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The more-carefully defined, and more appropriate 2++ tensor glueball current is a SUc(3) gauge-
invariant, symmetric, traceless and conserved Lorentz-irreducible tensor. After Lorentz decomposi-
tion, the invariant amplitude of the correlation function is abstracted, and calculated based on the
semiclassical expansion for quantum chromodynamics (QCD) in the instanton liquid background.
Besides taking the perturbative contribution into account, we calculate the contribution arising
from the interaction (or the interference) between instantons and the quantum gluon fields, which
is infrared free. Instead of the usual zero-width approximation for the resonances, the Breit-Wigner
form with a correct threshold behavior for the spectral function of the finite-width three resonances
is adopted. The properties of the 2++ tensor glueball are investigated via a family of the QCD
Laplacian sum rules for the invariant amplitude. The values of the mass, decay width and coupling
constants for the 2++ resonance in which the glueball fraction is dominant are obtained.

PACS numbers: 11.15.Tk,12.38.Lg,11.55.Hx,14.70.Bh

I. INTRODUCTION

Within the framework of quantum chromodynamics
(QCD), the hadron spectrum is expected to be more
complex than the prediction of the usual quark model.
The gluons, which mediate the strong interactions, carry
color charges, and interact themselves, so that a particu-
lar type of the bound states, glueballs, should exist even
in the quarkless world. The research of glueballs may
give a unique insight into the non-Abelian dynamics of
QCD. Theoretical investigations including lattice simula-
tions [1–3], model researches [4–6] and sum rule analyses
[7–18] have been going on for a long time, but no decisive
evidence of the existence of glueballs has been confirmed
by experimental research up to now [19, 20]. Further
investigation on glueballs still makes sense.
One of the obstacles in theoretical research of glue-

balls is that non-perturbative dynamics of QCD, which
is responsible for the formation of hadrons, is difficult to
handle. In particular, the tunneling effect between the
degenerate vacua of QCD should be taken into account.
In the leading order, this effect is described by instantons
[21, 22] and shown to be of great significance in gener-
ating the properties of the unusual hadrons, glueballs.
Now, the QCD vacuum is recognized to be a medium
with nontrivial structure, and may impact greatly on the
attributes of hadrons. Moreover, the glueball may be
mixed with usual mesons of the same quantum numbers,
making the identification of the glueballs more compli-
cated [12, 23].
Instantons, as the strong topological fluctuations of

gluon fields in QCD, are widely believed to play an im-
portant role in the physics of the strong interaction (for
reviews see [22, 24]). In particular, instantons provide
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mechanisms for the violation of both U(1)A and chi-
ral symmetry in QCD, and may therefore be important
in determining hadron masses and in the resolution of
the famous U(1)A problem. Furthermore, it was re-
cently shown that instantons persist through the decon-
finement transition, so that instanton-induced interac-
tions between quarks and gluons may underlie the un-
usual properties of the so called strongly coupled quark-
gluon plasma recently discovered at RHIC [25].
In conventional perturbation theory one computes fluc-

tuations around the trivial zero solution. The correct
quantization process is to consider all classical solutions
of the field equations and their quantum fluctuations.
In the path integral representation of QCD the parti-
tion function is, hence, dominated by an ensemble of ex-
tended particles (instantons) in four dimensions. In the
simplest case the partition function describes a diluted
ideal gas of independent instantons. Unfortunately, this
assumption leads to an infinite instanton density caused
by large instantons, which is obviously against the dilu-
tion gas hypothesis for instantons. This problem is called
the infrared problem.
The problem is avoided by assuming a repulsive in-

teraction between instantons[26] which prevents the col-
lapse. This is the model of a four-dimensional instan-
ton liquid. Under certain circumstances the interaction
can be replaced by an effective density. The instan-
ton liquid model in a narrow sense describes the QCD
vacuum as a sum of independent instantons with radius
ρ̄ = (600MeV)−1 and effective density n̄ = (200MeV)4.
The correctness of this model is still being intensively in-
vestigated. So far the model is essentially justified by its
phenomenological successes. The most important predic-
tions of the model are probably the breaking of the chiral
symmetry in the axial triplet channel [27, 28] and the ab-
sence of Goldstone bosons in the axial singlet channel.
The instanton distribution is closely connected with

the vacuum condensates, as proposed early as the non-
perturbative effects of QCD arising from the nontrivial
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vacuum, since the mean size and density of instantons
can be deduced from the quark and gluon condensates,
and conversely. Moreover, the values of condensates can
be reproduced from instanton distribution [29–32]. The
contributions of instanton and those of the condensates
may reveal the same non-perturbative effects, and thus
including both contributions at the same time will cause
the so-called double counting problem [33]. To avoid it, a
semiclassical expansion in instanton background fields is
suggested in our previous works to analyze the properties
of the lowest 0++ scalar glueball [13, 34] and 0−+ pseu-
doscalar one [15–18], where the correlation functions of
the glueball currents are calculated by just including the
contributions from the pure instantons, the pure quan-
tum gluons, and the interference between both, instead
of working with both instantons and condensates at the
same time. In fact, the condensate contributions turned
out to be very small as compared with those of instan-
tons (including the classical and quantum interference
contribution) in the glueball channels, and may be un-
derstood as a small fraction of the latter in the local
limit[13, 15, 16].

In this paper, we investigate the mass scale and the
magnitude of the width for the lowest state of tensor
glueballs along the same line with our previous works[13–
18]. This issue is first considered in a nonrelativistic ap-
proach by assuming a large value of the effective gluon
mass[35], and the mass, m2++ , of the lowest tensor glue-
ball was predicted to be about 1.6GeV; later, relying
on the construction of an efficient quasiparticle gluon
basis for Hamiltonian QCD in Coulomb gauge, m2++

is exploited to be 2.42GeV. The Lattice simulation in
an anisotropic lattice for quenched QCD shows that the
mass of the lowest state of the tensor glueballs is about
2.3-2.4GeV[36, 37]. The first prediction of the traditional
QCD sum rule approach was m2

2++ ≈ 1.6GeV2[38, 39].
By assuming very small mixing between the tensor glue-
ball and quarkoniums, the sum rule prediction is in-
creased to be m2++ ≈ 2.00GeV [40, 41]. Up to now
the theoretical results are controversial. Finally, let us
mention that the prediction in the flux tube model, be-
ing composed by a closed loop of fundamental flux with
no constituent gluons at all, is m2++ ≈ 2.84GeV[42].

