 in the Ising model at
t = 0.2 shown in Fig. 1. Then χ3 and χ4 are obtained by
taking derivatives of χ2, similar to analysis of the Ising
model. Therefore, we expect χ3 and χ4 contours in the
scaling region in QCD behave as depicted in the lower
panel of Fig. 2 analogous to what happens in the Ising
model. This feature is robust and is confirmed in model
calculations [10–14]. We will show that the anti-clockwise
loop in the κ3-κ4 plane corresponds to an anti-clockwise
loop in the m1-m2 plane. Moreover, the loop and its
direction only depend on the relation betweenm1 andm2

(paralleling that between κ3 and κ4) and the existence of
a critical end point at µB > 0, whether or not the CEP is
accessible to experiment.

Scenarios in Energy Scan Experiments—In ex-
periments, one does not know whether the CEP exists
and even if it does, what its location is a priori. There-
fore, the question is, what can one learn from the suscep-
tibilities measured on the freeze out line?

To answer this question, we consider the following
scenarios for the phase boundary between the hadronic
phase and the quark gluon plasma phase: (1) a cross over
at higher T and a first order at lower T connected by a
CEP (this is the typically assumed scenario), (2) purely
cross over, or (3) purely first order. (2) and (3) can be
considered as generalizations of (1), with the CEP for
(2) located in the “fourth quadrant” of the phase dia-
gram (T < 0, µB > 0) while the CEP of (3) located in
the “second quadrant” (T > 0, µB < 0).

Scenario I: CEP at T > 0—In this scenario, con-
tours of χ3 and χ4 near the CEP are as depicted in
the lower panel of Fig. 2. The location of the CEP is
not known precisely and neither are the contours. The
boundary of χ4 = 0 is determined by the cancellation of
the leading singular structure and can be shifted by sub-
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FIG. 1. Upper panel: κ2,3,4(H) at fixed t > 0. Lower panel:
the Ising model phase diagram with Line A the maximum of
κ3 (also κ4 = 0), and Line B the maximum of κ4. The curved
lines are example freeze-out lines, drawn to model how they
may pass through the scaling region in QCD.

leading, model-dependent, analytic contributions. Our
strategy is to draw a few generic freeze out lines, de-
picted in the lower panels of Fig. 2 and Fig. 1, then ask
whether there are common features of susceptibilities on
those lines. In Fig. 1, we assume that the freeze out line
is a function of t. Going from high to low t, the sim-
plest case is FO1, which crosses lines A and B once each.
The corresponding κ4-κ3 curve is shown in Fig. 3 with
the curve going anti-clockwise forming a “banana” shape
from high to low t. This figure shows the ordering

tmin,κ4
> tmax,κ3

> tmax,κ4
> 0 , (5)

necessarily arises from the derivative relation between the
κn and κn+1. All features occur at temperature higher
than the critical point temperature. As the fluctuations
become larger closer to the CEP , the closer the freeze
out line to the CEP , the larger and more elongated the
banana is.
In Fig. 1, we also consider a freeze out line FO2 that

FIG. 2. Upper left (right): density plot of κ3 (κ4) in the Ising
model. Regions of κi > 0 are in blue and κi < 0 are in red.
The dotted (black) line is the same as Line A in Fig. 1 and dot-
dashed (red) line the same as Line B. Lower panel: A sketch of
the peaks in χ3 and χ4 on a plausible phase diagram of QCD
together with a hypothetical freeze-out line. Comparison to
the location of the maxima in χ3 and χ4 in Fig. 1 suggests how
the freeze-out line may be mapped into the Ising coordinates.

crosses line B twice. The corresponding κ4-κ3 plot in Fig.
3 also has the banana shape but has two local maximum
peaks in κ4. Those features remain when one plots m2-
m1 instead of κ4-κ3 since κ2 changes slowly when κ3(4)

changes rapidly.

One can draw other possible freeze out lines, but the
feature of an anti-clock wise loop remains, provided the
line remains in the H < 0 half-plane as is physically
sensible for freeze-out in the hadronic phase. This can
be seen from the fact that at high t, the freeze out line
can start from the regime above line A, between lines A
and B, or below line B, while at low t, it goes below line
B. This implies these freeze out lines at high and low t
will look very similar to FO1 and FO2 in Fig. 3 near the
origin. This is enough to decide the loop is anti-clock
wise which is a feature in common with experiment data
[15, 16, 23].