Our paper is organized as follows. In section 2 we
define our form for the current of the tensor glueball,
and the corresponding correlation function, and make
its Lorentz decomposition and associate it with a unique
Lorentz invariant amplitude. In section 3 a low-energy
theorem suitable for the correlation function is derived.
The pure quantum and pure instanton contribution (in-
cluding the traditional condensate one) are presented in
section 4. Our main work, namely the calculation of the
interference contribution, is carried out in section 5. In
section 6 we construct the spectral function for the in-
variant amplitude of the correlation function. The finite-
width Laplacian sum rules, which we used in our previous
and present works, are presented. The numerical simu-
lation is described in section 8. Finally, in section 9 our

results and conclusions are summarized, and the discus-
sion of some issues is given.

II. THE CORRELATION FUNCTION AND ITS

LORENTZ DECOMPOSITION

The current composed of two gluon fields, which carries
the quantum numbers JPC = 2++, is defined as

Oµν = ηµα(∂)ηνβ(∂)αsθαβ , (1)

with

θαβ = [−Ga
αγG

a
βγ +

1

4
δαβG

a
γδG

a
γδ]− (2)

being the traceless energy-momentum density tensor
in Euclidean pure-QCD, where Ga

µν is the gluon field
strength tensor with the color index a and Lorentz in-
dices µ and ν, and ηµν(∂) = δµν − ∂µ∂ν/∂

2 the trans-
verse projection operator. It is important to note that
the overall subscript − in rhs of (2) indicates that the
corresponding trace anomaly should be deleted out, and
this subscript will not be specified hereafter. The current
Oµν is a Lorentz-irreducible, SUc(3) gauge-invariant and
local composite operator with the lowest dimension. Ob-
viously, Oµν is, as well, a Lorentz symmetric traceless
tensor obeying the transverse condition

Oµν = Oνµ, Oµµ = 0, ∂µOµν = 0, (3)

where the third equation is valid not only in pure-QCD
but also in full QCD by means of using the project oper-
ator ηµν(∂).
The QCD correlation function of the current Oµν is

defined as

Πµν,µ′ν′(q) =

∫

d4xeiq·x〈Ω|TOµν(x)Oµ′ν′(0)|Ω〉. (4)

Eqs (3) lead to the symmetric, traceless, and transverse
conditions for Πµν,µ′ν′(q) as follows

Πµν,µ′ν′(q) = Πνµ,µ′ν′(q) = Πµν,ν′µ′(q),

Πµµ,µ′ν′(q) = Πνµ,µ′µ′(q) = 0,

∂µΠµν,µ′ν′(q) = ∂µ′Πµν,µ′ν′(q) = 0. (5)

For any momentum q, there is a unique transverse sym-
metric Lorentz tensor in Euclidean space-time, namely

ηµν(q) = δµν −
qµqν
q2

. (6)

By means of ηµν(q), it is easy to find that there are only
two possible Lorentz tensors of rank-four satisfy the sym-
metric and transverse conditions shown in (5)

T
(1)
µν,µ′ν′ = ηµν(q)ηµ′ν′(q),

T
(2)
µν,µ′ν′ = ηµµ′ (q)ηνν′ (q) + ηµν′(q)ηνµ′ (q). (7)
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Then, the traceless Lorentz tensor of rank-four, ηµν,µ′ν′ ,
can be expressed as the linear combination of the above
two tensors

ηµν,µ′ν′ = ηµµ′ηνν′ + ηµν′ηνµ′ −
2

3
ηµνηµ′ν′ , (8)

where the factor −2/3 in the front of the third term is
determined by the traceless condition, and the argument
q of η is ignored from now on for the sake of brevity. It
is important to note that ηµν,µ′ν′ is the unique Lorentz
tensor of the fourth rank constructed from q and δµν , and
proportional to the density matrix of spin two possess-
ing the desired properties as (5). We conclude that the
correlation function Πµν,µ′ν′(q) can be expressed as

Πµν,µ′ν′(q) =
1

10
ηνµ,µ′ν′Π(q2), (9)

with Π(q2) being a scalar function of q2, and the in-
troducing of a factor of one-tenth is just for conve-
nience. Contracting both sides of (9) with the prod-
uct of the metric tensors δµµ′δνν′ and using the identity
δµµ′δνν′ηνµ,µ′ν′ = 10 give rise to

Π(q2) = Πµν,µν (q), (10)

which is the Lorentz invariant amplitude that our sum
rule is, of course, written for.

III. LOW-ENERGY THEOREM

To compare with the scalar and pseudoscalar cases of
glueballs, we want to evaluate the correlation function in
the low-energy limit of q

lim
low q

Π(q2) = lim
low q

∫

d4xeiq·x〈Ω|TOµν(x)Oµν (0)|Ω〉.

(11)
We note that the current O is the energy-momentum
tensor in pure-QCD which is symmetric and conserved
according to our definition, and so that it is, in fact,
renormalization group invariant at least at one-loop or-
der.
Now, it is noticed that the renormalization group in-

variance of O enable us to extrapolate it to a low-energy
scale, at which it may be reduced to the symmetric and
conserved energy-momentum tensor in the low-energy
limit of QCD. On the other hand, the 1/Nc expansion
indicates that the confinement is present for large Nc,
and in the region of confinement, the fundamental the-
ory of QCD is reduced to a weakly coupled field the-
ory of mesons, such as pions [43, 44]. Therefore, at the
low-energy scale, the energy-momentum tensor of QCD
may be reduced to the symmetric and conserved energy-
momentum tensor for the pion field theory at the leading
order

O(π)
µν = ∂µπ

a∂νπ
a −

1

2
δµν [∂απ

a∂απ
a −m2

ππ
2], (12)

where πa is the pion isotopic amplitude (πaπa = π0π0 +
2π+π−). The low-energy energy-momentum tensor (12),
in fact, is Lorentz reducible, and its non-vanishing trace
(possessing no projection on the 2++ state) should be
deleted out according to our definition. The traceless

part of O
(π)
µν is

O
(π)
µν− = ∂µπ

a∂νπ
a −

1

4
δµν∂απ

a∂απ
a, (13)

Inserting the two-pion intermediate states between the
two currents of the rhs of (11), using (13), we obtain

lim
low q

Π(q2) = 10× 2×
3

4
m4

πθ(q
2 − 4m2

π), (14)

where the factor 10 is introduced by convention (s. (9)
and (10)), and a factor of 2 comes from the multiplicity
of the pion isotopic states πa with the approximate equal
massmπ. We note that the appearance of a step function
θ(q2 − 4m2

π) is due to the consideration of the energy
conservation. For the finiteness of the pion mass, we
have

lim
q→0

Π(q2) =

∫

d4x〈Ω|TO
(π)
µν−(x)O

(π)
µν−(0)|Ω〉 = 0, (15)

without consideration of the possibility of a 2++ meson
or glueball decaying into two photons.
There are, as well, another argument for the low-energy

theorem, (15), for the tensor glueball current. Inserting
the full intermediate states into the correlation function
between the two currents Oµν(x) and Oµν(0), it is easy
to see that all intermediate states have certainly no con-
tribution with the possible exceptions of the vacuum |Ω〉
and the multi-massless pions |nπ〉 with n = 2, 4, · · · be-
cause of the energy-momentum conservations. The inter-
mediate vacuum state has no contribution

〈Ω|O
(π)
µν−(0)|Ω〉 =

1

4
δµν〈Ω|O

(π)
αα−(0)|Ω〉 = 0, (16)

where the first equality is due to the Lorentz covariance,
and the second equality comes from our definition of our
current O which is exactly traceless. The intermediate
multi-pion states |nπ〉 do not contribute as well, since
n pions, each of which is of vanishing energy and mo-
mentum in the massless limit, cannot possess the total
angular momentum of two so that

〈nπ|O
(π)
µν−(0)|Ω〉mπ=0,q→0 = 0,

in keeping the angular momentum conservation.

IV. PURE QUANTUM AND PURE

INSTANTON CONTRIBUTIONS

We are working in the framework of semiclassical ex-
pansion to evaluate the Euclidian path integrals as in lat-
tice QCD. Instead of using the global minimum, Aµ = 0,
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of the QCD action as the starting point in the usual per-
turbation theory, we may use the local minima as called
instantons, Aµ(x), which are the nonperturbative solu-
tions of the classical field equations of Euclidean QCD
with finite action, so that the glue potential field B(x)
may be decomposed into a summation of the classical in-
stanton A and the corresponding quantum gluon field a
as

Bµ(x) = Aµ(x) + aµ(x). (17)

Consequently, the pure-glue Euclidean action can be ex-
pressed as

S[B] = S0 −

∫

d4x

{

L[A+ a] +
1

2ξ
aaµDabµDbcνacν

}

= S0 −
1

2

∫

d4x {aaµ [DabλDbcλδµν + 2gfabcFbµν

−

(

1−
1

ξ

)

DabµDbcν

]

acν − 2gfabcabµacνDadµadν

−
1

2
g2fabcabµacνfadeadµaeν

}

, (18)

where S0 = 8π2/g2 is the one-instanton contribution to
the action, Faµν is the instanton field strength tensor

Faµν(A) = ∂µAaν − ∂νAaµ + gsfabcAbµAcν , (19)

and Dabµ(A) the covariant derivative associated with the
classical instanton field Aaµ

Dabµ(A) = ∂µδab + gfacbAcµ. (20)

In addition, following ’t Hooft[21], the background field
gauge

Dµ(A)aµ = 0 (21)

is used with ξ being the corresponding gauge parameter,
and certainly, the corresponding Faddeev-Popov ghosts
according to the standard rule should be added to restore
the unitarity. We note here that the structure constants
fabc should be understood as ǫabc when any one of the
color-indices a,b and c is associated with an instanton
field due to the property of the closure of any group.
According to the decomposition (17), the invariant am-

plitude of correlation function splits into three parts,
namely the pure classical part, the pure quantum part
and the interference part in the leading order

ΠQCD = Π(cl) +Π(qu) +Π(int), (22)

where the superscript indicates that it is calculated in
the underlying dynamical theory, QCD. It is important
to note that every part in rhs of (22) is gauge-invariant
because the decomposition (17), in principle, has no im-
pact on the gauge-invariance of the correlation function.
The first part of (22) is arising from the contribution

of pure classical field configurations, the BPST instanton

and anti-instanton, which are the simplest nonperturba-
tive solutions of the Euclidean pure-QCD field equation,
and the instanton field is written, in the singular gauge,
to be

Aaµ(x) =
2

gs
ηaµν(x− z)νφ(x − z), (23)

with

φ(x− z) =
ρ2

(x − z)2[(x − z)2 + ρ2]
, (24)

and the corresponding field strength tensor is

Faµν (x)= −
8

gs

[

(x − z)µ(x− z)ρ
(x− z)2

−
1

4
δµρ

]

×ηaνρ
ρ2

[(x− z)2 + ρ2]2
− (µ↔ ν), (25)

with z and ρ denote respectively the center and size of
the instanton, called collective coordinates together with
the color orientation, and ηaµν is the ’t Hooft symbol
which should be replaced with the anti-’t Hooft one η̄aµν
for an anti-instanton field. The fact that the strong cou-
pling constant gs emerging in the denominator of the rhs
of (23) reveals the nonperturbative nature of these clas-
sical configurations. However, at the leading order, the
so-called direct instantons do not contribute to the cor-
relation function considered[7, 38], namely

Π(cl) = 0, (26)

because

θαβ(F ) = −F a
αγF

a
βγ +

1

4
δαβF

a
γδF

a
γδ = 0, (27)

as expected for vacuum fields which energy-momentum
tensor should vanish.
The second part of (22) is arising from the pure quan-

tum contribution, and has already been calculated at the
leading order[38]

Π(qu) = −
1

2π2
q4 ln

q2

µ2
, (28)

with µ being the renormalization scale, and with the ad-
ditional ordinary power corrections due to the gluon con-
densates

Π(cond) =
50παs

3q4
〈2O1 −O2〉, (29)

where

O1 = (fabcGb
µαG

c
να)

2, O2 = (fabcGb
µνG

c
αβ)