Scenario II: CEP at T <∼ 0—As we argue above,
the banana shape in m2-m1 is due to the scaling symme-
try governed by the CEP . But could this connection be
so strong such that the banana shape is observable even
if the CEP is at T = 0 or even T < 0? One example
is high-Tc superconductors [18]. It is hypothesized that
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FIG. 3. κ4 versus κ3 on example freeze-out lines passing
through the universal region as shown in Fig. 1. Tempera-
ture decreases in the anti-clockwise direction.

there is a quantum critical point at T ≃ 0 that controls
the scaling symmetry at finite T but is masked by a su-
perconducting regime. If this is also the case in QCD,
then seeing the banana shape in m2-m1 might just sug-
gest the existence of scaling symmetry, which is likely
due to a critical point, even while the critical point is at
T < 0 and hence technically not on the phase diagram.

To study this interesting scenario, we vary the K pa-
rameter that controls the anomaly-induced 6-fermion in-
teraction in the Nambu–Jona-Lasinio (NJL) model [24]
away from the most-used value K0 to reduce TCEP. We
find that when K = 0.65K0, TCEP ≃ 0 and when
K = 0.4K0, TCEP effectively becomes negative by extrap-
olation. The phase boundaries for K = 1.0, 0.65, 0.4K0

are shown in the insets in Figures 4, 5 and 6, respectively,
together with the hypothetical freeze out lines which are
obtained by rescaling µB of the phase boundaries by fac-
tors of 0.98, 0.95, 0.915 for the red, green, blue curves,
respectively. We have also plotted the correspondingm2-
m1 plots in Figs. 4-6 which exhibit the following features:

(1) The anti-clockwise banana behavior could survive
even TCEP ≤ 0. If freeze-out can occur at or below TCEP,
all three features are visible: the minimum in m2, maxi-
mum in m1 and maximum in m2. However, if TCEP is too
low to be reached by the experimental conditions, only
a subset of these features appears in the data. Which
subset provides a rough guide to how far away TCEP is,
as well as an estimation of the upper limit of TCEP.

(2) The magnitude of the susceptibilities also changes
significantly with the distance from a critical point. This
is because the dimensionless m1(2) scales with positive
powers of ξ divided by typical scales in the system set by
µB and T , and m2 scales with more powers of ξ than m1.
Therefore when the freeze out line is far away from the
CEP , both m1 and m2 are limited to small values <∼ 1
and m2 is the same magnitude as m1. Nearer a critical
point, m2 achieves values significantly greater than 1.
This is the reasonm1-m2 banana plots become larger and
more elongated for freeze-out lines in closer proximity to
a critical point.

Scenario III: CEP formally at µB < 0–In the limit
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FIG. 4. Inset: the phase diagram of the NJL model with K =
K0, a value chosen to reproduce QCD observables, and three
hypothetical freeze-out lines tracking the phase boundary (see
text). Larger frame: m2 versus m1 on the freeze-out lines
plotted in the inset.
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FIG. 5. Same as Fig. 4 but with K = 0.65K0. The critical
end point is at TCEP = 0.
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FIG. 6. Same as Figure 5 with K = 0.4K0. The critical end
point would be formally at TCEP < 0. Note the difference in
scale of the axes.

of very small quark masses, the QCD phase transition is
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FIG. 7. Same as Fig. 4 but with all quark masses zero
mu = md = ms = 0. The phase boundary is the first order
line. There is no critical point in the first quadrant µB , T > 0,
or the critical end point can be considered in the second quad-
rant with µCEP < 0.

first order in the physical region µB, T > 0. Although ex-
cluded by experiment, this scenario is interesting because
it helps reveal the effect of the mapping from QCD vari-
ables to universal Ising coordinates (µB , T ) → (H, t). In
this limit, the phase boundary typically becomes increas-
ingly parallel to the µB axis as µB → 0. Approaching
this limit smoothly from having the CEP at µB, T > 0
(Scenario I), we can infer how the m1-m2 plot changes
as the phase boundary becomes more parallel to the µB

axis even while the CEP remains in the first quadrant.
The NJL model calculation of the m2-m1 plot in this

limit is shown in Fig. 7. We see a clock-wise behav-
ior. This can be understood by analyzing the effective
potential, or equivalently the log of the partition func-
tion, near µB = 0. In this region, a Taylor expansion
lnZ = z0+z2µ