2, (30)

with fabc being the structure constants for SUc(3). It is
noticed that the contribution from the vacuum conden-
sates start with the Q−8 term, and, in fact, negligible as
checked in FIG.5 in appendix C,in comparison the Borel-
transformations of Π(int), Π(qu) and Π(cond).
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V. THE INTERFERENCE CONTRIBUTION

One of our main tasks in this work is to calculate the
contribution Π(int) in (22), which is arising from the in-
terference between the classical instantons and quantum
gluons in the framework of the semiclassical expansion for
QCD with the instanton background, and certainly very
important because of the vanishing pure-classical contri-
bution, (26). After imposing the background covariant
Feynman gauge (ξ = 1) for the quantum gluon fields, we
are still free to choose a gauge for the background field
A. In the following, the singular gauge is chosen to the
non-perturbative instanton field configurations as shown
in (23).
Before starting with the contraction between the quan-

tum fields, we note that the time-development of the in-
stanton vacuum produces the pre-exponential factor for
the distribution of the instantons[21, 45, 46], and Π(int) is
understood as taking ensemble average over the collective
coordinates besides taking the usual vacuum expectation
value due to the separation (23)

Π(int) =
∑

I,Ī

∫

dρn(ρ)

∫

d4z

∫

d4xeiq·x

〈Ω|T {Oµν(x)Oµν (0)}
(int)|Ω〉, (31)

where the super index ’(int)’ indicates the corresponding
quantity containing only the interference part between
the quantum and classical ones. Using the spike distri-
bution for the random instantons, (31) becomes

Π(int) = 2n̄

∫

d4z

∫

d4xeiq·x

〈Ω|T {Oµν(x)Oµν (0)}
(int)|Ω〉, (32)

where the value of the instanton effective density n̄ is
already given in the introduction, and the factor 2 comes
from the mutually equal contributions of both instanton
and anti-instanton. Next important step is to specify the
form of the gluon propagator which in the background
field Feynman gauge can be read from the part of S[B]
quadratic in a[47, 48]

Dab
µν(x, y) = 〈Ω|T {aaµ(x)a

b
ν(y)}|Ω〉

= 〈x|

(

1

P 2δµν − 2Fµν

)ab

|y〉, (33)

with P ab
µ = −iDab

µ . Keeping only terms proportional to
F , one has[49]
∫

d4xeiq·xDab
µν(x, y) = eiq·(y−z)δab

{

1
q2 δµν + gs

2
q4Fµν(z)

−igs
(y−z)ρFρσ(z)qσ

q4 δµν(z) + · · ·
}

,

(34)

where the first term in rhs of the above equation is the
pure-gluon propagator in the usual Feynman gauge, and
the second and third ones are the leading contribution

of the instanton field to the gluon propagator. For short
distance region, we assume that the contribution from
a single instanton is dominant over multi-instantons[50].
At the leading loop level, the gluon propagator,(33) ,in
the background field Feynman gauge becomes the pure-
gluon one in the usual Feynman gauge which is used ac-
tually in our calculation.
Rewriting the tensor glueball current (1) as

Oµν = Õµν −
1

4
δµνÕαα, (35)

with

Õµν = −GaµαGaνα, (36)

and the invariant amplitude (32) becomes

Π(int) = 2n̄(δµµ′δνν′ −
1

4
δµνδµ′ν′)

∫

d4z

∫

d4x

eiq·x〈Ω|T {Õµν(x)Õµ′ν′(0)}|Ω〉. (37)

In calculation,we expand Õµν into terms which are the
products of quantum gluon fields and their derivatives
with coefficients being composed of the instanton fields

Õµν =

10
∑

i=1

Õ(i)
µν , (38)

where the operators Õ
(i)
µν in terms of instanton and quan-

tum gluon fields are listed in appendix A. Then,(37) can
be expressed as

Π(int) =2n̄(δµµ′δνν′ −
1

4
δµνδµ′ν′)

∑

i,j

∫

d4z

∫

d4x

eiq·x〈Ω|T {Õ(i)
µν(x)Õ

(j)
µ′ν′(0)}|Ω〉

=

12
∑

i=1

Π
(int)
i + · · · (39)

where the · · · denotes the contributions from the prod-
ucts of operators being proportional to g3s , and the ex-

pressions of Π
(int)
i are shown in appendix B. The corre-

sponding twelve kinds of Feynman diagrams are shown in
FIG. 1, where the contributions from the first three dia-
grams are of the order of αs, and the contributions of the
remainders are superficially of the order of α2

s, and those
from the diagrams (4) and (6), in fact, are vanishing be-
cause of violating the conservation of the color-charge,
namely

Π
(int)
i = 0, for i = 4, 6. (40)

Now, we are in the position to evaluate the contribu-
tions of the remainder diagrams in FIG. 1. Using the
standard technique to regularizing the ultraviolet diver-
gence in the modified minimal subtraction scheme, the
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FIG. 1. Feynman diagrams for the interference contribution
Π(int), where spiral lines, dotted lines and the lines with cir-
cles denote gluons, instantons and the instanton field strength
tenser respectively, and cross stands for the position of instan-
tons.

result for the interference part of the correlation func-
tion is

Π(int) = n̄
{

c1πα
−1
s (µ2) + c2π(qρ)

−2α−1
s (µ2) + c3

+c4(qρ)
−2 +

[

c5(qρ)
2 + c6 + c7(qρ)

−2
]

ln
q2

µ2

}

,

(41)

where µ the renormalization scale, and we have ignored
terms being proportional to the positive powers of q2

which vanish after Borel transformation, and the dimen-

sionless coefficients ci are

c1 = 48,

c2 = −144,

c3 = −764 +
664

3
(γ − ln 4π) = −1196.44,

c4 = −4416,

c5 = 27,

c6 = 364− 140 (γ − ln 4π) = 637.53,

c7 = 2208,

(42)

through a tedious calculation, where γ is the Euler con-
stant. The detailed calculation will appear elsewhere. It
should be noted that there is no infrared divergence as
expected by the instanton size being fixed in the liquid in-
stanton vacuum model, which actually provides the reg-
ularization for the interference correlation function with
the standard parameters.
Putting everything above together, our final expression

for the invariant amplitude, ΠQCD, calculated in QCD is
of the form

ΠQCD(q2) = n̄
{

c1πα
−1
s (µ2) + c2π(qρ)

−2α−1
s (µ2) + c3

+c4(qρ)
−2 +

[

c5(qρ)
2 + c6 + c7(qρ)

−2
]

ln
q2

µ2

}

−
1

2π2
q4 ln

q2

µ2
, (43)

where the condensate contribution Πcond given in (29)
and (30) is neglected because its smallness of the magni-
tude as shown in Appendix C.

VI. SPECTRAL FUNCTION

Now we construct the spectral function for the invari-
ant amplitude, the scalar part of the correlation function,
of the tensor glueball current, ΠQCD. The usual lowest
one resonance plus a continuum model is used to saturate
the phenomenological spectral function:

1

π
ImΠPHEN(s) =

1

π
ρHAD(s) + θ(s− s0)

1

π
ImΠQCD(s),

(44)
where s0 is the QCD-hadron duality threshold, θ(s− s0)
is the step function and ρHAD(s) is the spectral function
for the lowest tensor glueball state. In the usual zero-
width approximation, the spectral function for a single
resonance is assumed to be

ρHAD(s) = F 2δ(s−m2), (45)

where m is the mass of the lowest glueball, and F is the
coupling constant of the current to the glueball defined
as

〈0|O(0)|G〉 = F. (46)
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The threshold behavior for ρHAD(s) is

ρHAD(s) → λ20s
2θ(s− 4m2

π), for s→ 4m2
π, (47)

In fact, the threshold behavior (47) may only be valid
near by the chiral limit; it may not be extrapolated far
away. Therefore, instead of considering the coupling F
as a constant [7], we choose a model for F as

F =







0, for s ≤ 4m2
π,

λ0s θ(s− 4m2
π), for 4m2

π < s < 4m2
π + δs,

fm2, for s ≥ 4m2
π + δs,

(48)
where the λ0 and f are some constants determined late
in numerical simulation, and δs is a small constant de-
termined by simulation.
To go beyond the zero-width approximation, in facing

the near-actual situation, the Breit-Wigner form for a
single resonance is assumed for ρHAD(s)

ρHAD(s) =
F 2mΓ

(s−m2 + Γ2/4)2 +m2Γ2
, (49)

where Γ is the width of the lowest glubeball. Further, the
one isolated lowest resonance assumption is questioned
from the admixture with quarkonium states, and it is
known from the experimental data that there are three
2++ tensor resonances till and around the mass scale of
1.525 GeV. The form of the spectral function for three
resonances is taken to be

ρHAD(s) =

3
∑

i=1

F 2
i miΓi

(s−m2
i + Γ2

i /4)
2 +m2

iΓ
2
i

, (50)

where mi and Γi being the mass and width of the i-th
resonance, respectively. For the sake of simplicity, all
coupling constants Fi for s < m2

π are fixed with the same
λ0 as shown in (48).

VII. FINITE WIDTH LAPLACIAN SUM RULE

Now we are in a position to construct the appropriate
sum rules of the tensor glueball current. The invariant
amplitude Π obeys a dispersion relation

Π(q2) =

∫

∞

0

ds
1

s+ q2
1

π
ImΠ(s) + subtractions (51)

which is defined up to a finite number n of subtractions.
To dispose of the dependence on these subtractions, one
takes the nth derivative of Π(q2) to obtain

(−1)n
dn

(dQ2)n
Π(q2) =

∫

∞

0

ds
n!

(s+Q2)n+1

1

π
ImΠ(s)

(52)
with Q2 = q2, which can be regarded as a global duality
relation (i.e. sum rule) in the sense that the weighted
average of the physical spectral function (1/π)ImΠ(s) ≡

(1/π)ImΠPHEN(s) (a model of (1/π)ImΠPHEN(s) is given
in (44)), for sufficient large Q2 values in the weight, must
match the nth derivative of Π(q2) ≡ ΠQCD(Q2) in the lhs,
which is calculable quantity in QCD (an approximated
form is given in (43)). To make the sum rule to be more
sensitive to the low-energy behavior of the spectral func-
tion, one applies the Borel transformation

L̂ ≡ lim
N→∞

Q2
→∞

Q2/N≡t

(−1)N

(N − 1)!
(Q2)N

(

d

dQ2

)N

(53)

to both sides of (52), a family of Laplacian sum rules can
be formed to be[51]

LHAD
k (s0, t) = LQCD

k (s0, t), (54)

and

LHAD
k (s0, t) =

∫ s0

0

dsske−s/t 1

π
ρHAD(s), (55)

for the phenomenological contributions to the sum rules,
and for the theoretical contributions

LQCD
k (s0, t) = LQCD

k (t)− LCONT
k (s0, t), (56)

with LQCD
k (t) and LCONT

k (s0, t) being

LQCD
k (t) = tL̂[(−Q2)kΠQCD(Q2)] (57)

and

LCONT
k (s0, t) =

∫

∞

s0

dsske−s/t 1

π
ImΠQCD(s), (58)

Substituting (43) into (57), we have

LQCD
−1 (t) = −n̄

[

c1πα
−1
s (t) + c2πα

−1
s (t)(tρ2)−1

+c3 + c4(tρ
2)−1 − c5tρ

2 − c6γ

+c7(1− γ)(tρ2)−1
]

−a0t
2, (59)

LQCD
0 (t) = n̄

[

c2πα
−1
s (t)ρ−2 + c4ρ

−2 + c5t
2ρ2

−c6t− c7γρ
−2

]

−2a0t
3, (60)

LQCD
1 (t) = −n̄(−2c5ρ

2t3 + c6t
2 − c7ρ

−2t)

−6a0t
4. (61)

VIII. NUMERICAL ANALYSIS

The expressions for the three-loop running coupling
constant αs(Q

2) with three massless flavors (Nf = 3) at
renormalization scale µ [52]

αs(µ
2)

π
=
α
(2)
s (µ2)

π
+

1

(β0L)3

[

L1(
β1
β0

)2 +
β2
β0

]

(62)
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are used, where α
(2)
s (µ2)/π is the two-loop running cou-

pling constant with (Nf = 0)

α
(2)
s (µ2)

π
=

1

β0L
−
β1
β0

lnL

(β0L)2
(63)

and

L = ln

(

µ2

Λ2

)

, β0 =
1

4

[

11−
2

3
Nf

]

,

β1 =
1

42

[

102−
38

3
Nf

]