2
B/2+z4µ

4
B/4!+... involves only even pow-

ers of µB due to particle-anti-particle symmetry. This
implies that m1 ≃ (z4/z2)µB while m2 ∝ (z4/z2) as
µB → 0. We expect the negative m2 region exists only in
the second quadrant, therefore, z4/z2 > 0, and the freeze-
out curve in the m2-m1 plane starts at m1 → 0,m2 > 0
at the high collision energy/low µB end. At the other end
of the curve, we consider the T → 0 limit, where fluctu-
ations are increasingly Gaussian due to the increasing
distance from the phase boundary and the dominance
of the quadratic term near the bottom of the potential.
Thus, at low collision energy/high µB end of the curve,
we expect m1,m2 → 0. Since m1 ≥ 0 everywhere in
between, the curve connecting these two limits must fol-
low a clockwise trajectory in the m1-m2 plane, in stark
contrast to the anti-clockwise loop seen above.
Seeing that the loop changes from anti-clockwise to

clockwise as µCEP → 0, the loop must become increas-
ingly narrow, passing through the degenerate case of a
line, in order to change its orientation between the two
limits. This agrees with our numerical experiments in the
NJL model, which we are able to move from Scenario I
toward Scenario III by tuning the bare quark mass to
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FIG. 8. From STAR preliminary data for the net-proton
distribution in 0-5% centrality of Au+Au collisions [23], κσ2

versus Sσ forms an anticlockwise loop from high to low
√

sNN = 200, 62.4, 39, 27, 19.6, 11.5, 7.7 GeV.

very small values. More systematic exploration of the
quark mass dependence of the observables may be taken
up in future publications.
Summary—Putting these observations together, we

may formulate rough criteria for evidence of proximity
to a critical point. If m2 achieves maximum >∼ 2, accom-
panied by m1 maximum >∼ 1, and the maxima obey the
ordering Eq. (3), then freeze-out is occurring near enough
to a critical point for universality to provide the leading
order dynamics.
The important feature of scaling in determining this

behaviour is the non-monotonic behaviour of the correla-
tion length along a freeze-out line. Different hypothetical
freeze-out lines are best discussed in Ising coordinates:
for µB increasing (

√
sNN decreasing) the freeze-out line

must proceed from high t ≫ 0 to low t < 0. Then,
whether the freeze-out line is taken at constant H as in
Ref. [8] or curved as in Figure 1, the correlation length
ξ2 ∼ κ2 has a maximum along the line. Moreover, by
hypothesis this maximum is the sought after signature
of singular behaviour, implying that the skewness and
kurtosis are also enhanced and the ratios m1,m2 should
be ≫ 1. This enhancement should be robust in pres-
ence of other, model-dependent dynamics. On the other
hand, without a critical point and associated scaling, the
enhancements of the correlation length and higher mo-
ments vanish, and the features predicted above are ex-
pected to be no stronger than thermal fluctuations and
other dynamics of the system.
Preliminary data for m1 and m2 [23] shown in Figure 8

suggest that the lowest collision energies may be entering
the scaling region, seeing that m2/m1 ∼ 4 ≫ 1, but not
reaching as low as TCEP, seeing that the banana shape
is not complete. With the present data, we cannot yet
know whether the lowest energy point at

√
sNN = 7.7

GeV belongs to the upper branch of the banana seen
in the preceding figures. Acquiring data in the range
7.7 ≤ √

sNN ≤ 11.5 GeV could help determine the rela-
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tive location of a critical point by clarifying the shape and
magnitude of the banana and comparing to the different
scenarios depicted in Figs. 4-6.
There are of course experimental challenges associated

with measuring χ3 and χ4, such as effects from dynamics
of the fireball expansion [19] and beam energy-dependent
final-state hadron-gas interactions. These effects must be
understood and accounted for in the data as well as pos-
sible to enhance any signal of criticality. Our purpose
has been to argue that, if freeze-out occurs near enough
to a critical point (in the scaling region) for nongaus-
sian fluctuations to be impacted as predicted in preceding
work, then the qualitative relation between the higher-
order fluctuation moments Eq. (3) could hold. This can
serve as a first check that the experimentally observed
peaks in m1 and m2 arise from an underlying divergence
of the correlation length in the fireball. We anticipate

that several more such consistent sets of characteristics
should be found in order to prove that the experimental
data do reflect the presence of a critical point.
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