,

β2 =
1

43

[

2857

2
−

5033

18
Nf +

325

54
N2

f

]

, (64)

with the color number Nc = 3 and the QCD renormal-
ization invariant scale Λ = 120MeV. We take µ2 = t
after calculating Borel transforms based on the renor-
malization group improvement for Laplacian sum rules
[53]. The values of the average instanton size and the
overall instanton density are adopted from the instanton
liquid model[29]

n = 1fm−4 = 0.0016GeV4,

ρ =
1

3
fm ≃ 1.667GeV−1. (65)

The resonance masses and widths appearing in (50)
could be estimated by matching both sides of sum rules
(55) optimally in the fiducial domain (sum rule window)
where the mentioned resonance parameters should ap-
proximately be stable. At tmax of the sum rule window,
the resonance contribution should be great than the con-
tinuum one

LQCD
k (s0, tmax) ≥ LCONT

k (s0, tmax). (66)

according to the standard requirement due to the fact
that in the energy region above tmax the perturbative
contribution is dominant. At tmin which lies in the low-
energy region, we require that the single instanton con-
tribution should be relatively large so that

Lint
k (s0, tmin)

LQCD
k (s0, tmin)

≥ 50%. (67)

In the same time, to keep the multi-instanton correction
still be negligible, we simply adopt a rough estimate

tmin ≥ (2ρ)−2 ∼

(

2

0.6GeV

)

−2

. (68)

For determine the value s0 of the threshold, it is obvious
that s0 must be greater than all mass squired of the con-
sidered resonances, and should guarantee that there is a
sum rule window for the stability of our Laplacian sum
rules. According to the above requirements, we find that
in the domain

t ∈ (1.0, 3.0)GeV2, s0 ∈ (2.9, 3.9)GeV2 (69)

our sum rules work very well, for example, for k =
−1, 0, 1, as usual, to consider the very important infor-
mation comes from low-energy theorem. Finally, in order
to measure the compatibility between both sides of the
sum rules (55) in our numerical simulation, we divide the
sum rule window [tmin, tmax] into N = 100 segments of
equal width, [ti, ti+1], with t0 = tmin and tN = tmax, and
introduce a variation δ which is defined as

δ =
1

N

N
∑

i=1

[L(ti)−R(ti)]
2

|L(ti)R(ti)|
, (70)

where L(ti) and R(ti) are lhs and rhs of (55) evaluated
at ti.
Let us first consider the case of single-resonance plus

continuum models,specified respectively by (46) and
(50),for the spectral function. The optimal parameters
governing the sum rules with zero and finite widths are
listed in the first six lines of Tab. I and the correspond-
ing curves for the lhs and rhs of (55) with k = −1, 0
and +1 are displayed in FIG. 2 and 3 respectively. From
Tab. I, the optical values of the tensor glueball mass,
width, coupling and the duality threshold with the best
matching are:

m = 1.522± 0.002GeV, f = 0.115± 0.025GeV,

s0 = 3.4± 0.5GeV2 (71)

for one zero-width resonance model, and

m = 1.525GeV, Γ = 0.104± 0.007GeV,

f = 0.055± 0.004GeV, s0 = 3.0± 0.1GeV2 (72)

for one finite-width resonance model, where the errors are
estimated from the uncertainties of the spread between
the individual sum rules (the same for hereafter). For
the case of three finite-width resonances plus continuum
model (50) for the spectral function, the optimal param-
eters governing the sum rules are listed in the remaining
lines of Tab. I. The corresponding curves for the lhs
and rhs of (55) with k = −1, 0 and +1 are displayed in
the FIG. 4. Taking the average, the optical values of the
widths of the three lowest 2++ resonances in the world of
QCD with three massless quarks, and the corresponding
optical fit parameters are predicted to be

mf2(1270) = 1.275GeV, ff2(1270) = 0.016± 0.006GeV,

Γf2(1270) = 0.185GeV (73)

mf ′

2
(1525) = 1.525GeV, ff ′

2
(1525) = 0.052± 0.002GeV,

Γf ′

2
(1525) = 0.073GeV (74)

mf2(1950) = 1.944GeV, ff2(1950) = 0.019± 0.009GeV,

Γf2(1950) = 0.472GeV (75)

with

s0 = 3.0GeV. (76)
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TABLE I. The optimal fitting values of the mass m, width Γ, coupling constant f , continuum threshold s0 and compatibility
measure δ for the possible 2++ resonances in the sum rule window [tmin, tmax] for the best matching between lhs and rhs of
the sum rules (55) with k = −1, 0, 1 are listed, while all the contributions arising from pure perturbative and interference are
included in the correlation function for cases A, B and C, in which a single zero-width resonance plus continuum model of
the spectral function is adopted for case A, and a single finite-width resonances plus continuum model for case B, and a three
finite-width resonances plus continuum model for case C, respectively.

cases k resonances m(GeV) Γ(GeV) f(GeV) s0(GeV2) [tmin, tmax](GeV2) δ

−1 1.520 0 0.140 3.9 1.0 − 3.0 3.4× 10−4

A 0 glueball 1.523 0 0.112 3.3 1.0 − 3.0 8.4× 10−5

1 1.521 0 0.094 3.0 1.0 − 3.0 4.9× 10−5

−1 1.525 0.105 0.058 3.1 1.0 − 3.0 4.3× 10−5

B 0 glueball 1.525 0.110 0.059 3.1 1.0 − 3.0 1.8× 10−4

1 1.525 0.097 0.052 2.9 1.0 − 3.0 8.3× 10−5

C

f2(1270) 1.275 0.185 0.022

−1 f ′

2(1525) 1.525 0.073 0.052 3.0 1.0 − 3.0 4.4× 10−5

f2(1950) 1.944 0.472 0.010

f2(1270) 1.275 0.185 0.010

0 f ′

2(1525) 1.525 0.073 0.050 3.0 1.0 − 3.0 4.1× 10−5

f2(1950) 1.944 0.472 0.028

f2(1270) 1.275 0.185 0.010

1 f ′

2(1525) 1.525 0.073 0.054 3.0 1.0 − 3.0 1.4× 10−4

f2(1950) 1.944 0.472 0.010

IX. CONCLUSION AND DISCUSSION

The main results of this work can be summarized as
follows:
First, the contribution to the correlation function aris-

ing from the interference between the classical instan-
ton fields and the quantum gluon ones is derived in the
framework of the semiclassical expansion of the instanton
liquid vacuum model of QCD. The resultant expression
is gauge invariant, and free of the infrared divergence.
It plays a great role in sum rule analysis in accordance
with the spirit of semiclassical expansion. The imaginary
part of the correlation function including this interference
contribution is positive as shown in FIG.6 in appendix D.
Moreover, it is excluded in the correlation function the
traditional condensate contribution to avoid the double
counting[7] because condensates can be reproduced by
the instanton distributions[29–32]; another cause to do
so is that the usual condensate contribution is proven to
be unusually weak, and cannot fully reflect the nonper-
turbative nature of the low-lying gluonia[7, 15, 16, 54]; in
our opinion, the condensate contribution may be consid-
ered as a small fraction of the corresponding instanton
one, so it is naturally taken into account already.
Second, the properties of the lowest lying 2++ ten-

sor glueball are systematically investigated in a family
of Laplacian sum rules in three different cases.A single
zero-width resonance plus continuum model of the spec-
tral function is adopted for case A, and a single finite-

width resonances plus continuum model for case B, and
the three finite-width resonances plus continuum model
for case C. The optimal fitting values of the mass m,
width Γ, coupling constant f , continuum threshold s0
for the possible 2++ resonances are obtained, and quite
consistent with each other.The resultant Laplacian sum
rules with k = −1, 0,+1 are carried out with a few of
the QCD standard inputting parameters, and really in
accordance with the experimental data.

Let us now identify where the lowest lying 2++ ten-
sor glueball is located. The result of the single-resonance
plus continuum models A and B, namely Eqs. (70) and
(72), imply that the meson f ′

2(1525) may be the most
fevered candidate for the lowest lying 2++ tensor glue-
ball because the difference between the two models is
just the width of the resonances, and the latter is of
course believed to be more in accordance with the real-
ity. This conclusion can further be justified by the result
of the three-resonances plus continuum model, namely
Eqs. (73), (74) and (75), which shows that ff ′

2
(1525) is

dominant.

As a discussion, we compare our result with the other
works. Let us mention the following points in order:

(a) The results in Lattice QCD are extracted from the
fit equation (2) in Ref. [55] by the variational procedure
in Monte-Carlo simulations[36], however, the mass of the
lowest-lying glueball should be understood as the upper
bound of the glueball in the channel of interest. It is im-
portant to note that our result in this work is to confront
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FIG. 2. The lhs (dot line) and rhs (solid line) of the sum
rules (55) with k = −1, 0, 1 versus t in the case where the
correlation function ΠQCD contains the interference and pure
perturbative contributions, and a single zero-width resonance
plus continuum model is adopted for the spectral function.

with the reality case. In the sense of mass upper-bound,
our result is consistent with those of Lattice QCD.
(b) The so-called mass hierarchy [56] for the lowest

0++, 2++ and 0−+ glueballs, namely m0++ < m2++ <
m0−+ , comes from Lattice QVCD, is difficult to under-
stand, because it is, in fact, an inequality of the possible
mass upper-bounds determined by variational principle.
On the other hand, phenomenologically, the identifica-
tion of the pseudoscalar glueball has been a matter of

debate since theMark II experiment proposed glueball
candidates [57]. Later, in the mass region of the first ra-
dial excitation of the η and η′ mesons, a supernumerous
candidate, the η(1405) has been observed. It seems to
be clear that η(1405) is allowed as a glueball dominated
state mixed with isoscalar qq̄ states due to its behavior in
production and decays, namely, it has comparably large
branching ratios in the J/ψ radiativedecay, but it has not
been observed in γγ collisions[19, 55, 58]. A review on
the experimental status of the qq̄ is given in Ref. [19].
However, this state lies considerably lower than the theo-
retical expectations: the lattice QCD predictions suggest
a glueball around 2.5 GeV [36, 59]; the mass scale of the
pseudoscalar glueball obtained in the QCD sum rule ap-
proach is above 2 GeV [7, 15, 16, 60]. Moreover, there
are attractive arguments for the scalar and pseudoscalar
glueballs being approximately degenerate in mass [61],
and even the scenario that a pseudoscalar glueball may
be lower in mass than the scalar one was recently dis-
cussed in Ref.[62]. The possibly non-vanishing gluonium
content of the ground state η and η′ mesons is discussed
in [12, 63–65]. Up to now, only the topological model
of the glueball as a closed flux tube [61] predicts a de-
generacy of the 0++ and 0−+ glueball masses and ad-
mits the region 1.3 − 1.5 GeV before our recent result
[13, 14, 17, 18] published.
(c) The results in QCD-based constituent models are

controversial from each other, the lowest lying 2++ glue-
ball lies in the mass region of 0.96−2.5 GeV[55], and our
prediction is located in between.
(d) In QCD sum rule approach, our result is higher

than the early one (≈ 1.26GeV) in [66, 67], and lower
than the other ones (≈ 2.0GeV) [40, 41].
(e) We note here that a recent phenomenological

analysis[68] predicts the mass of the lowest lying tensor
glueball mass is 1.40± 0.14GeV, near but lower than our
present result.
(f) Finally, it is important to note that the Laplacian

sun rule (54) is based on the Borel transform for the
global duality relation (52), not based on the so-called
strict local duality

1

π
ΠQCD(s) =

1

π
ΠPHEN(s) (77)

which corresponds the Gauss-Weierstrass transformed
sum rule in a appropriate limit[51]. This limit would be
equivalent to knowing the spectral function everywhere,
as well as the full perturbative and nonperturbative dy-
namical effects of QCD, however, it is impossible task
at the present state of development of QCD and the ex-
periments. We note here that by integrating both sides
of (77) from s = 0 to s = s0, we get the so-called the
finite-energy sum rule

∫ s0

0

ds
1

π
ΠQCD(s) =

∫ s0

0

ds
1

π
ΠPHEN(s) (78)

which is usually used to determine the approximate value
of the threshold s0 in the sum rule. The lhs and rhs
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of (78), as the functions of s0, are shown in FIG.7, in
Appendix E, where the abscissa of the intersection point
of the two curves gives the value of s0, which is very close
to that given in (76).

In summary, our results suggest that f ′

2(1525) is a good
candidate for the lowest 2++ tensor glueball with some
mixture with the nearby excited isovector and isoscalar
qq̄ mesons. The predicted mass of the lowest lying ten-
sor glueball is only a little bit higher than that of the
scalar one (1500MeV) determined recently according to
the same approach [14]. The reason may be that al-
though there is a lack of the leading instanton contri-
bution in the tensor channel of glueballs, there is still a
strong attractive force arising from the interference be-
tween the quantum gluon fields and the classical one, so
as to govern the final result almost alone. Such situation
is somehow the same as in the case of the scalar channel,
which leads the almost degenerate between the lowest
scalar and tensor glueballs, just as predicted in the con-
ventional bag model. The little bit difference between the
masses of both glueball’s states could be understood as
the spin-splitting. To exploring the deep physical reason
for the above points, a further investigation will certainly
be needed.
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Appendix A

The operators Õ
(i)
µν in terms of instanton and quantum

gluon fields are

Õ
(1)
µν = FaµρFaνρ

Õ
(2)
µν = Faφρabβ,α

δab (δαϕδβρ − δαρδβϕ) (δϕµδφν + δϕνδφµ)

Õ
(3)
µν = gsFaφρAcαabβ

facb (δαϕδβρ − δαρδβϕ) (δϕµδφν + δϕνδφµ)

Õ
(4)
µν = abβ,αadλ,κ

δabδad (δαµδβρ − δαρδβµ) (δκνδλρ − δκρδλν)

Õ
(5)
µν = gs (Aeκadλabβ,αfaedδab +Acαabβadλ,κfacbδad)

(δαµδβρ − δαρδβµ) (δκνδλρ − δκρδλν)

Õ
(6)
µν = g2sAcαAeκabβadλ

facbfaed (δαµδβρ − δαρδβµ) (δκνδλρ − δκρδλν)

Õ
(7)
µν = gsFaφλabβadλfabdδβϕ (δϕµδφν + δϕνδφµ)

Õ
(8)
µν = gsadνaeρabβ,αfadeδab (δαµδβρ − δαρδβµ)

+gsabµacρadλ,κfabcδad (δκνδλρ − δκρδλν)

Õ
(9)
µν = g2sfacbfadeAcαabβadνaeρ (δαµδβρ − δαρδβµ)

+g2sfacbfadeAeκabµacρadλ (δκνδλρ − δκρδλν)

Õ
(10)
µν = g2sabµacρadνaeρfabcfade

(A1)

where Faµν is the instanton field strength associated with
the instanton field A.

Appendix B

The expressions of Π
(int)
i in terms of Õ

(i)
µν are

Π
(int)
1 = T̂ 〈Ω|T Õ(2)

µν (x)Õ
(2)
µ′ν′(0)|Ω〉

Π
(int)
2 = 2T̂ 〈Ω|T Õ(2)

µν (x)Õ
(3)
µ′ν′(0)|Ω〉

Π
(int)
3 = T̂ 〈Ω|T Õ(3)

µν (x)Õ
(3)
µ′ν′(0)|Ω〉

Π
(int)
4 = 2T̂ 〈Ω|T Õ(4)

µν (x)Õ
(5)
µ′ν′(0)|Ω〉

Π
(int)
5 = 2T̂ 〈Ω|T Õ(4)

µν (x)Õ
(6)
µ′ν′(0)|Ω〉

Π
(int)
6 = 2T̂ 〈Ω|T Õ(4)

µν (x)Õ
(7)
µ′ν′(0)|Ω〉

Π
(int)
7 = T̂ 〈Ω|T Õ(5)

µν (x)Õ
(5)
µ′ν′(0)|Ω〉

Π
(int)
8 = T̂ 〈Ω|T Õ(7)

µν (x)Õ
(7)
µ′ν′(0)|Ω〉

Π
(int)
9 = 2T̂ 〈Ω|T Õ(5)

µν (x)Õ
(7)
µ′ν′(0)|Ω〉

Π
(int)
10 = 2T̂ 〈Ω|T Õ(6)

µν (x)Õ
(7)
µ′ν′(0)|Ω〉

Π
(int)
11 = 2T̂ 〈Ω|T Õ(5)

µν (x)Õ
(6)
µ′ν′(0)|Ω〉

Π
(int)
12 = T̂ 〈Ω|T Õ(6)

µν (x)Õ
(6)
µ′ν′(0)|Ω〉 (B1)
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where

T̂ ≡2n̄(δµµ′δνν′ −
1

4
δµνδµ′ν′)

∫

d4z

∫

d4xeiq·x. (B2)

Appendix C

Substituting (29) into (57), we obtain the expression
for the Borel-transformation of the condensate contribu-
tion as follows:

Lcond
−1 (t) =

1

2t2
50παs

3
〈2O1 −O2〉, (C1)

Lcond
0 (t) =

1

t

50παs

3
〈2O1 −O2〉, (C2)

Lcond
1 (t) =

50παs

3
〈2O1 −O2〉. (C3)

The comparison of Lcond with the other Borel-
transformed contributions is shown in FIG.5.

Appendix D

The imaginary part of the correlation function from
the interference is

ImΠ(int) = n̄
[

c5ρ
2s− c6 + c7

(

sρ2
)−1

]

,

(D1)

and the one from the pure perturbative is

ImΠ(qu) =
s2

2π
. (D2)

Both contributions are shown in FIG.6.

Appendix E

The finite-energy sum rule for determining the value
of the threshold s0 reads

∫ s0

0

ds
1

π
ΠQCD(s) =

∫ s0

0

ds
1

π
ρHAD(s) (E1)

The lhs and rhs of (E1) versus s0 are plotted as the solid-
line curve and dotted-line one, respectively, in FIG.7, and
the abscissa of the intersection point of the two curves is
s0 = 2.98GeV2, as indicated in the figure.
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FIG. 3. The lhs (dashed line) and rhs (solid line) of the
sum rules (55) with k = −1, 0, 1 versus t in the case where
the correlation function ΠQCD contains the interference and
pure perturbative contributions, and a single finite-width res-
onance plus continuum model is adopted for the spectral func-
tion.
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rules (55) with k = −1, 0, 1 versus t in the case where the
correlation function ΠQCD contains the interference and pure
perturbative contributions, and a three finite-width resonance
plus continuum model is adopted for the spectral function.
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